

Limitation of Hadoop Map Reduce

• Slow due to replication

• Inefficient for:

– Iterative algorithms (Machine Learning,
Graphs & network analysis)

– Interactive Data Mining (R)

Iter. 1 Iter. 2

HDFS
Read

HDFS
Write

HDFS
Read

HDFS
Write

Input Output

Map

Map

Map

Reduce

Reduce

iter. 1 iter. 2 . . .

Input

Why Spark as Solution: In-Memory Data Sharing

Input

query 1

query 2

query 3

. . .

one-time
processing

What is Spark

• A Big Data analytics cluster-computing framework written in scala

• Open sourced originally developed at AMP Lab @ UC Berkely

• Provides In-Memory analytics which is faster than Hadoop/Hive (Up to 100x)

• Designed for iterative algorithms and interactive analytics

• Highly compatible with Hadoop’s storage APIs.

– Can run on existing Hadoop Cluster Setup

• Developers can write driver programs in using multiple languages

The Spark Stack & Architecture

Core Spark Concepts
• Spark Context: (Spark Context Object)

– Driver programs access point.

– Represents a connection to a computing cluster.

– Used to build resilient distributed datasets or RDDs

• RDD: Resilient Distributed Datasets

– Immutable data structure

– Fault Tolerant

– Parallel Data Structure

– In-Memory (Explicitly)

RDD
RDD
RDD
RDD

Input

Spark-Shell

Hello World!! : Text Search
Spark Context

RDD is created

RDD Operation: Action

RDD Operation: Transformation

RDD: Resilient Distributed Dataset
• An RDD in Spark is simply a distributed collection of objects.

• Each RDD is split into multiple partitions, which may be computed on different nodes of the cluster.

• RDDs can contain any type of Python, Java or Scala objects, including user-defined classes

• RDD Created in two ways

– 1. Loading the external data

– 2. By distributing a collection of objects in from driver program

• Operation on RDD:

– Transformation: construct a new RDD from a previous one

– Actions: compute a result based on an RDD, and either return it to the driver program or save it to an external
storage system

• Spark computes RDDs in a lazy fashion

Resilient Distributed Dataset Contd…

RDD
RDD
RDD
RDD

Transformations

Action Value

val pythonLines = lines.filter(line => line.contains("Python"))

pythonLines.count()

#3

pythonLines.first()

high-level APIs in Scala, Java, and Python, and an optimized engine that

val lines = sc.textFile("README.md")

RDD Operations

Transformations

• Create new dataset from
and existing one

• Lazy in nature. They are
executed only when
some action is
performed

• Example:
• Map()
• Filter()
• Distinct()

Actions

• Returns to the driver
program a value or
exports data to a storage
system after performing
a computation

• Example:
• Count()
• Reduce()
• Collect()
• Take()

Persistence

• For caching data in
memory for future
operations.

• Options to store on disk
or RAM or mixed
(Storage Level)

• Example:
• Persist()
• Cache()

RDD: Lazy Fashion & persist/Caching
• Lazy Fashion:

– RDDs are computed actually created the first time they are used in an action.

• Persist:

– Spark’s RDDs are by default recomputed each time you run an action on them.

– Want to use RDD in multiple actions, ask Spark to store it in memory by using persist. i.e. RDD.persist()

– RDD.unpersist(): To remove from the cache

– Persisting RDDs on disk instead of memory is also possible

Level
Space
Used

CPU
time

In
memory

On Disk
Nodes

with data
Comments

MEMORY_ONLY Low Low Y 1

MEMORY_ONLY_
2 Low Low Y 2

MEMORY_AND_D
ISK High

Medi
um Some Some 1

Spills to disk if there is too
much data to fit in memory.

DISK_ONLY Low High N Y 1

DISK_ONLY_2 Low High N Y 2

RDD Fault Tolerance
• Spark keeps track of the set of dependencies between different RDDs, called the lineage graph.

• It uses this information to compute each RDD on demand and to recover lost data if part of a persistent RDD
is lost.

Spark Streaming

• Framework for large scale stream processing

– Scales to 100s of nodes

– Can achieve second scale latencies

– Integrates with Spark’s batch and interactive processing

– Provides a simple batch-like API for implementing complex algorithm

– Can absorb live data streams from Kafka, Flume, ZeroMQ, etc.

Motivation
 Many important applications must process large streams of live data and provide results in near-real-time

- Social network trends

- Website statistics

- Intrustion detection systems

- etc.

 Require large clusters to handle workloads

 Require latencies of few seconds

Stateful Stream Processing

 Traditional streaming systems have a event-
driven record-at-a-time processing model

- Each node has mutable state

- For each record, update state & send new
records

 State is lost if node dies!

 Making stateful stream processing be fault-
tolerant is challenging

Discretized Stream Processing

Run a streaming computation as a series of very
small, deterministic batch jobs

Spark

Spark
Streaming

batches of X seconds

live data stream

processed
results

 Chop up the live stream into batches of X seconds

 Spark treats each batch of data as RDDs and
processes them using RDD operations

 Finally, the processed results of the RDD
operations are returned in batches

Discretized Stream Processing

Run a streaming computation as a series of very
small, deterministic batch jobs

Spark

Spark
Streaming

batches of X seconds

live data stream

processed
results

 Batch sizes as low as ½ second, latency ~ 1 second

 Potential for combining batch processing and
streaming processing in the same system

Key concepts

• DStream – sequence of RDDs representing a stream of data

– Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP sockets

• Transformations – modify data from on DStream to another

– Standard RDD operations – map, countByValue, reduce, join, …

– Stateful operations – window, countByValueAndWindow, …

• Output Operations – send data to external entity

– saveAsHadoopFiles – saves to HDFS

– foreach – do anything with each batch of results

Example 1 – Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

DStream: a sequence of RDD representing a stream of data

batch @ t+1batch @ t batch @ t+2

tweets DStream

stored in memory as an RDD
(immutable, distributed)

Twitter Streaming API

Example 1 – Get hashtags from Twitter
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

flatMap flatMap flatMap

…

transformation: modify data in one Dstream to create another DStreamnew DStream

new RDDs created for
every batch

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags Dstream
[#cat, #dog, …]

Example 1 – Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

flatMa
p

flatMa
p

flatMa
p

save save save

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags DStream

every batch saved
to HDFS

Fault-tolerance
 RDDs are remember the sequence

of operations that created it from
the original fault-tolerant input data

 Batches of input data are replicated
in memory of multiple worker
nodes, therefore fault-tolerant

 Data lost due to worker failure, can
be recomputed from input data

input data
replicated
in memory

flatMap

lost partitions
recomputed on
other workers

tweets
RDD

hashTags
RDD

Spark: Machine Learning (MLlib)

• MLlib is a standard component of Spark providing machine learning primitives on top of
Spark

• Algorithms supported by Mllib

– Classification: SVM

– Regression: Linear Regression, and random forests

– Collaborative Filtering: Alternating Least Squares (ALS)

– Clustering: K-means

– Dimensionality Reduction: Singular Value Decomposition (SVD)

– Basic Statistics: Summary Statistics, correlation, hypothesis testing

– Feature Extraction and Sampling:

Collaborative Filtering
• Recover a rating matrix from a subset of its entries.

• ALS - wall-clock time

Collaborative Filtering

Spark SQL
• Spark SQL unifies access to structured data.

• Load and query data from a variety of sources

• Run unmodified Hive queries on existing warehouses

• Connect through JDBC or ODBC.

• Spark SQL includes a server mode with industry
standard JDBC and ODBC connectivity.

The Spark Community

Vision - one stack to rule them all

A New Feature Addition to MLlib

• ELM: Extreme Learning Machine.

– A latest and fast learning method.

– Based Single Layer Neural Network model.

– Works 100x faster than the Backpropgation algorithm

– More training accuracy compared SVM*

– It used Singular Value Decomposition (SVD) for computation which is already supported by Spark
MLlib

– Very recent research publications (2014) prove parallel and distributed model of ELM

References (google Apache Spark)

Question?

Thank You!!!!

Video About Google:

https://www.youtube.com/watch?v=p0ysH2Glw5w

https://www.youtube.com/watch?v=p0ysH2Glw5w
https://www.youtube.com/watch?v=p0ysH2Glw5w

