LECTURE 5:

VECTOR GEOMETRY : REPRESENTATION OF PLANES

Prof. N. Harnew University of Oxford MT 2012

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへ⊙

1

Outline: 5. MORE ON VECTOR GEOMETRY

5.1 Vector representation of planes 5.1.1 Plane from vector to Cartesian form 5.1.2 From components back to vector form

5.2 Two intersecting planes

5.3 Minimum distance from a point to a plane 5.3.1 Example

5.4 Intersection of a line with a plane

5.5 Intersection of three planes

5.6 Vector representation of a sphere

5.1 Vector representation of planes

Vector <u>a</u> is any position vector to the plane. Vectors <u>b</u> and <u>c</u> are any vectors in the plane (but not parallel to each other). <u>r</u> is a position vector to a general point on the plane.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

• The equation of the plane can then be written by:

 $\underline{\mathbf{r}} = \underline{\mathbf{a}} + \lambda \underline{\mathbf{b}} + \mu \underline{\mathbf{c}}$

where λ and μ take all values to give all positions on the plane.

Conversely, it should be obvious that a vector equation for the plane can be more simply written:

$$(\underline{\mathbf{r}} - \underline{\mathbf{a}}).\underline{\hat{\mathbf{n}}} = \mathbf{0}$$

where $\underline{\hat{n}} (= \frac{\underline{b} \times \underline{c}}{|\underline{b} \times \underline{c}|})$ is the unit vector perpendicular to the plane.

5.1.1 Plane from vector to Cartesian form

- $(\underline{\mathbf{r}} \underline{\mathbf{a}}) \cdot \underline{\hat{\mathbf{n}}} = \mathbf{0}$ gives $\underline{\mathbf{r}} \cdot \underline{\hat{\mathbf{n}}} = \underline{\mathbf{a}} \cdot \underline{\hat{\mathbf{n}}}$
- Note that

 $d = a \cos \theta = \underline{a} \cdot \underline{\hat{n}}$ is the perpendicular distance of the plane to the origin.

Also we write

 $\underline{\hat{\mathbf{n}}} = l\underline{\mathbf{i}} + m\underline{\mathbf{j}} + n\underline{\mathbf{k}}.$ where (l, m, n) are defined as the *direction cosines* of the normal to the plane.

- Finally we write the general vector $\underline{\mathbf{r}}$ as (x, y, z)
- This gives the plane in Cartesian representation as

$$\underline{\mathbf{r}}.\hat{\underline{\mathbf{n}}} = lx + my + nz = d$$

5.1.2 From components back to vector form

► If a plane is represented by the coordinate equation $n_x x + n_y y + n_z z = \lambda$ (here n_x, n_y, n_z, λ are *any* values) Then a normal vector to the plane is simply $\underline{\mathbf{n}} = (n_x, n_y, n_z).$

Example

- ► Coordinate equation 5x + 3y + z = 6: the normal vector to the plane is (5,3,1) and $\hat{\mathbf{n}} = \frac{(5,3,1)}{\sqrt{(25+9+1)}} = (5,3,1)/\sqrt{35}.$
- ► So vector equation of plane is $\underline{\mathbf{r}}.\underline{\mathbf{\hat{n}}} = d$ where $d = 6/\sqrt{35}$ is the perpendicular distance.

5.2 Two intersecting planes

The angle \u03c6 between the planes is the angle between the two normal vectors of the planes:

 $\cos \phi = \underline{\hat{n_1}} . \underline{\hat{m_2}}$

The direction of the line of intersection of the two planes:

 $\underline{\hat{\mathbf{b}}}_{\textit{Line of intersection}} = \underline{\hat{\mathbf{n_1}}} \times \underline{\hat{\mathbf{n_2}}}$

i.e. parallel to both planes and perpendicular to both normals.

5.3 Minimum distance from a point to a plane

Find the minimum distance, *d*, from point P with position vector \mathbf{p} , to the plane defined by $(\mathbf{r} - \mathbf{a}) \cdot \hat{\mathbf{n}} = \mathbf{0}$

 Consider vector (<u>p</u> – <u>a</u>) which is a vector from the plane to the point P

<ロト <団ト < 国ト < 国ト

► The component of (<u>p</u> - <u>a</u>) normal to the plane is equal to the minimum distance of P to the plane.

i.e.
$$d = (\underline{\mathbf{p}} - \underline{\mathbf{a}}) \cdot \underline{\hat{\mathbf{n}}}$$

(sign depends on which side of plane the point is situated).

Example

► Three points lie on a plane: (2, 1, 2), (-1, -1, -1) and (4, 1, 2). Find the shortest distance of this plane from the point (1, 1, 1).

Solution:

- ▶ $\underline{\mathbf{p}} = (1, 1, 1), \quad \underline{\mathbf{a}} = (2, 1, 2), \quad (\underline{\mathbf{p}} \underline{\mathbf{a}}) = (-1, 0, -1)$
- Construct two lines in the plane:

$$\underline{\mathbf{b}} = (2, 1, 2) - (-1, -1, -1) = (3, 2, 3) \\ \underline{\mathbf{c}} = (2, 1, 2) - (4, 1, 2) = (-2, 0, 0)$$

A normal to the plane is:

$$\underline{\mathbf{n}} = \underline{\mathbf{b}} \times \underline{\mathbf{c}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{3} & \mathbf{2} & \mathbf{3} \\ -\mathbf{2} & \mathbf{0} & \mathbf{0} \end{vmatrix}$$
(1)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

giving $\underline{\mathbf{n}}=(0,-3\times2,2\times2)$, $\ \ \underline{\hat{\mathbf{n}}}=(0,-6,4)/\sqrt{(6^2+4^2)}$

► Therefore $d = (\underline{\mathbf{p}} - \underline{\mathbf{a}}) \cdot \underline{\hat{\mathbf{n}}} = (-1, 0, -1) \cdot (0, -6, 4) / \sqrt{(52)}$ $d = -4 / \sqrt{(52)}$; $|d| = 4 / \sqrt{(52)}$ (the minus sign specifies which side of the plane P is located).

5.4 Intersection of a line with a plane

- Example: A line is given by $\underline{\mathbf{r}} = \underline{\mathbf{a}} + \lambda \underline{\mathbf{b}}$ where $\underline{\mathbf{a}} = \underline{\mathbf{i}} + 2\underline{\mathbf{j}} + 3\underline{\mathbf{k}}$ and $\underline{\mathbf{b}} = 4\underline{\mathbf{i}} + 5\underline{\mathbf{j}} + 6\underline{\mathbf{k}}$. Find the coordinates of the point at which the line intersects the plane 2x + y + 3z = 6.
- A normal vector to the plane is $\underline{n} = (2, 1, 3)$.
- First check that the line and plane are not parallel (i.e. <u>b</u> and <u>n</u> are not at 90°):
 <u>b</u> . <u>n</u> = (4,5,6) . (2, 1, 3) = 8+5+18 = 31 ≠ 0
- Therefore the line crosses the plane.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ のへ⊙

- ► To get the intersection point, substitute $\underline{\mathbf{r}} = \underline{\mathbf{a}} + \lambda \underline{\mathbf{b}}$ into equation of plane $\Rightarrow \quad (x, y, z) = (a_x + \lambda b_x, a_y + \lambda b_y, a_z + \lambda b_z)$ into 2x + y + 3z = 6. $\Rightarrow \quad 2 \times (1 + 4\lambda) + (2 + 5\lambda) + 3 \times (3 + 6\lambda) = 6$ $\Rightarrow \quad 13 + 31\lambda = 6 \quad \Rightarrow \quad \lambda = -7/31$.
- Substituting λ into the equation of the line $x = 1 - (7/31) \times 4 = (3/31)$ $y = 2 - (7/31) \times 5 = (27/31)$ $z = 3 - (7/31) \times 6 = (51/31)$

5.5 Intersection of three planes

- ▶ Three planes intersect at a single point provided any two are not parallel ($\underline{\hat{m_1}} \times \underline{\hat{m_2}} \neq 0$, $\underline{\hat{m_1}} \times \underline{\hat{m_3}} \neq 0$, $\underline{\hat{m_2}} \times \underline{\hat{m_3}} \neq 0$) **AND** provided that any one of the planes is not parallel to the line of intersection of the other two (bottom figure).
- ► The sufficient condition for intersection is that the scalar triple product $\underline{\hat{n}_1} \cdot (\underline{\hat{n}_2} \times \underline{\hat{n}_3}) \neq 0.$
- Assuming a single solution, to get the point of intersection (x, y, z), easiest just to solve the equations:

• The two points that are the intersection of the sphere with a line $\underline{\mathbf{r}} = \mathbf{p} + \lambda \mathbf{q}$ are given by solving the quadratic for λ :

$$(\underline{\mathbf{p}} + \lambda \underline{\mathbf{q}} - \underline{\mathbf{c}}) \cdot (\underline{\mathbf{p}} + \lambda \underline{\mathbf{q}} - \underline{\mathbf{c}}) = a^2$$

The radius ρ of the circle that is the intersection of the sphere with a plane <u><u>n</u> · <u>r</u> = d is given by</u>

$$ho = \sqrt{a^2 - (d - \underline{\mathbf{c}} \cdot \underline{\hat{\mathbf{n}}})^2}$$

(See Riley, Hobson & Bence for proof.)