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LECTURE NOTES 2
Gauss’ Law / Divergence Theorem

Consider an imaginary / fictitious surface enclosing / surrounding e.g. a point charge (or a small
charged conducting object). For simplicity, use an imaginary sphere of radius R centered on charge
Q at origin:

Imaginary/Fictitious Surface, S
aka Gaussian Surface of radius R
centered on charge Q.

Area element dA is a VECTOR quantity: dA = dAA = dAf . By convention, A is outward-pointing
unit normal vector at area element dA. In this particular case (because of spherical symmetry of
problem): A=Ff

FLUX OF ELECTRIC FIELD LINES (through surface S): |®, I E (f)-dA
S

@, =“measure” of “number of E-field “lines” passing through surface S, (SI Units: Volt-meters).

TOTAL ELECTRIC FLUX (®°" ) associated with any closed surface S, is a measure of the (total)

charge enclosed by surface S.

n.b. charge outside of surface S will contribute nothing to total electric flux @ (since E-field lines

pass through one portion of the surface S and out another — no net flux!)

Consider our point charge Q at origin. Calculate the flux of E passing through a sphere of radius r:

(see above picture)

®, = E(F)-dA=r 47?50 !(%f}(/sinﬁdedw)

=dA
infinitesimal vector
area element for
sphere of radius r

n.b. Vector area element of sphere of radius, r is |[dA = dAF = (r2 sin #d &d (p) f|in spherical-polar

coordinates.
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. _ p=27 . A %Q
Thus: ®, = e, L 0'[ smt9dt9dgo(r_r '[ sin@dé
2
_Ze_Q
/ZEO 80
. Gauss’ Law (in Integral Form): |®¢ q; _ Qenctoss
80

Electric flux through closed surface S = (electric charge enclosed by surface S)/ g,

If 3 (= there exists) lots of discrete charges g;i (ALL enclosed by imaginary / fictitious / Gaussian
surface S), we know from principle of superposition that:

N
NET z

If 3 volume charge density p(1"), then: Q. =I p(rHdzr’

Then using the DIVERGENCE THEOREM:

v v
O, =§ E(F)-dA= | (V-E(F))dz'= = Qe szJ‘Vp’d(?)dr’

This relation holds for any volume v = the integrands of j ()dz’ must be equal, i.e.:

. Gauss’ Law (in Differential Form): |V<E ()= p(r)

&
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The DIVERGENCE OF E(r): V-E(F)

Calculate V+E(T) directly from E(F)= ! J ! p(F)dz’
n.b. now extended over all space!
field source

point point
P S

Now: Ve ( ' j: 478°(F)  (see equation 1.100, Griffiths p. 50)
—

3-D

Dirac

5—fen.

(F — F’) P ( F’) dr’' = L ( ' ) Gauss’ Law in Differential Form:

s ()20

&

Gauss’ Law in Integral Form:

ﬁoﬁ(F) = A7) , thus: J.V (6o|§(f’))dr' = J.v(ﬂjdr' zgij.vp(f')dr' =LQencl

0 80 (o} 0

Now apply/use the Divergence Theorem on the volume integral associated with VeE (F') :
I(V' ( ))dT _(j.) A=— I *’ dZ' = encl

Thus we obtain: SBS (F)edA' = Qe"d Gauss’ Law in Integral Form

&y
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APPLICATIONS OF GAUSS’ LAW - very explicit, detailed derivation -

Griffiths Example 2.2: Find / determine the electric field intensity E (F) outside a uniformly charged

solid sphere of radius R and total charge Q:

draw concentric Gaussian
surface with radius r > R

centered on solid charged
sphere of radius R.

Field Point P @ r
on Gaussian surface

Infinitesimal area element
dA = dAA = dAF

Charged solid dA=r’d(cosd)dg
Sphere of =r’sin@dfde
Radius R,
Total charge q Fictitious / Imaginary spherical
Gaussian surface S of radius r
R | 1 q
Gauss’ Law: E(r)dA=— =—0Q=—
Cﬁs ( ) 50 Qencl 50 q 80
n.b. by symmetry of sphere:
E(F)=E(F)f dA = dAf = dAF Esprere (r > R)=E(r)Ff
(for Gaussian sphere) i.e. E must be radial!!

~ E(F)«dA=(E(F)F)(dAP)= E(F)dA(f+F)=E(F)dA

n.b. Here again, by symmetry,
NOTE: E (F) = ‘E (F‘)‘ = the magnitude of E is constant V (for all)/for any fixed r!!!

(on the Gaussian spherical surface).

gSSE(r)-dAzgSSE(F)dAz%
= E(F)cj&s dA=E (r)(47r)= %

(o]

CE(m . d _ba ey 9 o 1 g
- E(N) %”gorz drg, 1’ or: |E(T) 47zsor2r dre, =

= Electric field outside a charged sphere of radius R at radial distance r > R from center of sphere.

n.b. the electric field (for r > R) for charged sphere is equivalent / identical to that of a point charge q
located at the origin!!!
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GAUSS’ LAW AND SYMMETRY

Use of (Geometrical / Reflection) symmetry (and any / all kinds of symmetry arguments in general)
can be extremely powerful in terms of simplifying seemingly complicated problems!!

= Learn skill of recognizing symmetries and applying symmetry arguments to solve problems!
Examples of use of Geometrical Symmetries and Gauss’ Law

a) Charged sphere — use concentric Gaussian sphere and spherical coordinates

b) Charged cylinder — use coaxial Gaussian cylinder and cylindrical coordinates

¢) Charged box / Charged plane — use appropriately co-located Gaussian “pillbox” (rectangular
box) and rectangular coordinates

d) Charged ellipse — use concentric Gaussian ellipse and elliptical coordinates

e) Charged planar equilateral triangle Think about

f) Charged pyramid } these!!

APPLICATIONS OF GAUSS’ LAW (CONTINUED) - very explicit detailed derivation

Griffiths Example 2.3 Consider a long cylinder (e.g. plastic rod) of length L and radius S that carries

a volume charge density p that is proportional to the distance from the axis s of the cylinder / rod —
i.e.

) = ks [coulombs]

(meter)’

N coulombs
k = proportionality constant | ———

(meter)4

a) Determine the electric field E (F) inside this long cylinder / charged plastic rod

- Use a coaxial Gaussian cylinder of length | and radius s: (with | <<L)

Gauss’ Law cﬁs E(F)-d,&:%

&

Enclosed charge: Q, = IV p(s')dz’' = Iv(ks’)(s’ds'd @dz) < integral over Gaussian surface

Qua = [ [ [ (k') (sds'dpaiz) = 22K [ 57 ds’

¢=0

2
Qencl = g 7Z'k|53
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LHS Gaussian endcap Coaxial Gaussian cylinder

) Long charged cylinder of
/ \ \ _Hi_l_jtl_/ / \4/ radius S and length L
S -

= RHS Gaussian endcap

Cylindrical Symmetry = E(7')=E(r)f . E points radially outward, L to z-axis.)

(i.e
G E(r)dA= [ E(r)dA, + [ E(r)dAn + [ E(F)dA

cylindrical LHS endcap endcap  pys endcap endcap
portion-of portion-of portion-of

Gaussian Gaussian Gaussian

surface surface surface

Again, from cylindrical symmetry (here):

r)= ‘E (F)‘ = constant on cylindrical Gaussian surface —i.c. fixed r =|f|=s

What are dA:y,_, dA, ,and dA,. ???

endcap endcap
dA,, =sdldg f « (A, =Ff dA,. =sdsdp(—2)=-sdsdp? <« (A, =-2)
v, =& (. =) g, = Sei(-2)
infinitesimal surface area
element of Gaussian cylinder d'&RHS = Sde(D(+2) =+sdsdp Z < (g =+12)
endcap endcap
<_f> E(F)-dA = j (E(F)F)e(sdldgf ) + j (E(F)F)e
s oyl LHS
Gaussian Gaussian Gaussian
cylinder surface
Pef=1
Note(s):

r)= ‘E (f)‘ = constant on cylindrical Gaussian surface (fixed r = s)
E (f) =E (f) f by symmetry of charged cylinder
On LHS and RHS endcaps E(f) is not constant, because r is changing there - (but E still points

in f direction! However, note that fef =1 and f-(ii) =(0 = Gaussian endcap terms do not

contribute!!!
Constant here

—
¢ E(r)dA= [ E(r)sdidp=E(F sj j “didg = E(F)sl(27) = 27sIE (F)

S cylindrical
Gaussian Gaussian
cylinder surface
: : = (VoA A Qencl 2 3
Putting this all together now: Cﬁ E(F)dA=—="% where (here): Q, ==7zkls
s & 3
o]
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inside
2 A A
M,S/J/E(f) )ﬂ\ks / or: E, (F)= I;if n.b. (r = S) < as used in Griffith’s
0 gO
(s=r<S) book, page 73

b) Find ELECTRIC FIELD E (F) outside of this long cylinder / charged plastic rod
Again, use Coaxial Gaussian cylinder of length | (<< L) and radius s (> S):

Gauss’ Law: <j> )-dA = Qua
80
Enclosed charge (for s > S): Qenet = %7[le3 coaxial Gaussian cylinder
radius $ > S and length | << L
r]cyl. T\r
Long charge cylinder of ) Y
radius S and length L SN AN

l’ “

! \
/\\ Nps | =2 ':

1

1 1

A
—
\4

Again, from symmetry of long cylinder E(F)=E(F)f = constant (radial) direction!!
r = s (fixed radius)

CﬁSE(f)-dA= j E(r)°d'5\tyl+ _[ E(r).dALHS + J. E(F)'d'&RHs

cylindrical LHS endcap RHS endcap
Gaussian Gaussian Gaussian
surface endcap endcap
dA,, =sdlde f dA s =sdsdp(-2)=-sdsdp? =|dA,, |(-2)
endcap endcap
= |dA,|F = dA,,f A :sdsd¢(+2)=+sdsd¢2=‘dARHs (+2)
endcap endcap

Now: fef =1 and Ffe(£2)=0

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Then:

¢ E(F)dA= [ (E(F)P)}(dA,P)+ [ (E(F)F)
galliuns(iireia%al g;jssian
surface endcap

=E(r)[" 77 sdldp = 27sIE(F)

". Electric field outside charged rod (s=r>S): E

ELECTRIC FIELD (INSIDE/OUTSIDE) LONG CHARGED CYLINDER
vs. radial distance S (radius S, p(S) = ks)
Inside (s <9S): Outside (s> S):
= ks = kS* (1
E (F)=—1F§ E (F)=—1]—|5| (§=°¢
(=% ()= el (5=

Make a plot of ‘E (F)‘ vs. radial distance s:

A
Emax (S = S) E
_ ks? I o
3¢,
Varies as s Varies as ~1/s
\ / Radial
Distance
» S
0 s=S
8 ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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APPLICATIONS OF GAUSS’ LAW - very explicit / detailed derivation —

Griffiths Example 2.4: An infinite plane carries uniform charge o (coulombs / meter?).
Find the electric field a distance z = z, above (or below) the plane.

Use Gaussian Pillbox
centered on oo -plane:

“Square”
Gaussian
P Pillbox
A1,
O/T./ /; Al >y

X
Edge-on Perspective: Z
T z=+h/2
B Xl (out of page) T -
v z=-h2
< I >
y=-1/2 y=+/2
Again, from the symmetry associated with oo -plane,
E(F)=E(F)2=E(z)2 (aboveplane), = =-E(z)2 (below plane)
The Gaussian Pillbox has 6 sides — and thus has six outward unit normal vectors: :
Ny, +2
A, (back) n,,—X
As (top) /

A -

N,—Y < & ¢~ 4 » N, +Y
/7/’/ | -’
As(RHside)y™ [~ =28~ " [ A; (LH side)

A, (front) n,,+X Ny, —2 A (bottom)

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Then:

As As
dA =+dydz % dA, = dydz(-%) =—dydz &
dA, = +dxdz § dA, = dxdz(-y)=—dxdz §
dA, = +dxdy 2 dA, = dxdy(-2)=—dxdy 2
forz > 0: E(F)=+E(2)2 Again, by symmetry (of plane)
forz <0: E(r)=E(z)(-2)=-E(z2)2 n.b. E(z) = constant (at least for

fixed z).

— z>0
Now because E (r) ==xE (Z) 2 for { 0 } respectively, we must break up integrals over z into
<

. z=+h/2 7=0 z=+h/2
two separate regions: J.Z}h/z = Z=7h/2dz+ o dz
Then:

y=+l/2 z=+h/2 _. . y=+1/2 z=+h/2 _. A
EMIaA=[, [, E(Fp(ayaz )+ [ [ E(F)(~dyaz)

z=+h/2 _.

J-Xx +II//22 J-Zz +hh//22 _. . dXdZ y J-Xx +II//22 J-Z h/z ).( dxdz y)
J-x +1/2 J-y =+1/2 _. . dxdy 5 J-x +1/2 J-y +1/2 ﬁ ).( dxdy Z)

—1/2 yf—l/2 —1/2 y= I/2

"l
Wl

Wl
ﬁl

y=+1/2 [L h/z( E(Z)jx‘X()dde+r +h/2( ( )j/X()dde} <« side A (front)

—1/2

I v j " (~E(2) 2% )dydz+ [~ (+ (Z)M)dydz}esideAz(back)

y=—1/2

(-E(2)
J~X =172 L h/z( E(Z)j/y()dxdz-i- :__0+h/2(+E(Z)M)dXdZ} « side A; (RHS)
(-E(2)

-eﬁ
“l

—1/2

Ix - L ~h/2 E(z M)dXdZ+IZ +h/2(+E(Z)M)dXde| < SldeA4(LHS)

—1/2

IX (B (2) 2e-2) o dy+jx (B (2)202) dxy
/ /

—1712 Jy=112 —172 Jy=112
YT
side A¢ (bottom) side As (top)
Now: (2¢%)=0 (2¢9)=0 %2)=0 (9+2)=0 etc.
And: (R%)=1  (§o9)=1  (2:2)=1

10 ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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. Because X L ¥ 1 Z, no contributions to Cf)s E.dA (here) from 4 sides of Gaussian Pillbox
(i.e. Ap, Ay, As and Ay)

= Only remaining / non-zero contributions are from bottom and top surfaces of Gaussian Pillbox

because fi; =—2 and A, =+ which are || (or anti-parallel) to E(z)2

Thus, we only have (here):
Cﬁs E(F)-dA= o J.yzm(—E(z) 2+(~2))dxdy < side Aq (bottom)

x==1/2 y=—1/2
+J. xle//z2 J yy:I//z2 (+ E ( Z) Z 2) dxdy <« side As (top)

These integrals are not over z, and E(z) = constant for z = fixed = z,
". can pull E(z) outside integral, 7.7 =1 —2+72=-1 etc.

¢, E(F)-dA=+E(2)

x=+I/2 y=+1/2 .
I dxdy <« side A (bottom)

x=—1/2 y=—1/2

z .[x /2 .[y:l/dedy « side As (top)

-1/2

:E(z)l +E(z)I° =2E(z)I?

But: I? =1xl= A = surface area of top and bottom surfaces of Gaussian Pillbox
Now: q; A Qe What is Qene (by Gaussian Pillbox)?
£

0

Coulombs
Qencl = (—

= —— ij(metersz) = ol1* (Coulombs)

~ §,E(F)dA= Qgem':zE oV le, o E(z):ej%ozz%

0

Vectorially: E(Z):[%goj{f:g Zg} NOTE: ‘E(z)‘ = constant!!

No z — dependence for charged oo plane!

©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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E(F) from oo- plane (slight return)

Note that in the initial process of setting up the Gaussian Pillbox, if we’d shrunk the height h of the
Pillbox to be infinitesimally small, i.e. h — 6h and then took the limit 3h—0, the contributions to

qss E (F)-d,& from (infinitesimally small) sides of (A, A, A3 and A;) Gaussian Pillbox would
(formally) have vanished (i.e. = 0) independently of whether integrand( E (f)-dA) vanished on these

sides (or not). Only top and bottom surfaces contribute to gSS E(F)-dA then (here).

So using this “trick” of the shrinking Pillbox at a surface / boundary very often can be useful, to
simplify doing the problem.

This explicitly shows that (sometimes) there is more than one way to correctly do / solve a problem
— equivalent methods may exist.

— It is very important, conceptually-speaking to have a (very) clear / good understanding of how to
do these Gauss’ Law-type problems the “long’ way and the “short” way!

12 ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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The Curl of E(F): (VxE(T))

First, study / consider simplest possible situation: point charge at origin: E(F)= 1 1 (%j 1
e, \ I
(note: 7 =7 —T1"=T here because ' =0 - charge q located at origin!!!)
Thus (here), E (F) is radial (i.e. in f — direction) due to spherical symmetry of problem (rotational
invariance), thus static E -field has no rotation/swirl/whirl = no curl! (Read Griffith’s Ch. 1 on curl)

= VxE(F)=0 (must=0)

Let’s calculate:
Line integral Ib E(F)-d? asshown in figure below:

J
In spherical coordinates: d ¢ = drf +rd 06 +r sin 6d OP
E(r)ed?=——[ L |¢{drt + 1609 + rsin o)
dre, \ 1’
Again: fof =1 P =0 fep=0 F, 6, and ¢ are mutually
6.0 =1 O+F =0 @-gb =0 orthogonal basis vectors
pop=1 @of =0 (ﬁ-@ =0 (form ortho-normal basis)

r

E(rpdi=— [ Lor- ! (ﬂj _ (9 gj_aft 1
a dre, 72 r Ame, \1 )| Ame, \r, N, ) 4me, (1, L

r, = distance from origin O to point a. I, = distance from origin O to point b.

The line integral J. E(F)ed? around a closed contour C is zero!

13
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This is not a trivial result! (Not true V vectors!!)

(But is true for static E -fields)

Use Stokes’ Theorem (See Griffiths, Ch. 1.3.5, p. 34 and Appendix A-5)

j(VXE

)dAgS )ed7 =0

N

arbitrary closed

surface S

arbltrary closed

contour C (on S)

Since J.S (6 x E (F))-dA =0 must be/is true for arbitrary closed surface S,

this can only be true for all V closed surfaces S IFF (if and only if):

Can use the Principle of Superposition to show that:

ETOT (f) = i E|

It can be shown that

i1 [

o

@r,, 1,

<

X
1=
it
=

I
=

<

ii —i=123...

V x E(f)=0

N discrete charges, and F, =(F —T)

E(F)@ field point P

VxE(F)=0| | FOR ANY STATIC CHARGE DISTRIBUTION

STATIC = NO TIME DEPENDENCE / VARIATION

14 ©Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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VxE(F)=0 HOLDS FOR:

e Static Discrete/Point Charges  q(F)
o Static Line Charges A(F) All Static Charge Distributions
e Static Surface Charges o(F)
e Static Volume Charges p(F)

Again, this not trivial (we’ll see why, soon. . .)
One other (very important) point about the mathematical & geometrical nature of vector fields:

The nature of a (physically-realizable) vector field A(F) is fully specified if both its divergence
VeA(T)and its curl Vx A(T) are known.

This is a consequence of the so-called Helmholtz theorem — see/read Appendix B of Griffiths book.

The Helmholtz theorem also has an important corollary:

Any differentiable vector function A(F) that goes to zero faster than 1/r as r — oo can be expressed

as the gradient of a scalar plus the curl of a vector:

For the case of electrostatics: |V+E (F) = p(F)/¢, |and |V x E(F) =0

. . ’._. ’ _ \V/ = Fl
E(F): (—L v E(r)dr'}-Vx —I dr’
4 v r TV !
Thus:
S v( ”(r)df]_ WV ()
4re, vor
. E'_._-' — . _._1 p(F’) | . . -
1.€. (r)_—VV(r) with V(r)=— ——=d7'|= Electrostatic Potential | SI Units:
47[80 Y r Volts

This result is valid e.g. in electrostatics for localized (i.e. finite spatial extent) charge distributions.

For infinite-expanse charge distributions (n.b. these are unphysical/artificial!), we must appeal to
(more sophisticated) mathematical formalisms than the Helmholtz theorem...
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