LECTURE NOTES 2

Gauss' Law / Divergence Theorem

Consider an imaginary / fictitious surface enclosing / surrounding e.g. a point charge (or a small charged conducting object). For simplicity, use an imaginary sphere of radius R centered on charge Q at origin:

Area element $d A$ is a VECTOR quantity: $d \vec{A}=d A \hat{n}=d A \hat{r}$. By convention, \hat{n} is outward-pointing unit normal vector at area element $d A$. In this particular case (because of spherical symmetry of problem): $\hat{n}=\hat{r}$

FLUX OF ELECTRIC FIELD LINES (through surface S): $\Phi_{E} \equiv \int_{S} \vec{E}(\vec{r}) \cdot d \vec{A}$
$\Phi_{E}=$ "measure" of "number of E-field "lines" passing through surface S, (SI Units: Volt-meters).

TOTAL ELECTRIC FLUX ($\Phi_{E}^{\text {TOT }}$) associated with any closed surface S, is a measure of the (total) charge enclosed by surface S.
n.b. charge outside of surface S will contribute nothing to total electric flux Φ_{E} (since E-field lines pass through one portion of the surface S and out another - no net flux!)

Consider our point charge Q at origin. Calculate the flux of \vec{E} passing through a sphere of radius r : (see above picture)
n.b. Vector area element of sphere of radius, r is $d \vec{A}=d A \hat{r}=\left(r^{2} \sin \theta d \theta d \varphi\right) \hat{r}$ in spherical-polar coordinates.

Thus: $\Phi_{E}=\frac{Q}{4 \pi \varepsilon_{o}} \int_{\theta=o}^{\theta=\pi} \int_{\varphi=o}^{\varphi=2 \pi} \sin \theta d \theta d \varphi \underbrace{(\hat{r} \bullet \hat{r}}_{=1})=\frac{2 \pi Q}{\underbrace{4 \pi}_{2} \varepsilon_{o}} \int_{\theta=o}^{\theta=\pi} \sin \theta d \theta$

$$
=\frac{\not 2 Q}{\not 2} \underline{\not q} \varepsilon_{0}=\frac{Q}{\varepsilon_{0}}
$$

\therefore Gauss' Law (in Integral Form): $\quad \Phi_{E}=\oint_{s} \vec{E}(\vec{r}) \cdot d \vec{A}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}}$
Electric flux through closed surface $S=($ electric charge enclosed by surface $S) / \varepsilon_{o}$

If \exists (= there exists) lots of discrete charges q_{i} (ALL enclosed by imaginary / fictitious / Gaussian surface S), we know from principle of superposition that:
$\vec{E}_{N E T}(\vec{r})=\sum_{i=1}^{N} \vec{E}_{i}(\vec{r})$
Then: $\quad \Phi_{E}^{N E T}=\oint_{S} \vec{E}_{N E T}(\vec{r}) \cdot d \vec{A}=\sum_{i=1}^{N}\left(\oint_{S} \vec{E}_{i}(\vec{r}) \cdot d \vec{A}\right)=\sum_{i=1} \frac{q_{i}}{\varepsilon_{o}}=\frac{1}{\varepsilon_{o}} \sum_{i=1} q_{i}=\frac{Q_{\text {encl }}}{\varepsilon_{o}}$
If \exists volume charge density $\rho\left(\vec{r}^{\prime}\right)$, then: $Q_{\text {encl }}=\int_{v} \rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}$

Then using the DIVERGENCE THEOREM:
$\Phi_{E}=\oint_{S} \vec{E}(\vec{r}) \cdot d \vec{A}=\int_{v} \overbrace{(\vec{\nabla} \cdot \vec{E}(\vec{r}))}^{\vee} d \tau^{\prime}=\frac{Q_{\text {encl }}}{\varepsilon_{o}}=\frac{1}{\varepsilon_{o}} \int_{v} \overbrace{\rho(\vec{r})}^{\downarrow} d \tau^{\prime}$
This relation holds for $\underline{\text { any }}$ volume $v \Rightarrow$ the integrands of $\int_{v}() d \tau^{\prime} \underline{\text { must }}$ be equal, i.e.:
$\therefore \underline{\text { Gauss' Law (in Differential Form) }: ~} \quad \vec{\nabla} \cdot \vec{E}(\vec{r})=\rho(\vec{r}) / \varepsilon_{o}$

The DIVERGENCE OF $\vec{E}(\vec{r}): \vec{\nabla} \cdot \vec{E}(\vec{r})$

Calculate $\vec{\nabla} \cdot \vec{E}(\vec{r})$ directly from $\vec{E}(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \int_{\substack{v \\ \text { all } \\ \text { space }}} \frac{\hat{r}}{r^{2}} \rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}$
n.b. now extended over all space!

Remember that \vec{r} is NOT a constant!

Now: $\vec{\nabla} \cdot\left(\frac{\hat{r}}{r^{2}}\right)=4 \pi \underbrace{\delta^{3}(\vec{r})}_{\substack{3-D \\ \text { Dirac } \\ \delta-f \text { - } n .}} \quad$ (see equation 1.100, Griffiths p. 50)
Thus: $\vec{\nabla} \cdot\left(\frac{r}{r^{2}}\right)=4 \pi \delta^{3}(\vec{r}) \quad$ or : $\quad \vec{\nabla} \cdot\left(\frac{\vec{r}-\vec{r}^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}\right)=4 \pi \delta^{3}\left(\vec{r}-\vec{r}^{\prime}\right)$
$\therefore \vec{\nabla} \cdot \vec{E}(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \int_{\substack{\text { all } \\ \text { space }}} 4 \pi \delta^{3}\left(\vec{r}-\vec{r}^{\prime}\right) \rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}=\frac{\rho(\vec{r})}{\varepsilon_{o}} \quad \frac{\text { Gauss' Law in Differentia }}{} \begin{aligned} & \vec{\nabla} \cdot \vec{E}(\vec{r})=\frac{\rho(\vec{r})}{\varepsilon_{o}}\end{aligned}$
Gauss' Law in Integral Form:
$\vec{\nabla} \cdot \vec{E}(\vec{r})=\frac{\rho(\vec{r})}{\varepsilon_{o}}$, thus: $\int_{V}\left(\vec{\nabla} \cdot \vec{E}\left(\vec{r}^{\prime}\right)\right) d \tau^{\prime}=\int_{V}\left(\frac{\rho\left(\vec{r}^{\prime}\right)}{\varepsilon_{o}}\right) d \tau^{\prime}=\frac{1}{\varepsilon_{o}} \int_{V} \rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}=\frac{1}{\varepsilon_{o}} Q_{\text {encl }}$
Now apply/use the Divergence Theorem on the volume integral associated with $\vec{\nabla} \cdot \vec{E}\left(\vec{r}^{\prime}\right)$:
$\int_{v}\left(\vec{\nabla} \cdot \vec{E}\left(\vec{r}^{\prime}\right)\right) d \tau^{\prime}=\oint_{S} \vec{E}(\vec{r}) \cdot d \vec{A}=\frac{1}{\varepsilon_{o}} \int_{v} \rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}=\frac{1}{\varepsilon_{o}} Q_{\text {encl }}$
Thus we obtain: $\oint_{S} \vec{E}\left(\vec{r}^{\prime}\right) \cdot d \vec{A}^{\prime}=\frac{Q_{\text {encl }}}{\varepsilon_{o}}$ Gauss' Law in Integral Form

APPLICATIONS OF GAUSS' LAW - very explicit, detailed derivation -

Griffiths Example 2.2: Find / determine the electric field intensity $\vec{E}(\vec{r})$ outside a uniformly charged solid sphere of radius R and total charge q :
draw concentric Gaussian surface with radius $r>R$ centered on solid charged sphere of radius R.

Field Point P @ \vec{r} on Gaussian surface

Infinitesimal area element

$$
\begin{aligned}
d \vec{A} & =d A \hat{n}=d A \hat{r} \\
d A & =r^{2} d(\cos \theta) d \varphi \\
& =r^{2} \sin \theta d \theta d \varphi
\end{aligned}
$$

Fictitious / Imaginary spherical Gaussian surface S of radius r

Total charge q

Gauss' Law: $\oint_{S} \vec{E}(\vec{r}) \cdot d \vec{A}=\frac{1}{\varepsilon_{o}} Q_{\text {encl }}=\frac{1}{\varepsilon_{o}} q=\frac{q}{\varepsilon_{0}}$
n.b. by symmetry of sphere:

$$
\vec{E}(\vec{r})=E(\vec{r}) \hat{r} \quad d \vec{A}=d A \hat{n}=d A \hat{r}
$$

(for Gaussian sphere)
$\bar{E}_{\text {sphere }}(r>R)=E(r) \hat{r}$
i.e. E must be radial!!
$\therefore \vec{E}(\vec{r}) \cdot d \vec{A}=(E(\vec{r}) \hat{r}) \cdot(d A \hat{r})=E(\vec{r}) d A \underbrace{(\hat{r} \bullet \hat{r})}_{=1}=E(\vec{r}) d A$
n.b. Here again, by symmetry,

NOTE: $E(\vec{r})=|\vec{E}(\vec{r})| \Leftarrow \quad$ the magnitude of \vec{E} is constant \forall (for all)/for any fixed $r!!!$ (on the Gaussian spherical surface).
$\therefore \oint_{S} \vec{E}(\vec{r}) \cdot d \vec{A}=\oint_{S} E(\vec{r}) d A=q / \varepsilon_{o}$

$$
=E(\vec{r}) \oint_{S} d A=E(\vec{r})\left(4 \pi r^{2}\right)=q / \varepsilon_{o}
$$

$\therefore E(\vec{r})=q / 4 \pi \varepsilon_{0} r^{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}$ or: $\vec{E}(\vec{r})=\frac{q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}=\frac{1}{4 \pi \varepsilon_{o}} \frac{q}{r^{2}} \hat{r}$
$=$ Electric field outside a charged sphere of radius R at radial distance $r>R$ from center of sphere.
n.b. the electric field (for $r>R$) for charged sphere is equivalent / identical to that of a point charge q located at the origin!!!
4 ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2005-2008. All rights reserved.

GAUSS' LAW AND SYMMETRY

Use of (Geometrical / Reflection) symmetry (and any / all kinds of symmetry arguments in general) can be extremely powerful in terms of simplifying seemingly complicated problems!!
\Rightarrow Learn skill of recognizing symmetries and applying symmetry arguments to solve problems!

Examples of use of Geometrical Symmetries and Gauss' Law

a) Charged sphere - use concentric Gaussian sphere and spherical coordinates
b) Charged cylinder - use coaxial Gaussian cylinder and cylindrical coordinates
c) Charged box / Charged plane - use appropriately co-located Gaussian "pillbox" (rectangular box) and rectangular coordinates
d) Charged ellipse - use concentric Gaussian ellipse and elliptical coordinates
e) Charged planar equilateral triangle
f) Charged pyramid

Think about
these!!

Griffiths Example 2.3 Consider a long cylinder (e.g. plastic rod) of length L and radius S that carries a volume charge density ρ that is proportional to the distance from the axis s of the cylinder / rod i.e.
$\rho(s)=k s\left(\frac{\text { coulombs }}{(\text { meter })^{3}}\right)$
$k=$ proportionality constant $\left(\frac{\text { coulombs }}{(\text { meter })^{4}}\right)$
a) Determine the electric field $\vec{E}(\vec{r})$ inside this long cylinder / charged plastic rod - Use a coaxial Gaussian cylinder of length l and radius s : (with $l \ll L$)

Gauss' Law $\quad \oint_{S} \vec{E}(\vec{r}) \cdot d \vec{A}=\frac{Q_{\text {encl }}}{\varepsilon_{o}}$
Enclosed charge: $\quad Q_{\text {encl }}=\int_{v} \rho\left(s^{\prime}\right) d \tau^{\prime}=\int_{v}\left(k s^{\prime}\right)\left(s^{\prime} d s^{\prime} d \varphi d z\right) \Leftarrow$ integral over Gaussian surface

$$
\begin{aligned}
& Q_{\text {encl }}=\int_{s^{\prime}=0}^{s^{\prime}=s} \int_{\varphi=0}^{\varphi=2 \pi} \int_{z=0}^{z=1}\left(k s^{\prime}\right)\left(s^{\prime} d s^{\prime} d \varphi d z\right)=2 \pi k l \int_{s^{\prime}=0}^{s^{\prime}=s} s^{\prime 2} d s^{\prime} \\
& Q_{\text {encl }}=\frac{2}{3} \pi k l s^{3}
\end{aligned}
$$

LHS Gaussian endcap Coaxial Gaussian cylinder

Cylindrical Symmetry $\Rightarrow \vec{E}(\vec{r})=E(\vec{r}) \hat{r}$ (i.e. \vec{E} points radially outward, \perp to z-axis.)

Again, from cylindrical symmetry (here): $E(\vec{r})=|\vec{E}(\vec{r})|=\underline{\text { constant }}$ on cylindrical Gaussian surface - i.e. fixed $r=|\vec{r}|=s$

What are $d \vec{A}_{\text {cyl. }}, d \vec{A}_{\substack{\text { LHS } \\ \text { endcap }}}$, and $d \vec{A}_{\substack{\text { RHS } \\ \text { endcap }}}$???

$$
d \vec{A}_{c y l .}=\underbrace{s d l d \varphi}_{\substack{\text { endcap }}} \hat{r} \leftarrow\left(\hat{n}_{\text {cyl. }}=\hat{r}\right) \quad d \vec{A}_{\text {ehs }}=s d s d \varphi(-\hat{z})=-s d s d \varphi \hat{z} \leftarrow\left(\hat{n}_{\substack{\text { ens } \\ \text { endcap }}}=-\hat{z}\right)
$$

infinitesimal surface area
element of Gaussian cylinder $\quad \underset{\substack{\text { RHS } \\ \text { endcap }}}{ }=s d s d \varphi(+\hat{z})=+s d s d \varphi \hat{z} \leftarrow\left(\hat{n}_{\substack{\text { RHS } \\ \text { endap }}}=+\hat{Z}\right)$

Note(s):
$E(\vec{r})=|\vec{E}(\vec{r})|=$ constant on cylindrical Gaussian surface (fixed $r=s$)
$\vec{E}(\vec{r})=E(\vec{r}) \hat{r}$ by symmetry of charged cylinder
On LHS and RHS endcaps $\vec{E}(\vec{r})$ is not constant, because r is changing there - (but \vec{E} still points in \hat{r} direction! However, note that $\hat{r} \bullet \hat{r}=1$ and $\hat{r} \bullet(\pm \hat{z}) \equiv 0 \Rightarrow$ Gaussian endcap terms do not contribute!!! Constant here

$$
\therefore \oint_{\substack{\text { Gausian } \\
\text { cylinder }}} \vec{E}(\vec{r}) \cdot d \vec{A}=\int_{\begin{array}{c}
\text { cylindrical } \\
\text { Causian } \\
\text { surface }
\end{array}} E(\vec{r}) s d l d \varphi=E(\vec{r}) s \int_{z=0}^{z=l} \int_{\varphi=0}^{\varphi=2 \pi} d l d \varphi=E(\vec{r}) \operatorname{sl}(2 \pi)=2 \pi s l E(\vec{r})
$$

Putting this all together now: $\quad \oint_{S} \vec{E}(\vec{r}) \cdot d \vec{A}=\frac{Q_{\text {encl }}}{\varepsilon_{o}} \quad$ where (here): $\quad Q_{\text {encl }}=\frac{2}{3} \pi k l s^{3}$

$$
2 \pi \not \subset \not / E(\vec{r})=\frac{2 \pi k s^{\chi^{3}} \not /}{3 \varepsilon_{o}} \quad \text { or: } \quad \begin{array}{|}
\text { inside } \\
\vec{E}_{\text {in }}(\vec{r})=\frac{k s^{2}}{3 \varepsilon_{o}} \hat{r} \\
(s=r<S)
\end{array} \quad \text { n.b. }(\hat{r} \equiv \hat{s}) \leftarrow \text { as used in Griffith's }
$$

b) Find ELECTRIC FIELD $\vec{E}(\vec{r})$ outside of this long cylinder / charged plastic rod Again, use Coaxial Gaussian cylinder of length $l(\ll L)$ and radius $s(>S)$:

Gauss' Law: $\oint_{S} \vec{E}(\vec{r}) \cdot d \vec{A}=\frac{Q_{\text {encl }}}{\varepsilon_{o}}$

Again, from symmetry of long cylinder $\vec{E}(\vec{r})=E(\vec{r}) \hat{r}=$ constant (radial) direction!!

$$
r=s \text { (fixed radius) }
$$

Now: $\hat{r} \cdot \hat{r}=1 \quad$ and $\quad \hat{r} \bullet(\pm \hat{z}) \equiv 0$

$$
\begin{aligned}
& d \vec{A}_{c y l}=s d l d \varphi \hat{r}
\end{aligned}
$$

$$
\begin{aligned}
& =\left|d \vec{A}_{c y l}\right| \hat{r}=d A_{c y l} \hat{r} \\
& d \underset{\substack{\text { Rndcap }}}{d \vec{A}_{\text {ens }}}=s d s d \varphi(+\hat{z})=+s d s d \varphi \hat{\mathrm{z}}=|\underset{\substack{\text { endcap } \\
\text { enS }}}{d}|(+\hat{\mathrm{z}})
\end{aligned}
$$

\therefore Electric field outside charged $\operatorname{rod}(s=r>S): \quad E_{\text {out }}(\vec{r})=\frac{2 \pi k / S^{3}}{3 \cdot 2 \pi s / \varepsilon_{o}} \hat{r}=\frac{k S^{3}}{3 s \varepsilon_{o}}$

ELECTRIC FIELD (INSIDE/OUTSIDE)

vs. radial distance s

LONG CHARGED CYLINDER
 (radius $S, \rho(s)=k s$)

Inside $(s<S)$:
$\vec{E}_{\text {in }}(\vec{r})=\frac{k s^{2}}{3 \varepsilon_{o}} \hat{s}$

Outside $(s>S)$:
$\vec{E}_{\text {out }}(\vec{r})=\frac{k S^{3}}{3 \varepsilon_{o}}\left(\frac{1}{s}\right) \hat{s} \quad(\hat{s}=\hat{r})$

Make a plot of $|\vec{E}(\vec{r})|$ vs. radial distance s :

APPLICATIONS OF GAUSS' LAW - very explicit / detailed derivation -
Griffiths Example 2.4: An infinite plane carries uniform charge σ (coulombs / meter 2). Find the electric field a distance $z=z_{0}$ above (or below) the plane.

Use Gaussian Pillbox centered on ∞-plane:

Again, from the symmetry associated with ∞-plane,

$$
\vec{E}(\vec{r})=E(\vec{r}) \hat{z}=E(z) \hat{z} \quad \text { (above plane), } \quad=-E(z) \hat{z} \quad \text { (below plane) }
$$

The Gaussian Pillbox has 6 sides - and thus has six outward unit normal vectors: :

Then:

$$
\begin{aligned}
& \oint_{S} \vec{E}(\vec{r}) \cdot d \vec{A}=\int_{A_{1}} \vec{E}(\vec{r}) \cdot d \vec{A}_{1}+\int_{A_{2}} \vec{E}(\vec{r}) \cdot d \vec{A}_{2}+\int_{A_{3}} \vec{E}(\vec{r}) \cdot d \vec{A}_{3} \\
&+\int_{A_{4}} \vec{E}(\vec{r}) \cdot d \vec{A}_{4}+\int_{A_{5}} \vec{E}(\vec{r}) \cdot d \vec{A}_{5}+\int_{A_{6}} \vec{E}(\vec{r}) \cdot d \vec{A}_{6} \\
& d \vec{A}_{1}=+d y d z \hat{x} \\
& d \vec{A}_{3}=+d x d z \hat{y} d \vec{A}_{2}=d y d z(-\hat{x})=-d y d z \hat{x} \\
& d \vec{A}_{5}=+d x d y \hat{z} d \vec{A}_{4}=d x d z(-\hat{y})=-d x d z \hat{y} \\
& \hline
\end{aligned}
$$

for $z>0: \quad \vec{E}(\vec{r})=+E(z) \hat{z} \quad$ Again, by symmetry (of plane)
for $z<0: \quad \vec{E}(\vec{r})=E(z)(-\hat{z})=-E(z) \hat{z} \quad$ n.b. $E(z)=$ constant (at least for fixed z).

Now because $\vec{E}(r)= \pm E(z) \hat{z}$ for $\left\{\begin{array}{l}z>0 \\ z<0\end{array}\right\}$ respectively, we must break up integrals over z into two separate regions: $\int_{z=-h / 2}^{z=+h / 2} d z=\int_{z=-h / 2}^{z=0} d z+\int_{z=0}^{z=+h / 2} d z$

Then:

$$
\begin{aligned}
& \oint_{S} \vec{E}(\vec{r}) \cdot d \vec{A}=\int_{y=-l / 2}^{y=+l / 2} \int_{z=-h / 2}^{z=+h / 2} \vec{E}(\vec{r}) \cdot(d y d z \hat{x})+\int_{y=-l / 2}^{y=+l / 2} \int_{z=-h / 2}^{z=+h / 2} \vec{E}(\vec{r}) \cdot(-d y d z \hat{x}) \\
& +\int_{x=-l / 2}^{x=+l / 2} \int_{z=-h / 2}^{z=+h / 2} \vec{E}(\vec{r}) \cdot(d x d z \hat{y})+\int_{x=-l / 2}^{x=+l / 2} \int_{z=-h / 2}^{z=+h / 2} \vec{E}(\vec{r}) \cdot(-d x d z \hat{y}) \\
& +\int_{x=-1 / 2}^{x=+l / 2} \int_{y=-l / 2}^{y=+l / 2} \vec{E}(\vec{r}) \cdot(d x d y \hat{z})+\int_{x=-l / 2}^{x=+l / 2} \int_{y=-1 / 2}^{y=+l / 2} \vec{E}(\vec{r}) \cdot(-d x d y \hat{z}) \\
& \oint_{S} \vec{E}(\vec{r}) \bullet d \vec{A}=\int_{y=-l / 2}^{y=+l / 2}\left[\int_{z=-h / 2}^{z=0}(-E(z) \hat{z} \cdot \widehat{x}) d y d z+\int_{z=0}^{z=+h / 2}(+E(z) \hat{z} \cdot \widehat{X}) d y d z\right] \leftarrow \operatorname{side} A_{1} \text { (front) } \\
& +\int_{y=-l / 2}^{y=+l / 2}\left[\int_{z=-h / 2}^{z=0}(-E(z) \hat{z} \circ \widehat{x}) d y d z+\int_{z=0}^{z=+h / 2}(+E(z) \hat{y} \circ \widehat{x}) d y d z\right] \leftarrow \text { side } \mathrm{A}_{2} \text { (back) } \\
& +\int_{x=-1 / 2}^{x=+l / 2}\left[\int_{z=-h / 2}^{z=0}(-E(z) \hat{z} \cdot \hat{y}) d x d z+\int_{z=0}^{z=+h / 2}(+E(z) \hat{z} \cdot \bar{y}) d x d z\right] \leftarrow \operatorname{side} A_{3} \text { (RHS) } \\
& +\int_{x=-l / 2}^{x=+l / 2}\left[\int_{z=-h / 2}^{z=0}(-E(z) \hat{z} \cdot \hat{y}) d x d z+\int_{z=0}^{z=+h / 2}(+E(z) \hat{z} \cdot \hat{y}) d x d z\right] \leftarrow \text { side } A_{4} \text { (LHS) } \\
& +\underbrace{\int_{x=-l / 2}^{x=+l / 2} \int_{y=-l / 2}^{y=+l / 2}(-E(z) \hat{z} \bullet-\hat{z}) d x d y}_{\operatorname{side} A_{6} \text { (bottom) }}+\underbrace{\int_{x=-l / 2}^{x=+l / 2} \int_{y=-l / 2}^{y=+l / 2}(E(z) \hat{z} \bullet \hat{z}) d x d y}_{\operatorname{side} A_{5} \text { (top) }}
\end{aligned}
$$

Now: $(\hat{z} \bullet \hat{x})=0 \quad(\hat{z} \bullet \hat{y})=0 \quad(\hat{x} \bullet \hat{z})=0 \quad(\hat{y} \cdot \hat{z})=0 \quad$ etc.
And: $(\hat{x} \cdot \hat{x})=1 \quad(\hat{y} \cdot \hat{y})=1 \quad(\hat{z} \cdot \hat{z})=1$
\therefore Because $\hat{x} \perp \hat{y} \perp \hat{z}$, no contributions to $\oint_{S} \vec{E} \cdot d \vec{A}$ (here) from $\underline{4 \text { sides } \text { of Gaussian Pillbox }}$ (i.e. A_{1}, A_{2}, A_{3} and A_{4})
\Rightarrow Only remaining / non-zero contributions are from bottom and top surfaces of Gaussian Pillbox because $\hat{n}_{5}=-\hat{z}$ and $\hat{n}_{6}=+\hat{z}$ which are $\|$ (or anti-parallel) to $E(z) \hat{z}$

Thus, we only have (here):

$$
\begin{aligned}
\oint_{S} \vec{E}(\vec{r}) \cdot d \vec{A}=\int_{x=-l / 2}^{x=+/ 2} \int_{y=-l / 2}^{y=+l / 2}(-E(z) \hat{z} \cdot(-\hat{z})) d x d y & \leftarrow \text { side } A_{6}(\text { bottom }) \\
+\int_{x=-l / 2}^{x=+l / 2} \int_{y=-l / 2}^{y=+l / 2}(+E(z) \hat{\mathbf{z}} \cdot \hat{z}) d x d y & \leftarrow \text { side } A_{5}(\text { top })
\end{aligned}
$$

These integrals are not over z, and $E(z)=$ constant for $z=$ fixed $=z_{o}$
\therefore can pull $E(z)$ outside integral, $\hat{z} \cdot \hat{z}=1 \quad-\hat{z} \cdot \hat{z}=-1 \quad$ etc.

$$
\begin{aligned}
\therefore \oint_{S} \vec{E}(\vec{r}) \cdot d \vec{A}= & +E(z) \int_{x=-l / 2}^{x=+/ 2} \int_{y=-l / 2}^{y=+l / 2} d x d y \leftarrow \operatorname{side} A_{6}(\text { bottom }) \\
& +E(z) \int_{x=-l / 2}^{x=1 / 2} \int_{y=-l / 2}^{y=+l / 2} d x d y \leftarrow \operatorname{side} A_{5}(\text { top }) \\
& =E(z) l^{2}+E(z) l^{2}=2 E(z) l^{2}
\end{aligned}
$$

But: $\quad l^{2}=l \times l \equiv \mathrm{~A}=$ surface area of top and bottom surfaces of Gaussian Pillbox
Now: $\oint_{S} \vec{E}(\vec{r}) \cdot d \vec{A}=\frac{Q_{\text {encl }}}{\varepsilon_{o}} \quad$ What is $\mathrm{Q}_{\text {encl }}$ (by Gaussian Pillbox)?
$Q_{\text {encl }}=\sigma\left(\frac{\left.\text { Coulombs }^{\text {meter }^{2}}\right) \times \mathrm{A}\left(\text { meters }^{2}\right)=\sigma l^{2}(\text { Coulombs }), ~() ~}{\text { (}}\right.$
$\therefore \oint_{S} \vec{E}(\vec{r}) \cdot d \vec{A}=\frac{Q_{\text {encl }}}{\varepsilon_{o}} \Rightarrow 2 E(z) \not y^{\not ㇒}=\sigma \not y^{\not ㇒} / \varepsilon_{o} \quad$ or: $\quad E(z)=\left(\frac{1}{2}\right) \sigma / \varepsilon_{o}=\frac{\sigma}{2 \varepsilon_{o}}$
Vectorially: $\vec{E}(z)=\left(\sigma / 2 \varepsilon_{o}\right)\left\{\begin{array}{c}+\hat{,}, \text { for } \\ -\hat{z}, \text { for } \\ z<0\end{array}\right\} \quad$ NOTE: $|\vec{E}(z)|=$ constant!!
No z - dependence for charged ∞ plane!

$$
\vec{E}(\vec{r}) \text { from } \infty-\text { plane (slight return) }
$$

Note that in the initial process of setting up the Gaussian Pillbox, if we'd shrunk the height h of the Pillbox to be infinitesimally small, i.e. $h \rightarrow \delta h$ and then took the limit $\delta h \rightarrow 0$, the contributions to $\oint_{S} \vec{E}(\vec{r}) \cdot d \vec{A}$ from (infinitesimally small) sides of (A_{1}, A_{2}, A_{3} and A_{4}) Gaussian Pillbox would (formally) have vanished (i.e. $=0$) independently of whether integrand $(\vec{E}(\vec{r}) \cdot d \vec{A})$ vanished on these sides (or not). Only top and bottom surfaces contribute to $\oint_{S} \vec{E}(\vec{r}) \cdot d \vec{A}$ then (here).

So using this "trick" of the shrinking Pillbox at a surface / boundary very often can be useful, to simplify doing the problem.

This explicitly shows that (sometimes) there is more than one way to correctly do / solve a problem - equivalent methods may exist.
\rightarrow It is very important, conceptually-speaking to have a (very) clear / good understanding of how to do these Gauss' Law-type problems the "long' way and the "short" way!

The Curl of $\vec{E}(\vec{r}):(\vec{\nabla} \times \vec{E}(\vec{r}))$
First, study / consider simplest possible situation: point charge at origin: $\vec{E}(\vec{r})=\frac{1}{4 \pi \varepsilon_{o}}\left(\frac{q}{r^{2}}\right) \hat{r}$
(note: $\vec{r} \equiv \vec{r}-\vec{r}^{\prime}=\vec{r}$ here because $\vec{r}^{\prime}=0$ - charge q located at origin!!!)
Thus (here), $\vec{E}(\vec{r})$ is radial (i.e. in \hat{r} - direction) due to spherical symmetry of problem (rotational invariance), thus static \vec{E}-field has no rotation/swirl/whirl \Rightarrow no curl! (Read Griffith's Ch. 1 on curl)

$$
\Rightarrow \vec{\nabla} \times \vec{E}(\vec{r})=0(\underline{\text { must }}=0)
$$

Let's calculate:
Line integral $\int_{a}^{b} \vec{E}(\vec{r}) \cdot d \vec{\ell} \quad$ as shown in figure below:

In spherical coordinates: $d \vec{\ell}=d r \hat{r}+r d \theta \hat{\theta}+r \sin \theta d \varphi \hat{\varphi}$
$\vec{E}(\vec{r}) \cdot d \vec{\ell}=\frac{1}{4 \pi \varepsilon_{o}}\left(\frac{q}{r^{2}}\right) \hat{r} \cdot\{d r \hat{r}+r d \theta \hat{\theta}+r \sin \theta \varphi \hat{\varphi}\}$
$\begin{array}{lll}\text { Again: } & \hat{r} \bullet \hat{r}=1 & \hat{r} \bullet \hat{\theta}=0 \\ & \hat{\theta} \bullet \hat{\theta}=1 & \hat{\theta} \bullet \hat{r}=0 \\ & \hat{\varphi} \bullet \hat{\varphi}=1 & \hat{\varphi} \bullet \hat{r}=0\end{array} \quad(\hat{\varphi} \bullet \hat{\varphi}=0 \quad(\hat{r}, \hat{\theta}$, and $\hat{\varphi}$ are mutually $)$
$\therefore \vec{E}(\vec{r}) \cdot d \vec{\ell}=\frac{1}{4 \pi \varepsilon_{o}}\left(\frac{q}{r^{2}}\right) d r$

Thus: $\int_{a}^{b} \vec{E}(\vec{r}) \cdot d \vec{\ell}=\frac{1}{4 \pi \varepsilon_{o}} \int_{a}^{b} \frac{q}{r^{2}} d r=\left.\frac{-1}{4 \pi \varepsilon_{o}}\left(\frac{q}{r}\right)\right|_{r_{a}} ^{r_{b}}=\frac{1}{4 \pi \varepsilon_{o}}\left(\frac{q}{r_{a}}-\frac{q}{r_{b}}\right)=\frac{q}{4 \pi \varepsilon_{o}}\left(\frac{1}{r_{a}}-\frac{1}{r_{b}}\right)$
$r_{\mathrm{a}}=$ distance from origin O to point $\underline{a} . r_{\mathrm{b}}=$ distance from origin O to point \underline{b}.
The line integral $\int \vec{E}(\vec{r}) \cdot d \vec{\ell}$ around a closed contour C is zero!
i.e. $\oint_{C} \vec{E}(\vec{r}) \cdot d \vec{\ell}=0$ This is not a trivial result! (Not true \forall vectors!!)
(But is true for static \bar{E}-fields)
Use Stokes' Theorem (See Griffiths, Ch. 1.3.5, p. 34 and Appendix A-5)

Since $\int_{S}(\vec{\nabla} \times \vec{E}(\vec{r})) \cdot d \vec{A}=0 \quad$ must be $/$ is true for arbitrary closed surface S, this can only be true for all \forall closed surfaces S IFF (if and only if): $\vec{\nabla} \times \vec{E}(\vec{r})=0$

Can use the Principle of Superposition to show that:

$$
\begin{aligned}
& \vec{E}_{\text {TOT }}(\vec{r})=\sum_{i=1}^{N} \vec{E}_{i}(\vec{r})=\frac{1}{4 \pi \varepsilon_{o}} \sum_{i=1}^{N} \frac{q_{i}}{r_{i}^{2}} r_{i} \leftarrow i=1,2,3 \ldots N \text { discrete charges, and } \vec{r}_{i}=\left(\vec{r}-\vec{r}_{i}\right) \\
&= \vec{E}_{1}(\vec{r})+\vec{E}_{2}(\vec{r})+\vec{E}_{3}(\vec{r})+\ldots+\vec{E}_{N}(\vec{r}) \\
& \text { source points } \\
& @_{1}, \vec{r}_{2} \ldots \vec{r}_{N}
\end{aligned}
$$

Then: $\bar{\nabla} \times \vec{E}_{\text {ТОТ }}(\vec{r})=\bar{\nabla} \times \sum_{i=1}^{N} \vec{E}_{i}(\vec{r})=\sum_{i=1}^{N}\left(\vec{\nabla} \times \vec{E}_{i}(\vec{r})\right)$
$=\sum_{i=1}^{N} \stackrel{\rightharpoonup}{\nabla} \times\left(\frac{1}{4 \pi \varepsilon_{o}}\left(\frac{q_{i}}{r_{i}^{2}}\right) \hat{r}_{i}\right)=0 \Leftarrow$ n.b. all individual terms $=0!!!$
or: $\quad \vec{\nabla} \times \vec{E}_{\text {Тот }}(\vec{r})=\frac{1}{4 \pi \varepsilon_{o}} \sum_{i=1}^{N} q_{i} \vec{\nabla} \times\left(\frac{1}{\mathrm{r}_{i}^{2}}\right) \hat{r}_{i}=0$

It can be shown that $\vec{\nabla} \times \vec{E}(\vec{r})=0$

> FOR ANY STATIC CHARGE DISTRIBUTION STATIC = NO TIME DEPENDENCE / VARIATION
$\vec{\nabla} \times \vec{E}(\vec{r})=0$ HOLDS FOR:

- Static Discrete/Point Charges
- Static Line Charges

All Static Charge Distributions

- Static Surface Charges
- Static Volume Charges

Again, this not trivial (we'll see why, soon. . .)
One other (very important) point about the mathematical \& geometrical nature of vector fields:
The nature of a (physically-realizable) vector field $\vec{A}(\vec{r})$ is fully specified if both its divergence $\vec{\nabla} \cdot \vec{A}(\vec{r})$ and its curl $\vec{\nabla} \times \vec{A}(\vec{r})$ are known.

This is a consequence of the so-called Helmholtz theorem - see/read Appendix B of Griffiths book.
The Helmholtz theorem also has an important corollary:
Any differentiable vector function $\vec{A}(\vec{r})$ that goes to zero faster than $1 / r$ as $r \rightarrow \infty$ can be expressed as the gradient of a scalar plus the curl of a vector:

$$
\vec{A}(\vec{r})=\vec{\nabla}\left(-\frac{1}{4 \pi} \int_{v^{\prime}} \frac{\vec{\nabla}^{\prime} \cdot \vec{A}\left(\vec{r}^{\prime}\right)}{r} d \tau^{\prime}\right)+\vec{\nabla} \times\left(\frac{1}{4 \pi} \int_{v^{\prime}} \frac{\vec{\nabla}^{\prime} \times \vec{A}\left(\vec{r}^{\prime}\right)}{r} d \tau^{\prime}\right)
$$

For the case of electrostatics: $\vec{\nabla} \cdot \vec{E}(\vec{r})=\rho(\vec{r}) / \varepsilon_{o}$ and $\vec{\nabla} \times \vec{E}(\vec{r})=0$

Thus:

$$
\begin{aligned}
\vec{E}(\vec{r}) & =\vec{\nabla}\left(-\frac{1}{4 \pi} \int_{v^{\prime}} \frac{\vec{\nabla}^{\prime} \cdot \vec{E}\left(\vec{r}^{\prime}\right)}{r} d \tau^{\prime}\right)+\vec{\nabla} \times\left(\frac{1}{4 \pi} \int_{v^{\prime}} \frac{\overline{\nabla^{\prime}} \times \vec{E}\left(\vec{r}^{\prime}\right)}{r} d \tau^{\prime}\right) \\
& =-\frac{1}{4 \pi \varepsilon_{o}} \vec{\nabla}\left(\int_{v^{\prime}} \frac{\rho\left(\vec{r}^{\prime}\right)}{r} d \tau^{\prime}\right)=-\vec{\nabla} V(\vec{r})
\end{aligned}
$$

i.e. $\quad \vec{E}(\vec{r})=-\vec{\nabla} V(\vec{r})$ with $V(\vec{r}) \equiv \frac{1}{4 \pi \varepsilon_{0}} \int_{v^{\prime}} \frac{\rho\left(\vec{r}^{\prime}\right)}{r} d \tau^{\prime}=$ Electrostatic Potential $\begin{gathered}\text { SI Units: } \\ \text { Volts }\end{gathered}$

This result is valid e.g. in electrostatics for localized (i.e. finite spatial extent) charge distributions.
For infinite-expanse charge distributions (n.b. these are unphysical/artificial!), we must appeal to (more sophisticated) mathematical formalisms than the Helmholtz theorem...

