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LECTURE NOTES 2 
Gauss’ Law / Divergence Theorem 
 
Consider an imaginary / fictitious surface enclosing / surrounding e.g. a point charge (or a small 
charged conducting object).  For simplicity, use an imaginary sphere of radius R centered on charge 
Q at origin: 
        ẑ    
       ˆ ˆ,n r Rr=K     
          ( ) ( )ˆE r E Rr=

G GG  
               Infinitesimal Area Element, dA   
           
    Q  θ   R 
                            ŷ  
       ϕ  
 
  x̂      Imaginary/Fictitious Surface, S   
            S  aka Gaussian Surface of radius R 

centered on charge Q. 
 
Area element dA is a VECTOR quantity: ˆ ˆdA dAn dAr= =

G
. By convention, n̂  is outward-pointing 

unit normal vector at area element dA.  In this particular case (because of spherical symmetry of 
problem): ˆ ˆn r=  
 
FLUX OF ELECTRIC FIELD LINES (through surface S): ( )E

S

E r dAΦ ≡ ∫
GK G i   

 
EΦ  = “measure” of “number of E-field “lines” passing through surface S, (SI Units: Volt-meters). 

 
TOTAL ELECTRIC FLUX ( TOT

EΦ ) associated with any closed surface S, is a measure of the (total) 
charge enclosed by surface S.   
 
n.b. charge outside of surface S will contribute nothing to total electric flux EΦ  (since E-field lines 
pass through one portion of the surface S and out another – no net flux!) 
 
Consider our point charge Q at origin.  Calculate the flux of E

K
 passing through a sphere of radius r:   

(see above picture) 

 ( )
2

1
4E S

o

QE r dA r
rπε

Φ = =∫
GK G iv 2ˆ

S

r r
⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ i( )
         
infinitesimal vector
 area element for 
sphere of radius r

ˆsin

dA

d d rθ θ ϕ

=
G���	��


 

 
n.b.  Vector area element of sphere of radius, r is ( )2ˆ ˆsindA dAr r d d rθ θ ϕ= =

G
 in spherical-polar 

coordinates. 
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Thus:  ( )N
2

1

2ˆ ˆsin
4E o o

o

Q d d r r
θ π ϕ π

θ ϕ

πθ θ ϕ
πε

= =

= =
=

Φ = =∫ ∫ i
4

Q
πN
2

sin
o

o

d
θ π

θ
θ θ

ε
=

=∫  

                 2
=

2
Q

oo

Q
εε

=  

 
 

∴ Gauss’ Law (in Integral Form): ( ) enclosed
E s

o

QE r dA
ε

Φ = =∫
GG G iv  

 

Electric flux through closed surface S = (electric charge enclosed by surface S)/ oε  
 
 
 
If ∃  (= there exists) lots of discrete charges qi (ALL enclosed by imaginary / fictitious / Gaussian 
surface S), we know from principle of superposition that: 
 

( ) ( )
1

N

NET i
i

E r E r
=

= ∑
G GG G  

 

Then:  ( ) ( )( )
1 1 1

1N
NET i encl
E NET i iS S

i i io o o

q QE r dA E r dA q
ε ε ε= = =

Φ = = = = =∑ ∑ ∑∫ ∫
G GG GG Gi iv v  

 
If ∃  volume charge density ( )rρ ′G , then:  ( )encl v

Q r dρ τ′ ′= ∫
G  

 
Then using the DIVERGENCE THEOREM: 
 

( ) ( ( )) ( )
P1 encl

E S v v
o o

QE r dA E r d r dτ ρ τ
ε ε

′ ′Φ = = ∇ = =∫ ∫ ∫

����GG JK GG G Gi iv  

 
This relation holds for any volume v ⇒  the integrands of ( )

v
dτ ′∫  must be equal, i.e.: 

∴ Gauss’ Law (in Differential Form):    ( ) ( )
o

rE r ρ
ε∇ =

GJK G Gi  

 
 
 
 
 
 
 
 
 
 



UIUC Physics 435 EM Fields & Sources I          Fall Semester, 2007      Lecture Notes  2        Prof. Steven Errede 
 

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 
2005 - 2008. All rights reserved. 

3

 
The DIVERGENCE OF ( ) :E r

G G  ( )E r∇
JK G Gi  

 
Calculate ( )E r∇

JK G Gi  directly from ( ) ( )2

ˆ1
4 o v

all
space

E r r dρ τ
πε    

  

′ ′= ∫
G G Gr

r
 

             n.b. now extended over all space! 
Remember that Gr  is NOT a constant! 
 

r r′≡ −
G GGr  

 
field source 
point point 
  P          S 

( ) ( ) ( )2 2

ˆ ˆ1 1
4 4o ov v

all all
space space

E r r d r dρ τ ρ τ
πε πε      

    

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎛ ⎞⎢ ⎥′ ′ ′ ′∇ = ∇ = ∇⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠
⎢ ⎥⎣ ⎦

∫ ∫
JK JK JK JKG G Gi i ir r

r r
 

 

Now: ( )N
3

2

  3
 

.

ˆ
4

D
Dirac

fcn

r r
r

δ

π δ
−

−

⎛ ⎞∇ =⎜ ⎟
⎝ ⎠

JK Gi  (see equation 1.100, Griffiths p. 50) 

 Thus:  ( ) ( )3 3
32

ˆ
4 or : 4r r r r

r r
πδ πδ

⎛ ⎞′−⎛ ⎞ ′∇ =        ∇ ⎜ ⎟ = −   ⎜ ⎟ ⎜ ⎟′⎝ ⎠ −⎝ ⎠

G GG G G GGi i G G
r

r
r

 

 

( ) 1
4

E r
π

∴   ∇ =
G G Gi 4

o

π
ε

( ) ( ) ( )3

ov
all

space

r
r r r d

ρ
δ ρ τ

ε   
  

′ ′ ′− =∫
G

G G G  Gauss’ Law in Differential Form: 

 
 
Gauss’ Law in Integral Form: 
 

( ) ( )
o

r
E r

ρ
ε

∇ =
GJK G Gi ,  thus: ( )( ) ( ) ( )1 1

enclV v v
o o o

r
E r d d r d Q

ρ
τ τ ρ τ

ε ε ε
′⎛ ⎞

′ ′ ′ ′ ′∇ = = =⎜ ⎟
⎝ ⎠

∫ ∫ ∫
GJK G G Gi  

 
Now apply/use the Divergence Theorem on the volume integral associated with ( )E r′∇

JK G Gi : 

( )( ) ( ) ( )1 1
enclv S v

o o

E r d E r dA r d Qτ ρ τ
ε ε

′ ′ ′ ′∇ = = =∫ ∫ ∫
GJK G GG G Gi iv  

Thus we obtain: ( ) encl
S

o

QE r dA
ε

′ ′ =∫
GG G iv   Gauss’ Law in Integral Form 

( ) ( )
o

r
E r

ρ
ε

∇ =
GG G Gi  
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 APPLICATIONS OF GAUSS’ LAW - very explicit, detailed derivation - 
 
Griffiths Example 2.2: Find / determine the electric field intensity ( )E r

G G outside a uniformly charged 
solid sphere of radius R and total charge q: 
 
     ẑ     draw concentric Gaussian 
               ˆ ˆ,r n   surface with radius r > R 
         centered on solid charged 
         sphere of radius R. 
    R     r 
         Field Point P @ rG  
         Ο       ŷ   on Gaussian surface 
          
         Infinitesimal area element 
         ˆ ˆdA dAn dAr= =

G
 

Charged solid        ( )2 cosdA r d dθ ϕ=  

Sphere of                 x̂            2 sinr d dθ θ ϕ=  
Radius R,         
Total charge q      Fictitious / Imaginary spherical 
       Gaussian surface S of radius r 

Gauss’ Law: ( ) 1 1
enclS

o o o

qE r dA Q q
ε ε ε

= = =∫
GG G iv  

        n.b. by symmetry of sphere: 
( ) ( ) ˆE r E r r=
G G G   ˆ ˆdA dAn dAr= =

G
         ( ) ( ) ˆsphereE r R E r r> =

JK
 

            (for Gaussian sphere)          i.e. E must be radial!! 
     

( ) ( )( ) ( ) ( ) ( )N ( )
1

ˆ ˆ ˆ ˆE r dA E r r dAr E r dA r r E r dA
=

∴  = = =
GG G G G Gi i i  

 
        n.b. Here again, by symmetry, 
NOTE: ( ) ( )E r E r= ⇐

GG G         the magnitude of E
G

 is constant ∀  (for all)/for any fixed r!!!  
(on the Gaussian spherical surface). 
 

( ) ( )
S S o

qE r dA E r dA ε∴  = =∫ ∫
GG G Giv v  

  ( ) ( )( )24
S o

qE r dA E r rπ ε= = =∫
G Gv  

 

( ) 2 2

1
4 4o o

qqE r r rπε πε
∴   = =

G   or:  ( ) 2 2

1ˆ ˆ
4 4o o

q qE r r r
r rπε πε

= =
G G

 

 = Electric field outside a charged sphere of radius R  at radial distance r > R from center of sphere. 
 
n.b. the electric field (for r > R) for charged sphere is equivalent / identical to that of a point charge q 
located at the origin!!! 
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GAUSS’ LAW AND SYMMETRY 
 
Use of (Geometrical / Reflection) symmetry (and any / all kinds of symmetry arguments in general) 
can be extremely powerful in terms of simplifying seemingly complicated problems!! 
 
⇒   Learn skill of recognizing symmetries and applying symmetry arguments to solve problems! 
 

Examples of use of Geometrical Symmetries and Gauss’ Law 
 

a) Charged sphere – use concentric Gaussian sphere and spherical coordinates 
b) Charged cylinder – use coaxial Gaussian cylinder and cylindrical coordinates 
c) Charged box / Charged plane – use appropriately co-located Gaussian “pillbox” (rectangular 

box) and rectangular coordinates 
d) Charged ellipse – use concentric Gaussian ellipse and elliptical coordinates 
e) Charged planar equilateral triangle  Think about 
f) Charged pyramid         these!! 

 
 
  APPLICATIONS OF GAUSS’ LAW (CONTINUED) - very explicit detailed derivation 
 
Griffiths Example 2.3 Consider a long cylinder (e.g. plastic rod) of length L and radius S that carries 
a volume charge density ρ  that is proportional to the distance from the axis s of the cylinder / rod – 
i.e.  

ρ(s) = ks  
( )3
coulombs

meter

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

k = proportionality constant 
( )4

coulombs
meter

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
a)  Determine the electric field ( )E r

G G  inside this long cylinder / charged plastic rod 
- Use a coaxial Gaussian cylinder of length l and radius s:  (with l << L) 
 

Gauss’ Law ( ) encl
S

o

QE r dA
ε

=∫
GG G iv  

 
Enclosed charge:    ( ) ( )( )encl v v

Q s d ks s ds d dzρ τ ϕ′ ′ ′ ′ ′= =   ⇐∫ ∫   integral over Gaussian surface 

 

          ( )( )
2 2

0 0 0 0
2

s s z l s s

encl s z s
Q ks s ds d dz kl s ds

ϕ π

ϕ
ϕ π

′ ′= = = =

′ ′= = = =
′ ′ ′ ′ ′= =∫ ∫ ∫ ∫  

 

          32
3enclQ klsπ=  
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LHS Gaussian endcap   Coaxial Gaussian cylinder 
 
         Long charged cylinder of 
      l     radius S and length L 
          S    ˆ ˆn z= −    s      ˆ ˆn z= +  S 
                          ẑ  
      z=0  z=l 
            .ˆ ˆcyln r=      RHS Gaussian endcap 
    L 
                (L >> l) 
 
Cylindrical Symmetry ( ) ( ) ˆE r E r r⇒ =

G G G   (i.e. E
G

 points radially outward, ⊥ to z-axis.) 

( ) ( ) ( ) ( ).cyl LHS RHSS endcap endcapcylindrical LHS endcap RHS endcap
portion of portion of portion of
Gaussian Gaussian Gaussian
surface surface surface

E r dA E r dA E r dA E r dA
  

⋅ ⋅ ⋅

= + +∫ ∫ ∫ ∫
G G G GG G G GG G G Gi i i iv  

 
Again, from cylindrical symmetry (here): 

( ) ( )E r E r= =
GG G constant on cylindrical Gaussian surface – i.e. fixed r r s= =

G  
 
What are .cyldA

G
, LHS

endcap
dA
G

, and RHS
endcap

dA
G

 ???   

( ). .ˆ ˆ ˆcyl cyldA sdld r n rϕ=  ← =
G

   ( )ˆ ˆLHS
endcap

dA sdsd z sdsd zϕ ϕ= − = −  ←
G

( ˆ ˆLHS
endcap

n z= − ) 

infinitesimal surface area 
element of Gaussian cylinder   ( )ˆ ˆRHS

endcap
dA sdsd z sdsd zϕ ϕ= + = +  ←
G

( ˆ ˆRHS
endcap

n z= + ) 

( ) ( )( ) ( ) ( )( ) ( )
.

ˆ ˆ 1

ˆ ˆˆ ˆ
S Cyl LHS

Gaussian Gaussian Gaussian
cylinder surface endcap

r r

E r dA r sdld r r sdsd zE r E rϕ ϕ

=

∴ = + −∫ ∫ ∫

i

GG G G Gi i i

�����	����


v
                  

( )( ) ( )

ˆ ˆ 0

ˆˆ
RHS

Gaussian
endcap

r z

r sdsd zE r ϕ

=

+ +∫

i

G i

�����	����


    

ˆ ˆ 0r z=i
�����	����


 

Note(s): 
( ) ( )E r E r= =

GG G constant on cylindrical Gaussian surface (fixed r = s) 

( ) ( ) ˆE r E r r=
G G G   by symmetry of charged cylinder 

On LHS and RHS endcaps ( )E r
G G  is not constant, because r is changing there - (but E

G
still points                 

in r̂ direction! However, note that ˆ ˆ 1r r =i  and ( )ˆ ˆ 0r z± ≡i  ⇒  Gaussian endcap terms do not                      
contribute!!! 
   Constant here 
 

( ) ( ) ( ) ( ) ( ) ( )
2

0 0
2 2

z l

z
S cylindrical

Gaussian Gaussian
cylinder surface

E r dA E r sdld E r s dld E r sl slE r
ϕ π

ϕ
ϕ ϕ π π

= =

= =
∴ = = = =∫ ∫ ∫ ∫

GG G G G G Giv
         

 

Putting this all together now:        ( ) encl
S

o

QE r dA
ε

=∫
GG G iv    where (here):   32

3enclQ klsπ=  
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     inside 

2π s l ( ) 2E r π
=

G 2ks
3

l
3 oε

    or: ( )
2

ˆ
3in

o

ksE r r
ε

=
G G  n.b. ( )r s≡� �  ←  as used in Griffith’s  

     ( )s r S= <                   book, page 73 
 
 

b) Find ELECTRIC FIELD ( )E r
G G  outside of this long cylinder / charged plastic rod 

 Again, use Coaxial Gaussian cylinder of length l (<< L) and radius s (> S): 
 

Gauss’ Law: ( ) encl
S

o

QE r dA
ε

=∫
GG G iv  

Enclosed charge (for s > S):  32
3enclQ klSπ=   coaxial Gaussian cylinder 

         radius s > S and length l << L 
             .ˆ ˆcyln r=  
Long charge cylinder of 
radius S and length L 
          
         s 
        ˆ ˆLHS

Endcap
n z= −         ˆ ˆRHS

Endcap
n z= +  S        ẑ  

 
 
 
 
 

l << L 
 

   L 
 

Again, from symmetry of long cylinder ( ) ( ) ˆE r E r r= =
G G G  constant (radial) direction!! 

           r = s (fixed radius) 
 

( ) ( ) ( ) ( )cyl LHS RHSS endcap endcapcylindrical LHS RHS
Gaussian Gaussian Gaussian
surface endcap endcap

E r dA E r dA E r dA E r dA= + +∫ ∫ ∫ ∫
G G G GG G G GG G G Gi i i iv

        

 

ˆcyldA sdld rϕ=  
G

   ( ) ( )ˆ ˆ ˆLHS LHS
endcap endcap

dA sdsd z sdsd z dA zϕ ϕ= − = − = −
G G

 

         ˆ ˆcyl cyldA r dA r= =
G

  ( ) ( )ˆ ˆ ˆRHS RHS
endcap endcap

dA sdsd z sdsd z dA zϕ ϕ= + = + = +
G G

 

 
Now: ˆ ˆ 1r r =i    and ( )ˆ ˆ 0r z± ≡i  
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Then:         = 0    = 0 

( ) ( )( ) ( ) ( )( ) ( )( )ˆ ˆ ˆ ˆˆ ˆcyl LHS RHSS endcap endcapcylindrical LHS RHS
Gaussian Gaussian endcap
surface endcap

E r dA E r r dA r E r r dA z E r r dA z⎛ ⎞ ⎛ ⎞
= + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ ∫

GG G G G Gi i i iv  

                   ( ) ( )
2

0 0
2

z l

z
E r sdld slE r

ϕ π

ϕ
ϕ π

= =

= =
= =∫ ∫

G G  

 

∴  Electric field outside charged rod (s = r > S) :   ( ) 2
outE r π

=
G k l 3

3 2
S

πi s l

3

3 oo

kSr
sεε

=�  

     
 
    ELECTRIC FIELD (INSIDE/OUTSIDE)   LONG CHARGED CYLINDER 
                  vs. radial distance s       (radius S, ρ(s) = ks) 
 
 
Inside (s < S):    Outside (s > S): 

( )
2

ˆ
3in

o

ksE r s
ε

=
G G

   ( )
3 1 ˆ

3out
o

kSE r s
sε

⎛ ⎞= ⎜ ⎟
⎝ ⎠

G G
 ( )ˆ ˆs r=  

 
Make a plot of ( )E r

G G  vs. radial distance s: 
 

( )E r
G G  

 
 

( )maxE s S=  
2

3 o

kS
ε

=  

   Varies as s2   Varies as ~1/s 
 
 
             Radial 
           Distance 
                       s 
        0   s = S 
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APPLICATIONS OF GAUSS’ LAW  - very explicit / detailed derivation – 
 
Griffiths Example 2.4:   An infinite plane carries uniform charge σ  (coulombs / meter2). 
Find the electric field a distance z = zo above (or below) the plane. 
 
Use Gaussian Pillbox 
centered on ∞ -plane: 
      ẑ      “Square” 
           Gaussian 
           Pillbox 
        
        h 
           Ο                ŷ  
           l 
 
          l 
 
    x̂  
 
 
Edge-on Perspective:    ẑ  
 
         z = +h/2 
                x̂   (out of page)      
             h     ŷ  
         z = −h/2 
      l 
           y = −l/2              y = +l/2 
 
Again, from the symmetry associated with ∞ -plane, 

( ) ( ) ( )ˆ ˆE r E r z E z z= =
G G G   (above plane), ( ) ˆE z z= −   (below plane) 

 
The Gaussian Pillbox has 6 sides – and thus has six outward unit normal vectors: : 
           5ˆ ˆ,n z+  
       A2 (back) 2ˆ ˆ,n x−  
     A5 (top) 
 
 
      4ˆ ˆ,n y−            3ˆ ˆ,n y+   
 
  A4 (RH side)      A3 (LH side) 
 
 
  A1 (front) 1̂ ˆ,n x+            6ˆ ˆ,n z−   A6 (bottom) 
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Then: 
 

( ) ( ) ( ) ( )

( ) ( ) ( )
1 2 3

4 5 6

1 2 3

4 5 6                   

S A A A

A A A

E r dA E r dA E r dA E r dA

E r dA E r dA E r dA

= + +

+ + +

∫ ∫ ∫ ∫
∫ ∫ ∫

G G G GG G G GG G G Gi i i i
G G GG G GG G Gi i i

v
 

 
 1 ˆdA dydz x= +  

G
  ( )2 ˆ ˆdA dydz x dydz x= − = −  

G
 

 3 ˆdA dxdz y= +  
G

  ( )4 ˆ ˆdA dxdz y dxdz y= − = −  
G

 

 5 ˆdA dxdy z= +  
G

  ( )6 ˆ ˆdA dxdy z dxdy z= − = −  
G

 
 
for z > 0: ( ) ( ) ˆE r E z z= +

G G    Again, by symmetry (of plane) 

for z < 0: ( ) ( )( ) ( )ˆ ˆE r E z z E z z= − = −
JK G   n.b. E(z) = constant (at least for 

       fixed z). 
 

Now because ( ) ( ) ˆE r E z z= ±
JK

  for    
0
0

z
z

>
<

     respectively, we must break up integrals over z into 

two separate regions:  
/ 2 0 / 2

/ 2 / 2 0

z h z z h

z h z h z
dz dz dz

=+ = =+

=− =− =
= +∫ ∫ ∫  

 
Then: 

( ) ( ) ( ) ( ) ( )
/ 2 / 2 / 2 / 2

/ 2 / 2 / 2 / 2
ˆ ˆ

y l z h y l z h

S y l z h y l z h
E r dA E r dydz x E r dydz x

=+ =+ =+ =+

=− =− =− =−
=  + −  ∫ ∫ ∫ ∫ ∫
GG G GG G Gi i iv  

          ( ) ( ) ( ) ( )
/ 2 / 2 / 2 / 2

/ 2 / 2 / 2 / 2
ˆ ˆ

x l z h x l z h

x l z h x l z h
E r dxdz y E r dxdz y

=+ =+ =+ =+

=− =− =− =−
+  + −  ∫ ∫ ∫ ∫

G GG Gi i  

          ( ) ( ) ( ) ( )
/ 2 / 2 / 2 / 2

/ 2 / 2 / 2 / 2
ˆ ˆ

x l y l x l y l

x l y l x l y l
E r dxdy z E r dxdy z

=+ =+ =+ =+

=− =− =− =−
+  + −  ∫ ∫ ∫ ∫

G GG Gi i  

 

( ) ( )
/ 2

/ 2
ˆˆ

y l

S y l
E r dA E z z x

=+

=−
• = −∫ ∫
GG G iv ( ) ( ) ˆˆdydz E z z x+ + i( )0 / 2

/ 2 0

z z h

z h z
dydz

= =+

=− =

⎡ ⎤
⎢ ⎥⎣ ⎦∫ ∫   ←  side A1 (front) 

         ( )
/ 2

/ 2
ˆˆ

y l

y l
E z z x

=+

=−
+ − −∫ i( ) ( ) ˆˆdydz E z z x+ + −i( )0 / 2

/ 2 0

z z h

z h z
dydz

= =+

=− =

⎡ ⎤
⎢ ⎥⎣ ⎦∫ ∫ ←  side A2 (back) 

         ( )
/ 2

/ 2
ˆˆ

x l

x l
E z z y

=+

=−
+ −∫ i( ) ( ) ˆˆdxdz E z z y+ + i( )0 / 2

/ 2 0

z z h

z h z
dxdz

= =+

=− =

⎡ ⎤
⎢ ⎥⎣ ⎦∫ ∫   ←  side A3 (RHS) 

         ( )
/ 2

/ 2
ˆˆ

x l

x l
E z z y

=+

=−
+ − −∫ i( ) ( ) ˆˆdxdz E z z y+ + −i( )0 / 2

/ 2 0

z z h

z h z
dxdz

= =+

=− =

⎡ ⎤
⎢ ⎥⎣ ⎦∫ ∫ ←  side A4 (LHS) 

         ( )( ) ( )( )/ 2 / 2 / 2 / 2

/ 2 / 2 / 2 / 2
ˆ ˆ ˆ ˆ  

x l y l x l y l

x l y l x l y l
E z z z dxdy E z z z dxdy

=+ =+ =+ =+

=− =− =− =−
+ − − +∫ ∫ ∫ ∫i i  

 
       side A6 (bottom)           side A5 (top) 
 
Now:  ( )ˆˆ 0z x =i  ( )ˆˆ 0z y =i  ( )ˆ ˆ 0x z =i  ( )ˆ ˆ 0y z =i  etc. 

And: ( )ˆ ˆ 1x x =i  ( )ˆ ˆ 1y y =i  ( )ˆ ˆ 1z z =i  
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∴  Because ˆ ˆ ˆx y z⊥ ⊥ , no contributions to 
S

E dA∫
GG

iv   (here) from 4 sides of Gaussian Pillbox  

            (i.e. A1, A2, A3 and A4)  
 
⇒  Only remaining / non-zero contributions are from bottom and top surfaces of Gaussian Pillbox 
because 5ˆ ˆn z= −  and  6ˆ ˆn z= +  which are &  (or anti-parallel) to ( ) ˆE z z  
 
Thus, we only have (here): 

 ( ) ( ) ( )( )/ 2 / 2

/ 2 / 2
ˆ ˆ

x l y l

S x l y l
E r dA E z z z dxdy

=+ =+

=− =−
= − −  ∫ ∫ ∫
GG G i iv  ←   side A6 (bottom) 

         ( )( )/ 2 / 2

/ 2 / 2
ˆ ˆ

x l y l

x l y l
E z z z dxdy

=+ =+

=− =−
+ +  ∫ ∫ i  ←   side A5 (top) 

 
These integrals are not over z, and E(z) = constant for z = fixed = zo 
∴ can pull E(z) outside integral, ˆ ˆ 1z z =i  ˆ ˆ 1z z− = −i  etc. 
 

( ) ( )
/ 2 / 2

/ 2 / 2

x l y l

S x l y l
E r dA E z dxdy

=+ =+

=− =−
∴    = +∫ ∫ ∫

GG G iv    ←   side A6 (bottom) 

    ( )
/ 2 / 2

/ 2 / 2

x l y l

x l y l
E z dxdy

=+ =+

=− =−
+ ∫ ∫     ←   side A5 (top) 

   ( ) ( ) ( )2 2 22E z l E z l E z l= + =  
 

But: 2l l l= × ≡ Α =  surface area of top and bottom surfaces of Gaussian Pillbox 

Now:  ( ) encl
S

o

QE r dA
ε

=∫
GG G iv   What is Qencl  (by Gaussian Pillbox)? 

( ) ( )2 2
2encl

CoulombsQ meters l Coulombs
meter

σ σ⎛ ⎞= × Α =⎜ ⎟
⎝ ⎠

 

( ) ( ) 22encl
S

o

QE r dA E z l
ε

∴   = ⇒∫
GG G iv 2lσ= oε  or: ( ) 1

2 2o o

E z σσ
ε ε

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

 

Vectorially: ( ) { }ˆ, 0
ˆ, 02
z for z
z for zo

E z σ
ε

+ >
− <

⎛ ⎞= ⎜ ⎟
⎝ ⎠

G
 NOTE:  ( )E z

G
 = constant!! 

       No z – dependence for charged ∞ plane! 
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( )E r
G G  from ∞ - plane (slight return): 

 
 
Note that in the initial process of setting up the Gaussian Pillbox, if we’d shrunk the height h of the 
Pillbox to be infinitesimally small, i.e. h → δh and then took the limit δh→0, the contributions to 

( )
S

E r dA∫
GG G iv  from (infinitesimally small) sides of  (A1, A2, A3 and A4) Gaussian Pillbox would 

(formally) have vanished (i.e. = 0) independently of whether integrand ( )( )E r dA
GG G i  vanished on these 

sides (or not).  Only top and bottom surfaces contribute to ( )
S

E r dA∫
GG G iv  then (here). 

 
So using this “trick” of the shrinking Pillbox at a surface / boundary very often can be useful, to 
simplify doing the problem. 
 
This explicitly shows that (sometimes) there is more than one way to correctly do / solve a problem 
– equivalent methods may exist. 
 
→ It is very important, conceptually-speaking to have a (very) clear / good understanding of how to 
do these Gauss’ Law-type problems the “long’ way and the “short” way! 
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The Curl of ( ) :E r
G G   ( )( )E r∇×

JK G G  

First, study / consider simplest possible situation:  point charge at origin: ( ) 2

1 ˆ
4 o

qE r r
rπε

⎛ ⎞= ⎜ ⎟
⎝ ⎠

G G      

 (note: r r r′≡ − =
G G GGr  here because 0r′ =

G - charge q located at origin!!!) 
Thus (here), ( )E r

G G is radial (i.e. in r̂ − direction) due to spherical symmetry of problem (rotational 

invariance), thus static E
G

-field has no rotation/swirl/whirl ⇒  no curl! (Read Griffith’s Ch. 1 on curl) 
( ) 0E r⇒ ∇× =

JK G G  (must = 0) 
 

Let’s calculate: 

   Line integral ( )
b

a
E r d∫

GG G i A  as shown in figure below: 

                ẑ          r̂  
    ẑ                
                      ϕ̂  
             b            
            rb                   θ      �θ       ŷ  
    q     ŷ           Ο     
    ra  dA       ϕ      ϕ̂  
    a  d

G
A       

   x̂                  x̂  
                        
In spherical coordinates: � ˆˆ sind drr rd r dθθ θ ϕϕ= + +

G
A  

 

( ) �{ }2

1 ˆˆ ˆ sin
4 o

qE r d r drr rd r
r

θθ θϕϕ
πε

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

GG G i A i  

 
Again:  ˆ ˆ 1r r =i   �ˆ 0r θ =i  ˆˆ 0r ϕ =i  r̂ , �θ , and ϕ̂  are mutually 

  � � 1θ θ =i  � ˆ 0rθ =i  � ˆ 0θ ϕ =i  orthogonal basis vectors 

  ˆ ˆ 1ϕ ϕ =i  ˆ ˆ 0rϕ =i  �ˆ 0ϕ θ =i  (form ortho-normal basis) 
 

( ) 2

1
4 o

qE r d dr
rπε

⎛ ⎞∴   = ⎜ ⎟
⎝ ⎠

GG G i A  

 

Thus:  ( ) 2

1 1 1 1 1
4 4 4 4

b

a

r
b b

a a
o o o a b o a br

q q q q qE r d dr
r r r r r rπε πε πε πε

⎛ ⎞ ⎛ ⎞− ⎛ ⎞= = = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫ ∫
GG G i A  

 
ra = distance from origin Ο to point a.   rb = distance from origin Ο to point b. 
 
The line integral ( )E r d  ∫

GG G i A  around a closed contour C is zero! 
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i.e.  ( ) 0
C

E r d =∫
GG G i Av  This is not a trivial result!  (Not true ∀  vectors!!) 

        (But is true for static E
JK

-fields) 
 
Use Stokes’ Theorem (See Griffiths, Ch. 1.3.5, p. 34 and Appendix A-5) 
 
 ( )( ) ( ) 0

S C
E r dA E r d∇× = =∫ ∫

G GJK G GG Gi i Av  

  
 arbitrary closed  arbitrary closed 
 surface S  contour C (on S) 
 
Since ( )( ) 0

S
E r dA∇× =∫

GJK G G i    must be / is true for arbitrary closed surface S, 

this can only be true for all ∀  closed surfaces S IFF (if and only if):  ( ) 0E r∇× =
JK G G  

 
Can use the Principle of Superposition to show that: 
 

( ) ( ) 2
1 1

1 ˆ
4

N N
i

TOT i i
i io i

qE r E r
πε  

= =  

= =∑ ∑
G GG G

 r
r

 ← i = 1,2,3. . . N discrete charges, and ( )i ir r = −
G GG

r  

 
   ( ) ( ) ( ) ( )1 2 3 ... NE r E r E r E r= + + + +

G G G GG G G G  

               ( )E r
G G @ field point P 

          ẑ  
         2

G
r       3 

G
r  

         source points q2         q3           P 
         @ 1r

G , 2r
G … Nr

G                          1
G
r          

                  q1           2r
G   3r
G          rG                       

              1r
G      

                 Ο             ŷ  
                   
           x̂   i i ir r  = = −

G GG
r r  

Then:  ( ) ( ) ( )( )
1 1

N N

TOT i i
i i

E r E r E r
= =

∇× = ∇× = ∇×∑ ∑
JK G JK G JK GG G G       

                     2
1

1 ˆ 0
4 i

N
i

i o

q
πε  

=

⎛ ⎞⎛ ⎞
= ∇× =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
JK

i

r
r

   ⇐  n.b. all individual terms = 0 !!! 

or: ( ) 2
1

1 1 ˆ 0
4

N

TOT i i
io i

E r q
πε  

=  

⎛ ⎞
∇× = ∇×  =⎜ ⎟

⎝ ⎠
∑

JK G JKG
r

r
 

 
         
It can be shown that ( ) 0E r∇× =

JK G G
 FOR ANY STATIC CHARGE DISTRIBUTION 

     STATIC = NO TIME DEPENDENCE / VARIATION 
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( ) 0E r∇× =
JK G G   HOLDS FOR: 

• Static Discrete/Point Charges      ( )q rG  

• Static Line Charges                     ( )rλ G   All Static Charge Distributions 

• Static Surface Charges                ( )rσ G  

• Static Volume Charges               ( )rρ G  
 
Again, this not trivial (we’ll see why, soon. . . ) 
 
One other (very important) point about the mathematical & geometrical nature of vector fields: 
 

The nature of a (physically-realizable) vector field ( )A r
G G  is fully specified if both its divergence 

( )A r∇
GG Gi and its curl ( )A r∇×

GG G are known. 
 
This is a consequence of the so-called Helmholtz theorem – see/read Appendix B of Griffiths book. 
 
The Helmholtz theorem also has an important corollary:  
 

Any differentiable vector function ( )A r
G G  that goes to zero faster than 1 r  as r → ∞ can be expressed 

as the gradient of a scalar plus the curl of a vector: 
 

( ) ( ) ( )1 1
4 4v v

A r A r
A r d dτ τ

π π′ ′

⎛ ⎞ ⎛ ⎞′ ′ ′ ′∇ ∇ ×
′ ′= ∇ − + ∇×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫

G GG GG GG G GiG
r r

 

 
For the case of electrostatics: ( ) ( ) oE r rρ ε∇ =

G G G Gi  and ( ) 0E r∇× =
G G G

 
 

Thus:   
( ) ( ) ( )1 1

4 4v

E rE r
E r dτ

π π′

′ ′∇ ×⎛ ⎞′ ′∇
′= ∇ − + ∇×⎜ ⎟⎜ ⎟

⎝ ⎠
∫

G GG G GGG G GiG
r

( ) ( )1          
4

v

v
o

d

r
d V r

τ

ρ
τ

πε

′

′

⎛ ⎞
⎜ ⎟′
⎜ ⎟
⎝ ⎠

′⎛ ⎞
′= − ∇ = −∇⎜ ⎟

⎝ ⎠

∫

∫
GG G G

r

r

 

 

i.e.   ( ) ( )E r V r= −∇
G GG G

  with  ( ) ( )1
4 v

o

r
V r d

ρ
τ

πε ′

′
′≡ ∫

G
G

r
 = Electrostatic Potential  

 
This result is valid e.g. in electrostatics for localized (i.e. finite spatial extent) charge distributions.  
 
For infinite-expanse charge distributions (n.b. these are unphysical/artificial!), we must appeal to  
(more sophisticated) mathematical formalisms than the Helmholtz theorem… 

SI Units: 
Volts


