
ECE 451

Automated Microwave Measurements Laboratory

LabVIEW tutorial 1

The goal of this tutorial is to be able to write a simple virtual instrument (VI � similar to a program in
other programming languages) that accepts the inputs (frequency, power level etc.) from the user, processes them,
communicates with the measurement equipment, retrieves the measured raw data from the equipment, analyzes
them and presents them to the user in a meaningful form. Using this program, a student should also be able to
save the data into a �le for later usage.

The concept of LabVIEW programming resembles that of a program �ow chart. A box represents each instruction
or I/O operation. Boxes are in turn connected with data �ow paths (wires). One exceptionally useful aspect of
LabVIEW is the �Show Context Help� under the �Help� category. This will create a window that will provide a
description of any element that you run your mouse over. Anything in the tutorial that you do not understand can
usually be explained with this.

Before starting the program, all instruments should be turned on and connected through the

appropriate bus.

Open National Instrument LabVIEW (32-bit). Select Blank VI. You will see the blank Front Panel window
and Block Diagram of your new program, as shown in Figure 1 . You can switch between Front Panel and Block
Diagram windows by pressing Ctrl-E.

Figure 1: LabVIEW Front Panel and Block Diagram Windows

VISA Resource box must be created on the Front Panel to communicate with each instrument. To do that,
right-click on any blank space of the Front Panel and select Modern>I/O>VISA Resource. A combo box titled
�VISA Resource Name� will appear. Place it anywhere on the Front Panel. Change its title to represent a device

1

you want to communicate with, e.g. Source, or DVM (Digital Voltmeter). From the drop-down listbox, you will
be able to select the desired GPIB address that corresponds to the actual device, as shown in Figure 2. LabVIEW
automatically detects all the devices connected to GPIB bus, and o�ers them in the drop-down listbox. Choose the
correct address based on which device you want to control. Refer to section for information on getting the address
of the devices we use in this tutorial.

Figure 2: Selecting the GPIB address using VISA Resource box.

Simultaneously with creating the VISA Resource box on the Front Panel, an equivalently named box was
created on the Block Diagram. This box will be used to provide the identi�er of the device to all the other device
control boxes on the Block Diagram (used to Open and Close communication, Init (initialize) the device, Set
parameters, Assert trigger and Read values), as will be seen shortly. The quick way to copy something is to click
on it, then holding �Ctrl,� drag it away. This produces a second copy. Add another two VISA Resource boxes to
the Front Panel, label them �DVM Address� and �Source Address� (like in Figure 2) and on the Block Diagram

connect each to its own Open box (found in Instrument I/O>VISA>VISA Advanced menu).
The output of VISA Resource box should be connected to the �VISA Resource Name� input of the Open box

(uppermost input on the left-hand side of the box). Next, add two Write boxes (found in Instrument I/O>VISA
submenu), and connect the corresponding resource name inputs with outputs. You can also change the labels of
Open and Write boxes to remind you of their functions, as shown in Figure 3

Figure 3: Blocks that are used to initialize the devices.

In order to actually initialize the devices, we need to send them appropriate strings. For initializing the DVM,
create on the Block Diagram a String Constant (found in Programming>String palette), �ll it with appropriate
text for initializing the DVM (as shown in Figure 4), create an End Of Line constant (in the same palette), append
it to the String Constant using the Concatenate Strings box (again in the String palette), and connect the appended
string as an input to �write bu�er� terminal of our �Init DVM� box (see Figure 4).

2

Figure 4: Completed block diagram for initializing the devices.

Initializing the source is a slightly di�erent procedure, since we want to be able to de�ne the sweeping frequency
at runtime. To do that, we �rst create a String Control on the Front Panel (found inModern>String & Path menu)
and label it �Frequency�. Next, by double-clicking on it, we �nd its corresponding box on the Block Diagram;
its output will be used as an input to the Build Text VI that we will also insert (from Express>Output menu).
By double-clicking the Build Text icon (to conserve screen real estate as in Figure 4, right-click on the Express
VIs, namely Build Text and Time Delay, select �View as Icon� option), we can de�ne its functionality, as shown in
Figure 4. We now connect the output of �Frequency� box to the �freq� input of Build Text VI; and its output, in
turn, to the �write bu�er� input of �Init Source� box.

We now want to add a time delay of, say, 300 ms, in order for our source to have time to stabilize its output.
We do that by inserting the Time Delay VI (from Express>Exec Control menu), as in Figure 4, and creating the
Time constant (a quick way to do that is to right-click its �Delay Time� terminal, and to select Create>Constant
from the shortcut menu). Since we don't want our time delay to be executed before we send the initialization data
to the source, we need to be able to control the �ow of our program. One handy way to do that is by using the
�error out� and �error in� terminals. Error data �ow is indicated by a thick pink wire in the �gures. In the version
you are using, these thick wires are yellow, black, and white instead.

Figure 5: Inputs to the �for� loop.

Now we're ready to move on to measuring the data. On the Front Panel, add three Numeric inputs (Nu-
meric>Numeric Control), and label them as shown in Figure 5. These will serve as inputs to our �for� loop that
will be doing the measurements. To have the data represented as integers (as opposed to default of double-precision

3

real numbers), right-click each of the Numeric boxes on Block Diagram, select Representation>I32 (actually, in
this case, any integer type would do). Apply several math operations, as shown in Figure 5, to obtain the step
size for our sweep. Add a large �for� box (Programming>Structures>For Loop), and connect �Start Power�, �Step�,
�Number of Points�, and the two instrument addresses to the left-hand side of the �for� box � those will serve as its
inputs. A nice programming practice is to set the cursor to �busy� during measurements; this is done by inserting
the Set Busy box (Programming>Dialog & User Interface>Cursor).

The �for� loop has two signi�cant objects automatically created: �N� holds the total number of repeats, and �i�
holds the current iteration of the loop (ranging from 0 to N-1). We use �i� to calculate the current value of power
to be sent to the source. In each iteration of the �for� loop, we �rst build the string to be sent to the source, by
using Build Text VI (labeled �Build Power�) whose behavior is depicted in Figure 6.

Figure 6: Measuring data in the �for� loop.

Next, we write the string to the source, wait 300 ms for the output to stabilize, trigger the DVM by using Assert
Trigger (found in Instrument I/O>VISA), read up to 16 digits of voltage by using VISA Read (again found in
Instrument I/O>VISA), and convert the string that was read to a number by using Fract/Exp String To Number
(found in Programming>String>String/Number Conversion). This process is shown in Figure 6.

4

Figure 7: Plotting data in real time.

If we want to follow our measurements in real time, one possible solution is to insert plots of read data into
the �for� loop. To do that, �rst insert two Express XY Graph objects (found in Express>Graph Indicators menu)
to the Front Panel, as shown in Figure 7. Corresponding Build XY Graph VIs will automatically be added to
the Block Diagram. Make sure (by double-clicking on them) that �Clear data on each call� is turned o�, since
we want graphs of complete measurements, not just single points. Both graphs should have the current value of
power connected to their �X inputs�. The linear graph will have just the read value of voltage as its �Y input�,
while we would need to calculate the log value of voltage (in units of dBm) as shown in Figure 7. Log is located in
Mathematics>Elementary>Exponential.

After reading the data and �nishing with �for� loop, we would �rst want to unset the Busy cursor, power down
our source (e.g. to -75dBm) and close communication with the instruments, as depicted in Figure 8.

Figure 8: �Cleaning up� after measurement.

Finally, we want to save our measured data to a �le, in order to be able to analyze it later. LabVIEW's �for�
loop automatically collects all the data coming out of the loop, and creates arrays out of it; the process is called
�auto-indexing� (if needed, this behavior could be changed by right-clicking the point where the data leaves the
loop - in our case we would want to uncheck auto-indexing for the �DVM Address�, �Source Address� and �Error�
wires).

To make use of LabVIEW's full potential in working with �les, one easy way is to convert the three arrays of
data (power, voltage and logvolt) to Waveform data types, by using the Build Waveform box (found in Program-
ming>Waveform palette), as illustrated in Figure 9. Next, we set the array names to represent the type of data
measured, by using Set Waveform Attribute (found in Programming>Waveform) to set the �NI_ChannelName�

5

attributes of the waveforms, also depicted in Figure 9.

Figure 9: Formatting and saving data.

We then aggregate the three waveforms, by using theMerge Signals box (found in Express>Signal Manipulation),
and feed them to the Write To Measurement File VI (found in Express>Output), the settings of which should be
as in Figure 10.

Figure 10: Write to Measurement File con�guration.

This way, the data is saved in LabVIEW's proprietary text format1 with the extension .lvm, viewable in a text
editor, but not directly importable into other programs, such as Keysight ADS.

In order to communicate with ADS, we would need to write a separate subroutine for saving the data into e.g.
CITI�le2 format, which falls out of the scope of this course because of the relative complexity of that subroutine
(compared to the simple Write to Measurement File Express VI). However, for the purpose of demonstrating how

1http://www.ni.com/tutorial/4139/en/
2http://cp.literature.agilent.com/litweb/pdf/ads2004a/cktsim/ck0419.html

6

http://www.ni.com/tutorial/4139/en/
http://cp.literature.agilent.com/litweb/pdf/ads2004a/cktsim/ck0419.html

to export data measured in LabVIEW to ADS, a complete subroutine for saving the data in CITI�le format is
provided named ECE451_save2citi�le. Before adding that sub-VI, place a conditional loop to enable the user to
choose which �le format to use which can be found in Express>Exec Control>Case Structure as shown in Figure 11.

Figure 11: Inserting a conditional structure around the LVM generation code.

Now, switch to the false case by pressing one of the arrows to the right of the box that says �True�. Place the
aforementioned subVI by right-clicking and selecting �Select a VI�, which then opens a dialogue box from which the
ECE451_save2citi�le VI can be found. Create a Boolean control to the conditional structure by right clicking the
left wire end of the green question mark box on the left of the structure and selecting Create>Control. Wire the
sub-VI as shown in Figure 12.

Figure 12: Inserting a conditional structure around the LVM generation code.

We �nally insert a File Path Indicator to the Front Panel (from Modern>String & Path) to be able to observe
the actual location of the saved �le, as shown in Figure 12, and end the data�ow with Simple Error Handler (from
Programming>Dialog & User Interface).

7

Appendix � HP3457A Reading and Changing the HP-IB Address

8

