

Limitation of Hadoop Map Reduce

• Slow due to replication

• Inefficient for:

– Iterative algorithms (Machine Learning,
Graphs & network analysis)

– Interactive Data Mining (R)

Iter. 1 Iter. 2

HDFS
Read

HDFS
Write

HDFS
Read

HDFS
Write

Input Output

Map

Map

Map

Reduce

Reduce

iter. 1 iter. 2 . . .

Input

Why Spark as Solution: In-Memory Data Sharing

Input

query 1

query 2

query 3

. . .

one-time
processing

What is Spark

• A Big Data analytics cluster-computing framework written in scala

• Open sourced originally developed at AMP Lab @ UC Berkely

• Provides In-Memory analytics which is faster than Hadoop/Hive (Up to 100x)

• Designed for iterative algorithms and interactive analytics

• Highly compatible with Hadoop’s storage APIs.

– Can run on existing Hadoop Cluster Setup

• Developers can write driver programs in using multiple languages

The Spark Stack & Architecture

Core Spark Concepts
• Spark Context: (Spark Context Object)

– Driver programs access point.

– Represents a connection to a computing cluster.

– Used to build resilient distributed datasets or RDDs

• RDD: Resilient Distributed Datasets

– Immutable data structure

– Fault Tolerant

– Parallel Data Structure

– In-Memory (Explicitly)

RDD
RDD
RDD
RDD

Input

Spark-Shell

Hello World!! : Text Search
Spark Context

RDD is created

RDD Operation: Action

RDD Operation: Transformation

RDD: Resilient Distributed Dataset
• An RDD in Spark is simply a distributed collection of objects.

• Each RDD is split into multiple partitions, which may be computed on different nodes of the cluster.

• RDDs can contain any type of Python, Java or Scala objects, including user-defined classes

• RDD Created in two ways

– 1. Loading the external data

– 2. By distributing a collection of objects in from driver program

• Operation on RDD:

– Transformation: construct a new RDD from a previous one

– Actions: compute a result based on an RDD, and either return it to the driver program or save it to an external
storage system

• Spark computes RDDs in a lazy fashion

Resilient Distributed Dataset Contd…

RDD
RDD
RDD
RDD

Transformations

Action Value

val pythonLines = lines.filter(line => line.contains("Python"))

pythonLines.count()

#3

pythonLines.first()

high-level APIs in Scala, Java, and Python, and an optimized engine that

val lines = sc.textFile("README.md")

RDD Operations

Transformations

• Create new dataset from
and existing one

• Lazy in nature. They are
executed only when
some action is
performed

• Example:
• Map()
• Filter()
• Distinct()

Actions

• Returns to the driver
program a value or
exports data to a storage
system after performing
a computation

• Example:
• Count()
• Reduce()
• Collect()
• Take()

Persistence

• For caching data in
memory for future
operations.

• Options to store on disk
or RAM or mixed
(Storage Level)

• Example:
• Persist()
• Cache()

RDD: Lazy Fashion & persist/Caching
• Lazy Fashion:

– RDDs are computed actually created the first time they are used in an action.

• Persist:

– Spark’s RDDs are by default recomputed each time you run an action on them.

– Want to use RDD in multiple actions, ask Spark to store it in memory by using persist. i.e. RDD.persist()

– RDD.unpersist(): To remove from the cache

– Persisting RDDs on disk instead of memory is also possible

Level
Space
Used

CPU
time

In
memory

On Disk
Nodes

with data
Comments

MEMORY_ONLY Low Low Y 1

MEMORY_ONLY_
2 Low Low Y 2

MEMORY_AND_D
ISK High

Medi
um Some Some 1

Spills to disk if there is too
much data to fit in memory.

DISK_ONLY Low High N Y 1

DISK_ONLY_2 Low High N Y 2

RDD Fault Tolerance
• Spark keeps track of the set of dependencies between different RDDs, called the lineage graph.

• It uses this information to compute each RDD on demand and to recover lost data if part of a persistent RDD
is lost.

Spark Streaming

• Framework for large scale stream processing

– Scales to 100s of nodes

– Can achieve second scale latencies

– Integrates with Spark’s batch and interactive processing

– Provides a simple batch-like API for implementing complex algorithm

– Can absorb live data streams from Kafka, Flume, ZeroMQ, etc.

Motivation
 Many important applications must process large streams of live data and provide results in near-real-time

- Social network trends

- Website statistics

- Intrustion detection systems

- etc.

 Require large clusters to handle workloads

 Require latencies of few seconds

Stateful Stream Processing

 Traditional streaming systems have a event-
driven record-at-a-time processing model

- Each node has mutable state

- For each record, update state & send new
records

 State is lost if node dies!

 Making stateful stream processing be fault-
tolerant is challenging

Discretized Stream Processing

Run a streaming computation as a series of very
small, deterministic batch jobs

Spark

Spark
Streaming

batches of X seconds

live data stream

processed
results

 Chop up the live stream into batches of X seconds

 Spark treats each batch of data as RDDs and
processes them using RDD operations

 Finally, the processed results of the RDD
operations are returned in batches

Discretized Stream Processing

Run a streaming computation as a series of very
small, deterministic batch jobs

Spark

Spark
Streaming

batches of X seconds

live data stream

processed
results

 Batch sizes as low as ½ second, latency ~ 1 second

 Potential for combining batch processing and
streaming processing in the same system

Key concepts

• DStream – sequence of RDDs representing a stream of data

– Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP sockets

• Transformations – modify data from on DStream to another

– Standard RDD operations – map, countByValue, reduce, join, …

– Stateful operations – window, countByValueAndWindow, …

• Output Operations – send data to external entity

– saveAsHadoopFiles – saves to HDFS

– foreach – do anything with each batch of results

Example 1 – Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

DStream: a sequence of RDD representing a stream of data

batch @ t+1batch @ t batch @ t+2

tweets DStream

stored in memory as an RDD
(immutable, distributed)

Twitter Streaming API

Example 1 – Get hashtags from Twitter
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

flatMap flatMap flatMap

…

transformation: modify data in one Dstream to create another DStreamnew DStream

new RDDs created for
every batch

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags Dstream
[#cat, #dog, …]

Example 1 – Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

flatMa
p

flatMa
p

flatMa
p

save save save

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags DStream

every batch saved
to HDFS

Fault-tolerance
 RDDs are remember the sequence

of operations that created it from
the original fault-tolerant input data

 Batches of input data are replicated
in memory of multiple worker
nodes, therefore fault-tolerant

 Data lost due to worker failure, can
be recomputed from input data

input data
replicated
in memory

flatMap

lost partitions
recomputed on
other workers

tweets
RDD

hashTags
RDD

Spark: Machine Learning (MLlib)

• MLlib is a standard component of Spark providing machine learning primitives on top of
Spark

• Algorithms supported by Mllib

– Classification: SVM

– Regression: Linear Regression, and random forests

– Collaborative Filtering: Alternating Least Squares (ALS)

– Clustering: K-means

– Dimensionality Reduction: Singular Value Decomposition (SVD)

– Basic Statistics: Summary Statistics, correlation, hypothesis testing

– Feature Extraction and Sampling:

Collaborative Filtering
• Recover a rating matrix from a subset of its entries.

• ALS - wall-clock time

Collaborative Filtering

Spark SQL
• Spark SQL unifies access to structured data.

• Load and query data from a variety of sources

• Run unmodified Hive queries on existing warehouses

• Connect through JDBC or ODBC.

• Spark SQL includes a server mode with industry
standard JDBC and ODBC connectivity.

The Spark Community

Vision - one stack to rule them all

A New Feature Addition to MLlib

• ELM: Extreme Learning Machine.

– A latest and fast learning method.

– Based Single Layer Neural Network model.

– Works 100x faster than the Backpropgation algorithm

– More training accuracy compared SVM*

– It used Singular Value Decomposition (SVD) for computation which is already supported by Spark
MLlib

– Very recent research publications (2014) prove parallel and distributed model of ELM

References (google Apache Spark)

Question?

Thank You!!!!

Video About Google:

https://www.youtube.com/watch?v=p0ysH2Glw5w

https://www.youtube.com/watch?v=p0ysH2Glw5w
https://www.youtube.com/watch?v=p0ysH2Glw5w

