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Abstract
Fast non-volatile memory (NVM) technology changes the
landscape of file systems. A series of research efforts to over-
come the traditional file system designs that limit NVM perfor-
mance. This research has proposed NVM-optimized file sys-
tems to leverage the favorable features of byte-addressability,
low-latency, and high scalability. The work tailors the file sys-
tem stack to reduce the software overhead in using fast NVM.
As a further step, NVM IO systems use the memory-mapped
interface to fully capture the performance of NVM. However,
the memory-mapped interface makes it difficult to manage
the consistency semantics of NVM, as application developers
need to consider the low-level details. In this work, we pro-
pose Libnvmmio, an extended user-level memory-mapped IO,
which provides failure-atomicity and frees developers from
the crash-consistency headaches. Libnvmmio reconstructs a
common data IO path with memory-mapped IO, providing
better performance and scalability than the state-of-the-art
NVM file systems. On a number of microbenchmarks, Lib-
nvmmio gains up to 2.2× better throughput and 13× better
scalability than file accesses via system calls to underlying
file systems. For SQLite, Libnvmmio improves the perfor-
mance of Mobibench and TPC-C by up to 93% and 27%,
respectively. For MongoDB, it gains up to 42% throughput
increase on write-intensive YCSB workloads.

1 Introduction

The recent surge of non-volatile main memory (NVM)
technology such as PCM [32, 55], STT-MRAM [4, 30],
NVDIMMs [45], and 3D Xpoint memory [21] allows ap-
plications to access persistent data via CPU load/store in-
structions directly. With the benefits of competitive perfor-
mance, low power consumption, and high scalability, they
are expected to complement or even replace DRAM in future
systems [30, 33].

To leverage the performance and persistent features, re-
searchers have proposed NVM-optimized file systems [8, 12,

13, 24, 28, 46, 65, 67, 68]. The most important challenge ad-
dressed in the series of work is to revise the inefficient be-
havior of the software IO stack, which presents a dominating
overhead in fast NVM [2, 3, 9, 22, 26, 48, 69]. To reduce the
overhead, state-of-the-art NVM-aware file systems discard
the traditional block layer and the page cache layer in the
IO path. Despite these optimizations, file accesses through
the OS kernel’s file system still incur significant overhead.
For example, read and write system calls are still expensive
ways to leverage the low latency of NVM, due to frequent
user/kernel mode switches, data copies, and complicated VFS
layers [7, 9, 24, 25, 27, 57, 62].

A promising approach to further reduces IO overhead of
NVM file systems is to use memory-mapped IO [9, 35, 58,
60, 67, 68]. The memory-mapped IO naturally fits the charac-
teristics of NVM. Applications can map files to their virtual
address space and access files directly with load/store in-
structions without kernel interventions. Memory-mapped IO
also minimizes the CPU overhead of file system operations
by eliminating file operations such as indexing to locate data
blocks and checking permissions [65]. With these benefits,
the mmap would be a critical interface for file IO in future
NVM systems.

While memory-mapped IO exposes the raw performance
of NVM to applications, a lot of responsibility is laid on ap-
plications as well. One thing to keep in mind for application
programmers is that memory-mapped IO does not guarantee
atomic-durability. If a system failure occurs during memory-
mapped IO, the file contents may be corrupted and inconsis-
tent in the application context. In return for fast performance,
developers should build application-specific crash-safe mech-
anisms. Cache lines should be flushed to ensure durability
and memory barriers should be enforced to provide a correct
persistent ordering for NVM updates. This mechanism often
induces a serious software overhead, and makes it notoriously
difficult to write accurate and efficient crash-proof code for
NVM systems [38, 50–52, 71]. For an instance, applying
cache flush and memory barrier instructions correctly in the
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right locations is challenging; excessive use causes perfor-
mance degradation, but omitting them in required locations
leads to data corruption [39, 70]. This is the major obstacle
blocking the adoption of memory-mapped IO to fully exploit
the advantages of NVM.

We propose Libnvmmio, a user library that provides failure-
atomic memory-mapped IO with msync. We add atomicity
and ordering features to the existing msync at user-level. By
separating failure-atomicity concerns from memory-mapped
IO applications, Libnvmmio allows developers to focus on the
main logic of programs. To make the msync failure-atomic,
Libnvmmio uses user-level logging techniques. Our library
stages written data to per-block, persistent logs and applies the
updates to memory-mapped files in a failure-atomic manner
on msync.

Implementing msync at user-level has many advantages.
First, the user-level msync minimizes system call overhead.
Existing msync imposes system call overhead, which takes
locks and excessively serializes threads in a multi-threaded ap-
plication. Second, it reduces write amplification. Kernel-level
msync flushes rather large ranges whose size are multiples
of the system page size (4KB, 2MB, or 1GB). Whereas,
user-level msync can track dirty data at a cacheline gran-
ularity and flush them at cacheline level. Third, it avoids
TLB-shootdown overhead. When applications invoke msync
on NVM file systems, operating systems track down updated
pages by searching for dirty bits in the page table and flush
corresponding cache lines of those dirty pages to NVM. After
the flush, they clear the dirty bits in the page table to enable
tracking new updates. This incurs TLB invalidations in other
cores, as dirty bit state is just kind of information in TLB
along with the virtual to physical page mapping. As Libnvm-
mio’s msync maintains user-level logs for update tracking, we
can totally avoid TLB-shootdown overhead. Fourth, it takes
advantage of non-temporal store instructions which bypass
CPU caches with no need of cache flushing. Kernel-level
msync flushes the entire range, even if updates are performed
with non-terminal store instructions. In general, there is no
other way to communicate with msync that the non-temporal
stores are used. For all of these reasons, a user-level msync
in Libnvmmio can perform better than a kernel-level msync.

Existing applications that use conventional file IO inter-
face (e.g., read/write, fsync, etc.) can also benefit from
memory-mapped IO using Libnvmmio. Like FLEX [66] and
SplitFS [24], Libnvmmio transparently intercepts the tradi-
tional file IO requests and then perform memory-mapped
IO. When applications call fsync, Libnvmmio carries out
its failure-atomic msync. Libnvmmio rebuilds the common
IO path with efficient mechanisms for read and write perfor-
mance, but the uncommon, complex file operations such as
directory namespace and protection are passed to the slow
path of the existing file systems.

Libnvmmio runs on any file systems that supports memory-
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Figure 1: Read syscalls vs. memory mapped IO. Sequential
read on a 16GB file. Both cases use read or memcpy to copy
file data into the user buffer by 4KB.

mapped interface on NVM such as Ext4-DAX, XFS-DAX,
PMFS [13], and NOVA [68]. Libnvmmio running on NOVA
performs better than NOVA by 2.5× and Ext4-DAX by 1.18×
in Mobibench and TPC-C.

Libnvmmio makes the following contributions:

• Libnvmmio extends the semantics of msync, providing
failure-atomicity.

• With experimental evidences, Libnvmmio demonstrates
lower-latency and higher-throughput with scalability
than the state-of-the-art NVM file systems

• Design and implementation of Libnvmmio, running on
Ext4-DAX, XFS-DAX, PMFS, NOVA. Libnvmmio is
publicly available at:
https://github.com/chjs/libnvmmio.

2 Background

2.1 Need for Memory-Mapped IO
The fundamental difference between memory-mapped IO
and read-write IO is the data path. The read-write interface
copies the user buffer into a kernel buffer1, searches the file
system index to locate physical block address, and performs
metadata operations if necessary. Whereas, the memory-
mapped interface allows direct accesses to storage, skipping
the index searching and copying to the kernel buffer. The
simplified data path in memory-mapped IO drastically reduces
the software overhead compared to the read-write interface,
which significantly improves IO performance in fast non-
volatile memory. To compare the performance, we run a
micro-benchmark performing sequential reads on a 16 GB
file. Figure 1 shows the performance difference. Memory-
mapped IO shows 2.3× better performance than the read
system call. The read system calls spends 43.9% out of the
IO entire latency on copying user buffers to kernel buffers
and 45.4% for the rest of kernel IO stack. Memory-mapped
IO eliminates most of the software overhead. We observed
that the total number of instructions to execute a single read

1Some NVM file systems such as NOVA avoid it.
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is 69× less in the memory-mapped IO than the read system
call.

2.2 Need for Atomic Updates

Modern processors guarantee only cache-sized, aligned stores
(64 bit) to be atomic. The atomicity guarantee is not sufficient
for general file IO which requires more complex and larger
atomic updates. On writing a 4 KB or larger block, a crash
may cause partially updated states, which needs significant
costs to detect and recover the block. To avoid the hassle,
researchers put an effort to make large updates failure-atomic
in non-volatile memory file systems [24, 28, 67]. Existing
file systems deploy a variety of techniques to implement the
failure-atomicity guarantee: copy-on-write and journaling.
These techniques work in different ways, and the advantages
and disadvantages in terms of performance vary.

2.2.1 Copy-on-Write

When updating a block, the Copy-on-Write (CoW) (or
shadow-paging) [12, 17, 42, 56, 67, 68] mechanism creates
a copy of the original page and writes the new data to the
copied page rather than updating the new data in place. Not
only for data update but the CoW mechanism performs the
out-of-place update for index. For a tree-based indexing struc-
ture, the CoW mechanism causes a change of a child node to
update its parent node in an out-of-place manner, propagating
all the changes of internal nodes up to the top of the tree
(called wandering tree problem).

The CoW mechanism induce significant software overhead
when used in the NVMM system. First, CoW dramatically
increases write amplification. CoW usually performs writes
at the page granularity, which is a typical node size of file
systems indexing. Even if only a few bytes are updated,
the entire page must be written. Besides, as the capacity
of main memory has increased, the utilization of hugepages
(e.g., 2MB or 1GB) is increasing [6, 13, 14, 29, 47, 54]. This
trend makes the use of the CoW technique more costly [9].
Second, the CoW technique causes TLB-shootdown overhead
in memory-mapped IO. If the CoW technique is applied to
memory-mapped files, the mapping of the virtual address
must be changed from the original page to the copied page,
necessitating TLB-shootdown whenever an update occurs.
When a CoW occurs, the kernel flushes the local TLB and
send flush requests to remote cores through inter-processor
interrupt (IPI). The remote cores flush their TLB entries ac-
cording to the information received by the IPI and report back
when completed. If the remote core has interrupts disabled,
the IPI may be kept pending. The initiator core expects to
receive all acknowledge the process of flushing the TLBs.
This process could take microseconds, causing a notable over-
head [3, 61].

2.2.2 Journaling

Journaling (or logging) is a technique that is widely used in
databases [43] and journaling file systems [13, 16, 22, 34, 49,
53] to ensure data-atomicity and consistency between data
and metadata. It persists a copy of new or original data before
updating the original file. If a system failure occurs during
writing, the valid log can be used for recovery. Two logging
policies are possible: undo logging and redo logging. Redo
logging first writes new data to the redo log. When the new
data becomes durable in the log, the data are overwritten to
the original file. If a system failure occurs while updating the
file, the new data in the log can be written again to the file. For
read requests, applications need to check the log first because
only the log may have the up-to-date data. Undo logging
first copies the original data to the log. After the original
data becomes persistent, undo logging updates the new data
to the file in place. If a system failure occurs during the
write, undo logging allows to roll back the original data using
the undo log. Because the latest data are always in the file,
applications can read the data directly from the file without
checking the log. Therefore, undo logging is appropriate for
the applications that perform read frequently (§3.4).

Logging techniques require writing data twice: once to the
log and once to the original file, which may cause software
overhead. However, redo logging allows updating the original
file out of the critical path of execution. Because the log has
the persistent data, redo logging can postpone updating the
file in the background (§3.3). Besides, logging technique is
convenient to implement the differential logging [1,15,23,36].
Unlike page-based logging, which logs an entire page, the
differential logging only logs differential data at the byte-
granularity. Differential logging can significantly reduce write
amplification especially when it is used for byte-granularity
storage devices such as NVM [27].

2.3 Atomic Update for Memory-Mapped IO

While the direct access of memory-mapped IO is essential for
reducing the software overhead in NVM file system, it pushes
the burden of data atomicity to the application. The POSIX
msync primitives provides durability and consistency between
data and metadata but not atomicity. To support atomicity of
large updates, application developers must implement their
own reliability mechanism. However, implementing the in-
house mechanism is tedious and notoriously buggy [50].

Researchers have proposed adding the atomicity guaran-
tee to the msync interface in traditional storage [50] and
NVM [67]. To provide atomicity to memory-mapped files,
they take journaling-like approaches; dirty pages are staged
first and copied to the original file. Providing atomicity at
the kernel-level has a fundamental limit which impacts good
performance. For example, NOVA [67] creates a replica page
on a page fault and maps the replica page on the faulting
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virtual address. On msync, kernel copies the replica page to
the original page atomically. The minimum unit of copying is
a page size (4 KB or 2 MB), which causes write amplification
for small IO requests.

3 Libnvmmio

The purpose of Libnvmmio is eliminating software overhead,
while providing low-latency, scalable file IO with ensured
data-atomicity. Libnvmmio is linked with applications as
a library, providing the efficient IO path by using the mmap
interface. In particular, Libnvmmio has following design
goals and implementation strategies.

Low-latency IO. Reducing software overhead is crucial to
take advantage of low latency NVM. Since Libnvmmio aims
to make the common IO path efficient for low-latency IO, it
avoids using the complicated kernel IO path including the
slow journaling for common cases.

Efficient logging for data atomicity. Libnvmmio transpar-
ently intercepts file APIs and provides atomicity for data
operations by using logging. As sustaining low-latency file
IO is essential, Libnvmmio endeavors to minimize write am-
plification and software overhead for data logging.

High-throughput, scalable IO with high concurrency.
To sustain high throughput across different IO sizes, Libnvm-
mio uses varying sizes of log entries depending on IO sizes.
To this end, Libnvmmio deploys a flexible data structure for
indexing the log entries and handles various log entry sizes.
Additionally, Libnvmmio aims to achieve high concurrency
through fine-grained logging and scalable indexing structure.

Data-centric, per-block based organization. Libnvmmio
constructs most of its data structures and metadata as data-
centric. For example, Libnvmmio builds per-block logs and
metadata rather than per-thread or per-transaction based logs.
Data-centric design allows a single instance of a data structure
and metadata for a corresponding data block. The singleton
design makes it easy to coordinate shared accesses with locks.
As multiple threads access the same large file concurrently in
recent applications, they require more fine-grained locks than
entire file locks [40]. With fine-grained locks at block level,
Libnvmmio achieves scalability for data-centric logging. Per-
inode logging improves scalability, when multiple accesses
are performed on different files [67,68]. However, it provides
a limited degree of scalability for multiple accesses to the
same file.

Transparent to underlying file systems. On top of exist-
ing NVM file systems, Libnvmmio improves the performance
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Figure 2: Libnvmmio Overview

for common data IO, keeping POSIX interfaces unchanged.
For complex, uncommon IO operations, Libnvmmio lever-
ages rich, well-tested features of existing file systems. With-
out breaking POSIX semantics, Libnvmmio offers extended
POSIX APIs to applications for additional features. For exam-
ple, POSIX semantics does not guarantee atomicity of mmap.
While atomicity is useful, not all files need atomic update
guarantees — it is unnecessary for temporal files. Libnvm-
mio extends open API to let applications indicate atomicity
guarantee in a per-file basis. To communicate with the kernel,
Libnvmmio translates the extended APIs to the conventional
APIs with additional flags. With such a user-level extension
design, Libnvmmio runs on any NVM file systems that sup-
port DAX-mmap, while enjoying file-system specific features
such as fast snapshot and efficient block allocation.

3.1 Overall Architecture

Libnvmmio runs in the address space of a target application
as a library and interacts with underlying file systems. Lib-
nvmmio intercepts IO requests and turns them into internal
operations. For each IO request, Libnvmmio distinguishes
data and metadata operations. For all data requests, Libnvm-
mio services them in the user-level library, bypassing the slow
kernel code. Whereas, for complex metadata and directory
operations, Libnvmmio lets the operations be processed by
the kernel. This design is based on the observation that data
updates are the common, performance-critical operations. On
the other hand, the metadata and directory operations are rel-
atively uncommon and include complex implementation to
support POSIX semantics. Handling them differently, the
architecture of Libnvmmio follows the design principle of
making the normal case fast [31] with a simple, fast user-level
implementation.

Figure 2 shows the overall architecture of Libnvmmio.
When an application opens a file, Libnvmmio interposes the
open call with a user-level open API. Within the open API,
it maps the whole content of the file onto the user memory
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space and initializes per-file metadata (§3.5). The metadata
Libnvmmio initializes includes inode number, logging policy,
epoch number, etc. After the initialization, it returns the file
descriptor to the application.

Memory-mapped IO. To directly access the NVM, Libn-
vmmio maps the file via mmap system call. Libnvmmio inter-
cepts and replaces read calls with memcpy, and write calls
with a non-temporal version of memcpy that uses the movnt in-
struction. There are two reasons why the memory-mapped IO
allows faster NVM access than the traditional kernel-served
read and write method. First, when persisting and obtaining
data, the simple, the fast code path in Libnvmmio replaces
the complex, slow kernel IO path [24, 28]. Second, read
and write system calls involve indexing operations to locate
physical blocks, which causes a non-trivial software over-
head for fast NVM accesses. Whereas, in memory-mapped
IO, the kernel searches the complex index when it maps the
file blocks to the user address space on page faults. After
the mapping is established, Libnvmmio can access the file
data simply with offset in the memory-mapped address, elim-
inating the indexing operations in the steady state. Besides,
finding file blocks through virtual addresses is offloaded to
the MMU (e.g., page table walkers, TLBs). Therefore, it
reduces a sizable amount of the CPU overhead caused by file
indexing [65].

Atomicity and durability with user-level logging. On
SYNC2 calls, Libnvmmio flushes the cache data and stores
the data to NVM atomically via the logging mechanism. All
write data are firstly persisted to the user-level log and later
they are copied (called checkpoint) to the memory-mapped
file. Data from both write and memcpy interfaces goes down
the same path.

Providing atomicity via the user-level logging has sev-
eral advantages over the kernel-level design. Using the
user-level IO information, Libnvmmio can leverage the byte-
addressability of NVM to log data in the fine-grained unit. On
the other hand, in the kernel-level approach, the logging unit
should be a page size, as msync relies on the page dirty bit to
log the memory-mapped data, causing write amplification in
case of small writes (i.e., less than a page size). After msync
is done, kernel must clear the dirty bit in the page table fol-
lowed by TLB shootdown. However, user-level design uses
own data structure to track dirty data without relying on the
page dirty mechanism, saving unnecessary TLB shootdowns.

Application transparency. For applications using read
and write, Libnvmmio can transparently replace them with
the memory mapped IO operations. For applications using
mmap, Libnvmmio can redirect the memory operations to
NVM memory-mapped IO operations without effort.

2This term means both fsync and msync.

Providing atomic-durability on top of the mmap interface
makes the case challenging, as Libnvmmio cannot distinguish
the memcpy operations that requires atomic-durability from
the ones that do not require.

Guaranteeing atomicity to all IO operations is prohibitively
expensive. Some IO requests do not need atomicity such as
logging internal traces or errors. To address the problem, Lib-
nvmmio exposes two version of memcpy: POSIX version and
Libnvmmio version. Libnvmmio versions are prefixed with
nv (e.g., nvmmap, nvmemcpy, nvmunmap, etc.) and provide
atomic-durability. Libnvmmio avoids intrusive modifications
of existing applications in order to use the Libnvmmio APIs.
Instead, we instrument the application binary with an in-house
tool, which lists the files the application accesses and asks
developers which files need atomic-updates. With the list
of files requiring atomic-durability, we patches the binary to
use Libnvmmio APIs. In most cases, applications use read,
write, or memcpy APIs, which are easy to patch for the ap-
plication binary. However, in case of manipulating files with
pointers, we need source-level modifications (e.g., 182 lines
in the MongoDB MMAPv1 engine).

3.2 Scalable Logging
Applications such as in-memory database and key-value
stores, that benefit from Libnvmmio, require high concur-
rency level to sustain high throughput. Libnvmmio responds
to the high concurrency requirement with scalable logging
that is based on per-block data logging and indexing.

3.2.1 Scalable per-block logging

Finding proper logging granularity is necessary to achieve
high concurrency. Application-centric techniques such as
per-thread and per-transaction logging are widely adopted in
databases, providing high concurrency. However, these tech-
niques rely on the strong assumption that data is only visible
and applicable to the current thread or transaction; e.g., data
in logs need not to be shared among threads or transactions,
which is guaranteed by isolation property. Logging without
needing to consider shared data allows for high scalability.
However, the assumptions do not hold in general IO cases;
sharing IO data among threads is a common use case. More-
over, the transaction boundary is not visible to the current
design of Libnvmmio.

Instead, Libnvmmio performs data-centric logging. It di-
vides the file space into multiple file blocks (4 KB∼2 MB)
and creates a log entry for each file block. Log entries in Lib-
nvmmio are visible to all threads. The fine-grained, per-block
logging allows a flexible way to share data among threads.
When an update is made to a mapped file, Libnvmmio creates
a log entry indexed by the offset, where the update occurred
in the memory-mapped file. If other threads read the updated
offset, it serves data from the log entry instead of the original
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Figure 3: Indexing structure of Libnvmmio.

mapped file. When another update comes to the same file
offset, it overwrites the update in the existing log entry. For
shared data reads, per-block logging provides better perfor-
mance than per-thread logging, as per-thread logging needs
to search all the logs of all threads to gather all the updates
made to the same file blocks. In addition to per-block log-
ging, Libnvmmio takes advantage of the byte-addressable
characteristics of NVM and reduces write amplification by
performing differential logging for a partial update, where the
update size is smaller than log block size.

3.2.2 Scalable log indexing

Along with data logging, indexing design is also critical to
achieve high concurrency. Libnvmmio uses a file offset as an
index key to a log block. To index many log blocks, Libn-
vmmio uses multi-level indexing to reduce space overhead.
Similar to the page table, it uses radix trees for indexing.
Fixed-depth trees allow lock-free mechanisms, which provide
better concurrency than balanced trees such as red-black trees.
As balanced trees require coarse-grained locks to protect the
entire trees for tree re-balancing, their algorithms severely
hurt concurrency [10, 11].

Figure 3 shows the index design of Libnvmmio. Each
internal node is an array of buckets pointing to the next level
internal nodes. Each set of 9 bits from file offset is used to
locate a bucket in a corresponding internal node. Each leaf
node points to an index entry, where entry field points to
log entry. The index entry also contains other metadata for
the given file offset. Libnvmmio supports variable-size log
entries for large IO requests. Log entries range from 4KB to
2MB, doubling the size. To index 4KB log entries, it uses 9
bits for Table and 12 bits for Offset. For 2 MB log entry, it
uses 21 bits for Offset without using Table.

In an index entry, offset and len are used for updated
data offset within a log entry and update size, respectively.
If update size in len is smaller than the log entry size, it
means the log entry contains partial updates (Delta). The log
entry can hold a single delta chunk indicated by offset and

len. If another delta chunk needs to be added in the same
log entry, the two chunks are merged. The virtual address
of the memory mapped file specified in dest is the location
where the log will be checkpointed. The logging policy for
the corresponding data is specified in policy, which decides
whether Libnvmmio uses undo log or redo log (§3.4). To
determine if the log entry should be checkpointed, the number
in epoch is used (§3.3).

The radix tree has a fixed depth to implement a lock-free
mechanism. The four-level radix tree can support 256 TiB file
size, but it can cause unnecessary search overhead for small
files. Libnvmmio uses a skip pointer to implement a lock-free
radix tree while also reducing the search overhead. As shown
in Figure 3, the radix_root has a skip field. If the file size
is small, Libnvmmio uses the field to skip unnecessary parent
nodes. When the file size changes, Libnvmmio can adjust the
skip pointer.

To achieve fast indexing, Libnvmmio manages the internal
nodes of the radix tree in DRAM and does not persist them
to NVM. It persists only the index entries and the log entries.
Libnvmmio does not need to build the entire radix tree for
recovery. On a crash, it simply scans the persisted index and
log entries, which are committed but not checkpointed yet.
It can copy the log entries to the original file by referring
the dest attribute in the corresponding index entries and the
per-file metadata. To achieve high concurrency, Libnvmmio
does not use any coarse-grained locks to update internal nodes
of the radix tree. Instead, it updates each bucket of internal
nodes with an atomic operation. Only when it needs to update
index entry, it holds the per-entry, reader-writer lock.

3.3 Epoch-based Background Checkpointing

Log entries are committed on SYNC3. The committed log
entries must be checkpointed to the corresponding memory-
mapped file and cleaned. To make the checkpoint operations
out of the performance critical path, Libnvmmio checkpoints
the log entries in the background. It periodically wakes up
checkpointing threads for copying and cleaning log entries4.
While checkpointing, the background threads do not need to
obtain a coarse-grained tree lock. This minimizes disruption
on on-going read/write operations. The background threads
holds a per-entry writer lock to serialize checkpoint operations
and read/write requests on the log entry.

Libnvmmio uses per-block logging. When an application
calls SYNC, it must convert many of the corresponding per-
block logs to committed status. This increases the commit
overhead significantly. To avoid such overhead, Libnvmmio
performs committing and checkpointing based on the epoch,
which increases monotonically. Libnvmmio maintains two

3This term means both fsync and msync.
4Through sensitivity studies, we configured Libnvmmio wakes up the

threads every 100 microsecond.
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types of epoch numbers; each index entry has an epoch num-
ber for its update log and per-file metadata carries the current
global epoch number. When allocating an index entry, it as-
signs the current global epoch number for file to the epoch
number for the index entry. Libnvmmio increases the current
global epoch number, when applications issue SYNC calls to
the file. The epoch numbers are used to distinguish committed
(but yet to be checkpointed) log entries from the uncommitted
ones. If a log entry has a smaller epoch number than the
current global epoch number, it indicates that the log entry is
committed. If the epoch number of a log entry is the same as
the global epoch number, the log entry is not yet committed.
Libnvmmio checkpoints only committed log entries in the
background threads. After being checkpointed, log entries
are cleaned and reused later.

The epoch-based approach allows fast commit of log en-
tries, as Libnvmmio does not need to traverse the radix tree
and mark log entries as committed. Instead, it simply in-
creases the current global epoch number in the per-file meta-
data, which reduces SYNC latency greatly. Commit operations
are performed synchronously and atomically, when the appli-
cation calls SYNC. Meanwhile, checkpoint operations are done
asynchronously by background threads. Consequently, there
are committed logs and uncommitted logs mixed in the radix
tree. When applications request writes, the corresponding log
entries are overwritten for uncommitted ones. Meanwhile,
Libnvmmio synchronously checkpoints the committed logs
first for committed ones. After completing the checkpoint-
ing, it allocates a new uncommitted log and processes write
requests.

3.4 Hybrid Logging

Libnvmmio uses a hybrid logging technique to optimize IO la-
tency and throughput. As pointed out in §2.2.2, undo logging
performs better when accesses are mostly reads, whereas redo
logging is better when accesses are mostly writes. To achieve
the best performance of both logging policies, Libnvmmio
transparently monitors the access patterns of each file and
applies different logging policies depending on current read
and write intensity.

Libnvmmio maintains counters to record read and write
operations for a file (§3.5). When SYNC is called, Libnvm-
mio checks the counters to determine whether which type
of logging would be better for the next epoch. If the log-
ging policy changes, Libnvmmio carries out both committing
and checkpointing synchronously. SYNC is a clean transition
point for changing the logging policy, as current log data are
checkpointed and cleaned. This allows Libnvmmio to avoid
complex cases where it otherwise has to maintain two log
policies at the same time. The per-file, hybrid logging enables
the fine-grained logging policy, allowing Libnvmmio to adopt
the individually best logging mechanism for each file. By
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radix_root
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…
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Figure 4: Per-File Metadata

default, Libnvmmio uses undo logging. It switches to redo
logging, when the ratio of write operations becomes higher
than or equal to 40%. The policy for the new epoch is deter-
mined by the write ratio in the previous epoch. The threshold
ratio is obtained from the sensitivity analysis in §4.2.1.

3.5 Per-File Metadata

Libnvmmio maintains two types of metadata in persistent
memory; the index entry is the metadata for each log entry,
and the per-file metadata shown in Figure 4 is the metadata
for each file. Libnvmmio stores both metadata as well as log
entries in NVM, which enables Libnvmmio to recover its data
in case of system failures.

When Libnvmmio accesses a file, it first gets the per-file
metadata of the file and the index entry corresponding to
the file offset. If applications access a file with nvmemcpy
interface, it needs to find the per-file metadata by using access
address of the nvmemcpy. The approach Libnvmmio takes
for this purpose is to employ a red-black tree and perform
range searches with virtual addresses. To speed up the search
process, Libnvmmio caches recently used per-file metadata
in the per-thread cache. Meanwhile, Libnvmmio can quickly
obtain the per-file metadata through the file descriptor, if
applications access files with read/write interface.

The per-file metadata consists of ten fields. The rwlock is
a reader-writer lock. During SYNC process, this lock prevents
other threads from accessing the file. The start and end
fields store the location of the virtual address to which the file
is mapped. The ino and offset fields record which part of
a file is mapped. The epoch field stores the current global
epoch number for the file. The policy field stores the current
logging policy for the file. The read_cnt and write_cnt are
counters of read and write operations during the current epoch,
respectively. The radix_root field stores the root node of
the radix tree indexing for index entries and log entries.
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3.6 Putting all together: write and SYNC

Figure 5 shows the steps of the epoch-based checkpointing
in Libnvmmio. The numbers in the index entries indicate
per-entry epoch numbers, and the check marks indicate their
log entries are committed. A simplified version of per-file
metadata is shown in tables.

Write. 1© The thread holds the reader lock in the per-file
metadata of the file and increases the write counter with
atomic operations. Holding the reader lock in per-file meta-
data allows multiple threads to access the file concurrently.
2© The thread traverses the in-memory radix tree to locate

the corresponding index entry and holds the writer lock for
the index entry. 3© Depending on the current logging policy
in the per-file metadata, Libnvmmio creates an undo or redo
log entry. 4© The thread writes data to the log entry with
the non-temporal store instruction, and Libnvmmio updates
the index entry of the log entry. 5© Libnvmmio calls sfence
indicating logging is done and unlocks the index entry and
per-file metadata, and returns to the application.

SYNC. 1© Libnvmmio holds the writer lock in the per-file
metadata and increases the global epoch counter by one. Hold-
ing the writer lock of the per-file metadata prevents other
threads from accessing the file. 2© Libnvmmio calculates the
write ratio from the write and read counters. In the exam-
ple in Figure 5, Libnvmmio continues to use redo logging
for the next epoch, as the access pattern is write-intensive
(4 writes out of 4 accesses). After determining the logging
policy, Libnvmmio initializes the counters. When logging
policy is unchanged, Libnvmmio lets checkpointing threads
commit log entries in the background. If Libnvmmio decides
to change logging policy, it synchronously checkpoints all
committed log entries before the new epoch begins. 3© Fi-
nally, Libnvmmio unlocks the per-file metadata and returns
to the application.

3.7 Crash Consistency and Recovery
Libnvmmio preserves write ordering of a sequence of write
requests. For each write, Libnvmmio writes data to the log and
flushes the CPU cache. The order-preserving write provides

NVMM Rand Read Rand Write Seq Read Seq Write
NVDIMM-N 35.84 20.61 92.42 20.65
Optane DC 3.588 1.026 13.64 4.30

Table 1: NVMM Characteristics (GB/s)

the prefix semantics [63], guaranteeing every thread to see a
consistent version of data updates. Along with the consistency
of data, Libnvmmio guarantees consistency between metadata
and data. Libnvmmio maintains two persistent metadata: per-
file metadata and index entries. Libnvmmio strictly orders
between the sequence of [data update, index entry update]
and SYNC call.

In the recovery phase, Libnvmmio checks whether the in-
dex entries are committed, while scanning the index entries.
If Libnvmmio finds a committed log, whose epoch number
is smaller than the global epoch number, it finds the per-file
metadata from the index entry’s dest attribute. Then, it re-
does or undoes according to the logging policy. Libnvmmio
can efficiently parallelize this recovery task by using multi-
threading.

4 Evaluation

We implemented Libnvmmio from scratch. Our prototype of
Libnvmmio has a total 3,452 LOC5 in C code. To persist data
to NVM, Libnvmmio employs the PMDK library [20].

4.1 Experimental setup
To evaluate Libnvmmio on different types of NVM, we used
NVDIMM-N [45] and Intel Optane DC Persistent Memory
Module [19]. The system with 32GB NVDIMM-N has 20
cores and 32GB DRAM. Another system with 256GB Op-
tane has 16 cores and 64GB DRAM. In the Optane server,
we used two 128GB Optanes configured in interleaved App
Direct mode. Table 1 shows the results of measuring the
performance of each memory using Intel Memory Latency
Checker (MLC) [18].

In our experiment, Libnvmmio used NOVA [68] running
on Linux kernel 5.1 as its underlying file system. To compare
Libnvmmio with various file systems, we experimented with
four file systems: Two of these, Ext4-DAX and PMFS [13],
journal only metadata and perform in-place writes for data.
The two others, NOVA and SplitFS [24], guarantee data-
atomicity for each operation. We configured NOVA to use
CoW updates, but without enabling checksums. For SplitFS,
we configured it to use strict mode. We ran PMFS and SplitFS
on Linux kernel 4.13, and Ext4-DAX and NOVA on Linux
kernel 5.1. Kernel versions are the latest versions that support
the underlying file systems.

5we measure LOC with sloccount [64]
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Figure 6: Performance on different logging policies

4.2 Microbenchmark
4.2.1 Hybrid logging

Most logging systems adopt only one logging policy (redo
or undo). Each logging policy has different strengths and
weaknesses, depending on the type of file accesses. While
redo logging is better for write-intensive workloads, undo
logging is better for read-intensive workloads.

Figure 6 shows how logging policies (redo, undo, and hy-
brid logging) affect the performance of Libnvmmio. Undo
logging shows better performance than redo, when the work-
load has high read ratio. Redo logging shows better perfor-
mance than undo, when the workload has high write ratio.
When the R:W ratio is 60:40, the two logging policies show
the same level of the performance. Based on this observation,
Libnvmmio uses the ratio as a change point for its hybrid
logging policy. As shown in Figure 6, hybrid logging in Libn-
vmmio achieves the best case performance of the two logging
policies.

4.2.2 Throughput

We measured the bandwidth performance by using FIO [5]. It
repeatedly accesses a 4GB file in units of 4KB for 60 seconds
in a single thread. Two graphs in Figure 7 show the experi-
ment results on NVDIMM-N (A) and Optane (B), respectively.
Four file access patterns are used for our experiment: sequen-
tial read (SR), random read (RR), sequential write (SW), and
random write (RW). All the other file systems except Libn-
vmmio perform the file IO at kernel level. Libnvmmio avoids
the kernel IO stack overhead and performs file IO mostly at
user level.

As shown in Figure 7, Libnvmmio provides the highest
throughput on all access patterns, outperforming the other file
systems by 1.66∼2.20× on NVDIMM-N and 1.14∼1.74× on
Optane. The performance improvements are more noticeable
in NVDIMM-N than in Optane. The maximum achievable
bandwidths on Optane are 2.5GB/s and 1.46GB/s for FIO
mmap based read and write without atomicity support. These
are indicated as red dotted lines in Figure 7 (B). The per-
formance results on Optane are almost near the maximum
achievable bandwidths for Libnvmmio, which suggests the
performance on Optane is limited by the hardware limit, not
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by the mechanisms in Libnvmmio.
The performance in Libnvmmio is also improved over the

other file systems by maximizing logging efficiency in hybrid
logging. For read access patterns (SR and RR), Libnvmmio
performs only user-level memcpy from the memory-mapped
file to the user buffer under the undo logging. For write
access patterns (SW and RW), Libnvmmio updates only the
log, not the memory-mapped file, under the redo logging and
asynchronously writes the data from the redo log on SYNC
call at the file close.

Figure 8 shows the performance of the FIO sequential write
on various IO sizes. Libnvmmio performs per-block logging,
but provides various log block sizes. With this feature, Lib-
nvmmio can keep the high performance across different IO
sizes. The performance generally improves on the increased
IO sizes for all file systems and Libnvmmio, as the number
of write system calls decreases within the 60 second duration
of FIO experiment. Libnvmmio shows significantly higher
performance than the other file systems when the IO size is
smaller than the page size (128B, 1KB). This is mainly due
to the differential logging feature in Libnvmmio. For file
systems that use CoW for atomicity, such as NOVA, write
amplification becomes a large overhead on sub-page size data
writes.

Figure 9 shows the performance of the FIO sequential write
on different fsync intervals. The horizontal axis represents
the fsync frequency. For example, the interval 10 means
FIO performed fsync after every ten writes issued. The per-
formance of Ext4-DAX and PMFS slightly increased as the
fsync interval increased. Since Ext4-DAX and PMFS perform
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Figure 10: Scalability: FIO random write with multithreads

only metadata journaling, there is no dramatic performance
improvement. NOVA shows the same performance regardless
of the fsync interval. Since NOVA performs all the writes
atomically and fsync actually does nothing, its performance
is not sensitive to the fsync intervals. Libnvmmio implements
fsync efficiently with almost little overhead by increasing the
current global epoch number at user level. A heavy-lifting
work for checkpointing data log is processed in the back-
ground. As the fsync interval increases, checkpointing can be
done in a batch even in the background. Thus, Libnvmmio
can slightly increase the performance on long intervals.

4.2.3 Scalability

Figure 10 shows the performance of multithreaded file IO
with FIO random write. In private file configuration, each
thread writes data to its private file. Whereas, all threads
write data to one shared file in shared file configuration. In
private file configuration on NVDIMM-N, Libnvmmio and
NOVA show highly scalable performance. Libnvmmio still
shows 29% better performance than NOVA. In contrast, only
Libnvmmio sustains scalable performance in shared file con-
figuration on NVDIMM-N. Libnvmmio achieves 13× better
performance on 16 threads run than NOVA. It is common
for modern applications to access shared files simultaneously
from multithreads [40]. While NOVA uses per-inode log-
ging with entire file locks, Libnvmmio uses per-block logging
with fine-grained per-block locks. This makes Libnvmmio
achieve scalable performance, even when multithreads access

Latency Ext4-DAX PMFS NOVA Libnvmmio
(us) read write read write read write read write
Avg. 1.73 50.43 2.21 6.16 1.73 4.43 1.12 4.14
99th 3 61 3 9 3 9 2 10

99.9th 6 552 4 12 3 10 3 12
99.99th 8 605 8 239 6 15 5 15
99.999th 12 648 17 258 8 5216 7 76

Table 2: 4KB read and write latencies on Optane
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Figure 11: Latency breakdown

the shared file simultaneously. The scalability on Optane is
limited mainly due to the memory bandwidth limitation, but
Libnvmmio on Optane still shows a little promising results
than the others. The other two file systems, Ext4-DAX and
PMFS rarely scale on multi-threaded experiments.

4.2.4 Latency

We measured write and read latencies of various NVM-aware
file systems and Libnvmmio. To make a fair comparison,
all operations are synchronous (fsync on every write opera-
tion). Table 2 shows the latency of 4KB IO by a single thread.
The results were measured on Optane. Libnvmmio outper-
forms all the other file systems. The advantage of Libnvmmio
comes from writing logs in user space and background check-
pointing. Ext4-DAX requires copying data between user
and kernel buffers, PMFS involves modification of complex
data structures, and NOVA requires CoW. Low tail laten-
cies on 99.999th show that Libnvmmio has a high chance to
meet the demand for target applications. Since Libnvmmio
hooks read/write calls and does not involve any kernel mode
switches, Libnvmmio on any file systems can remove the
complex techniques the kernel level file systems use. The
Libnvmmio latencies on other file systems exhibit almost the
same as the ones in Table 2. Our results indicate that applica-
tions sensitive to tail latency can adopt Libnvmmio on top of
their file systems and drop tail latency dramatically.

Figure 11 shows the latency breakdown of read and write
for two logging policies (undo and redo). As for write, the

10    2020 USENIX Annual Technical Conference USENIX Association



Insert Update Delete
0

10

20

30

Tr
an

sa
ct

io
ns

/s
 (k

) (A) NVDIMM-N

Insert Update Delete
0

10

20

30
(B) Optane

DEL TRUNC WAL OFF Libnvmmio

Figure 12: Mobibench on SQLite

Ext4-DAX PMFS NOVA SplitFS
0.0

0.5

1.0

1.5

No
rm

al
ize

d 
tp

m
C

(A) NVDIMM-N

Ext4-DAX PMFS NOVA SplitFS
0.0

0.5

1.0

1.5 (B) Optane
Only underlying FS Libnvmmio on FS

Figure 13: TPC-C on SQLite

portion of non-temporal store (NT Store) is dominating. How-
ever, the overheads of the memory fence and cache flush is
low due to NT store. In this experiment, we confirmed that it
is crucial to select an appropriate logging policy according to
access types, as the time spent on memory copy (memcpy, NT
Store) varies greatly depending on logging policy. The actual
seconds for read and write latencies in Figure 11 are bigger
than the latency in Table 2, as time measurement routines for
breakdown have been injected.

4.3 Real applications

4.3.1 SQLite

We experimented with SQLite [59] to see how Libnvmmio
performs in real applications. To guarantee data-atomicity,
SQLite uses its own journaling by default. SQLite calls fsync
on commit to ensure that all data updated in a transaction is
persistent. Libnvmmio keeps updated data in its logs and
atomically writes to the original file when fsync called. This
is how data-atomicity can be guaranteed on SQLite on Libn-
vmmio without the journaling provided by SQLite. However,
the file systems we experimented with cannot turn off the
journaling. Even file systems that provide data-atomicity for
each operation cannot guarantee the atomicity at transaction
level without the journaling.

We used Mobibench [41] to evaluate the basic performance
of SQLite. In this experiment, we ran SQLite on NOVA
with various journal modes: delete (DEL), truncate (TRUNC),
write-ahead logging (WAL), no-journaling (OFF). Figure 12
shows that Libnvmmio outperforms all journaling modes on
insert and update queries. Even when no journaling is pro-
vided from SQLite, Libnvmmio outperforms as all file ac-
cesses are handled at user level. Compared to WAL mode on
NVDIMM-N, insert and update queries have 60% and 93%
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Figure 14: YCSB performance on MongoDB

performance gains in Libnvmmio, respectively. On Optane,
the performance gains become 162% and 120%. Mobibench
queries request about 100B data IOs. Libnvmmio excels on
such small size IOs. On delete transactions, Libnvmmio per-
forms not quite well. According to our call trace, files are
truncated frequently on delete workload. When a file is trun-
cated, Libnvmmio needs to adjust the mapping size along
with the file size as in FLEX [66] and SplitFS [24]. This
incurs relatively high overhead on Libnvmmio. To mend this
problem, Libnvmmio needs to optimize file size changes by
reflecting file size changes on file close.

We evaluate Libnvmmio on four different file systems by
running TPC-C with SQLite. Figure 13 shows that running
on Libnvmmio exhibits better performance than running only
on underlying file systems. The performance gains range
from 16% to 27% on NVDIMM-N and from 13% to 27%
on Optane. Since Libnvmmio processes file IO at user level,
most of file IO operations can be handled efficiently. As for
SplitFS [24], which is built as user-level file system, Libnvm-
mio uses only mmap interface from SplitFS and performs all
other functionalities with its own mechanism. This is why the
performance on SplitFS is better for Libnvmmio than only
SplitFS. Data updates are kept in its staging files in SplitFS.
When applications call fsync, SplitFS relinks the updated
blocks in staging files into the original file without additional
data copying. To make the relink mechanism work, a com-
plete content of the block is required. If applications update
only part of a block, SplitFS must copy the rest of the par-
tial data for that block on fsync. The relink mechanism also
needs splitting and remapping the existing mapping. Since
mapping changes require expensive TLB-shootdown, remap-
ping can cause a higher cost than copying [37]. Additionally,
frequent relinks can cause extent fragmentation, as SplitFS
uses Ext4-DAX as its underlying file system.

4.3.2 MongoDB MMAPv1

To evaluate Libnvmmio for applications that use memory-
mapped IO, we experimented with MongoDB [44] MMAPv1
engine. MongoDB MMAPv1 maps DB files onto its ad-
dress space, and read/write data with memcpy. We have modi-
fied 182 lines of source code to make MongoDB MMAPv1
engine use interfaces in Libnvmmio. Figure 14 shows the
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performance of YCSB workloads on MongoDB. MongoDB-
Journaling represents the performance when MongoDB uses
its own journaling. In order to ensure that all modifications
to a MongoDB data set are durably written to DB files, Mon-
goDB, by default, records all modifications to a journal file.
After persisting the data in journal, MongoDB writes the data
to a memory-mapped file. Then, it calls msync periodically to
flush the data in the memory to its file image on the persistent
storage. If a system failure occurs during the synchroniza-
tion, MongoDB can redo the updates by using the journal.
Atomic-mmap represents the performance when MongoDB
uses atomic-mmap provided by NOVA [67]. NOVA maps
the replica pages of files onto the user memory, and later
when msync is called, it copies the replica pages atomically
to the original file. In this case, MongoDB can guarantee data-
atomicity without using its own journaling. Libnvmmio also
ensures the same level of data-atomicity as the atomic-mmap
in NOVA. Libnvmmio represents the performance when Lib-
nvmmio is used without MongoDB journaling. Compared
to MongoDB journaling, Libnvmmio shows 31∼42% perfor-
mance gains on write intensive workloads (A and F). On read
intensive workloads (B, C, D, and E), it shows 6∼15% gains.

Libnvmmio shows the highest performance for all work-
loads. In YCSB workloads, the default record size is 1KB.
Since MongoDB-Journaling uses msync provided by the OS
kernel, the synchronization is performed at page granularity.
This increases the write amplification but also incurs TLB-
shootdown overhead. Whereas, Libnvmmio uses differential
logging and user-level msync to minimize write amplification
and eliminate unnecessary TLB-shootdown. Atomic-mmap
also performs synchronization at page granularity. Besides,
as all the replica pages of the file are synchronized regardless
of their states (clean or dirty), huge write amplification occurs.
Due to such inefficiency, the atomic-mmap feature has been
removed from the latest NOVA [68].

5 Related Work

In NVMM systems, file operations travel through memory
bus led significantly improved latency. In traditional systems,
storage latency was dominant in the total file IO overhead, but
in NVMM systems, inefficient behavior of software stacks
becomes a dominating overhead. State-of-the-art NVMM-
aware file systems bypass the block layer and the page cache
layer to avoid the software overhead. Many optimizations
take the characteristics of NVMM into account in the file
system design. Some suggest to fundamentally change the
way file operations work from kernel space to user space.

BPFS and PMFS are early versions of NVMM-aware file
systems. BPFS [12] manages the CPU cache based on epoch
to provide an accurate ordering and provides atomic data
persistence with short-circuit shadow paging. PMFS [13]
came up with eXecute In Place (XIP) which nowadays call

Direct Access (DAX). PMFS pointed out that NVMM sys-
tems should bypass the block layer and page cache to remove
unnecessary management schemes from past days.

NOVA [67, 68] suggested more efficient software layer to
manage NVMM. NOVA extends the log-structuring tech-
nique optimized for block devices to NVMM. NOVA gives
each inode a separate log. This technique is suited well
in NVMM utilizing fast random access characteristics of
NVMM. NOVA provides protection against media errors as
well as software errors.

Aerie [62] is a user-level file system that provides flexible
file system interfaces. Aerie maximizes the benefits of low-
latency NVMM by implementing file system functionality
at the user-level. However, Aerie does not guarantee data-
atomicity and does not support POSIX semantics.

Strata [28] is a cross-media file system that suggested
separation of kernel and user responsibilities. While providing
fast performance for read and write, Strata does not support
atomic memory-mapped IO. Strata brought data into user
space and processes metadata in kernel space.

FLEX [66] replaces read/write system calls with memory-
mapped IO to avoid entering the OS kernel. FLEX provides
transparent user-level file IO, allowing existing applications
to utilize the characteristics of NVMM efficiently. However,
FLEX does not guarantee data-atomicity.

SplitFS [24] supports user-level IO while providing flex-
ible crash-consistency guarantees. The relink mechanism
proposed by SplitFS allows atomic file updates with minimal
data copying. SplitFS handles common data operations at
the user level and offloads complex and uncommon metadata
operations to kernel file systems. SplitFS proposed the proper
role of user libraries and kernel file systems for efficient file
IO.

6 Conclusion

Libnvmmio is a simple and practical solution, which pro-
vides low-latency and scalable IO while guaranteeing data
atomicity. Libnvmmio rebuilds performance-critical software
IO path for NVM. It leverages the memory-mapped IO for
fast data access and makes applications free from the crash-
consistency concerns by providing failure-atomicity. Source
code is publicly available at: https://github.com/chjs/
libnvmmio.
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