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Notation: Hereafter, subscripts will denote derivatives with respect to a variable. For
instance,

ut(x, t) =
∂

∂t
(u(x, t)), uxx =

∂2u

∂x2
, etc.

A partial differential equation (PDE) for a function of more than one variable is a an
equation involving a function of two or more variables and its partial derivatives.

1 Motivating example: Heat conduction in a metal bar

A metal bar with length L = π is initially heated to a temperature of u0(x). The temper-
ature distribution in the bar is u(x, t). At the ends, it is exposed to air; the temperature
outside is constant, so we require that u = 0 at the endpoints of the bar.

Over time, we expect the heat to diffuse or be lost to the environment until the temperature
of the bar is in equilibrium with the air (u→ 0).

Physicist Joseph Fourier, around 1800, studied this problem and in doing so drew attention
to a novel technique that has since become one of the cornerstones of applied mathematics.
The approach outlined below hints at some of the deep structure we will uncover in the
remainder of the course.

The temperature is modeled by the heat equation (see subsection 7.1 for a derivation)

∂u

∂t
=
∂2u

∂x2
, t > 0 and x ∈ (0, π).

Since the temperature is fixed at both ends, we have

u(0, t) = 0, u(π, t) = 0 for all t.

Lastly, the initial heat distribution is t = 0 is

u(x, 0) = f(x)
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where f(x) is some positive function that is zero at 0 and π. The temperature should de-
crease as heat leaks out of the bar through the ends; eventually it all dissipates. The solution
u(x, t) should predict this.

In summary, our goal is to find a function u(x, t) defined on [0, π] satisfying

∂u

∂t
=
∂2u

∂x2
t > 0 and x ∈ (0, π), (1a)

u(0, t) = u(π, t) = 0 for t ≥ 0 (1b)

u(x, 0) = u0(x). (1c)

Our objective here is just to find a solution to the first two parts, (1a) and (1b) and worry
about the initial condition later.

First, let us guess a solution of the form

u = e−λtφ(x). (2)

Substituting into the PDE (1a), we find that

−λφ(x) = φ′′(x).

Now substitute into the boundary conditions (1b) (note that e−λt cancels out here) to get

φ(0) = 0, φ(π) = 0.

For convenience set λ = µ2. It follows that (2), our guess for u, satisfies the PDE (1a) and
the boundary conditions (1b) if the function g(x) solves the boundary value problem

φ′′(x) + µ2φ(x) = 0, φ(0) = 0, φ(π) = 0. (3)

This problem is not an initial value problem (conditions are imposed at both ends), but it
is a constant-coefficient ODE, so we can still solve it explicitly. The general solution is

φ = c1 sin(µx) + c2 cos(µx).

Imposing the condition φ(0) = 0 we find that

φ = c1 sin(µx).

The second condition, φ(1) = 0, requires that

sin(µπ) = 0.

Non-trivial solutions exist whenever µ is a non-zero integer. We have now found an infinite
sequence of solutions to (3):

φn(x) = sin(nx), n = 1, 2, 3, · · ·
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Observe that (3) is a linear, homogeneous problem. In particular,

φ1, φ2 are solutions to (3) =⇒ c1φ+ c2φ2 is a solution. (4)

This means that for any constant an, the function

ane
−n2tφn(x) (5)

is a solution to the heat conduction problem with initial data

u0(x) = an sin(nx).

Now the crucial question: what happens when the initial data is not a sine? No single
solution of the form (5) will work. Fourier’s breakthrough was the realization that, using the
superposition principle (12), the solution could be written as an infinite linear combination
of all the solutions of the form (5):

u(x, t) =
∞∑
n=1

ane
−n2tφn(x).

Then u(x, t) solves the original problem (10) if the coefficients an satisfy

u0(x) =
∞∑
n=1

anφn(x). (6)

This idea is a generalization of what you know from linear algebra (representing vectors in
terms of a basis) but with basis functions {sin(nx) : n = 1, 2, 3, · · · }.

In fact, this set of functions has the rather remarkable orthogonality property∫ π

0

φm(x)φn(x) dx =

∫ π

0

sin(mx) sin(nx) dx = 0, m 6= n. (7)

To solve for the coefficient am, we can multiply (6) by sin(mx) and integrate:∫ π

0

u0(x) sin(mx) dx =

∫ π

0

∞∑
n=1

an sin(mx) sin(nx) dx.

Now move the integral inside the sum (it is not trivial to show this is allowed!). By the
property (7), only one of the terms in the sum will be non-zero:∫ π

0

u0(x) sin(mx) dx =

∫ π

0

∞∑
n=1

an sin(mx) sin(nx) dx

=
∞∑
n=1

an

∫ π

0

sin(mx) sin(nx) dx

=

(
∞∑

n=1,n6=m

an · 0

)
+ am

∫ π

0

sin(mx) sin(mx) dx

= am

∫ π

0

sin2(mx) dx.
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Magically, the infinite sum has been reduced to a simple equation for am:

am =

∫ π
0
u0(x) sin(mx) dx∫ π
0

sin2(mx) dx
. (8)

This process works for allm, so the solution to the heat conduction problem (5) with arbitrary
initial condition u0(x) is

u(x, t) =
∞∑
n=1

ane
−n2t sin(nx)

with the coefficients given by the formula (8). Of course, all of the manipulations here are
formal and unjustified - it is far from clear whether the series converges, or if it is valid to
swap integrals and sums, and so on (Fourier did not know this either when first applying
the method; it took several decades to settle the issue).

2 The heat equation: preliminaries

Let [a, b] be a bounded interval. Here we consider the PDE

ut = uxx, x ∈ (a, b), t > 0. (9)

for u(x, t). This is the heat equation in the interval [a, b].

Remark (adding a coefficient): More generally, we could consider

ut = kuxx

where k > 0 is a ’diffusion coefficient’. However, since the constant can be scaled out by
defining a rescaled time τ = t/k to get

uτ = uxx

there is no loss of generality in studying the structure of (10). Note that it is essential that
the coefficient is positive; a negative k will produce drastically different results.

2.1 Initial and boundary conditions

An initial boundary value problem (IBVP) for the heat equation consists of the PDE
itself plus three other conditions specified at x = a, x = b and t = 0. As a simple example:

∂u

∂t
=
∂2u

∂x2
t > 0 and x ∈ (a, b), (10a)

u(a, t) = 0 and u(b, t) = 0 for t > 0 (10b)

u(x, 0) = f(x). (10c)
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There are three components:

The PDE: Equation (10a) is the PDE (sometimes just ’the equation’), which thThe be
solution must satisfy in the entire domain (x ∈ (a, b) and t > 0 here).

Boundary conditions (BCs): Equations (10b) are the boundary conditions, imposed
at the boundary of the domain (but not the boundary in t at t = 0). Each boundary condi-
tion is some condition on u evaluated at the boundary.

Initial conditions (ICs): Equation (10c) is the initial condition, which specifies the
initial values of u (at the initial time t = 0).

The initial boundary value problem (10a)-(10c) has a unique solution provided some tech-
nical conditions hold on the boundary conditions.

One can think of the ‘boundary’ of the solution domain to have three sides: {x = a}, {x = b}
and {t = 0}, with the last side left open (the solution fills this in as t → ∞). The initial
condition is really a boundary condition at t = 0.1

Definition (important BCs): There are three basic types of boundary conditions. Most
of the time, we will consider one of these when solving PDEs.

Dirichlet u(a, t) = 0 (or ’zero boundary conditions’)

Neumann ux(a, t) = 0 (or ’zero flux’)

Robin αux(a, t) + βu(a, t) = 0 (or ’radiation’)

1The three-sided boundary is called the parabolic boundary of the IBVP.
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The heat equation could have different types of boundary conditions at a and b, e.g.

ut = αuxx, x ∈ [0, 1], t > 0

u(0, t) = 0, ux(1, t) = 0

has a Dirichlet BC at x = 0 and Neumann BC at x = 1.

Modeling context: For the heat equation ut = αuxx, these have physical meaning. Recall
that u is the temperature and −αux is the heat flux.

Dirichlet The temperature u is fixed at the end.

Neumann The end is insulated (no heat enters or escapes).

Radiation Some heat enters or escapes, with an amount proportional to the temperature:

−αux = βu.

For the interval [a, b] whether heat enters or escapes the system depends on the endpoint
and β. The heat flux −αux is to the right if it is positive, so at the left boundary a, heat
enters the system when β > 0 and leaves when β < 0.

Similarly, at the right boundary b, heat enters the system when β < 0 and leaves
when β > 0.

The same interpretations apply when the equation is describing diffusion of some other
quantity (e.g. diffusion of a chemical in a tube).

2.2 Linearity and homogeneous PDEs

The definitions of linear and homogeneous extend to PDEs. We call a PDE for u(x, t) linear
if it can be written in the form

L[u] = f(x, t)

where f is some function and L is a linear operator involving the partial derivatives of u.
Recall that linear means that

L[c1u1 + c2u2] = c1L[u1] + c2L[u2].

The PDE is homogeneous if f = 0 (so l[u] = 0) and inhomogeneous if f is non-zero.

Some examples of linear PDEs we will study are

ut = uxx + g(x, t) (L[u] = ut − uxx),

utt = uxx + g(x, t) (L[u] = utt − uxx),
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uxx + uyy = g(x, y) (L[u] = uxx + uyy = ∇2u),

which are the heat equation, wave equation and the Poisson equation, respectively. Note
that the function is u(x, y) in the last one. An example of a non-linear PDE would be

ut + uux = uxx

The same definitions apply to boundary conditions. All the boundary conditions listed
in the previous section are linear homogeneous. For example,

ux(a, t) = 0 (11)

is a linear boundary condition since if u and v satisfy (11) and

w = c1u+ c2v

then w also satisfies (11) since

wx(a, t) = c1ux(a, t) + c2vx(a, t) = 0.

Non-homogeneous boundary conditions can be imposed, for instance

u(a, t) = t

which might be used to model the ambient temperature increasing with time.

Key fact: A linear, homogeneous PDE obeys the superposition principle:

u1, u2 are solutions =⇒ c1u1 + c2u2 is a solution (12)

for all scalars c1, c2 ∈ R. The same definition applies to boundary conditions. For instance,
all the boundary conditions listed above are linear homogeneous.

Note that an inhomogeneous PDE does not have this property! However, the ’homoge-
neous’ part (i.e. the equation with the inhomogeneous term set to zero) does, and we will
find that, as with ODEs, superposition will still be useful.

2.3 More on superposition

The superposition principle (12) is a crucial feature of linear homogeneous problems. Note
that while this property is true for homogeneous PDEs and boundary conditions, it is not
quite true when initial conditions are included. If u and v are both solutions to the homo-
geneous problem

ut = uxx, t > 0 and x ∈ (a, b),

u(a, t) =u(b, t) = 0 for t > 0
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where u has initial condition
u(x, 0) = f1(x)

and v has initial condition
v(x, 0) = f2(x)

then w = u+ v solves the IBVP

wt = wxx, t > 0 and x ∈ (a, b),

w(a, t) =w(b, t) = 0 for t > 0

w(x, 0) = f1(x) + f2(x).

Superimposing two solutions to the PDE with BCs will give another solution, and the initial
conditions get superimposed.

We can exploit superposition to split a problem into simpler parts. For example, suppose
we seek u solving the inhomogeneous problem

ut = uxx + h(x, t),

u(0, t) =u(1, t) = 0,

u(x, 0) = f(x)

with non-zero initial conditions. We can split this into

u = v + w

where v solves an inhomogeneous problem with zero initial conditions,

vt = vxx + h(x, t),

v(0, t) =v(1, t) = 0,

v(x, 0) = 0

and w(x, t) solves a homogeneous problem with non-zero initial conditions,

wt = wxx,

w(0, t) =w(1, t) = 0,

w(x, 0) = f(x),

thereby splitting the problem for u into two simpler parts.

To check this, plug v + w into the PDE, boundary conditions and initial conditions and
use linearity. For the PDE, we check that

ut = (v + w)t = vt + wt = vxx + wxx + h(x, t) = uxx + h(x, t).

For the boundary at x = 0, we have

u(0, t) = v(0, t) + w(0, t) = 0

and similarly u(1, t) = 0. Finally, for the initial condition,

u(x, 0) = v(x, 0) + w(x, 0) = 0 + f(x) = f(x).
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3 Orthogonal functions and L2

Before proceeding to the PDEs, we need to identify the right space in which to consider our
solutions and extend notions of orthogonality and so on from linear algebra in Rn to this
space. The main goal here is to extend the notion of an orthogonal basis of eigenvectors in
Rn to a space of functions.

3.1 Linear algebra analogy: using orthogonal bases in Rn

Recall that two vectors x and y are called orthogonal if their dot product is zero:

x · y = 0 where x · y = x1y1 + · · ·+ xnyn. (13)

An orthogonal basis for Rn is a basis b1, · · ·bn such that the basis vectors are all pairwise
orthogonal, i.e.

bi · bj = 0, i 6= j.

An orthogonal basis is convenient because it means that the representation of a vector x ∈ Rn

in terms of the basis is easy to find.

(Important!) Solving (in Rn) for the coefficients: Suppose x ∈ Rn and
{b1, · · · ,bn} is an orthogonal basis for Rn. We know that there are unique coefficients
a1, · · · an such that

x =
n∑
j=1

ajbj.

Now consider a single index i. To find the i-th coefficient ai, we can take the dot product
of both sides with vi. The dot product vi · (· · · ) sends all the components except vi to
zero:

bi · x =
n∑
j=1

aj(bi · bj) = aibi · bi

so

ai =
bi · x
bi · bi

. (14)

A key result in linear algebra is the following:

Theorem (spectral theorem; symmetric matrices): Let A be an n × n real symmet-
ric matrix. The eigenvalues λ1, · · · , λn of A are real and distinct, and the corresponding
eigenvectors v1, · · · ,vn form an orthogonal basis for Rn.

Now suppose we have an n× n matrix A and wish to solve

Ax = b. (15)
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Assume A is invertible and real symmetric. Using an orthogonal basis of eigenvectors, we
can turn the system Ax = b into n independent equations that are trivial to solve.

Using the theorem, there is an orthogonal basis v1, · · · ,vn for Rn of eigenvectors of A,
which satisfy

Avi = λivi, for i = 1, · · · , n and vi · vj = 0, for i 6= j.

Write b in terms of this basis (using the boxed method above):

b =
n∑
i=1

divi, di =
b · vi
vi · vi

. (16)

Now we know that x (the unknown) also has a representation in the basis,

x =
n∑
i=1

civi (17)

where the ci’s are the coefficients we need to find. Plug (16) and (17) into the system (15)
and use that Avi = λivi to get

n∑
i=1

λicivi =
n∑
i=1

divi.

Since the vi’s form a basis, it must be that the coefficients of each term on the left and right
hand side are equal, so the above implies that

ci = di/λi, for i = 1, · · ·n.

The solution to (15) is therefore

x =
n∑
i=1

civi, ci =
1

λi

b · vi
vi · vi

.

3.2 What is the right space of functions?

We need to define a notion of orthogonality for functions. Let us consider real functions
defined on an interval [a, b]. Define the inner product

〈f, g〉 =

∫ b

a

f(x)g(x) dx (18)

can call two functions f, g orthogonal on [a, b] if

〈f, g〉 = 0.

Analogous to the Euclidean norm for a vector x ∈ Rn,

‖x‖2 =
√
x21 + · · ·+ x2n = 〈x,x〉1/2

11



we define the L2 norm

‖f‖2 =

(∫ b

a

|f(x)|2 dx
)1/2

.

Finally, we define the relevant space of functions:

Definition (L2 spaces)

L2[a, b] = {f : [a, b]→ R such that ‖f‖2 <∞}

or equivalently, the set of functions f on [a, b] such that the integral of its square is finite,∫ b

a

|f(x)|2 dx <∞.

The space L2[a, b] is a vector space and the inner product

〈f, g〉 =

∫ b

a

f(x)g(x) dx

is well-defined for all f, g ∈ L2[a, b].

The L2 norm gives us a way to measure distance between two functions. The expression

‖f − g‖22 =

∫ b

a

|f(x)− g(x)|2 dx (19)

is a sort of weighted measure of the area between the curves f(x) and g(x) on the inteval
[a, b]. This is analogous to the Euclidean distance for vectors:

‖x− y‖2 = (x1 − y1)2 + · · ·+ (xn − yn)2

which is the actual distance in Rn between the points at x and y.

The quantity (19) is sometimes called the mean-square distance or mean-square er-
ror if g is some approximation to f .

Warning (complex functions): All the definitions here are true only for real-valued
functions. For complex-valued functions, the inner product is instead

〈f, g〉 =

∫ b

a

f(x)g(x) dx

where g(x) is thet complex conjugate of g(x). Most of the theory is the same, other than the
occasional conjugate.
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3.3 Some examples; importance of the interval

For functions f and g, notions like orthogonality depend on the underlying space where
the functions live. For instance, consider

f(x) = 1, g(x) = cos x.

Regarded as functions in L2[0, π], the two functions are orthogonal:

〈f, g〉 =

∫ π

0

cosx dx = sinx
∣∣∣π
0

= 0.

However, as functions in L2[0, π/2] the two functions are not orthogonal, since then

〈f, g〉 =

∫ π/2

0

cosx dx = 1.

The functions are orthogonal on [0, π] but not on [0, π/2]; the domain matters because the
definition of the inner product is different for each.

Another example: Consider the space L2[−1, 1]. We have that

〈1, x〉 =

∫ 1

−1
x dx = 0

so the constant function 1 and x are orthogonal on [−1, 1]. However,

〈1, x2〉 =

∫ 1

−1
x2 dx =

2

3
,

so 1 and x2 are not orthogonal. On the other hand, for g(x) = x2 − 1/3,

〈1, g〉 =

∫ 1

−1
(x2 − 1/3) dx =

2

3
− 2

3
= 0.

This means that the set
{1, x, x2 − 1/3}

is an orthogonal set in L2[−1, 1], whereas {1, x, x2} is not. The process, incidentally, can
be continued to generate an orthogonal sequence of polynomials.
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4 Eigenfunctions

Let us return to the heat equation in a bounded domain with Dirichlet boundary conditions:

ut = uxx, x ∈ (a, b), t > 0 (20)

u(a, t) = u(b, t) = 0, t > 0. (21)

Now write the PDE in the form
ut = −L[u], (22)

where L is the linear operator
L[u] = −uxx

or, in operator notation,

L = − ∂2

∂x2
.

Now let us regard L as an operator acting on functions φ(x) (just functions of x), i.e.

L[φ] = φ′′ or L = − d2

dx2
.

Definition (eigenfunction): We say that φ is an eigenfunction of the problem (20) with
boundary conditions (21) if it solves the eigenvalue problem

L[φ] = λφ, φ(a) = 0, φ(b) = 0 (23)

for some λ ∈ R (the ’eigenvalue’). Equivalently, we say that φ is an eigenfunction of the
operator L on [a, b] with boundary conditions φ(a) = 0, φ(b) = 0.

Note: the boundary conditions (21) can be replaced with some other conditions; the
definition is the same. The boundary conditions for φ are the result of plugging u = φ(x)
into the boundary conditions for u.

Important note: To have an eigenfunction of the operator L, we must prescribe an
interval [a, b] and associated boundary conditions.

For instance, for the problem

ut = uxx, x ∈ (0, π) t > 0,

u(0, t) = ux(π, t) = 0, t > 0,

the eigenvalue problem is
−φ′′ = λφ, φ′(0) = φ′(π) = 0

and we say φ is an eigenfunction for L = −d2/dx2 on [0, π] with Neumann boundary condi-
tions (or, explicitly, ‘with boundary conditions φ′(0) = φ′(π) = 0’).
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Notice that the eigenvalue problem is an ODE, so we are really studying a type of ODE
problem and making use of it (later) to solve PDEs. In the following section, we forget about
the PDE part for now and find some eigenfunctions in typical cases.

Notation (why the negative sign?): The negative sign is just convention and is not
necessary; we could instead write

ut = L[u], L =
∂2

∂x2
.

The ODE for the eigenvalue problem is then

φ′′ = λφ

which is the same as the eigenvalue problem for L = −∂2/∂x2, with the sign of λ reversed
since

−φ′′ = (−λ)φ.

Since λ is an unknown anyway, it does not matter; we will just get λ’s that differ by a
negative sign and the eigenfunctions will be the same.

The reason for using the negative sign is that it tends to make most, if not all, the
eigenvalues positive (rather than mostly/all negative); see examples below.

4.1 Solving the eigenvalue problem

Consider the operator

L = − d2

dx2
.

The eigenvalue problem for L in any interval with any boundary conditions is straightforward
to solve, since we can find the general solution exactly. First, let us consider the problem

Lφ = λφ, φ(0) = φ(1) = 0 (24)

i.e. Dirichlet boundary conditions in the interval [0, 1]. The [problem is

− φ′′ = λφ, φ(0) = φ(1) = 0. (25)

The characteristic polynomial for the ODE is

p(r) = r2 + λ.

The roots are
r = ±

√
−λ.

There are three cases to consider, as the form of the solution depends on the roots of p.
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Case 1 (λ < 0): If λ is negative, then the two roots ±
√
−λ are both real and distinct.

it follows that the general solution for the ODE is

φ(x) = c1e
√
−λx + c2e

√
−λx.

For convenience, set µ =
√
−λ (not necessary, but saves space), so that

φ = c1e
µx + c2e

−µx.

We want values of µ > 0 such that φ solves (25). Now impose the boundary conditions.
First,

0 = φ(0) = c1 + c2 =⇒ c1 = −c2,
so

φ = c1(e
µx − e−µx).

Now impose the boundary condition at x = 1:

0 = φ(1) = c1(e
µ − e−µ).

If c1 = 0 then c2 = 0 which makes the solution trivial. So we only have a (non-trivial)
solution if the term in parentheses is zero, which simplifies to

e2µ = 1.

But e(··· ) = 1 only if the exponent is 0, so this requires µ = 0, which is impossible because
µ =
√
−λ and λ was assume to be negative.

Case 2 (λ = 0): In this case the ODE is

φ′′ = 0

whose solution is
φ = c1x+ c2.

Imposing the boundary conditions, we find that

φ(0) = 0 =⇒ c2 = 0, φ(1) = 0 =⇒ c1 + c2 = 0

so there are no non-trivial solutions.

Case 3 (λ > 0): Now there are solutions! The roots of the characteristic polynomial
are

r = ±
√
−λ = ±i

√
λ.

Let µ =
√
λ. Then the general solution to the ODE is

φ = c1 sin(µx) + c2 cosµx.

Imposing φ(0) = 0, we find that

0 = φ(0) = µc2 =⇒ c2 = 0

16



so φ = c1 sin(µx). Imposing the other boundary condition, we find that φ is a solution to
(25) with λ > 0 if and only if

sinµ = 0.

This has solutions for µ = nπ (n = 1, 2, · · · ), so λ = µ2 = n2π2. We therefore have
eigenfunctions/eigenvalues

φn = sin(nπx), λn = n2π2, for n = 1, 2, · · · .

Notes on the mechanics: Some points to note when computing eigenfunctions:

• If φ is an eigenfunction so is any scalar multiple since eigenvlaue problems are always
linear homogeneous. We always end up multiplying by an arbitrary constant later, so
it does not matter which multiple you choose (e.g. sin(nπx) or 2 sin(nπx).

• There are sometimes reasons to choose a particular scale for each φn so that it has
some nice property (we’ll use this for Fourier series later).

• Setting λ = µ2 is just to avoid writing
√
−λ or

√
λ.

• The cases are usually but not always λ positive/zero/negative.

4.2 Eigenfunctions and orthogonal bases

The process of finding eigenfunctions for the operator Lφ = φ′′ is similar for any of the linear
homogeneous BCs - the three standard types we defined earlier. All of them (at an endpoint
a) have the form

αφ(a) + βφ′(a) = 0 (26)

e,g. Dirichlet means β = 0 and Neumann means α = 0.

It turns out, rather miraculously, that the eigenfunctions we produce are - under suitable
technical conditions - an orthogonal basis for a certain space. One version of the theorem2

is as follows (we’ll generalize a bit later).

Informally, it says that nice eigenvalue problems will give an orthogonal basis for functions
that satisfy the boundary conditions.

2Note: the theorem is a consequence of a spectral theorem for L2-like spaces, a rather deep result in
analysis/linear algebra that generalizes of the spectral theorem for symmetric matrices of subsection 3.1. As
it is well beyond the scope of the course, you will have to take this result on faith.
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Sturm-Liouville Theory, simple version: Consider the operator

L = − d2

dx2

in an interval [a, b] and the eigenvalue problem

Lφ = λφ, with BCs of the form (26) at x = a and x = b. (27)

Then the set of eigenfunctions {φn} solving (27) forms an orthogonal basis for the space

{f ∈ L2[a, b] : f satisfies the BCs }.

Moreover, it is true that

i) There is one eigenfunction for each eigenvalue,

ii) There are infinitely many positive eigenvalues that increase to ∞,

iii) There are finitely many negative eigenvalues.

We call the set of eigenvalues the spectrum of the operator L (in the interval [a, b] with the
associated BCs).

The last three points just confirm what we observed in the examples (we will see an
example with negative eigenvalues later!). The key result is that the eigenfunctions form
an orthogonal basis, which is what we will use in practice to solve PDEs (for now, the
other points are just reassurance, as we will typically solve the eigenvalue problem explicitly
anyway).

4.3 Example: Neumann boundary conditions

Now we solve the problem with Neumann boundary conditions:

Lφ = λφ, φ′(0) = φ′(1) = 0 (28)

where L = −d2/dx2 as before. The process is the same, and in this case, the general solutions
are also the same (see previous example).

Case 1 (λ < 0): The general solution is

φ(x) = c1e
µx + c2e

µx

where µ =
√
−λ. We want values of µ > 0 such that φ solves (28). First,

0 = φ′(0) = µc1 − µc2 =⇒ c1 = c2,

so
φ = c1(e

µx + e−µx).
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Now drop the c1 (since it multiplies the whole thing, it does not matter) and impose the
boundary condition at x = 1:

0 = φ′(1) = eµ + e−µ.

Since both eµ and e−µ are positive, there are no solutions.

Case 2 (λ = 0): Different from the previous example! We have

φ′′ = 0 =⇒ φ = c1x+ c2.

Imposing the boundary conditions, we find that

φ′(0) = 0 =⇒ c1 = 0, φ′(1) = 0 =⇒ c1 = 0

so there is a non-trivial solution
φ = const..

A flat line of any value has zero derivative at the boundaries. Let λ0 = 0 be the eignvalue;
the eigenfunction is then

φ0 = 1

(or any other constant we like).

Case 3 (λ > 0): Set µ =
√
λ. The general solution to the ODE is

φ = c1 sin(µx) + c2 cosµx.

Imposing φ′(0) = 0, we find that

0 = φ′(0) = µc1 =⇒ c1 = 0

so
φ = c2 cosµx. (29)

Imposing the other boundary condition, we get

0 = φ′(1) = −c2µ sinµ

Since µ 6= 0 by assumption, this has solutions for µ = nπ (n = 1, 2, · · · ). This gives
eigenvalues λ = µ2 and eigenfunctions (29):

φn = cos(nπx), λn = n2π2, for n = 1, 2, · · · .

The full set of eigenvalues and eigenvectors (collecting all the cases) is

λ0 = 0, φ0 = 1, and λn = n2π2, φn = cos(nπx) for n = 1, 2, · · · .
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Further notes on mechanics (indexing conventions): For some problems, there are
positive eigenvalues, a zero eigenvalue, and possibly negative eigenvalues. In the one above,
we had a zero eigenvalue and set

λ0 = 0, φ0 = 1.

Typically, the zero index is saved for the zero eigenvalue (if it exists).

With negative eigenvalues, one scheme is to label with negative indices. For instance, if
there are eigenvalues

0 < λ1 < λ2 < · · · and two negative eigenvalues

then one could label them as
λ−2 < λ−1 < 0

with eigenfunctions φ−2 and φ−1. Or, one could write them as

α1, α2 with eigenfunctions ψ1, ψ2

or just different labels α and β. Of course, one could also just relabel indices and label all
of them λ1, λ2, · · · but this tends to mean we lose nice formulas like sin(nπx).

What matters is that we can get the full set of eigenvalues and eigenfunctions; label-
ing is just a nuisance.

5 The eigenfunction method to solve PDEs

5.1 The method (for the heat equation)

We are now ready to demonstrate how to use the components derived thus far to solve the
heat equation (and by extension, related PDEs). Consider an initial boundary value problem
of the form

ut = −L[u] + h(x, t), x ∈ (a, b), t > 0 (30)

with homogeneous BCs at a and b (one of the standard ones) and initial condition

u(x, 0) = f(x).

First step: find the eigenfunctions. The eigenfunctions we need are the solutions to the
eigenvalue problem

L[φ] = λφ, φ satisfies the BCs for u. (31)

By an appeal to the theorem in subsection 4.2, there is a sequence of eigenfunctions {φn}
with eigenvalues {λn} that form an orthogonal basis for the space

V = {f ∈ L2[a, b] : f satisfies the BCs}.
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Now at each fixed time t, the function u(x, t), regarded as a function of x, lies inside the
space V . It follows that there are coefficients an(t) such that

u(x, t) =
∞∑
n=0

an(t)φn(x). (32)

For each t,{an(t)} is the set of coefficients for expressing u(x, t) in terms of the basis {φn}.

Second step: get everything in terms of the basis, substitute into the PDE:
Our objective now is to determine the functions an(t). First, we write the source h in terms
of the eigenfunctions:

h(x, t) =
∞∑
n=0

hn(t)φn(x).

Now substitute this and the eigenfunction expansion (32) for u into the PDE (30) to obtain

∞∑
n=0

a′n(t)φn︸ ︷︷ ︸
ut

= −
∞∑
n=0

an(t)λnφn(x)︸ ︷︷ ︸
−L[u]

+
∞∑
n=0

hn(t)φn(x)︸ ︷︷ ︸
h

. (33)

In detail, the second term was found using the eigenfunction property and linearity of L:

L[u] = L

[
∞∑
n=0

an(t)φn(x)

]

=
∞∑
n=0

an(t)L[φn(x)]

= −
∞∑
n=0

an(t)λnφn(x).

Note that since an(t) is only a function of t, it is constant as far as L is concerned so by
linearity, L[an(t)φn(x)] = an(t)L[φn(x)]. where we have used the fact that L is linear to move

Third step: rearrange to get a single sum: Now collect all the terms in (33) together:

0 =
∞∑
n=0

(a′n(t) + λnan(t)− hn(t))φn(x).

Since the φn’s are a basis, the coefficient of each basis function must be zero at all times t
(otherwise, the φn’s would be linearly dependent at some t). It follows that for each n,

a′n(t) + λnan(t) = hn(t) for t > 0. (34)

This equation is a first-order linear ODE for an(t) that is easy to solve. If we want the
’general’ solution to the PDE with BCs, then we solve for the an(t)’s and are done. To solve
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the IBVP, the last missing piece is the initial condition - the value of an(0).

Find the coefficients at the initial time: To find an(0), write the initial condition
f(x) in terms of the eigenfunction basis:

f(x) =
∞∑
n=0

fnφn(x).

For the solution u(x, t) (32) to satisfy the initial condition, we need for constants γn. Then
it follows that

∞∑
n=0

an(0)φn(x)︸ ︷︷ ︸
u(x,0)

=
∞∑
n=0

fnφn(x)︸ ︷︷ ︸
f(x)

.

Again, since the φn’s are absis, the two sums must be equal term-by-term, so

an(0) = fn.

Finally, this condition and (34) lets us solve for a unique an(t) (as we get a first order IVP),
which completes the process.

5.2 Dirichlet boundary conditions

The simplest case. As an example, suppose we want to find the solution u(x, t) to

ut = uxx, x ∈ (0, 1), t > 0 (35)

with boundary and initial conditions

u(0, t) = 0, u(1, t) = 0, u(x, 0) = f(x). (36)

The eigenvalues/eigenfunctions are (as calculated in subsection 4.1)

λn = n2π2, φn = sinnπx, n ≥ 1.

Assuming the solution exists, it can be written in the eigenfunction basis as

u(x, t) =
∞∑
n=0

an(t)φn(x).

for unknown coefficients cn(t) (which vary with time). Substitute into the PDE (35) and use
the fact that −φ′′n = λnφ to obtain

∞∑
n=0

(a′n(t) + λnan(t))φn(x) = 0.

Equating coefficients of each basis function (to zero), we find that

a′n(t) + λnan(t) = 0. (37)
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The solution is
an(t) = an(0)e−λnt.

To get an(0), write f(x) also in terms of the eigenfunctions:

f(x) =
∞∑
n=0

bn sinnπx.

Then u(x, 0) = f(x) holds if an(0) = bn.

To compute bn, take the inner product of each side with sinmπx to get

bn =

∫ 1

0
f(x) sinnπx dx∫ 1

0
sin2 nπx dx

= 2

∫ 1

0

f(x) sinnπx dx. (38)

The solution to the problem (35),(36) is

u(x, t) =
∞∑
n=1

bne
−n2π2t sinnπx with bn given by (40). (39)

Important special case: If, for example,

u(x, 0) = f(x) = sinπx+ 2 sin 2πx

then its expansion in the eigenfunction basis,

sin πx+ 2 sin 2πx =
∞∑
n=1

bn sinnπx

is trivial to find as it is already in the form of a linear combination of basis functions; the
coefficient b1 of sin πx is 1, the coefficient of sin 2πx is 2 and all the others are zero.

It follows that only the n = 1 and n = 2 terms of the solution series (39) are non-zero;
the solution is

u(x, t) = e−π
2t sin πx+ 2e−4π

2t sin 2πx.

Note that this means that given the IBVP with (??) as initial conditions, after finding the
eigenfunctions/values we could have just assumed the solution had the form

u(x, t) = a1(t) sinπx+ a2(t) sin 2πx

and then substituted into the ODE, because we know only these two terms will be non-zero
in the end (see homework for further details).
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Long-time behavior: Note that every term in the solution (39) has a negative exponential
(since all the eigenvalues are positive). Furthermore, terms further down in the series decay
much faster since λn grows quadratically with n. It follows (omitting issues with the infinite
series) that

lim
t→∞

u(x, t) = 0

independent of the initial condition f(x) (which just affects the bn’s and not the eigenvalues.

More strongly, we can approximate u by its first term and conclude that

u(x, t) decays to zero at least as fast as Ce−λ1t.

The smallest eigenvalue determines how slow the solution can decay to zero.

If the eigenfunction expansion of f(x) has infinitely many terms, we are stuck with an
infinite series solution. For example, suppose

f(x) = x(1− x).

After some laborious integration by parts, we get

bn =
2(1− (−1)n)

π3n3
=

{
0 n even

2
π3n3 n odd.

(40)

The first few terms of the solution are

u(x, t) =
2

π3
e−π

2t sin πx+
2

27π3
e−4π

2t sin 2πx+ · · ·

5.3 Neumann boundary conditions

A variation - similar to Dirichlet, but with a crucial difference due to the zero eigenvalue.
Here we seek a solution u(x, t) to the IBVP

ut = uxx, x ∈ (0, 1), t > 0 (41)

with boundary and initial conditions

ux(0, t) = 0, ux(1, t) = 0, u(x, 0) = f(x). (42)

The eigenvalues/eigenfunctions are (as calculated in subsection 4.3)

λn = n2π2, φn = cosnπx, n = 0, 1, 2, · · ·

Note that λn = 0 is an eigenvalue, unlike the previous case. Regardless, the process is the
same and we end up with a solution (check this!)

u(x, t) =
∞∑
n=0

ane
−n2π2t cosnπx
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for constants an determined by the initial condition:

∞∑
n=0

an cosnπx = f(x).

Using the orthogonality of the eigenfunctions on [0, 1], we get

an =

∫ 1

0
f(x) cosnπx dx∫ 1

0
cos2 nπx dx

= 2

∫ 1

0

f(x) cosnπx dx, n ≥ 1.

To find a0, note that the eigenfunction φ0 = 1 is orthogonal to the others. Thus, multiplying
by φ0 = 1 and integrating from 0 to 1 we get

a0 =

∫ 1

0

f(x) dx.

Convergence as t→∞: The zero eigenvalue is significant; note that the solution has the
form

u(x, t) = a0 +
∞∑
n=1

ane
−n2π2t cosnπx = a0 + exp. decaying terms.

As t→∞, the solution will approach the constant a0 (again at least as fast as the first term
in the series, i.e. ∼ e−λ1t). The constant a0 is the average value of the initial distribution f(x).

This result confirms the intuitive notion that if you put something that diffuses into
a closed container (e.g. tea in water), then over time the concentration of stuff will even
out until it is uniform.

5.4 An example

To give a more concrete example: suppose we have a mug of water and place a teabag in it,
then let it sit. We want to know how long it will take for the tea to diffuse through so that
it is uniformly mixed. Assume the mug is one dimensional with height 2 and let c(x, t) be
the concentration of tea at height x and time t.

The concentration obeys the heat (’diffusion’ in this case) equation

ct = kcxx, x ∈ [0, 1], t > 0 (43)

where k > 0 is the diffusivity of the tea. Since tea cannot leave the cup, the flux at the top
and bottom must be zero, so impose Neumann boundary conditions

cx(0, t) = cx(1, t) = 0, t > 0.

Suppose the teabag starts at the bottom of the cup (x = 0), and the initial concentration is

c(x, 0) = f(x) :=

{
1 x < 1/2

0 x > 1/2
.
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The eigenvalues/eigenfunctions: It is easiest to write

ct = −kL[c], L = − ∂2

∂x2

rather than putting k in the definition of L (but that works too). The eigenvalue problem is

−φ′′ = λφ, φ′(0) = φ′(1) = 0.

This is solved as in subsection 5.3 to obtain

λ0 = 0, φ0 = 1

and3

λn = (πn)2, φn = cos(πnx), n = 1, 2, · · · .

Eigenfunction expansion and coefficients for the solution: Now that we have a basis,
we can write the solution c(x, t) in the form

c(x, t) =
∞∑
n=0

an(t)φn(x).

Plug this into the PDE (43) and use the property that −φ′′n = λnφn to get

∞∑
n=0

a′n(t)φn(x) = k
∞∑
n=0

an(t)φ′′n = −k
∞∑
n=0

anλnφn

and then gather into a single sum:

∞∑
n=0

(a′n(t) + kλnan(t))φn(x) = 0.

We conclude that
a′n(t) + kλnan(t) = 0, n ≥ 0.

For n = 0 the eigenvalue is just λ0 = 0 so

a′0 = 0 =⇒ a0(t) = b0

for a constant b0. For the others, use an integrating factor ekλnt to get

an(t) = bne
−kλnt

for arbitrary constants bn. The solution to the PDE with the boundary conditions is then

c(x, t) = b0 +
∞∑
n=1

bne
−kλntφn(x).

3If you had taken L = k∂2/∂x2 instead, then the result would be λn = k(πn)2 with the same eigenfunc-
tions since the eigenvalue problem is then −φ′′ = (λ/k)φ.
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Initial condition: The coefficients are chosen to satisfy the initial condition:

f(x) = b0 +
∞∑
n=1

bnφn(x).

The eigenfunctions are orthogonal on [0, 2]; the inner product is

〈f, g〉 =

∫ 2

0

f(x)g(x) dx.

Note that

〈φn, φn〉 =

∫ 2

0

cos2(nπx) dx = 1 for n ≥ 1

so

bn =
〈f, φn〉
〈φn, φn〉

=

∫ 1

0

f(x) cos(nπx) dx =

∫ 1/2

0

cos(nπx) dx =
1

nπ
sin(nπx)

∣∣∣1/2
0

=
1

nπ
sin(nπ/2).

for n ≥ 1 and (taking the inner product with φ0 = 1)

b0 =

∫ 1

0
f(x) dx∫ 1

0
1 dx

=

∫ 1

0

f(x) dx = 1/2.

To summarize, the solution is

c(x, t) =
1

2
+
∞∑
n=1

bne
−kλntφn(x)

where
λn = (nπ)2, φn = cos(nπx)

and the coefficients are given as above. The first few coefficients are b1 = 1/π, b2 = 0 and
b3 = −1/3π, so

c(x, t) =
1

2
+

1

π
e−kπ

2t cos(πx/2)− 1

3π
e−k(3π)

2

cos(3πx) + · · · .

Analysis: Since λn > 0 for n ≥ 1, all the modes decay except the zero mode (the b0 term)
so it follows that

lim
t→∞

c(x, t) = b0 =
1

2
.

The value the the limit is the average value of f(x) in the domain. The amount of tea is
constant, so as it diffuses, it converges to a uniform concentration equal to the average in
the cup.

The rate of convergence is determined by the first term; we have

max
x∈[0,1]

|c(x, t)− 1/2| ∼ 1

π
e−kπ

2t

so the (exponential) rate of convergence is kπ2.
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5.5 Another example: finite number of modes

Here, we use three methods of increasing simplicity to solve

ut = 2tuxx + e−t
2

sinx, x ∈ (0, π), t > 0

u(0, t) = u(π, t) = 0, t > 0 (44)

u(x, 0) = 3 sin 2x

by exploiting superposition.

Eigenfunctions: The 2t goes outside the operator L:

ut = −2tL[u] + h(x, t), h = e−t sinx

where

L = − ∂2

∂x2

as before. Note that we cannot put t in the definition of L, since L must only involve
derivatives in x. The eigenvalues/functions are

λn = n2, φn = sin(nx), n = 1, 2, · · ·

as found before.

Excessive method:

We could use the general process described in subsection 5.1, starting with

u(x, t) =
∞∑
n=1

an(t)φn(x)

and writing

h(x, t) =
∞∑
n=1

hn(t)φn(x),

then substituting into the PDE and so on. In this case, the full series is not necessary!

More efficient approach (but still excessive):

Observe that h(x, t) only has an n = 1 mode (just a sin x term). Explicitly,

h(x, t) =
∞∑
n=1

hn(t)φn(x) where h1(t) = e−t and hn(t) = 0 otherwise .

The initial condition only has an n = 2 mode. It follows from the ’general’ process in
subsection 5.1 than the solution only has these two modes. Thus, we know the solution
to the IBVP has the form

u(x, t) = a1(t) sinx+ a2(t) sin 2x.
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The rest of the steps are the same as the general case, but with only two terms instead of
the whole sum.

Equations for the coefficients: Plug into the PDE:

a′1(t) sinx+ a′2(t) sin 2x = −2ta1(t) sinx− 2ta2(t) sin 2x+ e−t
2

sinx.

This gives
(a′1(t) + 2ta1(t)− e−t

2

) sinx+ (a′2(t) + 2ta2(t)) sin 2x = 0.

Thus
a′1 + 2ta1 = e−t

2

=⇒ a1 = b1e
−t2 + te−t

2

using the integrating factor et
2
. For the second mode,

a′2 + 2a2 = 0 =⇒ a2 = b2e
−2t.

Initial condition: Plugging u(x, t) into the initial condition, we get

3 sin 2x = u(x, 0) = a1(0) sinx+ a2(0) sin 2x = b1 sinx+ b2 sin 2x

so
b1 = 0, b2 = 3.

The solution is therefore

u(x, t) = te−t
2

sinx+ 3e−t
2

sin 2x.

Only the n = 1 mode is affected by the inhomogeneous term; only the n = 2 term is affected
by the initial condition.

5.5.1 The efficient approach:

Note that each mode evolves independently, so we could solve for each term on its own
and then add them together using superposition. The solution has the form

u = u1 + u2

where u1 and u2 are the n = 1 and n = 2 modes.

We know that u1 is the solution to the full problem (46) with all the terms dropped ex-
cept the n = 1 mode:

ut = 2tuxx + e−t
2

sinx, x ∈ (0, π), t > 0

u(0, t) = u(π, t) = 0, t > 0 (45)

u(x, 0) = 0

The solution to this IBVP has only one term, so we can assume that

u1(x, t) = a1(t)φ1(x).
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Now this form is quite easy to plug into the PDE; we get

a′1(t)φ1 = −2ta1λ1φ1 + e−t
2

φ1

which gives
a′1(t) + 2ta1 − e−t

2

= 0.

Plugging into the initial condition, we get a1(0) = 0; solving then gives a1(t) and

u1(x, t) = te−t
2

sinx.

Similarly, the full problem (??) with only the n = 2 mode:

ut = 2tuxx + 0, x ∈ (0, π), t > 0

u(0, t) = u(π, t) = 0, t > 0 (46)

u(x, 0) = 3 sin 2x

which has a solution
u2(x, t) = a2(t) sin 2x.

Again, plug in to get a′2 + 2ta2 = 0 and a2(0) = 3 and solve to get

u2(x, t) = 3e−t
2

sin 2x.

The full solution to the original IBVP is then the sum of solutions for each mode,

u = u1 + u2 =

Exploiting independence of modes: The process here illustrates that we can solve for
each mode independently in the following way:

• Find the eigenvalues and eigenfunctions.

• Expand the inhomogeneous term and initial condition in the eigenfunction basis.

• Solve the problem with only one mode to get a solution un(x, t).

• Sum them up to get the full solution.

The full solution is the superposition of the solutions for each mode.. When we use
the eigenfunction method in subsection 5.1, we are assembling the series from the start,

u =
∑

an(t)φn,

then substituting into the PDE to get equations for all of the modes at once. However, they
do not interact with each other, so equations like

u =
∑

(a′n(t) + λnan(t))φn = 0

are really the same as saying that for each n,

un(x, t) = an(t)φn(x) is a solution if (a′n + λn(t)an)φn = 0.

It is often easier computationally to compute them one at a time and sum at the end.
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6 Separation of variables

For homogeneous problems, we can exploit this independence to obtain solutions quickly.
Not that what follows is a useful computational trick, and is justified because of the
theoretical framework of eigenfunctions already developed.

6.1 A first example

Consider the equation

ut = uxx, x ∈ [0, π], t > 0

u(0, t) = u(π, t) = 0, t > 0

u(x, 0) = f(x).

We know that the solution will be an infinite sum of terms (modes) of a certain form. Let
us guess a separated solution

u(x, t) = F (t)G(x).

Plug into the PDE to get
F ′(t)G(x) = F (t)G′′(x).

Now separate variables, putting all the x’s on one side:

F ′(t)

F (t)
=
G′′(x)

G(x)
.

But the left hand side is a function of t and the right hand side is a function of x, so for
them to be equal, they must both equal a constant:

F ′(t)

F (t)
=
G′′(x)

G(x)
= −λ.

This gives the ODEs
F ′(t) = −λF (t), G′′(x) = −λG(x).

Plugging this into the boundary conditions, we find that

F (t)G(0) = F (t)G(π) = 0 for all t

so we should require
G(0) = G(π) = 0.

The problem for G is then

G′′ + λG = 0, G(0) = G(π) = 0

which is exactly the eigenvalue problem. It has solutions

Gn = sinnx, λn = n2 for n = 1, 2, · · · .
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Now we solve for F :
Fn = bne

−λnt

for constants bn. We have therefore found solutions

un(x, t) = bne
−λnt sinnx.

The solution to the PDE plus boundary conditions is then the superposition of all these
terms:

u(x, t) =
∞∑
n=1

un(x, t)

which is the result we found before. The coefficients bn are found in the same way.

What we have done here is solved for each mode on its own (see homework). Note that
if you know the eigenfunctions in advance, you could even guess

un(x, t) = Fn(t) sinnx

in the first place instead of solving for G, saving even more time.

Note that separation of variables does not work for the example in subsection 5.5, be-
cause if we plug in F (t)G(x) into

ut = uxx + e−t
2

sinx

then the x and t cannot be separated. Thus we need to identify the eigenfunctions first
and then guess the solution as done in the example.

6.2 The method

Practical note: When it works (for homogeneous problems), separation of variables is
the easiest way to solve PDEs. Often, the strategy for more complicated problems is to
reduce them to simpler ones where separation of variables applies.

For some non-homogeneous problems, eigenfunction expansions are necessary, but
even then some separation-of-variables inspired tricks will make the computations easier.

The method of separation of variables is straightforward. Suppose we have some PDE in
the variables x and t with boundary conditions. We find the ’general’ solution to the PDE
with the BCs (leaving initial conditions out) with the following steps:

• Guess a separated solution, a product of functions of each variable:

u(x, t) = F (t)G(x).
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• Plug into the PDE and separate the t’s and x’s to get

function of t = function of x.

Conclude that both are equal to a constant:

function of t = function of x = −λ.

Note: If this step fails, we must use another method. The negative sign is not needed
since λ is arbitrary; it is there to match earlier notation.

• Plug into the boundary conditions to get boundary conditions for one of the ODEs.

• Solve the ODE that has the boundary conditions to get eigenvalues/eigenfunctions.
Then solve the other ODE to get solutions un(x, t).

• Assume the general solution is an infinite linear combination:

u =
∑
n

bnun(x, t).

• Solve for the constants using the initial condition for the PDE.

Separation of variables, when it works, will produce the correct eigenvalue problem au-
tomatically, so it eliminates the need to identify the right operator and reduces the whole
process to a concrete series of steps. For instance, consider

ut = uxx + ux + (t+ 1)u, u(0, t) = 0, u(1, t) + ux(1, t) = 0

Note that this PDE is linear and homogeneous. Substitute in u = F (t)G(x) to get

F ′(t)G(x) = F (t)G′′(x) + F (t)G′(x) + (t+ 1)F (t)G(x).

Divide by G(x) and F (t) to get:

F ′(t)

F (t)
=
G′′ +G′

G
+ (t+ 1).

Subtract t+ 1 and then set both to a constant:

F ′(t)

F (t)
− (t+ 1) =

G′′ +G′

G
= −λ.

Now plug into the BCs:

F (t)G(0) = 0, F (t)(G(1) +G′(1)) = 0

so the eigenvalue problem is

G′′ +G′ = −λG, G(0) = G(1) +G′(1) = 0.

Note that this means the operator L from the eigenfunction method is L[u] = uxx + ux (the
(t+ 1)u part has to be left out). The ODE for F is

F ′ + (λ+ t+ 1)F = 0.

With some work, one can then find the eigenvalues/functions λn and Gn, then Fn, and get

u =
∑
n

Fn(t)Gn(x).
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6.3 Use in solving unfamiliar problems

Separation of variables is particularly useful on more complicated homogeneous problems
where the place to start may not be so clear.

Word of caution (which ODE is the eigenvalue problem?): Separation of variables
provides a set of ODEs, but we need to solve them in the right order.

In the examples below, note that we need to identify which ODE gives the eigen-
functions and which ODE does not. Doing so requires understanding the boundary and
initial conditions, and requires some domain and equation specific intuition.

Wave equation

Consider the wave equation in [0, π] for u(x, t) with Neumann boundary conditions,

utt = c2uxx, ux(0, t) = ux(π, t) = 0

with initial conditions
u(x, 0) = f(x), ut(x, 0) = g(x).

We substitute
u = F (t)G(x)

into the PDE to get
1

c2
F ′′

F
=
G′′

G
= −λ

and into the BCs to get

F (t)G′(0) = F (t)G′(π) = 0 =⇒ G′(0) = G′(π) = 0

which gives the eigenvalue problem

G′′ + λG = 0, G′(0) = G′(π) = 0.

The other ODE is
F ′′ + c2λF = 0.

6.3.1 Example:

consider Laplace’s equation in a disk of radius a for u(r, θ), which is

urr +
1

r
ur +

1

r2
uθθ = 0 for θ ∈ [0, 2π], r < a

with a boundary condition on the boundary of the disk,

u(a, θ) = f(θ).
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Assume a separated solution
u(r, θ) = R(r)G(θ)

and substitute into the PDE:

R′′G+
1

r
R′G+

1

r2
RG′′ = 0.

Divide by RG to get
R′′ +R′/r

R
+

1

r2
G′′

G
= 0

and then move terms around to separate the r and θ; we end up with

−r2R
′′ +R′/r

R
=
G′′

G
= −λ.

so the ODEs for R and G are

G′′ + λG = 0, r2R′′ + rR′ − λR = 0

Note that plugging into the boundary condition does not give us anything since we would
need

R(a)G(θ) = f(θ)

which is too much to ask for G(θ) (since f(θ) will not be a solution to the ODE unless it
is an eigenfunction). We will address the missing boundary conditions for G (and R) when
solving this equation later.

7 Appendix: additional notes

7.1 Some context: PDEs from conservation laws

Rather than pull the equation out of thin air, let’s see how PDEs arise naturally out of
fundamental models4. To do so, we introduce the concept of a conservation law, which
is a way of stating that for an amount of stuff in a region, the change in the amount is
due to stuff entering/exiting the region or being created/destroyed. For simplicity, assume
the stuff is ‘heat’ - but this argument is quite general (e.g. could be particle concentration,
momentum, energy, density of fish, etc.)

4Adapted from Applied Partial Differential Equations, J. David Logan
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Consider a cylindrical tube with cross section A running along the x-direction and u(x, t)
the temperature at position x and time t. The amount of heat in a section of the tube for x
in some interval [a, b] is ∫ b

a

u(x, t)Adx.

Let us further suppose there is a source g(x, t) that is the rate at which u is created or
destroyed at position x along the tube. For instance, heat could leak out of the pipe at a
rate g(x, t) if the pipe is poorly insulated.

Define F (x, t) to be the flux of heat: the rate at which heat flows through the cross section
at x, with units of heat per (area)(time). Thus φAdt is the amount of heat passing through
the cross section in a time dt (with sign determining the direction). We have

∂

∂t

(∫ b

a

u(x, t)Adx

)
︸ ︷︷ ︸

change in heat

= AF (a, t)− AF (b, t)︸ ︷︷ ︸
heat entering the section from the ends

+

∫ b

a

g(x, t)Adx︸ ︷︷ ︸
heat created/lost due to source

.

Cancel out A and move the derivative on the LHS inside the integral, leading to∫ b

a

ut(x, t) dx = F (a, t)− F (b, t) +

∫ b

a

g(x, t) dx,

which is a mathematical description of the conservation of heat.
Now write the F terms in an integral using the Fundamental Theorem of Calculus and

collect all the terms to get∫ b

a

[ut(x, t) + Fx(x, t)− g(x, t)] dx = 0.

The above equation must hold for all intervals [a, b]. It follows that the integrand must be
equal to zero, leading to the ‘differential form’ of the conservation law,

ut + Fx = g(x, t).

Many models in the sciences arise from this basic conservation argument. The next step is
to determine the flux φ as as function of u and x (and the source).

7.2 Deriving the heat equation

If u is actually temperature, then the flux can be modeled by Fourier’s law

φ = −αux

where α is a constant (the thermal diffusivity, with units of m2/s). This simple law states
that the the flux of heat is towards cooler areas, and the rate is proportional not to the
amount of heat but to the gradient in temperature, i.e. the heat will flow faster if there is a
large difference (e.g. an ice cube melting in a fridge vs. outside on a hot day).
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Thus if there is no external source of heat, then u satisfies the heat equation

ut = αuxx.

More generally, if u is any quantity whose flux is proportional to minus the gradient of u,
then u will also satisfy the above. Such a process is called a diffusion process and the
equation is then referred to as a diffusion equation.
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