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5.1 Vector representation of planes
I Vector a is any position vector

to the plane. Vectors b and c
are any vectors in the plane
(but not parallel to each
other). r is a position vector
to a general point on the
plane.

I The equation of the plane can then be written by:
r = a+ λb+ µc

where λ and µ take all values to give all positions on the plane.

I Conversely, it should be obvious that a vector equation for the
plane can be more simply written:

(r− a).n̂ = 0

where n̂ (= b×c
|b×c| ) is the unit vector perpendicular to the plane.
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5.1.1 Plane from vector to Cartesian form

I (r− a).n̂ = 0 gives r.n̂ = a.n̂

I Note that
d = a cos θ = a.n̂ is the
perpendicular distance of
the plane to the origin.

I Also we write
n̂ = li+ mj+ nk.
where (l ,m,n) are defined
as the direction cosines of
the normal to the plane.

I Finally we write the general vector r as (x , y , z)
I This gives the plane in Cartesian representation as

r.n̂ = lx + my + nz = d
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5.1.2 From components back to vector form

I If a plane is represented by the coordinate equation
nxx + nyy + nzz = λ (here nx ,ny ,nz , λ are any values)
Then a normal vector to the plane is simply
n = (nx ,ny ,nz).

Example

I Coordinate equation 5x + 3y + z = 6 :
the normal vector to the plane is (5,3,1) and
n̂ = (5,3,1)√

(25+9+1) = (5,3,1)/
√

35.

I So vector equation of plane is r.n̂ = d where d = 6/
√

35
is the perpendicular distance.
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5.2 Two intersecting planes

I The angle φ between the planes is the angle between the
two normal vectors of the planes:
cos φ = n̂1.n̂2

I The planes are
parallel if cos φ = 1

I The direction of the line of intersection of the two planes:

b̂Line of intersection = n̂1 × n̂2

i.e. parallel to both planes and perpendicular to both
normals.
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5.3 Minimum distance from a point to a plane
I Find the minimum distance, d , from point P with position

vector p, to the plane defined by (r− a).n̂ = 0

I Consider vector (p− a)
which is a vector from
the plane to the point P

I The component of (p− a) normal to the plane is equal to
the minimum distance of P to the plane.

i.e. d = (p− a) . n̂

(sign depends on which side of plane the point is situated).
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Example
I Three points lie on a plane: (2,1,2), (−1,−1,−1) and (4,1,2).

Find the shortest distance of this plane from the point (1,1,1).

Solution:
I p = (1,1,1), a = (2,1,2), (p− a) = (−1,0,−1)

I Construct two lines in the plane:
b = (2,1,2)− (−1,−1,−1) = (3,2,3)
c = (2,1,2)− (4,1,2) = (−2,0,0)

I A normal to the plane is:

n = b× c =

∣∣∣∣∣∣
i j k
3 2 3
−2 0 0

∣∣∣∣∣∣ (1)

giving n = (0,−3× 2,2× 2) , n̂ = (0,−6,4)/
√
(62 + 42)

I Therefore d = (p− a) . n̂ = (−1,0,−1) . (0,−6,4)/
√
(52)

d = −4/
√
(52) ; |d | = 4/

√
(52)

(the minus sign specifies which side of the plane P is located).
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5.4 Intersection of a line with a plane
I Example: A line is given by r = a + λb where a = i + 2j + 3k

and b = 4i + 5j + 6k. Find the coordinates of the point at
which the line intersects the plane 2x + y + 3z = 6.

I A normal vector to the plane is n = (2, 1, 3).
I First check that the line and plane are not

parallel (i.e. b and n are not at 90◦):
b . n = (4, 5, 6) . (2, 1, 3) =
8 + 5 + 18 = 31 6= 0

I Therefore the line crosses the plane.

I To get the intersection point, substitute r = a + λb into equation of plane
⇒ (x , y , z) = (ax + λbx , ay + λby , az + λbz) into 2x + y + 3z = 6.
⇒ 2× (1 + 4λ) + (2 + 5λ) + 3× (3 + 6λ) = 6
⇒ 13 + 31λ = 6 ⇒ λ = −7/31.

I Substituting λ into the equation of the line
x = 1 − (7/31)× 4 = (3/31)
y = 2 − (7/31)× 5 = (27/31)

z = 3 − (7/31)× 6 = (51/31)
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5.5 Intersection of three planes
I Three planes intersect at a single point provided any two are not

parallel ( n̂1 × n̂2 6= 0 , n̂1 × n̂3 6= 0 , n̂2 × n̂3 6= 0)
AND provided that any one of the planes is not parallel to the
line of intersection of the other two (bottom figure).

I The sufficient condition for
intersection is that the scalar triple
product n̂1.(n̂2 × n̂3) 6= 0.

I Assuming a single solution, to get
the point of intersection (x , y , z),
easiest just to solve the equations:

l1x + m1y + n1z = d1
l2x + m2y + n2z = d2
l3x + m3y + n3z = d3
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5.6 Vector representation of a sphere
|r− c|2 = a2

alternatively

r2 − 2r · c+ c2 = a2

I c is the position vector to the
centre of the sphere

I a = |a| is the sphere radius (scalar)

I The two points that are the intersection of the sphere with a line
r = p+ λq are given by solving the quadratic for λ :

(p+ λq− c) · (p+ λq− c) = a2

I The radius ρ of the circle that is the intersection of the sphere
with a plane n̂ · r = d is given by

ρ =

√
a2 − (d − c · n̂)2

(See Riley, Hobson & Bence for proof.)
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