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Goals for Lecture

Key concepts
• the motif finding problem
• using EM to address the motif-finding problem
• the OOPS and ZOOPS models
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Your genome is your genetic codebook

https://goo.gl/images/vMaz4T

Human
• 46 chromosomes
• ~ 20,000 – 25,000 genes
• ~ Millions elements
• 4 unique bases (A, T, C, G), ~3 billion in total

Book Genome
Chapters Chromosomes

Sentences Genes

Words Elements

Letters Bases
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How to read your genetic codebook?

https://goo.gl/images/vMaz4T

Book Genome
Chapters Chromosomes

Sentences Genes

Words Elements

Letters Bases
“On most days, I enter the Capitol
through the basement. A small 
subway train carries me from the Hart 
Building, where …” 

• Key words

• Non-key words Gene 1

Gene 2

• Coding elements 
(Exon, 2%)

- Become proteins 
carrying out functions

• Non-coding 
elements (98%)
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Grammar for book is clear but 
not for genome

Functions
Sentence 2

Sentence 1

Sentence 3

• Key words
• Non-key 

words

Grammar

Book Genome
Chapters Chromosomes

Sentences Genes

Words Elements

Letters Bases

Gene 2

Gene 1

Gene 3

Pattern

• Coding elements
• Non-coding 

elements

• Set up “rules” in translating 
genetic codes to functions

• Broken rules -> 
Abnormal functions

• Unclear
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Sequence Motifs

• What is a sequence motif ?
– a sequence pattern of biological significance

• Examples
– DNA sequences corresponding to protein binding sites
– protein sequences corresponding to common functions 

or conserved pieces of structure
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Sequence Motifs Example

Crooks et al., Genome Research 14:1188-90, 2004.

CAP-binding motif model 
based on 59 binding sites in 
E.coli

helix-turn-helix motif model 
based on 100 aligned protein 
sequences
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The Motif Model Learning Task

given: a set of sequences that are thought to contain  
occurrences of an unknown motif of interest

do:
– infer a model of the motif
– predict the locations of the motif occurrences in 

the given sequences
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Why is this important?

• To further our understanding of which 
regions of sequences are “functional”

• DNA: biochemical mechanisms by which 
the expression of genes are regulated

• Proteins: which regions of proteins 
interface with other molecules (e.g., DNA 
binding sites)

• Mutations in these regions may be 
significant (e.g., non-coding variants)
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Motifs and Profile Matrices
(a.k.a. Position Weight Matrices)

sequence positions

A

C

G

T

1 2 3 4 5 6 7 8

0.1

0.1

0.6

0.2

• Given a set of aligned sequences, it is straightforward to 
construct a profile matrix characterizing a motif of interest
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• Each element represents the probability of given 
character at a specified position
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Sequence Logos

weblogo.berkeley.edu
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• Information content (IC) at position n = 
log2(4) – Entropy(position n)

• Entropy(position n) = -P(n=A)log2 P(n=A) -P(n=T)log2 P(n=T) -
P(n=C)log2 P(n=C) -P(n=G)log2 P(n=G) 



Motifs and Profile Matrices
• How can we construct the profile if the sequences aren’t 

aligned?  
• In the typical case we don’t know what the motif looks 

like.
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• ChIP-chip experiment tells which probes are bound 
(though this protocol has been replaced by ChIP-seq)

Unaligned Sequence Example

Figure from https://en.wikipedia.org/wiki/ChIP-on-chip 13



The Expectation-Maximization 
(EM) Approach

[Lawrence & Reilly, 1990; Bailey & Elkan, 1993, 1994, 1995]

• EM is a family of algorithms for learning probabilistic 
models in problems that involve hidden state

• In our problem, the hidden state is where the motif 
starts in each training sequence
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Overview of EM
• Method for finding the maximum likelihood (ML) 

parameters (θ) for a model (M) and data (D)

• Useful when 
– it is difficult to optimize               directly
– likelihood can be decomposed by the introduction of hidden 

information (Z)

– and it is easy to optimize the function (with respect to θ):

),|(argmax MDPML qq
q

=

)|( qDP

å=
Z

ZDPDP )|,()|( qq
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Z

tt ZDPDZPQ )|,(log),|()|( qqqq

(see optional reading and text section 11.6 for details) 15



Proof of EM algorithm

16(see optional reading and text section 11.6 for details)

𝑃 𝐷, 𝑧 𝜃 = 𝑃 𝑧 𝐷, 𝜃 𝑃 𝐷 𝜃
⇒ log𝑃 𝐷 𝜃 = log𝑃 𝐷, 𝑧 𝜃 − log 𝑃 𝑧 𝐷, 𝜃

Multiple 𝑃 𝑧 𝐷, 𝜃! for given 𝜃! at both sides and sum over all z values 
⇒ log𝑃 𝐷 𝜃
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Non-negative
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Applying EM to the Motif Finding 
Problem

• First define the probabilistic model and likelihood 
function

• Identify the hidden variables (Z)
– In this application, they are the locations of the motifs

• Write out the Expectation (E) step
– Compute the expected values of the hidden variables given 

current parameter values θt

• Write out the Maximization (M) step
– Determine the parameters that maximize the Q function, 

given the expected values of the hidden variables

)|( qDP
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Convergence of the EM algorithm
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E-step:

https://www.nature.com/articles/nbt1406

Q(𝜃 |𝜃𝑡)

Q(𝜃 |𝜃!#$)
E-step:

M-step:

M-step:

M-step:

https://www.nature.com/articles/nbt1406


Representing Motifs in MEME
• MEME: Multiple EM for Motif Elicitation
• A motif is

– assumed to have a fixed width, W
– represented by a matrix of probabilities: pc, k

represents the probability of character c in column k

• Also represent the “background” (i.e. sequence outside 
the motif):  pc,0 represents the probability of character c
in the background

• Data D is a collection of sequences, denoted X
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Representing Motifs in MEME

• Example:  a motif model of length 3

0     1    2    3
A  0.25   0.1  0.5  0.2
C  0.25   0.4  0.2  0.1
G  0.25   0.3  0.1  0.6
T  0.25   0.2  0.2  0.1

=p

background motif positions
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Representing Motif Starting 
Positions in MEME

• The element Zi,j of the matrix Z is an indicator random 
variable that takes value 1 if the motif starts in position j in 
sequence i (and takes value 0 otherwise)

• Example: given DNA sequences where L=6 and W=3
• Possible starting positions m = L – W + 1

1    2    3    4
seq1    0    0    1    0
seq2    1    0    0    0
seq3    0    0    0    1
seq4    0    1    0    0

=Z
G T C A G G 
G A G A G T 
A C G G A G 
C C A G T C
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Probability of a Sequence Given a 
Motif Starting Position
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Sequence Probability Example

25.0 25.01.01.02.025.0 25.0        
        

),1|(

G,0A,0T,3G,2T,1C,0G,0

3,

´´´´´´

=´´´´´´

==

ppppppp
pZXP ii

0    1    2    3
A  0.25  0.1  0.5  0.2
C  0.25  0.4  0.2  0.1
G  0.25  0.3  0.1  0.6
T  0.25  0.2  0.2  0.1

=p

G C T G T A G=iX
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Likelihood Function
• EM (indirectly) optimizes log likelihood of observed 

data

• M step requires joint log likelihood

)|(log pXP
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See Section IV.C of Bailey’s dissertation for details
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Basic EM Approach

given: length parameter W, training set of sequences
t=0
set initial values for p(0)

do
++t
re-estimate Z(t) from p(t-1) (E-step)
re-estimate p(t) from Z(t) (M-step)

until change in p(t) < e (or change in likelihood is < e)
return: p(t), Z(t)
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Expected Starting Positions

• During the E-step, we compute the expected values 
of Z given X and p(t-1)

• We denote these expected values 
• For example:

],|[ )1()( -= tt pXZEZ

1    2    3    4
seq1  0.1 0.1 0.2 0.6
seq2  0.4  0.2  0.1  0.3
seq3  0.3  0.1  0.5  0.1

=)(tZ

G C T G T A
G C T G T A
G C T G T A
G C T G T A
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indicator random
variable

expected value at
iteration t



The E-step: Computing Z(t)

• This comes from Bayes’ rule applied to
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• Assume that it is equally likely that the motif will start 
in any position
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Example: Computing Z(t)

25.025.025.025.01.02.03.0),1|( )1(
1,1,

)( ´´´´´´==µ -t
iii

t pZXPZ
25.025.025.06.02.04.025.0),1|( )1(
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)( ´´´´´´==µ -t

iii
t pZXPZ

• Then normalize so that 1
1

,
)( =å

=

m

j
ji

tZ
...

0     1    2    3
A  0.25   0.1  0.5  0.2
C  0.25   0.4  0.2  0.1
G  0.25   0.3  0.1  0.6
T  0.25   0.2  0.2  0.1

=- )1(tp

G C T G T A G=iX
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The M-step: Estimating p

pseudo-counts

• Recall         represents the probability of character c in 
position k ; values for k=0 represent the background

kcp ,

ï
ï
î

ïï
í

ì

=-

>

=
å

å å

=

=-+

W

j
jcc

i cXj

t
ji

kc

knn

kZ

n
kji

1
 ,

}|{

)(
 ,

 ,

0               

0       
1,

total # of c’s
in data set

sum over positions
where c appears

å
Î

+
+

=

},,,{
 , ,

 , ,)(
 , )(

TGCAb
kbkb

kckct
kc dn

dn
p

30

# of c’s at 
position k



Example: Estimating p
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The ZOOPS Model
• The approach as we’ve outlined it, assumes that 

each sequence has exactly one motif occurrence per 
sequence; this is the OOPS model

• The ZOOPS model assumes zero or one
occurrences per sequence
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E-step in the ZOOPS Model
• We need to consider another alternative: the ith

sequence doesn’t contain the motif
• We add another parameter (and its relative)

• Possible starting positions m = L – W + 1

mWL
ggl =

+-
=

)1(

g § prior probability of a 
sequence containing a motif

§ prior probability that any 
position in a sequence is the 
start of a motif
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E-step in the ZOOPS Model

• Qi is a random variable for which Qi = 1 if sequence 
Xi contains a motif, Qi = 0 otherwise 
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M-step in the ZOOPS Model

• Update p same as before
• Update      as follows:g
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Extensions to the Basic EM 
Approach in MEME

• Varying the approach (TCM model) to assume zero 
or more motif occurrences per sequence

• Choosing the width of the motif

• Finding multiple motifs in a group of sequences

ü Choosing good starting points for the parameters

ü Using background knowledge to bias the parameters
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Starting Points in MEME
• EM is susceptible to local maxima, so it’s a good idea 

to try multiple starting points
• Insight: motif must be similar to some subsequence 

in data set
• For every distinct subsequence of length W in the 

training set
– derive an initial p matrix from this subsequence
– run EM for 1 iteration

• Choose motif model (i.e. p matrix) with highest 
likelihood

• Run EM to convergence
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Using Subsequences as Starting 
Points for EM

• Set values matching letters in the subsequence to 
some value π

• Set other values to (1- π)/(M-1) where M is the length 
of the alphabet

• Example: for the subsequence TAT with π =0.7

1    2    3
A  0.1  0.7  0.1
C  0.1  0.1  0.1
G  0.1  0.1  0.1
T  0.7  0.1  0.7

=p
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MEME web server

http://meme-suite.org/
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