LECTURE NOTES 2

Gauss' Law / Divergence Theorem

Consider an <u>imaginary / fictitious surface</u> enclosing / surrounding e.g. a point charge (or a small charged conducting object). For simplicity, use an imaginary sphere of radius R centered on charge Q at origin:

Area element dA is a VECTOR quantity: $d\vec{A} = dA\hat{r}$. By <u>convention</u>, \hat{n} is <u>outward-pointing</u> unit normal vector at area element dA. In this particular case (because of spherical symmetry of problem): $\hat{n} = \hat{r}$

FLUX OF ELECTRIC FIELD LINES (through surface S): $\Phi_E \equiv \int_{S} \vec{E}(\vec{r}) \cdot d\vec{A}$

 Φ_E = "measure" of "number of *E*-field "lines" passing through surface *S*, (<u>SI Units</u>: Volt-meters).

TOTAL ELECTRIC FLUX (Φ_E^{TOT}) associated with any <u>closed</u> surface *S*, is a measure of the (total) charge enclosed by surface *S*.

n.b. charge <u>outside</u> of surface *S* will contribute <u>nothing</u> to total electric flux Φ_E (since *E*-field lines pass through one portion of the surface *S* and out another – no net flux!)

Consider our point charge Q at origin. Calculate the flux of \vec{E} passing through a sphere of radius r: (see above picture)

$$\Phi_{E} = \oint_{S} \vec{E}(\vec{r}) \cdot d\vec{A} = r \frac{Q}{4\pi\varepsilon_{o}} \int_{S} \left(\frac{1}{r^{z}}\hat{r}\right) \cdot \left(\frac{r^{z}}{sin\theta d\theta d\phi \hat{r}}\right)$$

n.b. Vector area element of sphere of radius, *r* is $d\vec{A} = dA\hat{r} = (r^2 \sin\theta d\theta d\phi)\hat{r}$ in spherical-polar coordinates.

Thus:
$$\Phi_{E} = \frac{Q}{4\pi\varepsilon_{o}} \int_{\theta=o}^{\theta=\pi} \int_{\varphi=o}^{\varphi=2\pi} \sin\theta d\theta d\varphi \underbrace{\left(\hat{r}\cdot\hat{r}\right)}_{=1} = \frac{2\pi Q}{\frac{4\pi}{2}\varepsilon_{o}} \int_{\theta=o}^{\theta=\pi} \sin\theta d\theta$$
$$= \frac{2Q}{2\varepsilon_{o}} = \frac{Q}{\varepsilon_{o}}$$

 $\therefore \quad \underline{\text{Gauss' Law (in Integral Form})}: \quad \Phi_E = \oint_s \vec{E}(\vec{r}) \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_o}$

Electric flux through closed surface $S = (\text{electric charge enclosed by surface } S)/\varepsilon_o$

If \exists (= there exists) lots of <u>discrete</u> charges q_i (ALL <u>enclosed</u> by imaginary / fictitious / Gaussian surface S), we know from principle of superposition that:

$$\vec{E}_{NET}\left(\vec{r}\right) = \sum_{i=1}^{N} \vec{E}_{i}\left(\vec{r}\right)$$

Then: $\Phi_E^{NET} = \oint_S \vec{E}_{NET} \left(\vec{r} \right) \cdot d\vec{A} = \sum_{i=1}^N \left(\oint_S \vec{E}_i \left(\vec{r} \right) \cdot d\vec{A} \right) = \sum_{i=1}^N \frac{q_i}{\varepsilon_o} = \frac{1}{\varepsilon_o} \sum_{i=1}^N q_i = \frac{Q_{encl}}{\varepsilon_o}$

If \exists volume charge density $\rho(\vec{r}')$, then: $Q_{encl} = \int_{v} \rho(\vec{r}') d\tau'$

Then using the **DIVERGENCE THEOREM**:

$$\Phi_{E} = \oint_{S} \vec{E}(\vec{r}) \cdot d\vec{A} = \int_{v} \left(\overline{\nabla} \cdot \vec{E}(\vec{r}) \right) d\tau' = \frac{Q_{encl}}{\varepsilon_{o}} = \frac{1}{\varepsilon_{o}} \int_{v} \overline{\rho(\vec{r})} d\tau'$$

This relation holds for <u>any</u> volume $v \Rightarrow$ the <u>integrands</u> of $\int_{v} (\)d\tau' \text{ <u>must}</u>$ be equal, i.e.: \therefore <u>Gauss' Law (in Differential Form)</u>: $\overline{\nabla} \cdot \vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\varepsilon_o}$

3

The DIVERGENCE OF $\vec{E}(\vec{r})$: $\nabla \cdot \vec{E}(\vec{r})$

Calculate $\overline{\nabla} \cdot \vec{E}(\vec{r})$ directly from $\vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_o} \int_{v \atop space} \frac{\hat{r}}{r^2} \rho(\vec{r}') d\tau'$

n.b. now extended over *all* space!

Remember that \vec{r} is NOT a constant! $\vec{r} \equiv \vec{r} - \vec{r}'$

field source
point point

$$P = S$$

 $\overline{\nabla} \cdot \overline{E}(\vec{r}) = \overline{\nabla} \cdot \left[\frac{1}{4\pi\varepsilon_o} \int_{\substack{v \\ sdt}} \left(\frac{\hat{r}}{r^2} \right) \rho(\vec{r}') d\tau' \right] = \frac{1}{4\pi\varepsilon_o} \int_{\substack{v \\ sdt}} \overline{\nabla} \cdot \left(\frac{\hat{r}}{r^2} \right) \rho(\vec{r}') d\tau'$
Now: $\overline{\nabla} \cdot \left(\frac{\hat{r}}{r^2} \right) = 4\pi \frac{\delta^3(\vec{r})}{\frac{3-D}{D_{inac}}}$ (see equation 1.100, Griffiths p. 50)
Thus: $\overline{\nabla} \cdot \left(\frac{\hat{r}}{r^2} \right) = 4\pi\delta^3(\vec{r})$ or: $\overline{\nabla} \cdot \left(\frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3} \right) = 4\pi\delta^3(\vec{r} - \vec{r}')$
 $\therefore \overline{\nabla} \cdot \vec{E}(\vec{r}) = \frac{1}{4\pi\varepsilon_o} \int_{\substack{v \\ sdt}} 4\pi\delta^3(\vec{r} - \vec{r}')\rho(\vec{r}') d\tau' = \frac{\rho(\vec{r})}{\varepsilon_o}$ Gauss' Law in Differential Form:
 $\overline{\nabla} \cdot \vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\varepsilon_o}$

Gauss' Law in Integral Form:

$$\vec{\nabla} \cdot \vec{E}(\vec{r}) = \frac{\rho(\vec{r})}{\varepsilon_o}, \text{ thus: } \int_{V} \left(\vec{\nabla} \cdot \vec{E}(\vec{r}') \right) d\tau' = \int_{V} \left(\frac{\rho(\vec{r}')}{\varepsilon_o} \right) d\tau' = \frac{1}{\varepsilon_o} \int_{V} \rho(\vec{r}') d\tau' = \frac{1}{\varepsilon_o} Q_{encl}$$

Now apply/use the Divergence Theorem on the volume integral associated with $\nabla \cdot \vec{E}(\vec{r}')$:

$$\int_{\nu} \left(\overline{\nabla} \cdot \vec{E}(\vec{r}') \right) d\tau' = \oint_{S} \vec{E}(\vec{r}) \cdot d\vec{A} = \frac{1}{\varepsilon_{o}} \int_{\nu} \rho(\vec{r}') d\tau' = \frac{1}{\varepsilon_{o}} Q_{encl}$$

Thus we obtain:
$$\boxed{\oint_{S} \vec{E}(\vec{r}') \cdot d\vec{A}' = \frac{Q_{encl}}{\varepsilon_{o}}} \frac{Gauss' Law in Integral Form}{Integral Form}$$

APPLICATIONS OF GAUSS' LAW

- very explicit, detailed derivation -

<u>Griffiths Example 2.2:</u> Find / determine the electric field intensity $\vec{E}(\vec{r})$ outside a uniformly charged solid sphere of radius *R* and total charge *q*:

= Electric field outside a charged sphere of radius R at radial distance r > R from center of sphere.

n.b. the electric field (for r > R) for charged sphere is equivalent / identical to that of a point charge q located at the origin!!!

GAUSS' LAW AND SYMMETRY

Use of (Geometrical / Reflection) symmetry (and any / all kinds of symmetry arguments in general) can be extremely powerful in terms of simplifying seemingly complicated problems!!

 \Rightarrow Learn skill of recognizing symmetries and applying symmetry arguments to solve problems!

Examples of use of Geometrical Symmetries and Gauss' Law

- a) Charged sphere use concentric Gaussian sphere and spherical coordinates
- b) Charged cylinder use coaxial Gaussian cylinder and cylindrical coordinates
- c) Charged box / Charged plane use appropriately co-located Gaussian "pillbox" (rectangular box) and rectangular coordinates
- d) Charged ellipse use concentric Gaussian ellipse and elliptical coordinates
- d) Charged empse use control
 e) Charged planar equilateral triangle Think about
- f) Charged pyramid these!!

APPLICATIONS OF GAUSS' LAW (CONTINUED) - very explicit detailed derivation

Griffiths Example 2.3 Consider a long cylinder (e.g. plastic rod) of length L and radius S that carries a volume charge density ρ that is proportional to the distance from the axis s of the cylinder / rod – i.e.

$$\rho(s) = ks \left(\frac{coulombs}{\left(meter\right)^3}\right)$$

 $k = \text{proportionality constant} \left(\frac{coulombs}{(meter)^4}\right)$

a) Determine the electric field $\vec{E}(\vec{r})$ inside this long cylinder / charged plastic rod

- Use a coaxial Gaussian cylinder of length l and radius s: (with $l \ll L$)

Gauss' Law $\oint_{S} \vec{E}(\vec{r}) \cdot d\vec{A} = \frac{Q_{encl}}{\varepsilon_{o}}$

Enclosed charge: $Q_{encl} = \int_{v} \rho(s') d\tau' = \int_{v} (ks') (s'ds'd\varphi dz) \iff$ integral over Gaussian surface

$$Q_{encl} = \int_{s'=0}^{s'=s} \int_{\varphi=0}^{\varphi=2\pi} \int_{z=0}^{z=l} (ks') (s'ds'd\varphi dz) = 2\pi k l \int_{s'=0}^{s'=s} s'^2 ds'$$
$$Q_{encl} = \frac{2}{3}\pi k l s^3$$

Cylindrical Symmetry $\Rightarrow \vec{E}(\vec{r}) = E(\vec{r})\hat{r}$ (i.e. \vec{E} points radially outward, \perp to z-axis.)

Again, from <u>cylindrical symmetry</u> (here): $E(\vec{r}) = |\vec{E}(\vec{r})| = \underline{\text{constant}}$ on cylindrical Gaussian surface – i.e. fixed $r = |\vec{r}| = s$

What are
$$d\vec{A}_{cyl.}$$
, $d\vec{A}_{LHS}_{endcap}$, and $d\vec{A}_{RHS}_{endcap}$???
 $d\vec{A}_{cyl.} = sdld\varphi \hat{r} \leftarrow (\hat{n}_{cyl.} = \hat{r})$
 $d\vec{A}_{LHS}_{endcap} = sdsd\varphi(-\hat{z}) = -sdsd\varphi \hat{z} \leftarrow (\hat{n}_{LHS}_{endcap} = -\hat{z})$

infinitesimal surface area

element of Gaussian cylinder

$$d\vec{A}_{RHS} = sdsd\varphi(+\hat{z}) = +sdsd\varphi(\hat{z} \leftarrow (\hat{n}_{RHS} = +\hat{z}))$$

$$\therefore \oint_{\substack{S \\ Gaussian \\ cylinder}} \vec{E}(\vec{r}) \cdot d\vec{A} = \int_{\substack{Cyl, \\ Gaussian \\ surface}} (E(\vec{r})\hat{r}) \cdot (sdld\varphi\hat{r}) + \int_{\substack{LHS \\ Gaussian \\ enderp \\ \vec{r} \cdot \vec{r} = 0}} (E(\vec{r})\hat{r}) \cdot (-sdsd\varphi\hat{z}) + \int_{\substack{RHS \\ Gaussian \\ enderp \\ \vec{r} \cdot \vec{z} = 0}} (E(\vec{r})\hat{r}) \cdot (+sdsd\varphi\hat{z})$$

Note(s):

 $\overline{E(\vec{r})} = |\vec{E}(\vec{r})| = \text{constant on cylindrical Gaussian surface (fixed <math>r = s$) $\vec{E}(\vec{r}) = E(\vec{r})\hat{r}$ by symmetry of charged cylinder

On LHS and RHS endcaps $\vec{E}(\vec{r})$ is <u>not</u> constant, because *r* is changing there - (but \vec{E} still points in \hat{r} direction! However, note that $\hat{r} \cdot \hat{r} = 1$ and $\hat{r} \cdot (\pm \hat{z}) \equiv 0 \Rightarrow$ Gaussian endcap terms do <u>not</u> contribute!!!

Constant here

$$\therefore \oint_{\substack{S \\ Gaussian \\ cylinder}} \vec{E}(\vec{r}) \cdot d\vec{A} = \int_{\substack{cylindrical \\ Gaussian \\ surface}} \vec{E}(\vec{r}) s dl d\varphi = E(\vec{r}) s \int_{z=0}^{z=l} \int_{\varphi=0}^{\varphi=2\pi} dl d\varphi = E(\vec{r}) sl(2\pi) = 2\pi slE(\vec{r})$$

Putting this all together now:

$$\oint_{S} \vec{E}(\vec{r}) \cdot d\vec{A} = \frac{Q_{encl}}{\varepsilon_{o}} \quad \text{where (here):} \quad Q_{encl} = \frac{2}{3} \pi k l s^{3}$$

$$2\pi \not s \not l E(\vec{r}) = \frac{2\pi k s^{\chi^3} \not l}{3\varepsilon_o} \quad \text{or:} \qquad \begin{vmatrix} \text{inside} \\ \vec{E}_{in}(\vec{r}) = \frac{ks^2}{3\varepsilon_o} \hat{r} \\ (s = r < S) \end{vmatrix} \qquad \text{n.b. } (\hat{r} = \hat{s}) \leftarrow \text{as used in Griffith's} \\ \text{book, page 73} \end{vmatrix}$$

b) Find ELECTRIC FIELD $\vec{E}(\vec{r})$ <u>outside</u> of this long cylinder / charged plastic rod Again, use Coaxial Gaussian cylinder of length l ($\ll L$) and radius s (> S):

Again, from symmetry of long cylinder $\vec{E}(\vec{r}) = E(\vec{r})\hat{r} = \text{constant (radial) direction!!}$ r = s (fixed radius)

$$\begin{split} \oint_{S} \vec{E}(\vec{r}) \cdot d\vec{A} &= \int_{\substack{cylindrical\\Gaussian\\surface}} \vec{E}(\vec{r}) \cdot d\vec{A}_{cyl} + \int_{\substack{LHS\\Gaussian\\endcap}} \vec{E}(\vec{r}) \cdot d\vec{A}_{RHS} + \int_{\substack{RHS\\Gaussian\\endcap}} \vec{E}(\vec{r}) \cdot d\vec{A}_{RHS} \\ \vec{A}_{cyl} &= sdld\varphi \,\hat{r} \\ &= \left| d\vec{A}_{cyl} \right| \hat{r} = dA_{cyl} \hat{r} \end{split} \qquad d\vec{A}_{RHS} = sdsd\varphi(-\hat{z}) = -sdsd\varphi \hat{z} = \left| d\vec{A}_{RHS} \right| (-\hat{z}) \\ &= d\vec{A}_{cyl} + \hat{r} = dA_{cyl} \hat{r} \end{aligned}$$

<u>Now</u>: $\hat{r} \cdot \hat{r} = 1$ and $\hat{r} \cdot (\pm \hat{z}) \equiv 0$

-0

Then[.]

$$\frac{\text{Then:}}{\oint_{S} \vec{E}(\vec{r}) \cdot d\vec{A}} = \int_{\substack{\text{cylindrical}\\ Gaussian\\ \text{surface}}} \left(E(\vec{r})\hat{r} \right) \cdot \left(dA_{cyl}\hat{r} \right) + \int_{\substack{\text{LHS}\\ Gaussian\\ \text{endcap}}} \left(E(\vec{r})\hat{r} \right) \cdot \left(-dA_{LHS}\hat{z} \right) + \int_{\substack{\text{RHS}\\ \text{endcap}}} \left(E(\vec{r})\hat{r} \right) \cdot \left(dA_{RHS}\hat{z} \right) \right) = E(\vec{r}) \int_{z=0}^{z=l} \int_{\varphi=0}^{\varphi=2\pi} sdld\varphi = 2\pi slE(\vec{r})$$

 $\therefore \text{ Electric field outside charged rod } (s = r > S) : \quad E_{out}(\vec{r}) = \frac{2\pi k/S^3}{3 \cdot 2\pi s/\varepsilon_o} \hat{r} = \frac{kS^3}{3s\varepsilon_o}$

$$\underline{\text{Inside } (s < S):} \\
 \vec{E}_{in}(\vec{r}) = \frac{ks^2}{3\varepsilon_o}\hat{s} \\
 \vec{E}_{out}(\vec{r}) = \frac{kS^3}{3\varepsilon_o}\left(\frac{1}{s}\right)\hat{s} \quad (\hat{s} = \hat{r})$$

Make a plot of $\left| \vec{E}(\vec{r}) \right|$ vs. radial distance s:

APPLICATIONS OF GAUSS' LAW - very explicit / detailed derivation -

<u>Griffiths Example 2.4</u>: An <u>infinite plane</u> carries uniform charge σ (coulombs / meter²). Find the electric field a distance $z = z_0$ above (or below) the plane.

Use Gaussian Pillbox centered on ∞ -plane:

Again, from the symmetry associated with ∞ -plane,

 $\vec{E}(\vec{r}) = E(\vec{r})\hat{z} = E(z)\hat{z}$ (above plane), $= -E(z)\hat{z}$ (below plane)

The Gaussian Pillbox has 6 sides - and thus has six outward unit normal vectors: :

Then:

$$\oint_{S} \vec{E}(\vec{r}) \cdot d\vec{A} = \int_{A_{1}} \vec{E}(\vec{r}) \cdot d\vec{A}_{1} + \int_{A_{2}} \vec{E}(\vec{r}) \cdot d\vec{A}_{2} + \int_{A_{3}} \vec{E}(\vec{r}) \cdot d\vec{A}_{3} + \int_{A_{4}} \vec{E}(\vec{r}) \cdot d\vec{A}_{4} + \int_{A_{5}} \vec{E}(\vec{r}) \cdot d\vec{A}_{5} + \int_{A_{6}} \vec{E}(\vec{r}) \cdot d\vec{A}_{6} d\vec{A}_{1} = + dydz \, \hat{x} \qquad d\vec{A}_{2} = dydz (-\hat{x}) = -dydz \, \hat{x} d\vec{A}_{3} = + dxdz \, \hat{y} \qquad d\vec{A}_{4} = dxdz (-\hat{y}) = -dxdz \, \hat{y} d\vec{A}_{5} = + dxdy \, \hat{z} \qquad d\vec{A}_{6} = dxdy (-\hat{z}) = -dxdy \, \hat{z}$$

for z > 0: $\vec{E}(\vec{r}) = +E(z)\hat{z}$ for z < 0: $\vec{E}(\vec{r}) = E(z)(-\hat{z}) = -E(z)\hat{z}$ Again, by symmetry (of plane) n.b. E(z) = constant (at least for <u>fixed</u> z).

Now because $\vec{E}(r) = \pm E(z)\hat{z}$ for $\begin{cases} z > 0 \\ z < 0 \end{cases}$ respectively, we must break up integrals over z into two separate regions: $\int_{z=-h/2}^{z=+h/2} dz = \int_{z=-h/2}^{z=0} dz + \int_{z=0}^{z=+h/2} dz$

Then:

$$\begin{split} \oint_{S} \vec{E}(\vec{r}) \bullet d\vec{A} &= \int_{y=-l/2}^{y=+l/2} \int_{z=-h/2}^{z=+h/2} \vec{E}(\vec{r}) \bullet (dydz \, \hat{x}) + \int_{y=-l/2}^{y=+l/2} \int_{z=-h/2}^{z=+h/2} \vec{E}(\vec{r}) \bullet (-dydz \, \hat{x}) \\ &+ \int_{x=-l/2}^{x=+l/2} \int_{z=-h/2}^{z=+h/2} \vec{E}(\vec{r}) \bullet (dxdz \, \hat{y}) + \int_{x=-l/2}^{x=+l/2} \int_{z=-h/2}^{z=+h/2} \vec{E}(\vec{r}) \bullet (-dxdz \, \hat{y}) \\ &+ \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} \vec{E}(\vec{r}) \bullet (dxdy \, \hat{z}) + \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} \vec{E}(\vec{r}) \bullet (-dxdy \, \hat{z}) \end{split}$$

$$\begin{split} \oint_{S} \vec{E}(\vec{r}) \bullet d\vec{A} &= \int_{y=-l/2}^{y=+l/2} \left[\int_{z=-h/2}^{z=0} \left(-E(z) \hat{z} \bullet \hat{x} \right) dy dz + \int_{z=0}^{z=+h/2} \left(+E(z) \hat{z} \bullet \hat{x} \right) dy dz \right] \leftarrow \text{side } A_{1} \text{ (front)} \\ &+ \int_{y=-l/2}^{y=+l/2} \left[\int_{z=-h/2}^{z=0} \left(-E(z) \hat{z} \bullet \hat{x} \right) dy dz + \int_{z=0}^{z=+h/2} \left(+E(z) \hat{z} \bullet \hat{x} \right) dy dz \right] \leftarrow \text{side } A_{2} \text{ (back)} \\ &+ \int_{x=-l/2}^{x=+l/2} \left[\int_{z=-h/2}^{z=0} \left(-E(z) \hat{z} \bullet \hat{y} \right) dx dz + \int_{z=0}^{z=+h/2} \left(+E(z) \hat{z} \bullet \hat{y} \right) dx dz \right] \leftarrow \text{side } A_{3} \text{ (RHS)} \\ &+ \int_{x=-l/2}^{x=+l/2} \left[\int_{z=-h/2}^{z=0} \left(-E(z) \hat{z} \bullet \hat{y} \right) dx dz + \int_{z=0}^{z=+h/2} \left(+E(z) \hat{z} \bullet \hat{y} \right) dx dz \right] \leftarrow \text{side } A_{4} \text{ (LHS)} \\ &+ \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} \left(-E(z) \hat{z} \bullet \hat{z} \right) dx dy + \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} \left(E(z) \hat{z} \bullet \hat{z} \right) dx dy \\ &+ \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} \left(-E(z) \hat{z} \bullet \hat{z} \right) dx dy + \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} \left(E(z) \hat{z} \bullet \hat{z} \right) dx dy \\ &+ \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} \left(-E(z) \hat{z} \bullet \hat{z} \right) dx dy + \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} \left(E(z) \hat{z} \bullet \hat{z} \right) dx dy \\ &+ \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} \left(-E(z) \hat{z} \bullet \hat{z} \right) dx dy + \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} \left(E(z) \hat{z} \bullet \hat{z} \right) dx dy \\ &+ \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} \left(-E(z) \hat{z} \bullet \hat{z} \right) dx dy + \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} \left(E(z) \hat{z} \bullet \hat{z} \right) dx dy \\ &+ \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} \left(-E(z) \hat{z} \bullet \hat{z} \right) dx dy + \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} \left(E(z) \hat{z} \bullet \hat{z} \right) dx dy \\ &+ \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} \left(-E(z) \hat{z} \bullet \hat{z} \right) dx dy \\ &+ \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} \left(-E(z) \hat{z} \bullet \hat{z} \right) dx dy + \int_{x=-l/2}^{y=+l/2} \left(E(z) \hat{z} \bullet \hat{z} \right) dx dy \\ &+ \int_{x=-l/2}^{y=+l/2} \left(\hat{z} \bullet \hat{y} \right) = 0 \quad (\hat{z} \bullet \hat{z} \right) = 0 \quad \text{etc.}$$

:. Because $\hat{x} \perp \hat{y} \perp \hat{z}$, no contributions to $\oint_{s} \vec{E} \cdot d\vec{A}$ (here) from <u>4 sides</u> of Gaussian Pillbox (i.e. A_1, A_2, A_3 and A_4)

 \Rightarrow Only remaining / non-zero contributions are from bottom and top surfaces of Gaussian Pillbox because $\hat{n}_5 = -\hat{z}$ and $\hat{n}_6 = +\hat{z}$ which are || (or anti-parallel) to $E(z)\hat{z}$

Thus, we only have (here):

$$\oint_{S} \vec{E}(\vec{r}) \cdot d\vec{A} = \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} (-E(z)\hat{z} \cdot (-\hat{z})) dx dy \quad \leftarrow \text{ side } A_{6} \text{ (bottom)} \\ + \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} (+E(z)\hat{z} \cdot \hat{z}) dx dy \quad \leftarrow \text{ side } A_{5} \text{ (top)}$$

These integrals are not over z, and $E(z) = \text{constant for } z = \text{fixed} = z_0$ \therefore can pull E(z) outside integral, $\hat{z} \cdot \hat{z} = 1$ $-\hat{z} \cdot \hat{z} = -1$ etc.

$$\therefore \quad \oint_{S} \vec{E}(\vec{r}) \cdot d\vec{A} = +E(z) \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} dx dy \quad \leftarrow \text{ side } A_{6} \text{ (bottom)} \\ +E(z) \int_{x=-l/2}^{x=+l/2} \int_{y=-l/2}^{y=+l/2} dx dy \quad \leftarrow \text{ side } A_{5} \text{ (top)} \\ =E(z) l^{2} + E(z) l^{2} = 2E(z) l^{2}$$

<u>But</u>: $l^2 = l \times l \equiv A = \text{surface area of top and bottom surfaces of Gaussian Pillbox}}$ <u>Now</u>: $\oint_s \vec{E}(\vec{r}) \cdot d\vec{A} = \frac{Q_{encl}}{\varepsilon_o}$ What is Q_{encl} (by Gaussian Pillbox)? $Q_{encl} = \sigma\left(\frac{Coulombs}{meter^2}\right) \times A\left(meters^2\right) = \sigma l^2 (Coulombs)$ $\therefore \oint_s \vec{E}(\vec{r}) \cdot d\vec{A} = \frac{Q_{encl}}{\varepsilon_o} \Rightarrow 2E(z) p^2 = \sigma p^2/\varepsilon_o$ <u>or:</u> $E(z) = \left(\frac{1}{2}\right) \frac{\sigma}{\varepsilon_o} = \frac{\sigma}{2\varepsilon_o}$ <u>Vectorially</u>: $\vec{E}(z) = \left(\frac{\sigma}{2\varepsilon_o}\right) \left(\frac{+\hat{z}, for \ z > 0}{-\hat{z}, for \ z < 0}\right)$ <u>NOTE</u>: $|\vec{E}(z)| = \text{constant}!!$ No z – dependence for charged ∞ plane! $\vec{E}(\vec{r})$ from ∞ - plane (slight return)

<u>Note</u> that in the initial process of setting up the Gaussian Pillbox, if we'd shrunk the height *h* of the Pillbox to be infinitesimally small, i.e. $h \to \delta h$ and then took the limit $\delta h \to 0$, the contributions to $\oint_{S} \vec{E}(\vec{r}) \cdot d\vec{A}$ from (infinitesimally small) <u>sides</u> of $(A_1, A_2, A_3 \text{ and } A_4)$ Gaussian Pillbox would (formally) have <u>vanished</u> (i.e. = 0) independently of whether integrand $(\vec{E}(\vec{r}) \cdot d\vec{A})$ vanished on these sides (or not). Only top and bottom surfaces contribute to $\oint_{S} \vec{E}(\vec{r}) \cdot d\vec{A}$ then (here).

So using this "trick" of the shrinking Pillbox at a surface / boundary very often can be useful, to <u>simplify</u> doing the problem.

This explicitly shows that (sometimes) there <u>is</u> more than one way to <u>correctly</u> do / solve a problem – equivalent methods <u>may</u> exist.

 \rightarrow It is very important, conceptually-speaking to have a (very) clear / good understanding of how to do these Gauss' Law-type problems the "long' way <u>and</u> the "short" way!

The Curl of
$$\vec{E}(\vec{r})$$
: $(\nabla \times \vec{E}(\vec{r}))$

First, study / consider simplest possible situation: point charge <u>at origin</u>: $\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon} \left(\frac{q}{r^2}\right) \hat{r}$

(note: $\vec{r} \equiv \vec{r} - \vec{r}' = \vec{r}$ here because $\vec{r}' = 0$ - charge *q* located at origin!!!) Thus (here), $\vec{E}(\vec{r})$ is radial (i.e. in \hat{r} – direction) due to spherical symmetry of problem (rotational invariance), thus static \vec{E} -field has <u>no</u> rotation/swirl/whirl \Rightarrow no curl! (Read Griffith's Ch. 1 on curl) $\Rightarrow \overline{\nabla} \times \vec{E}(\vec{r}) = 0 \ (\underline{must} = 0)$

Let's calculate:

Line integral $\int_{a}^{b} \vec{E}(\vec{r}) \cdot d\vec{\ell}$ as shown in figure below:

In spherical coordinates: $d\vec{\ell} = dr\hat{r} + rd\theta\hat{\theta} + r\sin\theta d\phi\hat{\phi}$

$$\vec{E}(\vec{r}) \cdot d\vec{\ell} = \frac{1}{4\pi\varepsilon_o} \left(\frac{q}{r^2}\right) \hat{r} \cdot \left\{ dr\hat{r} + rd\theta\hat{\theta} + r\sin\theta\varphi\hat{\varphi} \right\}$$

Again:

$$\hat{\theta} \cdot \hat{\theta} = 1 \qquad \hat{\theta} \cdot \hat{r} = 0 \qquad \hat{\theta} \cdot \hat{\phi} = 0$$
$$\hat{\phi} \cdot \hat{\phi} = 1 \qquad \hat{\phi} \cdot \hat{r} = 0 \qquad \hat{\theta} \cdot \hat{\phi} = 0$$
$$\hat{\phi} \cdot \hat{\phi} = 1 \qquad \hat{\phi} \cdot \hat{r} = 0 \qquad \hat{\phi} \cdot \hat{\theta} = 0$$

 $\therefore \vec{E}(\vec{r}) \cdot d\vec{\ell} = \frac{1}{4\pi\varepsilon_{-}} \left(\frac{q}{r^{2}}\right) dr$

Thus:
$$\int_{a}^{b} \vec{E}(\vec{r}) \cdot d\vec{\ell} = \frac{1}{4\pi\varepsilon_{o}} \int_{a}^{b} \frac{q}{r^{2}} dr = \frac{-1}{4\pi\varepsilon_{o}} \left(\frac{q}{r}\right)\Big|_{r_{a}}^{r_{b}} = \frac{1}{4\pi\varepsilon_{o}} \left(\frac{q}{r_{a}} - \frac{q}{r_{b}}\right) = \frac{q}{4\pi\varepsilon_{o}} \left(\frac{1}{r_{a}} - \frac{1}{r_{b}}\right)$$

 r_a = distance from origin O to point <u>a</u>. r_b = distance from origin O to point <u>b</u>. The line integral $\int \vec{E}(\vec{r}) \cdot d\vec{\ell}$ around a <u>closed</u> contour C is zero!

i.e.
$$\oint_C \vec{E}(\vec{r}) \cdot d\vec{\ell} = 0$$
 This is not a trivial result! (Not true \forall vectors!!)
(But *is* true for static \vec{E} -fields)

Use Stokes' Theorem (See Griffiths, Ch. 1.3.5, p. 34 and Appendix A-5)

Since $\int_{S} (\overline{\nabla} \times \vec{E}(\vec{r})) \cdot d\vec{A} = 0$ must be / is true for <u>arbitrary</u> closed surface S, this can <u>only</u> be true for all \forall closed surfaces S <u>IFF</u> (if and only <u>if</u>): $\overline{\nabla} \times \vec{E}(\vec{r}) = 0$

Can use the Principle of Superposition to show that:

$$\vec{E}_{TOT}(\vec{r}) = \sum_{i=1}^{N} \vec{E}_{i}(\vec{r}) = \frac{1}{4\pi\varepsilon_{o}} \sum_{i=1}^{N} \frac{q_{i}}{\mathbf{r}_{i}^{2}} \hat{\mathbf{f}}_{i} \quad \leftarrow i = 1, 2, 3... N \text{ discrete charges, and } \vec{\mathbf{r}}_{i} = (\vec{r} - \vec{r}_{i})$$

$$= \vec{E}_{1}(\vec{r}) + \vec{E}_{2}(\vec{r}) + \vec{E}_{3}(\vec{r}) + ... + \vec{E}_{N}(\vec{r})$$

$$\vec{E}(\vec{r}) @ \text{ field point } P$$

$$\vec{Q} = \vec{r}_{1}, \vec{r}_{2} \dots \vec{r}_{N}$$

$$\vec{Q} = \vec{r}_{1}, \vec{r}_{2} \dots \vec{r}_{N}$$

$$\vec{q}_{1} \qquad \qquad \vec{r}_{2} \qquad \vec{r}_{1}$$

$$\vec{r}_{1} = |\vec{r} - \vec{r}_{i}|$$
Then: $\vec{\nabla} \times \vec{E}_{TOT}(\vec{r}) = \vec{\nabla} \times \sum_{i=1}^{N} \vec{E}_{i}(\vec{r}) = \sum_{i=1}^{N} (\vec{\nabla} \times \vec{E}_{i}(\vec{r}))$

$$= \sum_{i=1}^{N} \vec{\nabla} \times \left(\frac{1}{4\pi\varepsilon_{o}} \left(\frac{q_{i}}{\mathbf{r}_{i}^{2}}\right) \hat{\mathbf{f}}_{i}\right) = 0 \quad \Leftarrow \text{ n.b. all individual terms = 0 !!!}$$

$$\underline{OT:} \qquad \vec{\nabla} \times \vec{E}_{TOT}(\vec{r}) = \frac{1}{4\pi\varepsilon_{o}} \sum_{i=1}^{N} q_{i} \vec{\nabla} \times \left(\frac{1}{\mathbf{r}_{i}^{2}}\right) \hat{\mathbf{f}}_{i} = 0$$

It can be shown that $\overline{\nabla} \times \vec{E}(\vec{r}) = 0$

FOR <u>ANY STATIC</u> CHARGE DISTRIBUTION STATIC = <u>NO TIME</u> DEPENDENCE / VARIATION

 $\vec{\nabla} \times \vec{E}(\vec{r}) = 0$ <u>HOLDS FOR:</u>

- Static Discrete/Point Charges $q(\vec{r})$
- Static Line Charges $\lambda(\vec{r})$
- Static Surface Charges $\sigma(\vec{r})$
- Static Volume Charges $\rho(\vec{r})$

Again, this *not* trivial (we'll see why, soon. . .)

One other (very important) point about the mathematical & geometrical nature of vector fields:

The nature of a (physically-realizable) vector field $\vec{A}(\vec{r})$ is fully specified if <u>both</u> its divergence $\vec{\nabla} \cdot \vec{A}(\vec{r})$ and its curl $\vec{\nabla} \times \vec{A}(\vec{r})$ are known.

This is a consequence of the so-called <u>Helmholtz theorem</u> – see/read <u>Appendix B</u> of Griffiths book.

The Helmholtz theorem also has an important corollary:

Any differentiable vector function $\vec{A}(\vec{r})$ that goes to zero faster than 1/r as $r \to \infty$ can be expressed as the gradient of a scalar plus the curl of a vector:

$$\vec{A}(\vec{r}) = \vec{\nabla} \left(-\frac{1}{4\pi} \int_{v'} \frac{\vec{\nabla}' \cdot \vec{A}(\vec{r}')}{r} d\tau' \right) + \vec{\nabla} \times \left(\frac{1}{4\pi} \int_{v'} \frac{\vec{\nabla}' \times \vec{A}(\vec{r}')}{r} d\tau' \right)$$

For the case of <u>electrostatics</u>: $\vec{\nabla} \cdot \vec{E}(\vec{r}) = \rho(\vec{r})/\varepsilon_o$ and $\vec{\nabla} \times \vec{E}(\vec{r}) = 0$

$$\vec{E}(\vec{r}) = \vec{\nabla} \left(-\frac{1}{4\pi} \int_{v'} \frac{\vec{\nabla}' \cdot \vec{E}(\vec{r}')}{r} d\tau' \right) + \vec{\nabla} \times \left(\frac{1}{4\pi} \int_{v'} \frac{\vec{\nabla}' \times \vec{E}(\vec{r}')}{r} d\tau' \right)$$
$$= -\frac{1}{4\pi\varepsilon_o} \vec{\nabla} \left(\int_{v'} \frac{\rho(\vec{r}')}{r} d\tau' \right) = -\vec{\nabla} V(\vec{r})$$

<u>Thus</u>:

i.e.
$$\vec{E}(\vec{r}) = -\vec{\nabla}V(\vec{r})$$
 with $V(\vec{r}) \equiv \frac{1}{4\pi\varepsilon_o} \int_{\nu'} \frac{\rho(\vec{r}')}{r} d\tau' = \text{Electrostatic } \frac{\text{Potential}}{\text{Volts}}$

This result is valid e.g. in electrostatics for localized (i.e. finite spatial extent) charge distributions.

For <u>infinite-expanse</u> charge distributions (n.b. these are unphysical/artificial!), we must appeal to (more sophisticated) mathematical formalisms than the Helmholtz theorem...

All <u>Static</u> Charge Distributions