




Limitation of Hadoop Map Reduce

• Slow due to replication

• Inefficient for:

– Iterative algorithms (Machine Learning, 
Graphs & network analysis)

– Interactive Data Mining (R)
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What is Spark

• A Big Data analytics cluster-computing framework written in scala

• Open sourced originally developed at AMP Lab @ UC Berkely

• Provides In-Memory analytics which is faster than Hadoop/Hive (Up to 100x) 

• Designed for iterative algorithms and interactive analytics

• Highly compatible with Hadoop’s storage APIs.

– Can run on existing Hadoop Cluster Setup

• Developers can write driver programs in using multiple languages



The Spark Stack & Architecture



Core Spark Concepts
• Spark Context: (Spark Context Object)

– Driver programs access point. 

– Represents a connection to a computing cluster.

– Used to build resilient distributed datasets or RDDs

• RDD: Resilient Distributed Datasets

– Immutable data structure

– Fault Tolerant

– Parallel Data Structure

– In-Memory (Explicitly)
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Spark-Shell



Hello World!! : Text Search
Spark Context

RDD is created

RDD Operation: Action

RDD Operation: Transformation



RDD: Resilient Distributed Dataset
• An RDD in Spark is simply a distributed collection of objects.

• Each RDD is split into multiple partitions, which may be computed on different nodes of the cluster.

• RDDs can contain any type of Python, Java or Scala objects, including user-defined classes

• RDD Created in two ways

– 1. Loading the external data

– 2. By distributing a collection of objects in from driver program

• Operation on RDD:

– Transformation: construct a new RDD from a previous one

– Actions: compute a result based on an RDD, and either return it to the driver program or save it to an external 
storage system 

• Spark computes RDDs in a lazy fashion



Resilient Distributed Dataset Contd…
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Transformations

Action Value

val pythonLines = lines.filter(line => line.contains("Python"))

pythonLines.count()

#3

pythonLines.first()

high-level APIs in Scala, Java, and Python, and an optimized engine that

val lines = sc.textFile("README.md")



RDD Operations

Transformations

• Create new dataset from 
and existing one

• Lazy in nature. They are 
executed only when 
some action is 
performed

• Example:
• Map()
• Filter()
• Distinct()

Actions

• Returns to the driver 
program a value or 
exports data to a storage 
system after performing 
a computation

• Example:
• Count()
• Reduce()
• Collect()
• Take()

Persistence

• For caching data in 
memory for future 
operations.

• Options to store on disk 
or RAM or mixed 
(Storage Level)

• Example:
• Persist()
• Cache()



RDD: Lazy Fashion & persist/Caching
• Lazy Fashion:

– RDDs are computed  actually created the first time they are used in an action.

• Persist: 

– Spark’s RDDs are by default recomputed each time you run an action on them.

– Want to use RDD in multiple actions, ask Spark to store it in memory by using persist. i.e. RDD.persist()

– RDD.unpersist(): To remove from the cache

– Persisting RDDs on disk instead of memory is also possible

Level
Space 
Used

CPU 
time

In 
memory

On Disk
Nodes 

with data
Comments

MEMORY_ONLY Low Low Y 1

MEMORY_ONLY_
2 Low Low Y 2

MEMORY_AND_D
ISK High 

Medi
um Some Some 1

Spills to disk if there is too 
much data to fit in memory.

DISK_ONLY Low High N Y 1

DISK_ONLY_2 Low High N Y 2



RDD Fault Tolerance
• Spark keeps track of the set of dependencies between different RDDs, called the lineage graph.

• It uses this information to compute each RDD on demand and to recover lost data if part of a persistent RDD 
is lost.



Spark Streaming

• Framework for large scale stream processing 

– Scales to 100s of nodes

– Can achieve second scale latencies

– Integrates with Spark’s batch and interactive processing

– Provides a simple batch-like API for implementing complex algorithm

– Can absorb live data streams from Kafka, Flume, ZeroMQ, etc.



Motivation
 Many important applications must process large streams of live data and provide results in near-real-time

- Social network trends

- Website statistics

- Intrustion detection systems

- etc.

 Require large clusters to handle workloads

 Require latencies of few seconds



Stateful Stream Processing

 Traditional streaming systems have a event-
driven record-at-a-time processing model

- Each node has mutable state

- For each record, update state & send new 
records

 State is lost if node dies!

 Making stateful stream processing be fault-
tolerant is challenging



Discretized Stream Processing 

Run a streaming computation as a series of very 
small, deterministic batch jobs

Spark

Spark
Streaming

batches of X seconds

live data stream

processed 
results

 Chop up the live stream into batches of X seconds 

 Spark treats each batch of data as RDDs and 
processes them using RDD operations

 Finally, the processed results of the RDD 
operations are returned in batches



Discretized Stream Processing 

Run a streaming computation as a series of very 
small, deterministic batch jobs

Spark

Spark
Streaming

batches of X seconds

live data stream

processed 
results

 Batch sizes as low as ½ second, latency ~ 1 second

 Potential for combining batch processing and 
streaming processing in the same system



Key concepts

• DStream – sequence of RDDs representing a stream of data

– Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP sockets

• Transformations – modify data from on DStream to another

– Standard RDD operations – map, countByValue, reduce, join, …

– Stateful operations – window, countByValueAndWindow, …

• Output Operations – send data to external entity

– saveAsHadoopFiles – saves to HDFS

– foreach – do anything with each batch of results



Example 1 – Get hashtags from Twitter 

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

DStream: a sequence of RDD representing a stream of data

batch @ t+1batch @ t batch @ t+2

tweets DStream

stored in memory as an RDD 
(immutable, distributed)

Twitter Streaming API



Example 1 – Get hashtags from Twitter 
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

flatMap flatMap flatMap

…

transformation: modify data in one Dstream to create another DStreamnew DStream

new RDDs created for 
every batch 

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags Dstream
[#cat, #dog, … ]



Example 1 – Get hashtags from Twitter  

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

flatMa
p

flatMa
p

flatMa
p

save save save

batch @ t+1batch @ t batch @ t+2

tweets DStream

hashTags DStream

every batch saved 
to HDFS



Fault-tolerance
 RDDs are remember the sequence 

of operations that created it from 
the original fault-tolerant input data

 Batches of input data are replicated 
in memory of multiple worker 
nodes, therefore fault-tolerant

 Data lost due to worker failure, can 
be recomputed from input data

input data 
replicated
in memory

flatMap

lost partitions 
recomputed on 
other workers

tweets
RDD

hashTags
RDD



Spark: Machine Learning (MLlib)

• MLlib is a standard component of Spark providing machine learning primitives on top of 
Spark

• Algorithms supported by Mllib

– Classification: SVM

– Regression: Linear Regression, and random forests

– Collaborative Filtering: Alternating Least Squares (ALS)

– Clustering: K-means

– Dimensionality Reduction: Singular Value Decomposition (SVD)

– Basic Statistics: Summary Statistics, correlation, hypothesis testing 

– Feature Extraction and Sampling:



Collaborative Filtering 
• Recover a rating matrix from a subset of its entries.

• ALS - wall-clock time



Collaborative Filtering 



Spark SQL
• Spark SQL unifies access to structured data. 

• Load and query data from a variety of sources

• Run unmodified Hive queries on existing warehouses

• Connect through JDBC or ODBC. 

• Spark SQL includes a server mode with industry 
standard JDBC and ODBC connectivity.



The Spark Community



Vision - one stack to rule them all



A New Feature Addition to MLlib

• ELM: Extreme Learning Machine.

– A latest and fast learning method.

– Based Single Layer Neural Network model.

– Works 100x faster than the Backpropgation algorithm

– More training accuracy compared SVM*

– It used Singular Value Decomposition (SVD) for computation which is already supported by Spark 
MLlib

– Very recent research publications (2014) prove parallel and distributed model of ELM



References (google Apache Spark)



Question?



Thank You!!!!

Video About Google:

https://www.youtube.com/watch?v=p0ysH2Glw5w

https://www.youtube.com/watch?v=p0ysH2Glw5w
https://www.youtube.com/watch?v=p0ysH2Glw5w

