
LabVIEWTM Real-Time 1
Course Manual

Course Software Version 2010
September 2010 Edition
Part Number 373246A-01

LabVIEW Real-Time 1 Course Manual

Copyright

©2009–2010 National Instruments Corporation. All rights reserved.
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including
photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent
of National Instruments Corporation.
National Instruments respects the intellectual property of others, and we ask our users to do the same. NI software is protected by
copyright and other intellectual property laws. Where NI software may be used to reproduce software or other materials belonging to
others, you may use NI software only to reproduce materials that you may reproduce in accordance with the terms of any applicable
license or other legal restriction.

For components used in USI (Xerces C++, ICU, HDF5, b64, Stingray, and STLport), the following copyright stipulations apply. For a
listing of the conditions and disclaimers, refer to either the USICopyrights.chm or the Copyrights topic in your software.

Xerces C++. This product includes software that was developed by the Apache Software Foundation (http://www.apache.org/).
Copyright 1999 The Apache Software Foundation. All rights reserved.

ICU. Copyright 1995–2009 International Business Machines Corporation and others. All rights reserved.

HDF5. NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2003 by the Board of Trustees of the University of Illinois. All rights reserved.

b64. Copyright © 2004–2006, Matthew Wilson and Synesis Software. All Rights Reserved.

Stingray. This software includes Stingray software developed by the Rogue Wave Software division of Quovadx, Inc.
Copyright 1995–2006, Quovadx, Inc. All Rights Reserved.

STLport. Copyright 1999–2003 Boris Fomitchev

Trademarks
CVI, LabVIEW, National Instruments, NI, ni.com, the National Instruments corporate logo, and the Eagle logo are trademarks of
National Instruments Corporation. Refer to the Trademark Information at ni.com/trademarks for other National Instruments
trademarks.
The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft
Corporation in the United States and other countries. Other product and company names mentioned herein are trademarks or trade
names of their respective companies.
Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have
no agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products/technology, refer to the appropriate location: Help»Patents in your software,
the patents.txt file on your media, or the National Instruments Patent Notice at ni.com/patents.

Worldwide Technical Support and Product Information
ni.com

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 662 457990-0, Belgium 32 (0) 2 757 0020, Brazil 55 11 3262 3599, Canada 800 433 3488,
China 86 21 5050 9800, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 358 (0) 9 725 72511,
France 01 57 66 24 24, Germany 49 89 7413130, India 91 80 41190000, Israel 972 3 6393737, Italy 39 02 41309277,
Japan 0120-527196, Korea 82 02 3451 3400, Lebanon 961 (0) 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793,
Netherlands 31 (0) 348 433 466, New Zealand 0800 553 322, Norway 47 (0) 66 90 76 60, Poland 48 22 328 90 10,
Portugal 351 210 311 210, Russia 7 495 783 6851, Singapore 1800 226 5886, Slovenia 386 3 425 42 00,
South Africa 27 0 11 805 8197, Spain 34 91 640 0085, Sweden 46 (0) 8 587 895 00, Switzerland 41 56 2005151,
Taiwan 886 02 2377 2222, Thailand 662 278 6777, Turkey 90 212 279 3031, United Kingdom 44 (0) 1635 523545

For further support information, refer to the Additional Information and Resources appendix. To comment on National Instruments
documentation, refer to the National Instruments Web site at ni.com/info and enter the Info Code feedback.

© National Instruments Corporation iii LabVIEW Real-Time 1 Course Manual

Contents

Student Guide
A. NI Certification ...vii
B. Course Description ...viii
C. What You Need to Get Started ...viii
D. Installing the Course Software..ix
E. Course Goals...ix
F. Course Conventions ..x

Lesson 1
Introduction to Real-Time Systems

A. What is a Real-Time System?...1-2
B. Real-Time System Components ...1-6

Lesson 2
Configuring Your Hardware

A. Hardware Setup and Installation...2-2
B. Configuring Network Settings ..2-2
C. Installing Software on Target ...2-6
D. Configuring Target I/O ...2-6
E. Connecting to Target in LabVIEW...2-7

Lesson 3
Real-Time Architecture: Design

A. Host and Target Application Architecture..3-2
B. Multithreading ..3-3
C. Yielding Execution in Deterministic Loops ...3-16
D. Improving Speed and Determinism ..3-20
E. Sharing Data Locally on RT Target..3-26

Lesson 4
Timing Applications and Acquiring Data

A. Timing Control Loops ..4-2
B. Software Timing ...4-2
C. Hardware Timing..4-6
D. Event Response – Monitoring for Events ...4-8

Lesson 5
Communication

A. Front Panel Communication ...5-2
B. Network Communication..5-2
C. Network Communication Programming...5-3

Contents

LabVIEW Real-Time 1 Course Manual iv ni.com

Lesson 6
Verifying Your Application

A. Verifying Correct Application Behavior ..6-2
B. Verifying Performance and Memory Usage ...6-3

Lesson 7
Deploying Your Application

A. Introduction to Deployment..7-2
B. Creating a Build Specification..7-4
C. Communicating with Deployed Applications...7-6
D. System Replication ...7-7

Appendix A
Additional Information about LabVIEW Real-Time

Appendix B
Instructor’s Notes

Appendix C
Additional Information and Resources

© National Instruments Corporation vii LabVIEW Real-Time 1 Course Manual

Student Guide

Thank you for purchasing the LabVIEW Real-Time 1 course kit. This course
manual and the accompanying software are used in the 2-day, hands-on
LabVIEW Real-Time 1 course.

You can apply the full purchase price of this course kit toward the
corresponding course registration fee if you register within 90 days of
purchasing the kit. Visit ni.com/training to register for a course and to
access course schedules, syllabi, and training center location information.

Note For course manual updates and corrections, refer to ni.com/info and enter the
Info Code lvrt1.

A. NI Certification
The LabVIEW Real-Time 1 course is part of a series of courses designed to
build your proficiency with LabVIEW and help you prepare for exams to
become an NI Certified LabVIEW Developer and NI Certified LabVIEW
Architect. The following illustration shows the courses that are part of the
LabVIEW training series. Refer to ni.com/training for more
information about NI Certification.

Advanced User

LabVIEW Core 1*

LabVIEW Core 2*

Certified LabVIEW
Architect Exam

Certified LabVIEW
Developer Exam

New User Experienced User

Advanced Architectures
in LabVIEW

*Core courses are strongly recommended to realize maximum productivity gains when using LabVIEW.

Courses

Certifications

Other Courses

Certified LabVIEW
Associate Developer Exam

LabVIEW Core 3*

LabVIEW OOP System Design

LabVIEW Connectivity

LabVIEW Performance

LabVIEW Instrument Control

LabVIEW Machine Vision

LabVIEW Real-Time

LabVIEW FPGA

Modular Instruments Series

LabVIEW DAQ and Signal Conditioning

Managing Software
Engineering in LabVIEW

Student Guide

LabVIEW Real-Time 1 Course Manual viii ni.com

B. Course Description
The LabVIEW Real-Time 1 course teaches you to use LabVIEW Real-Time
to develop a deterministic and reliable application. Most LabVIEW
applications run on a general-purpose operating system (OS) like Windows,
Linux, Solaris, or Mac OS. Some applications require deterministic
real-time performance that general-purpose operating systems cannot
guarantee. The LabVIEW Real-Time Module extends the capabilities of
LabVIEW to address the need for deterministic real-time performance.

This course assumes you have a level of experience with LabVIEW
equivalent to completing the material in the LabVIEW Core 1 course. In
addition, you should be familiar with the Windows operating system and
computer components such as the mouse, keyboard, connection ports and
plug-in slots, and have experience writing algorithms in the form of
flowcharts or block diagrams. The course and exercise manuals are divided
into lessons, described as follows.

In the course manual, each lesson consists of the following:

• An introduction that describes the purpose of the lesson and what
you will learn

• A description of the topics in the lesson

• A summary quiz that tests and reinforces important concepts and
skills taught in the lesson

In the exercise manual, each lesson consists of the following:

• A set of exercises to reinforce topics

• (Optional) Self-study and challenge exercise sections or additional
exercises

C. What You Need to Get Started
Before you use this course manual, make sure you have the following items:

❑ Computer running Windows 7/Vista/XP/2000

❑ LabVIEW Full Development System version 2010 or later

❑ LabVIEW Real-Time Module version 2010 or later

❑ Temperature Chamber including a 12 Volt fan, lamp, and a J-type
thermocouple

❑ cRIO-9074 integrated chassis and controller with a cRIO-9211
thermocouple module and a cRIO-9474 digital output module

Student Guide

© National Instruments Corporation ix LabVIEW Real-Time 1 Course Manual

❑ LabVIEW Real-Time 1 Exercises

❑ LabVIEW Real-Time 1 CD, which contains the following files:

D. Installing the Course Software

Insert the course CD and follow the onscreen instructions to install the
software.

Exercise files are located in the <Exercises>\LabVIEW Real-Time 1\
folder, where <Exercises> represents the path to the Exercises folder
on the root directory of your computer.

E. Course Goals
This course presents the following topics:

• Concepts of real-time and determinism

• Configuring and communicating with real-time hardware

• Understanding memory usage, multithreading, priorities, and shared
resource in the LabVIEW Real-Time Module

• Communicating between a host computer and RT target over the
network

• Developing a deterministic, reliable application

This course does not present any of the following topics:

• Information and concepts covered in LabVIEW Core 1 course

• Control, PID, and/or Fuzzy Logic theory

• Analog-to-digital (A/D) theory

• Operation of GPIB, RS-232, Motion, CAN, or VISA

Filename Description

Exercises A folder containing all files needed to complete
the exercises

Solutions A folder containing the solutions to each
exercise

LVRT1_2010_
CourseManual_
Eng.pdf

LabVIEW Real-Time 1 Course Manual

Student Guide

LabVIEW Real-Time 1 Course Manual x ni.com

• Every built-in LabVIEW object, function, or library VI; refer to the
LabVIEW Help for more information about LabVIEW features not
described in this course

• Development of a complete application for any student in the class; refer
to the NI Example Finder, available by selecting Help»Find Examples
for example VIs you can use and incorporate into VIs you create

F. Course Conventions
The following conventions are used in this course manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence Options»Settings»General directs you to
pull down the Options menu, select the Settings item, and select General
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such as
menu items and dialog box options. Bold text also denotes parameter names,
controls and buttons on the front panel, dialog boxes, sections of dialog
boxes, menu names, and palette names.

italic Italic text denotes variables, emphasis, a cross-reference, or an introduction
to a key concept. Italic text also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you enter from the keyboard,
sections of code, programming examples, and syntax examples. This font
also is used for the proper names of disk drives, paths, directories, programs,
subprograms, subroutines, device names, functions, operations, variables,
filenames, and extensions.

Platform Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

© National Instruments Corporation 1-1 LabVIEW Real-Time 1 Course Manual

1
Introduction to Real-Time Systems

This lesson introduces real-time concepts such as real time, determinism,
and jitter. This lesson also discusses the components of a real-time system,
including the host and the target.

Topics
A. What is a Real-Time System?

B. Real-Time System Components

Lesson 1 Introduction to Real Time

LabVIEW Real-Time 1 Course Manual 1-2 ni.com

A. What is a Real-Time System?
The LabVIEW Real-Time Module combines LabVIEW graphical
programming with the power of a real-time operating system, enabling you
to build deterministic real-time applications.

A misconception about real-time is that it means quick. More accurately,
real-time means in-time. In other words, a real-time system ensures that
responses occur in time, or on time. With general purpose operating
systems, you cannot ensure that a response occurs within any given time
period, and calculations might finish much later or earlier than expected.

For a system to be considered real-time, all parts of it must be real-time. For
example, an application that runs in a real-time operating system may not
behave with real-time characteristics. The application may rely on
something that does not behave in real-time, which causes the application to
not behave in real-time.

Terms frequently used in the discussion of real-time systems are
deterministic, loop cycle time, jitter, and embedded. Learning more
about these terms helps you understand a real-time system.

Real-Time Terms
The following terms apply to real-time applications.

• Loop Cycle Time—The time required to execute one cycle of a loop.

Many applications that require a real-time operating system, such as a
control application, are cyclical. The time between the start of each
cycle, T, is the loop cycle time, or sample period. 1/T is the loop rate or
sample rate.

• Jitter—The variation of loop cycle time from the desired loop cycle
time.

Even with real-time operating systems, the loop cycle time can vary
between cycles. The maximum amount that a loop cycle time varies
from the desired loop cycle time is the maximum jitter.

• Determinism—Determinism indicates how reliably a system can
respond to external events or perform operations within a given time
limit. It reflects the magnitude of the jitter.

High determinism, a characteristic of real-time systems, guarantees
that your calculations and operations occur within a given time.
Deterministic systems are predictable. This is important in a control
application that measures inputs, makes calculations based on the
inputs, then returns values that are a result of those calculations.
Real-time systems can guarantee that the calculations finish on time,
all of the time.

Lesson 1 Introduction to Real Time

© National Instruments Corporation 1-3 LabVIEW Real-Time 1 Course Manual

• Latency—Time required to respond to an event, or the time between
input and output.

Deterministic systems may still have a high latency. Properly
implemented real-time systems have real-time event response, which
guarantees a worst case latency.

• Embedded—A computer system that is a component within a larger
system. Embedded systems operate headlessly.

A headless system has no user interface, such as a keyboard, monitor,
or mouse. In many cases, embedded applications operate within
restrictions on the amount of RAM and other resources that you can use,
as well as the amount of physical space the embedded application can
occupy. Embedded hardware ranges from industrial computers such as
PXI/CompactPCI systems that sit within larger machines monitoring
and control systems to thin-client Web servers running on a chip.

• Time Critical Code—Code that needs to execute on a specific schedule
to function as desired.

Time critical code is code that cannot handle delays in execution. For
example, hardware I/O that has specified timing needs to execute
exactly when expected. An example of a non-time-critical code is
logging data to a file. Time-critical code usually has very high priority.

• Priority—A characteristic that defines when a VI or loop should
execute relative to other VIs and loops.

Correctly configured timed structures in RT programs should have a
priority associated with them. This priority provides the RTOS with an
order of importance when deciding what needs to be executed. The scale
for priority ranges from 1 to 65,535 with the larger number indicating
greater priority.

Maximum Jitter
All systems have some jitter, but the jitter is lower for real-time systems than
for general purpose operating systems. The jitter associated with real-time
systems can vary widely. General purpose operating systems have high
or unbounded maximum jitter that is inconsistent. Refer to Lesson 3,
Real-Time Architecture: Design, for more information about programming
techniques that reduce jitter.

Lesson 1 Introduction to Real Time

LabVIEW Real-Time 1 Course Manual 1-4 ni.com

Figure 1-1. Maximum Jitter

Operating Systems
LabVIEW applications running on Windows are not guaranteed to run in
real time because Windows is not a real-time operating system. Windows
cannot ensure that code always finishes within specific time limits. The time
your code takes to execute in Windows depends on many factors, including
other programs running in the background, such as screen saver or virus
software. Windows also must service interrupts from devices such as a
USB port, keyboard, mouse, and other peripherals that can delay execution
of code.

You can increase the probability of programs running deterministically
in Windows by disabling all other programs such as screen savers, disk
utilities, and virus software. You can further increase determinism by
disabling drivers for devices with interrupts such as the keyboard, mouse,
and Ethernet card. Finally, for better determinism, you can write a device
driver in Windows to get the most direct access to hardware possible.
Nevertheless, increasing determinism does not ensure that code always
executes with real-time behavior because Windows can preempt your
LabVIEW applications, even if you use time-critical priority. Refer to
Lesson 3, Real-Time Architecture: Design, for more information about
priorities.

With the LabVIEW Real-Time Module, your applications run in a separate
real-time operating system (RTOS). You need not disable programs or write
device drivers to achieve real-time performance. A real-time operating
system enables users to prioritize tasks so that the most critical task always
takes control of the processor when needed.

Lo
op

 It
er

at
io

n

Maximum
Jitter

Jitter Range

Loop Time (seconds)

Desired Loop Time

5

4

3

2

1

Lesson 1 Introduction to Real Time

© National Instruments Corporation 1-5 LabVIEW Real-Time 1 Course Manual

Real-Time Operating Systems
National Instruments designed the LabVIEW Real-Time Module to execute
VIs on two different real-time operating systems. The LabVIEW Real-Time
Module can execute VIs on hardware targets running the RTOS of the
NI Embedded Tool Suite (ETS) or Wind River VxWorks.

NI ETS and Wind River VxWorks provide an RTOS that runs on NI RT
Series hardware to enable deterministic behavior and extended reliability.

The Real-Time Module platforms do not support some LabVIEW features
for VIs that run on ETS and VxWorks targets. Refer to the Unsupported
LabVIEW Features (ETS) and Unsupported LabVIEW Features (VxWorks)
LabVIEW help topics for information about unsupported LabVIEW
features on each Real-Time Module OS.

Selecting an Operating System
If you only want to acquire real-time data, you might not need an RTOS.
National Instruments has many data acquisition (DAQ) devices that can
acquire data in real time even though they are controlled by programs
running in Windows. The DAQ device has an onboard hardware clock that
ensures a constant rate of data acquisition. With technologies such as bus
mastering, direct memory access (DMA) transfer, and data buffering, the
I/O device can collect and transfer data automatically to RAM without
involving the CPU.

However, consider an application where every data point must be acquired
and analyzed by software before you can determine if an event has occurred
that requires a response. Similarly, consider an application where every
acquired point must be handled by software in order to determine the output
of a control loop. In both these cases, the software and the operating
system must behave deterministically. You must predict their timing
characteristics—and those characteristics must be the same for any data set,
at any time. In these applications, the software must be involved in the loop;
therefore, you require an RTOS to guarantee response within a fixed amount
of time.

In addition, applications requiring extended run times or headless operation
are often implemented with an RTOS.

Real-Time Development Tools
Real-time development tools include code development tools such as the
compiler, the linker, and the debugger. In addition, system analysis tools
provide advanced insight into optimizing real-time applications.

Lesson 1 Introduction to Real Time

LabVIEW Real-Time 1 Course Manual 1-6 ni.com

The LabVIEW Real-Time Module application development environment
serves as a complete development and debugging tool. For more advanced
diagnostics, use the LabVIEW Execution Trace Toolkit for complete
real-time application analysis.

Figure 1-2. Real-Time Development Tools

The LabVIEW Real-Time Module deployment platforms are based on a
common hardware and software architecture. Each hardware target uses
computing components such as a microprocessor, RAM, non-volatile
memory, and an I/O bus interface. The embedded software consists of
an RTOS, driver software, and a specialized version of the LabVIEW
Run-Time Engine.

B. Real-Time System Components
A real-time system consists of software and hardware components. The
software components include LabVIEW, the RT Engine, and the LabVIEW
projects and VIs you create. The hardware components of a real-time
system include a host computer and an RT target. The following sections
describe the different components of a real-time system.

Host Computer
The host computer is the computer on which LabVIEW and the LabVIEW
Real-Time Module are installed and on which you develop the VIs for
the real-time system. After developing the real-time system VIs, you can
download and run the VIs on RT targets. The host computer can run VIs that
communicate with VIs running on RT targets to provide a user interface.

LabVIEW
You develop VIs with LabVIEW on the host computer. The Real-Time
Module extends the capabilities of LabVIEW with additional tools for
creating, debugging, and deploying deterministic VIs.

Compiler

Linker

Debugger

System Analysis Tools

RTOS

Microprocessor

I/O Device

S
of

tw
ar

e
H

ar
dw

ar
e

LabVIEW Real-Time

LabVIEW Real-Time
Target

Execution Trace Tool

Lesson 1 Introduction to Real Time

© National Instruments Corporation 1-7 LabVIEW Real-Time 1 Course Manual

RT Engine
The RT Engine is a version of LabVIEW that runs on RT targets. The
RT Engine runs the VIs you download to RT targets. The RT Engine
provides deterministic real-time performance for the following reasons:

• The RT Engine runs on a real-time operating system (RTOS), which
ensures that the LabVIEW execution system and other services adhere
to real-time operation.

• The RT Engine runs on RT Series hardware. RT targets are designed to
run only the VIs and device drivers necessary for RT applications, which
prevents other applications from impeding the execution of RT VIs.

• RT targets do not use virtual memory, because virtual memory can cause
unpredictable performance.

RT Target
An RT target refers to RT Series hardware that runs the RT Engine and VIs
you create using LabVIEW. A networked RT Series device is a networked
hardware platform with an embedded processor and a real-time operating
system that runs the RT Engine and LabVIEW VIs. You can use a separate
host computer to communicate with and control VIs on a networked
RT Series device through an Ethernet connection. Some examples of
networked RT Series devices include the following:

• NI CompactRIO Series—A reconfigurable control and acquisition
system designed for applications that require high performance and
reliability.

• NI RT Series PXI Controller—A networked device installed in an
NI PXI chassis that communicates with NI PXI modules installed in the
chassis. You can write VIs that use all the input/output (I/O) capabilities
of the PXI modules, SCXI modules, and other signal conditioning
devices installed in a PXI chassis. The RT Engine also supports features
of the RT Series PXI controller. Refer to the LabVIEW Real-Time
Support page on the National Instruments Web site for information
about the features supported by the RT Engine on specific networked
devices.

• NI RT Series [c]FP-2xxx—A networked device that runs the ETS
RTOS.

• NI 1450 Series Compact Vision System—An easy-to-use, distributed,
real-time imaging system that acquires, processes, and displays images
from IEEE 1394 cameras.

• Desktop PCs as RT Targets—A desktop PC configured with RT Engine
software.

Lesson 1 Introduction to Real Time

LabVIEW Real-Time 1 Course Manual 1-8 ni.com

Note The LabVIEW Help does not contain hardware-related information about specific
networked devices. Refer to the appropriate device documentation for information about
the device.

USB Storage Devices
The Real-Time Module includes support for USB storage devices, such as
thumb drives and external USB hard drives, for RT targets that have onboard
USB hardware. Connect an external USB storage device to a USB port of an
RT target and then access the device from VIs running on the RT target.

When you plug a USB thumb drive into the RT system, the thumb drive is
automatically assigned a drive letter of U:. Each additional drive you add is
automatically assigned the next available drive letter. For example, V:, W:,
X:, and so on.

Lesson 1 Introduction to Real Time

© National Instruments Corporation 1-9 LabVIEW Real-Time 1 Course Manual

Summary – Quiz
Match the following terms with their definitions:

Jitter A. How reliably a system responds to events or
performs operations within a given time limit

Determinism B. Time taken to execute one cycle of a loop

Real-time C. Variation of loop cycle time from the desired loop
cycle time

Loop cycle time D. The ability to reliably, and without fail, respond to
an event or perform an operation within a
guaranteed time period

Lesson 1 Introduction to Real Time

© National Instruments Corporation 1-11 LabVIEW Real-Time 1 Course Manual

Summary – Quiz Answers
Match the following terms with their definitions:

Jitter C. Variation of loop cycle time from the desired
loop cycle time

Determinism A. How reliably a system responds to events or
performs operations within a given time limit

Real-time D. The ability to reliably, and without fail, respond
to an event or perform an operation within a
guaranteed time period

Loop cycle time B. Time taken to execute one cycle of a loop

Lesson 1 Introduction to Real Time

LabVIEW Real-Time 1 Course Manual 1-12 ni.com

Notes

© National Instruments Corporation 2-1 LabVIEW Real-Time 1 Course Manual

2
Configuring Your Hardware

In this lesson, you learn how to configure your target hardware and the
I/O hardware used in the class project. You can apply this knowledge to
configuring other types of I/O hardware as well.

In addition, you learn how to download a VI to the target, connect to it, and
disconnect from it. This gives you the knowledge to run pre-existing code
on an RT target in development mode.

Topics
A. Hardware Setup and Installation

B. Configuring Network Settings

C. Installing Software on Target

D. Configuring Target I/O

E. Connecting to Target in LabVIEW

Lesson 2 Configuring Your Hardware

LabVIEW Real-Time 1 Course Manual 2-2 ni.com

A. Hardware Setup and Installation
To configure your real-time system, complete the following steps:

1. Set up real-time hardware and host computer.

2. Configure your target.

3. Configure your target I/O.

4. Connect to your target in LabVIEW.

Each target hardware type has its own hardware setup and installation
instructions. Refer to the appropriate device documentation for information
about the device.

You must install the LabVIEW Real-Time Module on the host computer
before you can begin developing real-time applications. Use the host
computer to develop applications and then download them across the
network to the RT Series target system.

B. Configuring Network Settings
The host computer communicates with the remote system over a standard
Ethernet connection. If the host computer is already configured on a
network, you must configure your remote system on the same network.
If neither machine is connected to a network, you must connect the
two machines directly using a CAT-5 crossover cable or hub. You can use
the direct connection to configure the remote system from the host computer
system.

Using MAX to Detect Remote Systems
Expand Remote Systems in the Measurement & Automation (MAX)
configuration tree. Previously detected remote systems appear immediately
beneath Remote Systems in the configuration tree. MAX continues to
search for newly attached remote systems on the local subnet. Detected
systems are added to the list after a short delay. All detected systems appear
beneath Remote Systems in the configuration tree. MAX searches for new
remote systems every time you launch MAX and expand Remote Systems.
You can also detect newly connected remote systems by selecting View»
Refresh or by pressing <F5> to scan for local and remote devices.

Note The IP address of your remote system appears as the default remote system name
in the configuration tree. If more than one system appears in Remote Systems, select the
IP address of the system you want to configure. Use the Network Settings tab of the
configuration view to assign a host name, if available, to your remote system. MAX
then uses the name to identify the device in the configuration tree. This host name is
not necessarily a DNS host name. For more information about host names, refer to

Lesson 2 Configuring Your Hardware

© National Instruments Corporation 2-3 LabVIEW Real-Time 1 Course Manual

Configuring Network Settings in the Measurement and Automation Explorer Help.
The system state may be Unconfigured if your target does not support automatic IP
assignment and if you have not set the IP address for the target.

Assigning an IP Address
You can connect to your remote system either by connecting it and your
host computer to a local area network or by connecting it directly to your
host computer using a CAT-5 crossover cable. Either way, your remote
system must have an IP address assigned to it. You can either attempt to
automatically obtain an IP address or manually specify one.

Some targets, such as all FieldPoint FP-160x RT targets, require that you
specify a static IP address, as they do not support automatic IP address
assignment. You may also need to specify an IP address if your remote
system is not connected to a network and you want to make a direct
connection. Refer to the Specifying a Static IP Address section for more
information about specifying an IP address.

Specifying a Static IP Address
If you choose to specify an IP address, select Static from the Network
Settings tab, fill in the network parameters described below with correct
values for your network, then click Save. You must restart the remote
system for any changes to take effect.

Figure 2-1. Network Settings for Obtaining a Static IP Address

Lesson 2 Configuring Your Hardware

LabVIEW Real-Time 1 Course Manual 2-4 ni.com

IP Address—The unique address of a device on your network. Each
IP address is a set of four one- to three-digit numbers. Each number is in the
range from 0 through 255 and is separated by a period. This format is called
dotted decimal notation. The IP address 224.102.13.24 is an example of
dotted decimal notation.

Subnet Mask—A code that helps the network device determine
whether another device is on the same network or a different network.
255.255.255.0 is the most common subnet mask.

Gateway—The IP address of a device that acts as a gateway server, which
is a connection between two networks.

DNS Address—The IP address of a network device that stores DNS host
names and translates them into IP addresses.

Consult with your network administrator before specifying these
parameters. If you do not have a network administrator or you are the
network administrator, refer to the IP Settings Information topic in the MAX
Remote Systems Help for more information.

If you are assembling your own Ethernet network, you can choose an
IP address. The subnet mask determines the format of the IP address. Use
the same subnet mask as the host computer when you configure your remote
system. For example, if your subnet mask is 255.255.255.0, the first
three numbers in every IP address on the network must be the same.
If your subnet mask is 255.255.0.0, only the first two numbers in the
IP addresses on the network must match.

For either subnet mask, you can use numbers between 1 and 254 for the
last number of the IP address. (Do not use numbers 0 and 255; they are
reserved.) You can use numbers between 0 and 255 for the third number of
the IP address, but this number must be the same as other devices on your
network if your subnet mask is 255.255.255.0.

If you are setting up your own network and do not have a gateway or DNS
server, set these values to the default configuration, 0.0.0.0.

To find out the network settings for your host computer, run ipconfig.

To run ipconfig, open a command prompt window, type ipconfig at the
prompt, and press <Enter>. If you need more information, run ipconfig with
the /all option by typing ipconfig/all to see all the settings for the
computer. Make sure you use the settings for the correct Ethernet adapter to
configure your remote system.

Lesson 2 Configuring Your Hardware

© National Instruments Corporation 2-5 LabVIEW Real-Time 1 Course Manual

Obtaining an IP Address Automatically from a DHCP Server
If your remote system is on a network that has a DHCP server, you may be
able to automatically obtain an IP address from the DHCP server. A DHCP
server allocates an IP address to your target each time the target is started.
You do not need to specify other information such as Subnet Mask if
you select the DHCP or Link Local option. If you do not know whether
your network has a DHCP server, check with your network administrator for
assistance. To automatically obtain an IP address, select DHCP or Link
Local, then click Save. You must restart the remote system for any changes
to take effect.

Not all DHCP servers are implemented in the same manner. Therefore,
some might not be compatible with the LabVIEW Real-Time Module.
After you select DHCP or Link Local and restart the RT target, LabVIEW
Real-Time tries to obtain an IP address from the DHCP server. If this
operation fails, LabVIEW Real-Time automatically restarts the RT target
and attempts to assign a link local IP address (169.254.x.x), if your target
supports this feature. Link local addresses are network addresses intended
for use in a local network only. After three failed attempts, LabVIEW
Real-Time returns to the default configuration with IP address 0.0.0.0.
In this case, you need to explicitly specify the network parameters.

Figure 2-2. Network Settings for Automatically Obtaining an IP Address

In addition, when you use a DHCP server, the server allocates an IP address
to the remote system each time you boot the target. The new IP address
might be different than the address previously assigned. If you use the
DHCP server to assign an IP address to your target, you need to check the

Lesson 2 Configuring Your Hardware

LabVIEW Real-Time 1 Course Manual 2-6 ni.com

IP address using MAX each time you target LabVIEW Real-Time to the
target. To avoid needing to check the IP address each time, specify a static
IP address for the target instead of using a DHCP server. Typical DHCP
servers allow you to reserve specific IP addresses for static IP addresses.

C. Installing Software on Target
After you have assigned an IP address, you can update or install the
LabVIEW Real-Time Module or other driver software on the remote target.
If your RT target has the LabVIEW Real-Time Module preinstalled, you
may still need to download additional driver software or update existing
driver software. The LabVIEW Real-Time Software Wizard facilitates
checking and downloading software. To launch it, click the Add/Remove
Software icon on the toolbar to open the LabVIEW Real-Time Software
Wizard window.

Complete the following steps to launch the LabVIEW Real-Time Software
Wizard:

1. Expand Remote Systems in the configuration tree and then expand your
RT target.

2. Select the Software category. Click the Add/Remove Software icon on
the toolbar to launch the LabVIEW Real-Time Software Wizard. If your
RT target does not have a Software category, it does not support the
LabVIEW Real-Time software.

3. Use the LabVIEW Real-Time Software Wizard to add, remove, or
update the software on your remote target.

D. Configuring Target I/O
You must configure any National Instruments RT-compatible device before
you can access it from a LabVIEW Real-Time Module application targeted
to the remote system. If you are using a PXI, Fieldpoint, or Compact Vision
System as your RT target, you should configure the I/O of your RT target
before you access it in LabVIEW. If you are using CompactRIO as your RT
target, you will configure the I/O using a LabVIEW project.

For more information about using any NI products in MAX, refer to the
product-specific documentation.

Lesson 2 Configuring Your Hardware

© National Instruments Corporation 2-7 LabVIEW Real-Time 1 Course Manual

E. Connecting to Target in LabVIEW
To deploy VIs using the LabVIEW Real-Time Module, you must create a
project, create and configure a real-time target in the project, and connect to
the target.

LabVIEW Projects
Use the LabVIEW project to manage files and targets as you develop a
system. You control projects through the Project Explorer window. The
Project Explorer window includes two pages, the Items page and the Files
page. The Items page displays the project items as they exist in the project
tree. The Files page displays the project items that have a corresponding file
on disk. You can organize filenames and folders on this page. Project
operations on the Files page both reflect and update the contents on disk.

A project can contain LabVIEW files, such as VIs, custom controls,
type definitions, and templates, as well as supporting files, such as
documentation, data files, or configuration files.

You must use projects to build applications and shared libraries. You also
must use a project to work with an RT, FPGA, mobile device, Touch Panel,
DSP, or embedded target. Refer to the specific module documentation for
more information about using projects with these targets.

Each project can have multiple targets, representing the host computer as
well as real-time systems, FPGA systems, and mobile devices. When you
place a VI in a target in the Project Explorer, the VI becomes targeted to that
system and has palettes appropriate to the target.

Adding Folders to a Project
Use the Project Explorer window to add folders to create an organizational
structure for items in a LabVIEW project.

Adding auto-populated folders adds a directory on disk to the project.
LabVIEW continuously monitors and updates the folder according to
changes made in the project and on disk. A blue folder icon with a yellow
cylinder identifies this type of folder. To disconnect an auto-populated
folder from disk, right-click the auto-populated folder on the Items page and
select Stop Auto-populating from the shortcut menu. LabVIEW disconnects
the folder from the corresponding folder on disk. This option is available
only to top-level folders and applies recursively to subfolders of
auto-populated folders.

A virtual folder is a folder in the project that organizes project items and
does not represent files on disk. A silver folder icon identifies this type
of folder. You can convert a virtual folder to an auto-populated folder.

Lesson 2 Configuring Your Hardware

LabVIEW Real-Time 1 Course Manual 2-8 ni.com

Right-click the virtual folder and select Convert to Auto-populating
Folder to display a file dialog box. Select a folder on disk to auto-populate
with. An auto-populated folder appears in the project. LabVIEW
automatically renames the virtual folder to match the disk folder and adds
all contents of the disk folder to the project. If items in the directory already
exist in the project, the items move within the auto-populated folder. Items
in the virtual folder that do not exist in the directory on disk move to the
target.

Project Libraries
LabVIEW project libraries are collections of VIs, type definitions, shared
variables, palette menu files, and other files, including other project
libraries. When you create and save a new project library, LabVIEW creates
a project library file (.lvlib), which includes the properties of the project
library and the references to files that the project library owns.

Use libraries to group and control a set of VIs, controls, and variables.
A library does not affect the location of files on a disk. However, files in
a library are explicitly linked to that library. Adding a file in a library to a
project adds the entire library to the project. LabVIEW reports an error if a
file cannot locate the library it is a part of, or if a library cannot locate files
that are part of it.

Libraries define a namespace, which prevents name conflicts between files
inside a library and files outside a library. This allows you to have multiple
VIs with the same name in memory at the same time, as long as each VI
resides in a separate library.

You can define each item in a library as public or private. VIs outside the
library can use public items, but VIs can use private items only within the
same library. By defining public and private items for a library you provide
a controlled interface to anyone using the library and prevent users of the
library from directly accessing low-level, private items.

Refer to the Using Project Libraries topic of the LabVIEW Help for more
information about project libraries.

Libraries are required to use shared variables. Refer to Lesson 3, Real-Time
Architecture: Design, and Lesson 5, Communication, for more information
about shared variables.

Lesson 2 Configuring Your Hardware

© National Instruments Corporation 2-9 LabVIEW Real-Time 1 Course Manual

Creating a Project
Complete the following steps to create a project.

1. Select File»New Project to display the Project Explorer window. By
default the new project includes the My Computer target that represents
the host computer.

2. Add items you want to run on the host computer to the My Computer
target.

3. Select File»Save to save the project.

Adding a Real-Time Target
To add a target to a LabVIEW project, you must have a module or driver that
supports targets installed. Complete the following steps to add a target or
device to an existing project.

1. Right-click the project root and select New»Targets and Devices to
display the Add Targets and Devices dialog box. If a target in the project
supports other targets, you also can right-click the target and select
New»Targets and Devices to add a target under the existing target.
Examples of external targets include RT cRIO, PXI, cFP, and RT
Desktop systems.

2. Select the type of RT target you want to add from the Targets and
Devices section of the Add Targets and Devices dialog box. You can
select from the following types of RT targets:

• Existing target or device.

• New target or device.

3. Select a target and click OK. An item representing the RT target appears
in the Project Explorer window.

Note You cannot add non-real-time desktop computers to a project as targets.

Connecting to a Target
Right-click a target and select Connect to open a front panel connection
with the target. LabVIEW verifies that the target responds and checks for
VIs running on the target that do not match the current project. If you do not
manually connect to the target, LabVIEW connects automatically when you
run a VI on the target.

Note You can change the IP address of the target by right-clicking the target and
selecting Properties.

Lesson 2 Configuring Your Hardware

LabVIEW Real-Time 1 Course Manual 2-10 ni.com

Adding VIs to a Target
To run VIs on an RT target, add the VIs to the project tree under the
appropriate target. You can add new or existing VIs by right-clicking the
target or by selecting the Project menu. You also can drag items from other
locations in the project tree or drag files from the Windows Explorer.

When you add a VI to the project tree under a target, the VI becomes
targeted to that target. Real-time targeted VIs display specific real-time
Controls and Function palettes. When you run a real-time targeted VI,
LabVIEW automatically downloads and runs the VI on the target.

Running VIs on a Target
After you connect to a target, you can download a VI to the RT target. The
block diagram runs on the RT target.

The communication between the compiled code and the host PC is
transparent to the user and occurs through front-panel communication.
Refer to Lesson 5, Communication, for more information about front-panel
communication and other communication methods.

The Real-Time Development System can use all the debugging features in
LabVIEW except the call chain ring. Refer to Lesson 6, Verifying Your
Application, for more information about debugging your application.

Closing a Front Panel Connection Without Closing VIs
You can exit LabVIEW on the host computer without closing the VIs on
the RT target. Select File»Exit to close LabVIEW on the host computer.
A dialog box prompts you to exit LabVIEW without closing RT Engine VIs.
Select Close to abort the VIs running on the target before exiting. Select
Disconnect if you want the VIs running on the RT target to continue
running.

You also can disconnect the RT target connection from the Project Explorer.
When you disconnect, any running VIs continue to run on the target, but
debugging and front panel communication are disabled. Reconnecting to the
target automatically opens all VIs running on that target and re-establishes
the connection for debugging and front panel communication.

If you connect to a target that is running VIs that are not in the active project,
LabVIEW prompts you to abort the VIs or add them to the project before
opening them.

Lesson 2 Configuring Your Hardware

© National Instruments Corporation 2-11 LabVIEW Real-Time 1 Course Manual

Summary – Quiz

1. Which of the following are methods for connecting target and host
computers?

a. Connect target and host computers to the same local area network

b. Connect target computer directly to host computer using an Ethernet
crossover cable

c. Both a & b

2. True or False? If your target is configured to obtain an IP address
automatically from a DHCP server, the target will have the same
IP address every time it boots up.

3. For LabVIEW to connect to and run VIs on the RT target, you must
create a ____________.

a. DHCP server

b. Local Area Network

c. LabVIEW Project

Lesson 2 Configuring Your Hardware

© National Instruments Corporation 2-13 LabVIEW Real-Time 1 Course Manual

Summary – Quiz Answers

1. Which of the following are methods for connecting target and host
computers?

a. Connect target and host computers to the same local area network

b. Connect target computer directly to host computer using an Ethernet
crossover cable

c. Both a & b

2. True or False? If your target is configured to obtain an IP address
automatically from a DHCP server, the target will have the same
IP address every time it boots up.

False

3. For LabVIEW to connect to and run VIs on the RT target, you must
create a ____________.

a. DHCP server

b. Local Area Network

c. LabVIEW Project

Lesson 2 Configuring Your Hardware

LabVIEW Real-Time 1 Course Manual 2-14 ni.com

Notes

© National Instruments Corporation 3-1 LabVIEW Real-Time 1 Course Manual

3
Real-Time Architecture: Design

When implementing a system with the LabVIEW Real-Time Module,
consider whether you need to use determinism. If your application only
needs the embedded qualities of the LabVIEW Real-Time Module,
including the reliability of the LabVIEW Real-Time Module, the ability to
off-load processing, and headless black box design, it does not need to be
deterministic. However, if your application must guarantee a response to
an external event within a given time or meet deadlines cyclically and
predictably, it must be deterministic.

When designing applications within real-time constraints, you must
employ certain programming techniques to achieve determinism. When
programming a LabVIEW Real-Time Module application, you can decide
how to establish communication between multiple tasks or threads without
disrupting determinism. This lesson discusses how to design your
application to achieve determinism.

Topics
A. Host and Target Application Architecture

B. Multithreading

C. Yielding Execution in Deterministic Loops

D. Improving Speed and Determinism

E. Sharing Data Locally on RT Target

Lesson 3 Real-Time Architecture: Design

LabVIEW Real-Time 1 Course Manual 3-2 ni.com

A. Host and Target Application Architecture
Figure 3-1 demonstrates the basic architecture of a well-designed real-time
application. The overall task is divided into two parts—the host application
and the target application. The host application contains the user interface.
The target application is divided into two parts—the deterministic loop and
the non-deterministic loops. These loops are contained within separate VIs.

Figure 3-1. Host and Target Application Architecture

Deterministic applications depend on deterministic tasks to complete on
time, every time. Therefore, deterministic tasks need dedicated processor
resources to ensure timely completion. Dividing tasks helps to ensure that
each task receives the processor resources it needs to execute on time.

Place any code that must execute deterministically in the deterministic loop.
Place all other code in non-deterministic loops. In most applications, the
deterministic loop handles all control tasks and/or safety monitoring and the
non-deterministic loops handle all communication and data logging.

Host Application
The host application runs on the host computer and communicates with VIs
running on the target computer. This communication may involve user
interface information, data retrieval, data broadcast to other systems needing
data from the target application, and any other non-deterministic tasks that
you may need.

Target Application
The target application consists of deterministic code and non-deterministic
code. Use a priority scheme to separate the portions of the program that must
behave deterministically from the rest of the application.

Target ApplicationHost Application

User Interface

Data Storage

Network
Communication

Non-deterministic
Loop

Inter-task
Communication

Data Storage

Deterministic
Loop

Lesson 3 Real-Time Architecture: Design

© National Instruments Corporation 3-3 LabVIEW Real-Time 1 Course Manual

Deterministic versus Non-Deterministic Processes
Deterministic applications often perform a critical task iteratively, so that all
iterations consume a measurably precise amount of processor time. Thus,
deterministic applications are valuable not for their speed, but for their
reliability in consistently responding to inputs and supplying outputs with
little jitter.

A common example of a deterministic application is a deterministic control
loop, which gathers information about a physical system and responds to
that information with precisely-timed output. Consider the oil industry
where thousands of feet of pipes are assembled daily. As two pipes are
mechanically threaded together end-to-end, the torque required to twist the
pipes increases until the pipes are fully connected. Suppose the machine
connecting the pipes uses a control loop to respond to an increase in
resistance between the pipes by applying more torque. After a critical level
of torque is attained, the control loop is triggered to terminate. Under these
conditions, the loop must execute deterministically because lag in the
software could result in severe damage to the pipes and other equipment.

Understanding multithreading is a prerequisite to understanding priority
levels. Multithreading expands the idea of multitasking.

B. Multithreading
Multitasking refers to the ability of the operating system to quickly switch
between tasks, giving the appearance of simultaneous execution of those
tasks. For example, in Windows 3.1, a task is generally an entire application,
such as Microsoft Word, Microsoft Excel, or LabVIEW. Each application
runs for a small time slice before yielding to the next application.
Windows 3.1 uses a technique known as cooperative multitasking, where
the operating system relies on running applications to yield control of
the processor to the operating system at regular intervals. Occasionally,
applications either do not yield or yield inappropriately and cause execution
problems.

Windows 2000/XP relies on preemptive multitasking, where the operating
system can take control of the processor at any instant, regardless of the state
of the application currently running. Preemptive multitasking guarantees
better response to the user and higher data throughput. This minimizes the
possibility of one application monopolizing the processor.

Lesson 3 Real-Time Architecture: Design

LabVIEW Real-Time 1 Course Manual 3-4 ni.com

What is Multithreading?
Multithreading applies the concept of multitasking to a single application by
breaking it into smaller tasks that execute in different execution system
threads. A thread is a completely independent flow of execution for an
application within the execution system. Multithreaded applications
maximize the efficiency of processors because the processors do not sit idle
if there are other threads ready to run. An application that reads and writes
from a file, performs I/O, or polls the user interface for activity can benefit
from multithreading because it can use processors to run other tasks during
breaks in these activities.

For example, in a LabVIEW multithreaded program, the application might
be divided into three threads—a user interface thread, a data acquisition
thread, and an instrument control thread—each of which can be assigned
a priority and operate independently. Thus, multithreaded applications
can have multiple tasks progressing in parallel with other applications.
Multithreading allows LabVIEW to run tasks in true parallel on multi-core
symmetric multiprocessing (SMP) systems.

The operating system divides processing time on the different threads
similarly to the way it divides processing time among entire applications
in an exclusively multitasking system.

Advantage of Multithreading
Multithreading provides several advantages for a real-time system.
First, multithreading allows you to conceptually divide your code into
independent tasks, which can effectively execute at the same time.
Second, multithreading allows you to take full advantage of multi-core or
multiple processor systems. In order to utilize the capabilities of multi-core
systems, you must have multiple tasks in your code that can execute at the
same time. Finally, multithreading is useful for dividing a program into
deterministic and non-deterministic tasks.

Multithreading is useful when parts of your code are inherently
non-deterministic or parts of your code rely on non-deterministic
I/O. A control loop and safety monitoring are considered deterministic
because both must execute on time, every time to ensure accuracy.
Communication is non-deterministic because a person or computer may not
respond on time, every time. Likewise, data logging is non-deterministic
because an accurate time stamp can identify when the data was collected or
calculated.

What could happen to a deterministic process if a non-deterministic task
were involved? Placing network communication tasks (non-deterministic
tasks) inside the deterministic loop may harm determinism. For example, if
deterministic code relies on responses from another PC over the network

Lesson 3 Real-Time Architecture: Design

© National Instruments Corporation 3-5 LabVIEW Real-Time 1 Course Manual

and if the other PC does not reply in time, the deterministic code may miss
a deadline. To prevent missed deadlines, separate the threads into
deterministic tasks and non-deterministic tasks. Then you can assign a
higher priority to deterministic tasks to ensure that they always finish on
time.

The ability to assign leveled priorities is an important feature of real-time
operating systems.

Real-Time Multithreading Analogy
To illustrate real-time multithreading, imagine a car repair garage. There is
only one mechanic—he represents the processor and his work represents
processing. The receptionist who lines up the service requests as they arrive
is the Operating System. All service requests are scheduled in the order they
arrive, except when a higher priority customer arrives. When this happens,
the receptionist schedules that customer ahead of the lower priority
customers.

Figure 3-2. Real-Time Multithreading Analogy

In this town, there is one ambulance which is the highest priority repair.
Similarly, in LabVIEW Real-Time Module applications, National
Instruments recommends that you limit yourself to one deterministic loop
per core. Meanwhile, the mechanic can work on the other cars of equal
priority at the same time, making progress on each of them. Similarly, equal
priority threads share the same CPU. However, if a higher priority car
arrives while the mechanic is working on these lower priority cars, he will
put them all aside to work on the higher priority car until completion. This
is called preemption. When he is finished with the higher priority cars, he
will return to the lower priority cars. If, however, there are always higher
priority cars to work on, he can never return to the lower priority cars. This
is called starvation.

Tasks

Highest Priority
(One VI Per Core) Normal Priority

One Mechanic
(Processor)

Receptionist
(Operating System)

Lesson 3 Real-Time Architecture: Design

LabVIEW Real-Time 1 Course Manual 3-6 ni.com

Scheduling Threads
There are two methods for scheduling threads—round robin and
preemptive. The RTOS on NI RT targets uses a combination of round robin
and preemptive scheduling to execute threads in the execution system.

Round robin scheduling applies to threads of equal priority. Equal shares of
processor time are allocated among equal priority threads. For example,
each normal priority thread is allotted 10 ms to run. The processor executes
all the tasks it can in 10 ms and whatever is incomplete at the end of that
period must wait to complete during the next allocation of time.

Preemptive scheduling means that any higher priority thread that needs to
execute immediately pauses execution of all lower priority threads and
begins to execute. The deterministic loop should be set to the highest
priority and preempt all other priorities.

Round Robin Scheduling
Round robin scheduling shares processor time between threads based on
equal shares of processor time. The time allocation for a LabVIEW
Real-Time thread is 10 ms.

Figure 3-3. Round Robin Scheduling

To illustrate round robin scheduling, recall the analogy of an automobile
repair shop. In this case, one mechanic represents the processor, and a
receptionist represents the scheduler. Multiple cars represent the multiple
threads of the system. Using round robin scheduling, the mechanic cycles
between each car for a set period of time.

Receptionist
(Scheduler)

Normal

Normal

Mechanic
(Processor)

Normal

Lesson 3 Real-Time Architecture: Design

© National Instruments Corporation 3-7 LabVIEW Real-Time 1 Course Manual

Round robin scheduling guarantees each thread has some time with the
processor; however, there is no prioritization of tasks. For example, if the
town has only one ambulance and it needs to be serviced, round robin
scheduling would not allow the mechanic to give priority service.

Preemptive Scheduling
With preemptive scheduling, you can give priority to tasks. In this case,
one thread can be designated as the most important. When the highest
priority thread needs processor time, the other threads must wait until the
highest priority thread is finished.

Figure 3-4. Preemptive Scheduling

In the repair shop analogy, the ambulance is assigned the highest priority. As
a result, the mechanic services it as soon as it arrives. Repairs on all
other cars are delayed until the ambulance service is complete. After the
ambulance service is complete, the other cars resume sharing time with
the mechanic.

Note A thread swap occurs when the processor switches between threads. Every thread
swap takes additional time from the processor.

LabVIEW Real-Time Scheduling
Each VI in an RT application is assigned a priority. Thread priority
determines the execution of VIs, with higher priority threads preempting
lower priority threads. Threads with equal priority use round robin
scheduling. The deterministic loop should receive the processor resources
necessary to complete the task and does not relinquish control of the
processor until it cooperatively yields to non-deterministic loops or until it
completes the task. The non-deterministic loops then run until preempted by

Receptionist
(Scheduler)

Normal

Normal

Normal

Mechanic
(Processor)

Highest

Lesson 3 Real-Time Architecture: Design

LabVIEW Real-Time 1 Course Manual 3-8 ni.com

the deterministic loop. The deterministic loop releases control of the
processor by completing the operation or by sleeping. Without sleep time
built into the deterministic loop, all other lower priority operations on the
system are unable to execute.

Figure 3-5. LabVIEW Real-Time Scheduling

In the repair shop analogy, the ambulance is assigned the highest priority.
The mechanic services the ambulance as soon as it arrives. After the
mechanic arrives at a designated sleep time or finishes service on the
ambulance, the mechanic services other vehicles on a shared basis until
break time is over. The mechanic then returns to working on the ambulance.

Setting Priorities
You can use Timed Loops or VIs with different priorities to control the
execution and timing of deterministic tasks.

Dividing Tasks to Create Deterministic
Multithreaded Applications
Deterministic applications depend on deterministic tasks to complete on
time, every time. Therefore, deterministic tasks need dedicated processor
resources to ensure timely completion. Dividing tasks helps to ensure that
each task receives the processor resources it needs to execute on time.

Separate deterministic tasks from all other tasks to ensure deterministic
tasks receive enough processor resources. For example, if a control
application acquires data at regular intervals and stores the data on disk, you
must handle the timing and control of the data acquisition deterministically.
However, storing the data on disk is inherently a non-deterministic task
because file I/O operations have unpredictable response times that depend

Receptionist
(Scheduler)

Normal

Normal

Highest

Mechanic
(Processor)

Normal

Lesson 3 Real-Time Architecture: Design

© National Instruments Corporation 3-9 LabVIEW Real-Time 1 Course Manual

on the hardware and the availability of the hardware resource. You can use
Timed Loops or VIs with different priorities to control the execution and
timing of deterministic tasks.

Note Within deterministic tasks, ensure that each operation receives dedicated
processor resources by avoiding unnecessary parallelism. In a multiple CPU system,
avoid creating more parallel operations deterministic operations than the number of
available CPUs. Because it is impossible to determine the execution order of parallel
operations, unnecessary parallelism can impede determinism.

Creating Deterministic Applications Using VIs Set to
Different Priorities
Separate deterministic tasks from non-deterministic tasks and place
deterministic tasks in different VIs to ensure they receive enough processor
resources. You can prioritize the VIs and then categorize them into one of
the available execution systems to control the amount of processor resources
each VI receives.

LabVIEW assigns each VI to an execution system thread according to the
VI priority and execution system you specify. The threads execute on the
processor accordingly.

Assigning Priorities to VIs
You can change the priority of a VI by right-clicking the VI in the Project
Explorer window and selecting Properties from the shortcut menu to open
the VI Properties dialog box. Select Execution from the Category
pull-down menu in the VI Properties dialog box to open the Execution
Properties page, where you can set the priority of a VI. You can select from
the following VI priorities, listed in order from lowest to highest, to assign
VIs a priority level:

• Background priority (lowest)

• Normal priority (default)

• Above normal priority

• High priority

• Time-critical priority (highest)

Normal priority is the default priority for all VIs you create in LabVIEW.
However, subVIs inherit the priority of the caller VI. For example, a subVI
called in a deterministic VI runs at time-critical priority.

Lesson 3 Real-Time Architecture: Design

LabVIEW Real-Time 1 Course Manual 3-10 ni.com

Time-critical VI Priority
The time-critical priority preempts all other priorities. A time-critical
priority VI does not relinquish processor resources until it completes all
tasks. However, a deterministic VI can explicitly relinquish control of
processor resources to ensure that the VI does not monopolize the processor
resources.

Note Because time-critical priority VIs cannot preempt each other, create only
one deterministic VI per CPU to guarantee deterministic behavior.

In addition to the five priority levels previously listed, you can set VIs to
subroutine priority. VIs set for subroutine priority do not share execution
time with other VIs. When a VI runs at the subroutine priority level, it
effectively takes control of the thread in which it is running, and it runs in
the same thread as its caller. No other VI can run in that thread until the
subroutine VI finishes running, even if the other VI is at the subroutine
priority level.

Creating Deterministic Applications Using the Timed Loop
Separate deterministic tasks from non-deterministic tasks and place them in
a different Timed Loop in an RT target VI to ensure the deterministic tasks
receive enough processor resources. A Timed Loop executes a subdiagram
each iteration of the loop at the period and priority you specify. The higher
the priority of a Timed Loop, the greater priority the structure has relative to
other timed structures on the block diagram.

Timed Loops execute at a priority below the time-critical priority of any
VI but above high priority, which means that Timed Loops execute in the
data flow of a block diagram ahead of any VI not configured to run at a
time-critical priority.

Lesson 3 Real-Time Architecture: Design

© National Instruments Corporation 3-11 LabVIEW Real-Time 1 Course Manual

What is a Timed Loop?
The Timed Loop includes the Input, Left Data, Right Data, and Output
nodes, as shown in Figure 3-6.

Figure 3-6. A Timed Loop

You can set configuration options of the Timed Loop by wiring values to the
inputs of the Input node, or you can use the Loop Configuration dialog box
to enter values for the options. By default, the inputs of the Input node
appear as icons with the values you specified in the Loop Configuration
dialog box. Refer to the Timed Loop – Configuration section for more
information about configuring a Timed Loop.

The Left Data node of the Timed Loop provides timing and status
information about the previous loop iteration, such as if the iteration
executed late, the time the iteration actually began executing, and when the
iteration should have executed. You can wire data from the Left Data node
to the Right Data node to configure future iterations of the Timed Loop. You
can resize the Left Data and Right Data nodes. Refer to the Timed Loop –
Changing Input Node Values Dynamically section for more information on
using the Left Data and Right Data nodes.

The Output node returns information from the final iteration of the While
Loop, including whether the final iteration completed on time, and any
errors that occurred during loop execution.

Timed Loops execute at a priority below the time-critical priority of any
VI but above high priority, which means that Timed Loops execute in the
data flow of a block diagram ahead of any VI not configured to run at a
time-critical priority.

Lesson 3 Real-Time Architecture: Design

LabVIEW Real-Time 1 Course Manual 3-12 ni.com

LabVIEW executes timed structures threads below time-critical priority and
above high priority. You can specify the priority level of Timed Loops
relative to other timed structures within a VI by setting the priority of the
Timed Loop. Use the Configure Timed Loop dialog box to configure a
timing source, period, priority, and other advanced options for the execution
of the Timed Loop.

The higher the priority of a timed structure, the higher the priority the
structure has relative to other timed structures and code on the block
diagram. All timed structures execute at a priority relative to the LabVIEW
execution system, between high and time-critical priority. To avoid priority
inversions, National Instruments recommends using timed structures only in
VIs set to normal priority.

Timed Loop – Configuration
Use the Configure Timed Loop dialog box to configure how the Timed Loop
executes. Double-click the Input node or right-click the Input node and
select Configure Input Node to display the Configure Timed Loop
dialog box.

Use this dialog box to specify a timing source, period, offset timing, and
other options. When you wire a value to an input node terminal, the
corresponding field in the Configure Timed Loop dialog box becomes
disabled.

After the loop begins, you can use the Right Data node to dynamically adjust
the period, offset, priorities, and mode values for the Timed Loop. The
updates take effect the next iteration of the loop. Refer to the Timed Loop –
Changing Input Node Values Dynamically section for more information
about dynamically adjusting the Timed Loop values.

Timed Loop – Setting Priorities
Each Timed Loop on the block diagram creates and runs in its own
execution system that contains a single thread, so no parallel tasks can occur.
The priority of a Timed Loop specifies when the loop executes on the block
diagram relative to other Timed Loops. Use the priority setting of a Timed
Loop to write applications with multiple tasks that can preempt each other
in the same VI. The higher the value you enter in Priority of the Timed Loop,
the higher the priority the Timed Loop has relative to other Timed Loops
on the block diagram. The value you enter in the Priority input must be a
positive integer between 1 and 65,535.

If two Timed Loops have the same priority, the first Timed Loop that
executes completes its execution before the other Timed Loop starts its
execution.

Lesson 3 Real-Time Architecture: Design

© National Instruments Corporation 3-13 LabVIEW Real-Time 1 Course Manual

Timed Loops execute at a priority below the time-critical priority of any VI
but above high priority, which means that Timed Loops execute in the data
flow of a block diagram ahead of any VI not configured to run at a
time-critical priority.

Timed Loop – Timing Source
A timing source determines when a Timed Loop executes a loop iteration.
By default, the Timed Loop uses the 1 kHz clock of the operating system as
the timing source and can execute only once every 1 ms because that is the
fastest speed at which the operating system timing source operates. If the
system does not include a supported hardware device, the 1 kHz clock is
the only timing source available. If the system does include a supported
hardware device, you can select from other timing sources, such as the 1 µs
in CPU cycles available on some real-time hardware; or events, such as the
rising edge of a DAQ counter input or output; or the end-of-scan interrupt of
a DAQ device.

A 1 MHz clock is available on controllers that use a Pentium 3 or 4
processor.

Use the Source type listbox in the Configure Timed Loop dialog
box to select a timing source or use the Create Timing Source VI to
programmatically select a timing source.

Timed Loop – Period and Offset
The period is the length of time between loop executions. The offset is the
length of time the Timed Loop waits to execute the iterations. The timing
source determines the time unit of the period and the offset. If the timing
source is a 1 kHz clock, the unit of time for the period and the offset is in
milliseconds. If the timing source is a 1 MHz clock on an RT target with
a Pentium processor, the unit of time for the period and the offset is in
microseconds. The time the first timing source starts determines the start
time of the offset.

Timed Loop – Naming Timed Loops
By default, LabVIEW automatically identifies each Timed Loop you place
on the block diagram with a unique name, which appears in the Loop
name text box of the Loop Configuration dialog box. You can rename the
Timed Loop by entering a name in this text box. You can use the unique
name of the Timed Loop with the VIs on the Timed Structures palette to
programmatically stop the Timed Loop and to synchronize a group of Timed
Loops to use the same start time.

If a reentrant VI includes a Timed Loop and you use two or more
instances of that reentrant VI as subVIs on a block diagram, you must
programmatically change the name of the Timed Loop for each instance of

Lesson 3 Real-Time Architecture: Design

LabVIEW Real-Time 1 Course Manual 3-14 ni.com

the reentrant VI. Ensure that the reentrant VI that includes the Timed Loop
has an input terminal on the connector pane connected to a string control
wired to the Structure name input of the Timed Loop on the block diagram.
On the block diagram where two or more instances of the reentrant VI are
used as a subVI, wire unique string values to the Structure name input on the
reentrant subVI to uniquely identify each Timed Loop within each instance
of the reentrant subVI.

Refer to the Naming Timed Structures topic of the LabVIEW Help for more
information about naming Timed Loops. Refer to the Suggestions for Using
Execution Systems and Priorities topic in the LabVIEW Help for more
information about using reentrant VIs.

Timed Loop – Assigning Processors
LabVIEW is compatible with multi-processor and multi-core machines.
When you execute LabVIEW code in a multi-processor environment,
LabVIEW separates the code into threads and assigns threads to available
processors. This makes efficient use of the processors because it prevents a
processor from waiting on a particular thread. You can override the default
processor assignment in LabVIEW by using a Timed Loop. Timed Loops
allow you to assign a core or processor to each Timed Loop by specifying
the processor number. Manually assigning processors can help to improve
the determinism of time-critical code by causing it to execute on a dedicated
processor while non-critical code shares the other processor(s). Manually
assigning processors can also help to improve performance in some systems
because threads do not need to be swapped on and off the processor as often.
However, manually assigning processors generally uses the processors less
efficiently, because a processor can be idle waiting for a particular thread
while other threads are ready to execute.

Timed Loop – Modes
Occasionally, an iteration of a Timed Loop might execute later than the time
you specified. The mode of the Timed Loop determines how the loop
handles any late executions. Use the options in the Action on Late Iterations
section of the Configure Timed Loop dialog box or the Mode input of the
Input node to specify the mode a Timed Loop uses to handle the late
execution of a Timed Loop iteration.

You can handle the late execution of a Timed Loop in the following ways:

• The LabVIEW Timed Loop Scheduler can align the execution with the
original established schedule.

• The LabVIEW Timed Loop Scheduler can define a new schedule that
starts at the current time.

Lesson 3 Real-Time Architecture: Design

© National Instruments Corporation 3-15 LabVIEW Real-Time 1 Course Manual

• The Timed Loop can process the missed iterations.

• The Timed Loop can skip any missed iterations.

For example, if you set a Timed Loop with a period of 100 ms and an offset
of 30 ms, you expect the first loop iteration to execute 30 ms after the first
timing source starts running and in multiples of 100 ms after that at 130 ms,
230 ms, 330 ms, and so on. However, the first execution of the Timed Loop
might occur after 240 ms have elapsed. Because other Timed Loops or
hardware devices might already be running at the schedule you specified,
you might want to align the late Timed Loop with the already running global
schedule, which means the Timed Loop should align itself as quickly as
possible with the schedule you specified. In this case, the next Timed Loop
iteration would run at 330 ms and continue to run in multiples of 100 at
430 ms, 530 ms, and so on. If aligning the Timed Loop with other Timed
Loops or other hardware devices is not important, the Timed Loop can run
immediately and use the current time as its actual offset. In this case, the
subsequent loop iterations would run at 240 ms, 340 ms, 440 ms, and so on.

If the Timed Loop is late, it might miss data other Timed Loops or hardware
devices generate. For example, if the Timed Loop missed two iterations and
some of the data from the current period, a buffer could hold the data from
the missed iterations. You might want the Timed Loop to process the missed
data before it aligns with the schedule you specified. However, a Timed
Loop that processes the missed iterations causes jitter. If you do not want to
process the missed data, the Timed Loop can ignore the older data in the
buffer that the loop iterations missed and process only the latest data, such
as the data available at the next period and the subsequent iterations.

Timed Loop – Changing Input Node Values Dynamically
Use the Left Data node to acquire information about the execution of the
Timed Loop, such as if the timing source executed late or if the offset or
period values changed. You can wire the values the Left Data node returns
to the Right Data node or to nodes in the subdiagram within the Timed Loop.

Use the Right Data node to dynamically change the input values of the
Timed Loop on the next loop iteration.

If you dynamically change the offset of the Timed Loop by wiring a value
to the Offset input of the Right Data node, you also must specify a mode
with the Mode input of the Right Data node. To set the mode, right-click the
Mode input of the Right Data node and select Create»Constant or Create»
Control to create an enumerated constant or control you can use to select a
mode.

Lesson 3 Real-Time Architecture: Design

LabVIEW Real-Time 1 Course Manual 3-16 ni.com

Timed Loop – Aborting Execution
Use the Stop Timed Structure VI to abort the execution of a Timed Loop
programmatically. Specify the name of the Timed Loop you want to abort
by wiring that name in a string constant or control to the name input of the
Stop Timed Structure VI.

Synchronizing Timed Loop Starts
Use the Synchronize Timed Structure Starts VI to ensure all Timed Loops
on a block diagram use the same start time and the same timing source. For
example, you might have two Timed Loops and you want to ensure that
they execute on the same schedule relative to each other. You might want
the first Timed Loop to execute first and generate data, then have the
second Timed Loop process that data when the Timed Loop execution
finishes. To ensure that both Timed Loops use the same start time as the
basis for their execution, you create a Timed Loop group by wiring a name
for the group to the synchronization group name input and wiring an array
of Timed Loop names to the structure names input.

Use the Timed Loop when you want to develop VIs with multirate timing
capabilities, feedback on loop execution, timing characteristics that change
dynamically, or several levels of execution priority. Use the VI Priority
method when you do not need any of the added functionality in Timed
Loops and wish to run your code faster. The VI Priority method uses less
overhead than the Timed Loop method. The VI Priority method also allows
you to set a VI to a wider range of priorities such as background priority
which runs below normal priority tasks. Timed Loops allow you to set code
to a higher number of priorities, but all Timed Loops must run at a priority
between high and time-critical.

C. Yielding Execution in Deterministic Loops
Because of the preemptive nature of deterministic loops, they can
monopolize processor resources. In a single-core system, a deterministic
loop might use all the processor resources, not allowing non-deterministic
loops in the application to execute. You must build deterministic loops that
periodically yield or sleep, to allow lower priority tasks to execute without
affecting the determinism of the deterministic loop. In a multiple CPU
system, you can put a deterministic loop on a dedicated core.

Lesson 3 Real-Time Architecture: Design

© National Instruments Corporation 3-17 LabVIEW Real-Time 1 Course Manual

Figure 3-7. Yielding Execution in Deterministic Loops

Consider sleep mode as a programmatic tool that a VI can use to proactively
remove itself from the LabVIEW and operating system scheduling
mechanisms. Sleeping pauses the execution of a VI or a thread. By taking
advantage of sleep mode, you can allow a lower priority VI to run by putting
a higher priority VI to sleep.

In the top graph in Figure 3-7, the deterministic Loop starves the two normal
threads because no sleep has been placed in the deterministic loop.

Starvation
To understand starvation, consider Figure 3-8.

Three processes—A, B, and C—compete for a resource. Because process A
is a deterministic loop and has the highest priority, it runs until it finishes
using the resource, thus freeing the resource. At that point, another process
may use the resource—in this situation, either process B or process C. If
process A is ready to run again, it takes control of the resource and runs
until it is finished with the deterministic loop code. Again, one of the
two processes may run. If process A does not sleep long enough for both
processes to run, a lower priority process may never run. This situation is
called starvation.

Deterministic

Normal

Normal

Sleeping

Executing

Waiting

Time

Deterministic

Normal

Normal

Executing

Waiting

Sleep Added To Deterministic Loop

No Sleep In Deterministic Loop

Lesson 3 Real-Time Architecture: Design

LabVIEW Real-Time 1 Course Manual 3-18 ni.com

Figure 3-8. Starvation

Initially, process A has the resource and processes B and C wait for
process A to sleep so that they may use the resource. When process A
sleeps, the next highest priority process runs. In this case, because process
B has a higher priority than process C, process B may run before process C.
When the sleep time of process A ends, process A takes the resource back
from process B. If this situation continues indefinitely, process C may be
blocked from the resource and become starved. To prevent starvation of a
lower priority process, the higher priority process must sleep long enough to
allow lower priority processes time to execute.

Providing Sleep
You can program a sleep mode in a VI by using the timing functions or by
using a Timed Loop. When controlling the rate of a software loop by using
the Wait Until Next ms Multiple function from the Timing palette, you only
can achieve rates in 1 ms multiples. This means you can run the loop at full
speed, providing no sleep at all, or you can achieve loop rates of 1,000 Hz,
500 Hz, 333.33 Hz, 250 Hz, 200 Hz, and so on. However, if your controller
has at least a Pentium 3 or 4 class processor, you can use the timing
functions from the Real-Time Timing palette or the Timed Loop to achieve
µs wait times, which adds to the available loop rates.

You can provide sleep using the data acquisition hardware on the PXI
platforms. Use the DAQmx timing VIs to harness the clock on your data
acquisition hardware.

Refer to Lesson 4, Timing Applications and Acquiring Data, for more
information about programming sleep into your deterministic loop.

A. Time Critical

B. Above Normal

C. Normal

Sleeping

Executing

Waiting

Time

Sleep Added—May Still Starve Some Threads

A. Determinisitic

B. Above Normal

C. Normal

Executing

Waiting

No Sleep Causes Starvation

Lesson 3 Real-Time Architecture: Design

© National Instruments Corporation 3-19 LabVIEW Real-Time 1 Course Manual

Sleeping and Deterministic Loops
The time-critical priority (highest) of the LabVIEW Real-Time Module
threads have a unique characteristic that is different from normal LabVIEW
scheduling. If any VI running in the time-critical priority (highest) thread
sleeps, then the entire thread sleeps. Other VIs running on the thread are
forced to sleep and pause execution until the original VI wakes up. This is
only the case for the time-critical priority (highest) setting. Conversely, if
two VIs (or two loops for that matter), are executing on the same thread
(other than time-critical priority (highest), and one of them goes to sleep, the
other VIs on the same thread continue to execute. In other words, the
execution system of the LabVIEW Real-Time Module does not schedule
time-critical priority (highest) operations from parallel VIs or loops, when
any one of them sleep in the same time-critical priority (highest) thread. All
other priority threads in LabVIEW Real-Time, and all threads in normal
LabVIEW, continue to schedule operations from parallel loops and/or VIs,
in similar threads.

Given the cooperative multitasking nature of scheduling multiple
time-critical priority (highest) threads, it is recommended that you assign
the time-critical priority (highest) setting to only one VI or loop. This is the
only way to guarantee deterministic execution.

If more than one time-critical VI (or loop) is needed to achieve different
loop rates, you can use a Timed Loop instead of a time-critical priority VI.

Avoid parallelism inside a time-critical priority VI or deterministic Timed
Loop, because the code executes serially on the processor. A Wait VI or
Wait Until Next Multiple VI in a time-critical priority VI or deterministic
Timed Loop will execute serially with the rest of the code in the thread even
if it is placed in parallel. All VIs set to time-critical VI priority execute in
the time-critical priority thread. Each Timed Loop executes in its own
thread.

Lesson 3 Real-Time Architecture: Design

LabVIEW Real-Time 1 Course Manual 3-20 ni.com

D. Improving Speed and Determinism
The easiest way to improve determinism is to choose a faster hardware
platform. If you are unable to achieve a desired loop rate, first check your
hardware to be sure it is capable of reaching the required rate.

If your hardware rates are acceptable, you can improve the determinism
of your application in software by avoiding shared resources, contiguous
memory conflicts, and subVI overhead. Because the LabVIEW memory
manager is a shared resource, using memory reduction techniques also helps
to improve the determinism of an application.

As described in the Yielding Execution in Deterministic Loops section, you
should use only one deterministic loop per core.

The following sections explain the remaining programming methods for
improving determinism.

Avoid Shared Resources
In LabVIEW, two or more VIs might need to share resources. Shared
resources can cause jitter and prevent applications from taking advantage of
multiple CPUs. Certain data structures, driver libraries, and variables can
only be accessed serially, one process at a time. A simple example of a
shared resource common to all programming languages is the global
variable. You cannot access global variables simultaneously from multiple
processes. Therefore, compilers automatically protect the global variable as
a shared resource while one process needs to access it. Meanwhile, if a
second process tries to access the global variable while it is protected, the
second process must wait until the first process finishes with the global
variable. Understanding shared resources and how to identify them is an
important skill when programming real-time applications.

LabVIEW Real-Time shared resources include the following:

• Global variables

• LabVIEW memory manager

• Single-threaded DLLs

• Shared variables

• Non-reentrant subVIs

• Networking code (TCP/IP, UDP, VI Server)*

• File I/O*

• Semaphore VIs*

Lesson 3 Real-Time Architecture: Design

© National Instruments Corporation 3-21 LabVIEW Real-Time 1 Course Manual

Note The operations marked with an asterisk are inherently non-deterministic. Never
use them inside a time-critical priority loop if you are attempting to achieve real-time
performance.

Avoid Shared Resources – Priorities
Imagine a scenario where there is a shared resource, such as a global
variable, that is shared by two VIs—one set to normal priority and one set
to time-critical priority.

The RTOS uses priority inheritance to resolve the priority inversion as
quickly as possible using the following procedure:

• Allow the lower priority thread to temporarily inherit the time-critical
priority setting long enough to finish using the shared resource and
release the mutex.

• After releasing the mutex, the lower priority thread resumes its normal
priority setting and is taken off the processor.

• The time-critical priority thread proceeds to use the resource, that is,
access the global variable.

The priority inversion increases software jitter in the time-critical priority
thread. The jitter induced by a mutexed global variable is small compared
to the jitter induced by a mutexed LabVIEW memory manager. Unlike
accessing global variables, performing memory allocations is unbounded
in time and can introduce a broad range of software jitter while parallel
operations try to allocate blocks of memory in a wide variety of sizes.
The larger the block of memory to be allocated, the longer the priority
inheritance takes to resolve the priority inversion.

Shared Resources – SubVIs
Sharing subVIs can cause priority inversions the same as global variables.
You can set a VI to subroutine priority and select the Skip Subroutine Call
If Busy option to skip that VI within time-critical code and avoid software
jitter that occurs from a priority inversion.

However, if you run unrelated parallel processes that call the same VI, you
can configure the VI for reentrant execution. Use a reentrant VI to allow
multiple instances of a VI to execute in parallel with distinct and separate
data storage. LabVIEW RT can call multiple instances of a reentrant VI
simultaneously. Because reentrant VIs use their own data space, you cannot
use them to share or communicate data between threads. You should use
reentrancy only when you must simultaneously run multiple instances of
a VI within unrelated processes that do not need to share data within the
reentrant VI.

Lesson 3 Real-Time Architecture: Design

LabVIEW Real-Time 1 Course Manual 3-22 ni.com

To make a VI reentrant, select File»VI Properties, select Execution in the
VI Properties dialog box and place a checkmark in the Reentrant execution
checkbox.

Note Use reentrant VIs carefully because each call to the VI establishes a unique data
space for all controls and indicators in memory and thus uses more memory. For this
reason, you cannot use reentrant VIs as functional global variables. Also, making the
DAQ VIs reentrant does not solve the shared resource problem with NIDAQ32.dll. All
DAQ VIs load the DAQ driver, NIDAQ32.dll. This DLL is not multithreaded safe, so it
cannot be called simultaneously from multiple processes.

Shared Resources – Memory Management
When a VI allocates memory, the VI accesses the LabVIEW memory
manager. The LabVIEW memory manager allocates memory for data
storage. The LabVIEW memory manager is a shared resource and might be
locked by a mutex for up to several milliseconds. Allocating memory within
a deterministic VI can affect the determinism of the VI.

If you allow LabVIEW to dynamically allocate memory at run time, your
application could suffer from software jitter for the following reasons:

• The memory manager may already be mutexed, causing a shared
resource conflict.

• If the memory manager is immediately available, allocating memory is
non-deterministic because there is no upper bound on the execution time
of the memory allocation.

Preallocate Arrays
Avoid allocating memory within a time-critical loop. If you use arrays in
deterministic loops, you can reduce jitter by preallocating the arrays before
entering the loop. For example, instead of using the Build Array function
within your loop to index new data into an array, use the Initialize Array
function outside the loop and the Replace Array Subset function inside the
loop to create the array. Because the array is preallocated outside the loop,
the loop no longer needs to access the LabVIEW memory manager at every
iteration.

Shared Resources – Memory Management Summary
In general, memory allocations within a deterministic loop induce jitter
and affect the deterministic properties of a LabVIEW Real-Time Module
application. All memory allocations must be removed to guarantee robust
real-time performance. Preallocate arrays outside the loop if you want to
prevent jitter. Certain LabVIEW functions allocate memory, such as the
Build Array and Bundle functions. Refer to the Memory Manager

Lesson 3 Real-Time Architecture: Design

© National Instruments Corporation 3-23 LabVIEW Real-Time 1 Course Manual

Structures and Functions topic in the LabVIEW Help for more information
about functions that allocate memory.

Cast data to the proper data type in VIs running on the RT target. Each time
LabVIEW performs a type conversion, LabVIEW makes a copy of the data
buffer in memory to retain the new data type after the conversion. The
LabVIEW memory manager must allocate memory for the copy, which can
affect the determinism of time-critical VIs. Also, creating copies of the data
buffer takes up memory resources on an RT target. Use the smallest data
type possible when casting the data type. If you must convert the data type
of an array, perform the conversion before you build the array.

Keep in mind that a function output reuses an input buffer only if the output
and the input have the same data type, including the same representation,
size, and dimension. Arrays must have the same structure and number of
elements for function outputs to reuse the input buffer. This ability for a
function to reuse buffers is called inplaceness. You can use the Show Buffer
Allocations window to identify specific areas on the block diagram where
LabVIEW allocates memory.

LabVIEW creates an extra copy in memory of every global variable you use
in a VI. Reduce the number of global variables to improve the efficiency and
performance of VIs. Creating copies of the global variable takes up memory
resources on an RT target.

This course does not discuss all types of shared resources. Avoid Semaphore
VIs, TCP/IP, UDP, VI Server, and File I/O functions within a deterministic
loop. These functions are inherently non-deterministic and use shared
resources. For example, Semaphore VIs are themselves shared resources,
network functions use the Ethernet driver, and File I/O functions use the
hard disk. These functions can introduce severe software jitter in
deterministic code due to priority inversions.

Also, all handshaking protocols are non-deterministic. Do not run GPIB,
RS-232, or TCP/IP at time-critical priority. DAQ handshaking protocols,
such as burst mode and 8255 emulation mode on the 653x devices, are
non-deterministic, so avoid using them in deterministic loops.

Avoid Contiguous Memory Conflicts
LabVIEW handles many of the memory details that you normally handle in
a conventional, text-based language. For example, functions that generate
data must allocate storage for the data. When that data is no longer needed,
LabVIEW deallocates the associated memory. When you add new
information to an array or a string, LabVIEW allocates new memory to
accommodate the new array or string. However, running out of memory is a
concern with VIs running on an RT target.

Lesson 3 Real-Time Architecture: Design

LabVIEW Real-Time 1 Course Manual 3-24 ni.com

You must design memory-conscious VIs for RT targets. Always preallocate
space for arrays equal to the largest array size that you might encounter.

Figure 3-9. Avoid Contiguous Memory Conflicts

When you reboot or reset an RT target, the RTOS and the RT Engine load
into memory as shown in diagram 1 of Figure 3-9.

The RT Engine uses available memory for running RT target VIs and storing
data. In diagram 2 of Figure 3-9, ArrayMaker.vi creates Array 1. All
elements in Array 1 must be contiguous in memory.

The RTOS reuses the same memory addresses if you stop a VI and then run
it again with arrays of the same size or smaller. In diagram 3 of Figure 3-9,
ArrayMaker.vi creates Array 2. The RTOS creates Array 2 in the
reserved memory space previously occupied by Array 1. Array 2 is small
enough to fit in the reserved memory space that was allocated to Array 1.
The extra contiguous memory used for Array 1 remains in the reserved
memory space, as shown in diagram 3.

When ArrayMaker.vi runs for a third time with a larger array or if another
VI generates a larger array, the RT Engine must find a large enough
contiguous space. In diagram 4 of Figure 3-9, ArrayMaker.vi must create
Array 3, larger than the previous arrays, in the available memory.

Even when ArrayMaker.vi stops running, the RT Engine continues to
run and previously reserved memory is not available. If ArrayMaker.vi
runs a fourth time and attempts to create an array larger than Array 3, the
operation fails. There is no contiguous memory area large enough to create
the array because of the memory fragmentation. You can preserve memory

1 2 3 4

Array 1

ArrayMaker.vi

Real-Time
Operating
System
(RTOS)

RT Engine

Real-Time
Operating
System
(RTOS)

RT Engine

Array 2

ArrayMaker.vi

Real-Time
Operating
System
(RTOS)

RT Engine

Array 3

ArrayMaker.vi

Real-Time
Operating
System
(RTOS)

RT Engine

Lesson 3 Real-Time Architecture: Design

© National Instruments Corporation 3-25 LabVIEW Real-Time 1 Course Manual

space by preallocating array space equal to the largest use case, as shown in
the Preallocate Arrays section of this lesson.

In Place Element Structure
Use the In Place Element structure to control how the LabVIEW compiler
performs common operations, such as operating on an element of an array
and placing the resulting value back into the same array index, and to
increase memory and VI efficiency. Many LabVIEW operations require
LabVIEW to copy and maintain data values in memory, thereby decreasing
execution speed and increasing memory usage. The In Place Element
structure performs common LabVIEW operations without LabVIEW
making multiple copies of the data values in memory. Instead, the In Place
Element structure operates on data elements in the same memory location
and returns those elements to the same location in the array, cluster, variant,
or waveform. Because LabVIEW returns the data elements to the same
location in memory, the LabVIEW compiler does not have to make extra
copies of the data in memory.

The In Place Element structure is useful for updating clusters in
deterministic applications. Refer to the In Place Element Structure
topic of the LabVIEW Help for more information about using the structure
to increase memory efficiency in VIs.

Avoid SubVI Overhead
Calling a subVI from a VI running on an RT target adds a small amount of
overhead to the overall application. Although the overhead is small, calling
a subVI multiple times in a loop can add a significant amount of overhead.
You can embed the loop in the subVI to reduce the overhead.

The overhead involved in calling a subVI increases depending on the
amount of memory that must be copied by the memory manager.

You also can convert subVIs into subroutines by changing the VI priority.
The LabVIEW execution system minimizes the overhead to call
subroutines. Subroutines are short, frequently executed tasks that generally
do not require user interaction. Subroutines cannot display front panel data
and do not multitask with other VIs. Avoid using timing or dialog box
functions in subroutines.

Setting VI Properties
To reduce memory requirements and increase performance of VIs,
disable nonessential options in the VI Properties dialog box available
by right-clicking a VI In the Project Explorer window and selecting
Properties. Select Execution from the Category pull-down menu and
remove checkmarks from the Allow debugging and Auto handle menus

Lesson 3 Real-Time Architecture: Design

LabVIEW Real-Time 1 Course Manual 3-26 ni.com

at launch checkboxes. By disabling these options, VIs use less memory,
compile more quickly, and perform better.

Note The LabVIEW Real-Time Module ignores the Enable automatic error handling
option.

Use Low-Level Functions to Increase Execution Speed
LabVIEW Express VIs increase LabVIEW ease of use and improve
productivity with interactive dialog boxes that minimize programming
for applications. However, Express VIs may require additional performance
overhead during execution and perform optional tasks. Use low-level
functions to increase execution speed with finer control.

E. Sharing Data Locally on RT Target
After dividing tasks in an application into separate Timed Loops or VIs of
different priorities, you might need to communicate between the loops on a
block diagram of between the different VIs on the RT target. You can use the
following techniques to send and receive data between VIs or loops in an
application:

• Single-process shared variables with the Real-Time FIFO enabled

• Functional global variables

• RT FIFO (first in, first out buffer) functions

This course discusses the single-process shared variables with Real-Time
FIFO enabled method. Refer to the LabVIEW Real-Time 2 course for
information on the other techniques.

Single-Process Shared Variables with the RT FIFO Enabled
Single-process shared variables with the RT FIFO enabled are the preferred
communication method for deterministic data transfer between VIs or
loops, so this course focuses on their implementation.

Use single-process shared variables to share data between two locations in
a block diagram or between VIs running on an RT target. Right-click an RT
target in the Project Explorer window and select New»Variable from the
shortcut menu to open the Shared Variable Properties dialog box, which you
can use to create a single-process shared variable.

The Real-Time Module adds real-time FIFO capability to the shared
variable. By enabling the real-time FIFO of a shared variable, you can share
data without affecting the determinism of VIs running on an RT target. From
the Real-Time FIFO page of the Shared Variable Properties dialog box,

Lesson 3 Real-Time Architecture: Design

© National Instruments Corporation 3-27 LabVIEW Real-Time 1 Course Manual

place a checkmark in the Enable Real-Time FIFO checkbox to enable the
real-time FIFO of a shared variable.

Single-process shared variables provide a communication method that is
easy to use and deterministic when you enable the Real-Time FIFO.

How Are Shared Variables Used?
Shared variables are designed to facilitate communication in LabVIEW.
You can configure shared variables to perform many tasks:

• Transfer non-deterministic data between loops or VIs on a single target.
In this capacity, a shared variable functions much like a global variable.
This type of shared variable is called a single-process shared variable.

• Transfer data from a non-deterministic loop to a host. This type of
shared variable is a network-published shared variable. Refer to
Lesson 4, Timing Applications and Acquiring Data, for more
information on communicating between a target and host.

• Transfer non-deterministic data between hosts or between a host and
other computers. Shared variables implement a publisher/subscriber
model that allows non real-time computers to communicate across a
network. This type of shared variable is called a network-published
shared variable.

• Transfer deterministic data between Real-Time VIs or loops (Real-Time
FIFO). Shared variables can implement a Real-Time FIFO to transfer
data deterministically between loops on an RT target. This type of
variable is usually a single-process shared variable with the Real-Time
FIFO option enabled.

• Transfer deterministic data between targets. With a dedicated network
connection, shared variables can deterministically transfer data between
two or more real-time targets over a network. This type of variable is
called a Time-Triggered shared variable.

For more information on the Time-Triggered shared variable, refer to the
Using Time-Triggered Networks to Communicate Deterministically
Over Ethernet with the LabVIEW 8 Real-Time Module document in the
NI Developer Zone. To view the document, visit ni.com/info and
enter rduttl.

Lesson 3 Real-Time Architecture: Design

LabVIEW Real-Time 1 Course Manual 3-28 ni.com

Creating Shared Variables
To create a shared variable, right-click a target or library in the Project
Explorer window and select New»Variable. All variables must exist
inside a library. If you create a new variable outside a library, LabVIEW
automatically creates a library. When you create a shared variable,
LabVIEW displays a Shared Variable Properties dialog box in which you
configure the type of shared variable and any other options such as buffering
and Real-Time FIFO.

To use a shared variable on the block diagram, drag the shared variable
from the Project Explorer window to the block diagram. Shared variable
references on the block diagram work much like local or global variables.
You can right-click a shared variable and select Change to Read or Change
to Write to change the direction of the variable. Shared variables contain
additional terminals along with the data. Each shared variable has error
in and error out terminals, and shared variables set to read can return a
timestamp indicating when the data was written. To add a timestamp output
to a single-process shared variable, you must first place a checkmark in the
Enable timestamp checkbox on the Variable page of the Shared Variable
Properties dialog box, and then right-click the Shared Variable node and
select Show Timestamp.

Shared Variable with the Real-Time FIFO Enabled
When you enable the Real-Time FIFO option on the Shared Variable
Properties page, LabVIEW uses Real-Time FIFOs to transfer the data that
is written to and read from the shared variable. You can configure the FIFO
to be single or multi-element and define the size of the FIFO. When you
enable the Real-Time FIFO option, a small icon appears on references to the
variable to indicate that it uses Real-Time FIFOs.

Single Element FIFO
A single-element FIFO shares the most recent data value. The shared
variable overwrites the data value when it receives a new data value. Use this
option when you need only the most recent value. Configure the size of the
array elements or the size of the waveform for the FIFO buffer if you select
an array or waveform data type.

Multi-Element FIFO
A multi-element FIFO buffers the values shared by the shared variable. You
can configure the number and data type of the FIFO buffer elements to
match the settings from the Use Buffering section of the Variable page,
or you can configure a custom size for the FIFO and the FIFO elements.

Note For both single-element and multi-element FIFOs, if the variable contains array or
waveform data, you must configure the size of the FIFO elements equal to the size of the

Lesson 3 Real-Time Architecture: Design

© National Instruments Corporation 3-29 LabVIEW Real-Time 1 Course Manual

data you want to share. If both the network buffer and the RT FIFO are enabled, the
network buffer must be at least as large as one FIFO element. Sharing data smaller or
larger than the length you specify causes a memory allocation that affects determinism.

Programming Shared Variable FIFOs – Initialization
Shared variable FIFOs are created the first time a variable is read from
or written to. This results in a slight delay. Therefore, either initialize the
variable by reading from or writing to it before your main loop or allow for
a delay in the first iteration of your loop as the FIFO is created.

Programming Shared Variable FIFOs – Overflow
Multi-element RT FIFOs have a fixed memory size and a fixed number
of elements, which you configure in the Shared Variable Properties dialog
box. Therefore, multi-element shared variable RT FIFOs introduce the
possibility for overflow and underflow errors.

An overflow error occurs when a shared variable reference attempts to write
to an RT FIFO that is already full. When an overflow occurs, the shared
variable returns error -2221 and overwrites the oldest value in the FIFO
with the new value. The oldest value is permanently lost.

Programming Shared Variable FIFOs – Underflow
An underflow error occurs when a shared variable reference attempts to read
an empty RT FIFO. When an underflow occurs, the shared variable returns
error -2220 and returns a default value for the data item. This is different
from error -2222, which only applies if a variable has never been written
to. Also, error -2220 applies only to multi-element FIFOs, whereas error
-2222 applies to all shared variables.

Programming Shared Variable FIFOs – Multiple Readers and Writers
LabVIEW creates a single, real-time FIFO for each single-process shared
variable even if the shared variable has multiple writers or readers. To ensure
data integrity, multiple writers block each other as do multiple readers. Only
a single reader and a single writer can access a shared variable at the same
time. However, a reader does not block a writer, and a writer does not block
a reader. If a single variable has multiple readers and writers, the readers and
writers alternate in accessing the variable like any other resource. Variable
references waiting on another reader or writer are blocked and do not
continue block diagram execution.

Because variables can block with multiple readers or writers, when using
variables in a deterministic loop, ensure that a variable read by a
deterministic loop cannot be read by another loop and that a variable written
by a deterministic loop cannot be written to by another loop. Failure to

Lesson 3 Real-Time Architecture: Design

LabVIEW Real-Time 1 Course Manual 3-30 ni.com

follow these rules can cause the deterministic loop to block and execute
non-deterministically.

By enabling the real-time FIFO, you can select between two slightly
different types of FIFO-enabled variables: the single-element and the
multi-element buffer. One distinction between these two types of buffers
is that the single-element FIFO does not report warnings on overflow or
underflow conditions. A second distinction is the value that LabVIEW
returns when multiple readers read an empty buffer. Multiple readers of the
single-element FIFO receive the same value, and the single-element FIFO
returns the same value until a writer writes to that variable again. Multiple
readers of an empty multi-element FIFO each get the last value that they
read from the buffer or the default value for the data type of the variable if
they have not read from the variable before.

If an application requires that each reader get every data point written to a
multi-element FIFO shared variable, use a separate shared variable for each
reader.

RT FIFO Functions
If your application requires programmatic control of the RT FIFO, use RT
FIFO functions instead of shared variables for inter-task communication.
For example, you can use RT FIFO functions to:

• Programmatically create and delete RT FIFOs

• Programmatically set the number of elements in RT FIFOs

• Set timeouts and timeout behavior

• Read the number of elements remaining in RT FIFOs

RT FIFO functions and other inter-task communication methods are
covered in detail in the LabVIEW Real-Time 2 course.

Lesson 3 Real-Time Architecture: Design

© National Instruments Corporation 3-31 LabVIEW Real-Time 1 Course Manual

Summary – Quiz

1. Which of the following are methods for improving speed and
determinism in code?

a. Avoid file I/O functions

b. Cast all data to the proper type

c. Use the Build Array function to dynamically build arrays

d. Disable non-essential VI options

2. True or False? You should only use one time-critical VI or loop per CPU
in a deterministic application.

3. True or False? It is good practice to use Timed Loops within VIs set to
background, above normal, high, or time-critical priority.

Lesson 3 Real-Time Architecture: Design

© National Instruments Corporation 3-33 LabVIEW Real-Time 1 Course Manual

Summary – Quiz Answers

1. Which of the following are methods for improving speed and
determinism in code?

a. Avoid file I/O functions

b. Cast all data to the proper type

c. Use the Build Array function to dynamically build arrays

d. Disable non-essential VI options

2. True or False? You should only use one time-critical VI or loop per CPU
in a deterministic application.

True

3. True or False? It is good practice to use Timed Loops within VIs set to
background, above normal, high, or time-critical priority.

False

Lesson 3 Real-Time Architecture: Design

LabVIEW Real-Time 1 Course Manual 3-34 ni.com

Notes

© National Instruments Corporation 4-1 LabVIEW Real-Time 1 Course Manual

4
Timing Applications and Acquiring
Data

In this lesson, you develop the deterministic loop of a target application.
This typically involves control parameters, hardware input and output, and
timing. This lesson focuses on software and hardware methods of timing a
loop in a real-time application.

Topics
A. Timing Control Loops

B. Software Timing

C. Hardware Timing

D. Event Response – Monitoring for Events

Lesson 4 Timing Applications and Acquiring Data

LabVIEW Real-Time 1 Course Manual 4-2 ni.com

A. Timing Control Loops
The preemptive nature of the RTOS on RT series devices can cause a
deterministic loop to monopolize the processor on the device. On a
single-core system, a deterministic loop might use all processor resources
and not allow lower priority threads in the application to execute. Unless the
deterministic loop is isolated on its own core, the deterministic loop must
periodically yield processor resources to the lower-priority tasks so they can
execute. By properly separating the deterministic task from lower priority
non-deterministic tasks, you can reduce application jitter.

You can use software methods or hardware methods to time control loops.

B. Software Timing
LabVIEW provides multiple software timing methods. You can insert the
LabVIEW Wait function, Wait Until Next Multiple function, or Wait
Express VI in your code to add sleep time. Alternately, you can use a Timed
Structure, such as a Timed Loop, which controls execution speed and adds
other benefits. Each of these methods has a millisecond resolution when
used for software timing.

Wait
The Wait Express VI causes a VI to sleep for the specified amount of time.
For example, if the operating system millisecond timer value is 112 ms
when the Wait Express VI executes, and the Count (mSec) input equals
100, then the Express VI returns when the millisecond timer value equals
142 ms.

Figure 4-1. The Wait Express VI

Avoid using this Express VI in parallel with deterministic code. If the Wait
Express VI executes first, the whole thread sleeps until the VI finishes, and
the code in parallel does not execute until the Wait Express VI finishes. The
resulting loop period is the code execution time plus the Count
(mSec) time.

Lesson 4 Timing Applications and Acquiring Data

© National Instruments Corporation 4-3 LabVIEW Real-Time 1 Course Manual

Wait Until Next Multiple
When you use the Wait Until Next Multiple Express VI, you can choose
ticks, msec, or µsec resolution. The name of the Count input reflects the
resolution you choose. When configured for ms resolution, the Wait Until
Next Multiple Express VI causes a thread to sleep until the operating system
ms timer value equals a multiple of the Count (mSec) input. For example,
if the Wait Until Next Multiple Express VI executes with a Count (mSec)
input of 100 ms and the operating system millisecond timer value is 112 ms,
the VI sleeps until the millisecond timer value equals 200 ms because
200 ms is the first multiple of 100 ms after the Wait Until Next Multiple
Express VI executes.

Use the Wait Until Next Multiple Express VI to synchronize a loop with
the operating system millisecond timer value multiple. A loop has a period
of Count (mSec) if the Wait Until Next Multiple Express VI executes in
parallel with other code in the same loop. However, the loop does not have
the period of Count (mSec) if the code takes longer to execute than the
Count (mSec).

However, avoid placing the Wait Until Next Multiple Express VI in parallel
with other code because doing so can cause incorrect timing of a control
system. The dataflow properties of LabVIEW programming can cause the
Wait Until Next Multiple Express VI to execute before, after, or between the
execution of the analog input and output. The behavior of the loop differs
depending on when the Express VI executes. Instead, use a Sequence
structure to control when the Express VI executes, as shown in Figure 4-2.

Figure 4-2. The Wait Until Next Multiple Express VI

In the Figure 4-2, the code may take a variable amount of time to finish
executing, but calling the Wait Until Next Multiple Express VI afterwards
enforces a loop frequency of 10 Hz (1/100 ms). The maximum achievable
loop rate is 1 kHz with a wait multiple of 1 ms.

Lesson 4 Timing Applications and Acquiring Data

LabVIEW Real-Time 1 Course Manual 4-4 ni.com

Because the Wait Until Next Multiple Express VI accepts only integers,
loop rates are limited to only a few frequencies: 1000, 500, ~333, 250, 200,
~167 Hz, and so on.

Figure 4-3. Initialized Wait Until Next Multiple Express VI

In Figure 4-3, the 100 ms timer is initialized by calling the Wait Until Next
Multiple Express VI immediately before the While Loop begins. Otherwise,
the loop time for the first iteration would be indeterminate. In the While
Loop, placing the Wait Until Next Multiple Express VI in a sequence
structure adds the delay after the code has finished. This guarantees the
order of execution.

Before deciding on a Count value, you must ensure that the code in your
loop can execute faster than the wait multiple. If the code inside the loop
takes longer than the Count value, the loop must wait a second multiple
of Count, because code was running when the first ms multiple arrived.
In this case, the Wait Until Next Multiple Express VI is not aware that the
first multiple occurred and waits until a second multiple occurs before
returning.

In addition to controlling loop rates, the Wait Until Next Multiple Express
VI forces time-critical VIs to sleep until the wait finishes. When a VI sleeps,
it relinquishes the CPU, allowing other VIs or threads to execute. Unless the
time-critical VI is isolated on its own core, sleep time is required, because
the user interface and other background processes need CPU time to
survive.

The Wait Until Next Multiple Express VI masks software jitter within the
loop. The Express VI has some inherent jitter, which is acceptable for many
real-time applications. In this example, the Wait Until Next Multiple
Express VI synchronizes with each 100 ms tick of the OS clock, allowing
the loop to achieve 10 Hz software-timed analog input. The timeline in
Figure illustrates the 5 ms wait multiple at ΔT, the actual time required to
execute the code at Te, worst case jitter at Tj, and worst case time at Twc. As
long as the worst case time is smaller than the wait multiple, the actual loop

Lesson 4 Timing Applications and Acquiring Data

© National Instruments Corporation 4-5 LabVIEW Real-Time 1 Course Manual

period equals the wait multiple, plus or minus the jitter incurred by the
Express VI itself.

Figure 4-4. Software Timing Timeline

µs Timing
If you are targeted to an RT target that allows microsecond timing, you can
use the microsecond clock for the wait Express VIs. If you are not targeted
to an acceptable target, you can still select microsecond (µs) timing, but the
program uses the millisecond (ms) operating system clock instead.

Using the microsecond clock allows for more loop rate options:

• With a ms clock, loop rates are 1/X ms = 1 KHz, 500 Hz, ~333 Hz,
250 Hz, and so on

• With a µs clock, loop rates are 1/X µs = 1 MHz, 500 KHz, ~333 KHz,
250 KHz, and so on

To use microsecond timing, double-click a Wait Express VI to open a
configuration window, and set Counter Units to µSec.

Timed Loop
A Timed Loop executes an iteration of the loop at the period you specify.
Use the Timed Loop when you want to develop VIs with multi-rate timing
capabilities, feedback on loop execution, timing characteristics that change
dynamically, or manual processor assignment.

Because the Timed Loop automatically imposes sleep as needed to achieve
the loop rate you specify, there is no need to use a Wait or Wait Until Next
Multiple Express VI to add sleep time in the loop.

Because of the preemptive nature of Timed Loops, they can monopolize
processor resources. A Timed Loop might use all of the processor resources,
not allowing other tasks on the block diagram to execute. You must
configure the highest priority Timed Loop with a period large enough to
perform the deterministic task and have idle time during every iteration to
allow lower priority loops to execute.

SW timing, ΔT = 100 ms +/ – inherent jitter

(t)

Code execution time, Te

Worst case software jitter, Tj

Worst case time, Twc

Lesson 4 Timing Applications and Acquiring Data

LabVIEW Real-Time 1 Course Manual 4-6 ni.com

Figure 4-5. Timed Loop

Figure 4-5 contains a subVI that performs a data acquisition for 50 ms. The
Timed Loop has a period of 100 ms that allows the loop to remain idle for
50 ms during each iteration. During the time when the Timed Loop remains
idle, LabVIEW can execute lower priority tasks on the block diagram.

To configure the Timed Loop for microsecond timing, choose the MHz
clock (µs timer) in the Loop Timing Source section of the Timed Loop
configuration window if you are targeted to an appropriate target. Access the
Timed Loop configuration window by double-clicking the Input node of the
Timed Loop.

C. Hardware Timing
You can implement hardware timing in your real-time application by using
external timing sources. The National Instruments drivers that run on
RT targets support VIs or functions that can cause sleep in the current
LabVIEW thread and return when the driver detects a specific event. For
example, you can use NI-DAQmx and NI data acquisition hardware to time
real-time applications. Refer to the specific NI driver documentation for
information about VIs or functions that you can use to sleep and wait for
driver events.

DAQmx
You can use NI data acquisition hardware and NI-DAQmx to achieve a sleep
resolution much finer than 1 kHz. Hardware timing uses the DAQ device
internal clock or an external clock to control timing. You can use the
DAQmx VIs to control when a Read VI or a Write VI executes within a loop.
Alternately, you can wire a DAQmx task to a Timed Loop to tie the loop rate
to the hardware clock.

Lesson 4 Timing Applications and Acquiring Data

© National Instruments Corporation 4-7 LabVIEW Real-Time 1 Course Manual

Use the DAQmx Timing VI to configure the sample clock, which controls
the loop rate. You can configure the DAQmx task according to your
application, however, the Hardware Timed Single Point option for the
sample mode input provides the best access to the hardware clock. Notice
that when the requested scan rate is too fast relative to the code execution
time, you may miss ticks from the clock. In other words, if the RT target is
not powerful enough to execute the code within the loop at least as fast as
the scan rate, the clock rate will be slower than configured.

You can use NI data acquisition hardware with NI-DAQmx to match loop
rates to match the rate of the hardware clock. With NI-DAQmx, you can use
the following methods to time real-time applications:

• Hardware-Timed Single-Point—NI-DAQmx supports
hardware-timed, single-point sample mode in which samples are
acquired or generated continuously using hardware timing and no
buffering. You can use hardware-timed, single-point mode for control
applications that require input and/or output within a deterministic
period of time. Refer to the NI-DAQmx Single-Point Real-Time
Applications topic of the NI-DAQmx Help for information about using
hardware-timed, single-point operations to time your deterministic
application.

• Counter Timers—NI-DAQmx supports using hardware-timed counter
input operations to drive a control loop. Use the Wait For Next Sample
Clock VI to synchronize the counter operations with the counter’s
sample clock. Refer to the Hardware-Timed Counter Tasks topic of the
NI-DAQmx Help for information about using counter input operations to
time deterministic applications.

• DAQmx Timing Sources for Timed Structures—Timed structures
can be hardware-timed and are ideal for multirate applications. By
default, timed structures use the 1 kHz clock on Windows or the
real-time operating system of an RT target as a timing source. You also
can use an external signal on a DAQ device as the timing source of a
timed structure using NI-DAQmx. Use the DAQmx Create Timing
Source VI to create a timing source that can synchronize the timed
structure with the hardware clock. Refer to the Hardware-Timed
Simultaneously Updated I/O Using the Timed Loop topic of the
NI-DAQmx Help for information about using an external signal on a
DAQ device to control a timed structure.

Lesson 4 Timing Applications and Acquiring Data

LabVIEW Real-Time 1 Course Manual 4-8 ni.com

You can create external timing sources for controlling a timed structure
with NI-DAQmx. Use the DAQmx Create Timing Source VI to
programmatically select an external timing source. You also can use several
types of NI-DAQmx timing sources, including frequency, digital edge
counters, digital change detection, and signals from task sources, to control
timed structures. Use the DAQmx - Data Acquisition VIs to create the
following types of NI-DAQmx timing sources to control a timed structure.

• Frequency—Creates a timing source that causes a timed structure to
execute at a constant frequency.

• Digital Edge Counter—Creates a timing source that causes a timed
structure to execute on rising or falling edges of a digital signal.

• Digital Change Detection—Creates a timing source that causes a timed
structure to execute on rising or falling edges of one or more digital
lines.

• Signal from Task—Creates a timing source that uses the signal you
specify to determine when a timed structure executes.

Refer to the NI-DAQmx Help, available by selecting Start»All Programs»
National Instruments»NI-DAQ»NI-DAQmx Help, for information about
using NI-DAQmx VIs and functions to control timed structures.

D. Event Response – Monitoring for Events
With real-time event response, you can respond to a single event within a
given amount of time. Some common events include detecting a peak in a
measurement or detecting when a threshold has been reached. You can use
the Point-by-Point Signal Analysis VIs to detect these types of events as
shown in Figure 4-6.

Figure 4-6. Monitoring for An Event Using A Point-by-Point VI

Lesson 4 Timing Applications and Acquiring Data

© National Instruments Corporation 4-9 LabVIEW Real-Time 1 Course Manual

Event Response – Digital Change Detection
(NI-DAQmx only) Another common event response application involves
watching for a digital line change, which is useful when watching for an
alarm trigger. Figure 4-7 uses the DAQmx digital change functionality with
the Timed Loop. The digital line is connected to the Source Name terminal
of the Timed Loop. When the digital change happens or a timeout occurs,
the Timed Loop wakes up and executes the code in the loop.

Figure 4-7. Digital Change Detection

Lesson 4 Timing Applications and Acquiring Data

© National Instruments Corporation 4-11 LabVIEW Real-Time 1 Course Manual

Summary – Quiz

1. Which of the following are benefits of using timing in a control loop?

a. Provide sleep so lower priority threads can execute

b. Reduce application jitter

c. Both a & b

2. True or False? It is good programming practice to use wait functions in
parallel with time critical code.

3. Which of the following typically provides finer resolution?

a. Hardware timing

b. Software timing

4. Which of the following methods use hardware timing?

a. Timed Loop linked to a µs clock

b. DAQmx VIs connected to an external clock

c. Wait Express VI with µs resolution

d. Timed Loop linked to a ms clock

Lesson 4 Timing Applications and Acquiring Data

© National Instruments Corporation 4-13 LabVIEW Real-Time 1 Course Manual

Summary – Quiz Answers

1. Which of the following are benefits of using timing in a control loop?

a. Provide sleep so lower priority threads can execute

b. Reduce application jitter

c. Both a & b

2. True or False? It is good programming practice to use wait functions in
parallel with time critical code.

False

3. Which of the following typically provides finer resolution?

a. Hardware timing

b. Software timing

4. Which of the following methods use hardware timing?

a. Timed Loop linked to a µs clock

b. DAQmx VIs connected to an external clock

c. Wait Express VI with µs resolution

d. Timed Loop linked to a ms clock

Lesson 4 Timing Applications and Acquiring Data

LabVIEW Real-Time 1 Course Manual 4-14 ni.com

Notes

© National Instruments Corporation 5-1 LabVIEW Real-Time 1 Course Manual

5
Communication

The RT Engine on the RT target does not provide a user interface for
applications. You can use one of two communication protocols, front panel
communication or network communication, to provide a user interface on
the host computer for RT target VIs.

After separating deterministic tasks from non-deterministic tasks in an
application, you must use deterministic communication methods to share
data. You can use deterministic communication methods to share data
between locations in a VI that cannot be connected with wires, between VIs
running on an RT target, and between VIs across a network running on
different targets.

In this lesson, you will develop the normal priority portion of the target
application, along with the host application.

Topics
A. Front Panel Communication

B. Network Communication

C. Network Communication Programming

Lesson 5 Communication

LabVIEW Real-Time 1 Course Manual 5-2 ni.com

A. Front Panel Communication
With front panel communication, the host computer and the RT target
execute different parts of the same VI. On the host computer, LabVIEW
displays the front panel of the VI while the RT target executes the block
diagram. A user interface thread handles the communication between
LabVIEW and the RT Engine.

Use front panel communication between LabVIEW on the host computer
and the RT Engine to control and test VIs running on an RT target. After
downloading and running the VIs, keep LabVIEW on the host computer
open to display and interact with the front panel of the VI.

You also can use front panel communication to debug VIs while they run on
the RT target. You can use LabVIEW debugging tools such as probes,
execution highlighting, breakpoints, and single stepping to locate errors on
the block diagram. Refer to Lesson 6, Verifying Your Application, for
information about debugging applications.

Front panel communication is a good communication method to use during
development, because you can quickly monitor and interface with VIs
running on an RT target. Front panel communication causes sections of code
that contain front panel controls and indicators to be non-deterministic. This
is because LabVIEW must switch to the user interface thread, which is
non-deterministic, to complete the task. Therefore, if you are using front
panel communication, you should not place front panel controls and
indicators in deterministic sections of code. If no front panel terminals are
in the deterministic section of code, the deterministic section of code will
run deterministically.

B. Network Communication
With network communication, a host VI runs on the host computer and
communicates with the VI running on the RT target using specific network
communication methods such as network-published shared variables,
Network Stream functions, or other protocols. You might use network
communication for the following reasons:

• To run another VI on the host computer.

• To control the data exchanged between the host computer and the RT
target. You can customize the communication code to specify which
front panel objects to update and when. You also can control which
components are visible on the front panel because some controls and
indicators might be more important than others.

• To control timing and sequencing of the data transfer.

• To perform additional data processing or logging.

Lesson 5 Communication

© National Instruments Corporation 5-3 LabVIEW Real-Time 1 Course Manual

C. Network Communication Programming
Network-published shared variables, network streams, and other protocols
are the most common methods for sharing data in deterministic applications.
This section describes programming tips for communication using these
methods.

Network-Published Shared Variables
You can use network-published shared variables to share the latest value in
a data set between VIs running on different targets across a network.

There are two ways to use network-published shared variables to transfer
data from a target to the host—network-published shared variables with or
without the RT FIFO option enabled.

Network-published shared variables with the RT FIFO option enabled
automatically generate an invisible communication loop. A variable
configured in this manner transfers data from the deterministic loop to the
communication loop using an RT FIFO and transfers data from the
communication loop to the host over the network. If the only function of a
non-deterministic loop in your application is to transfer data to the host,
using network-published shared variables with the RT FIFO enabled
removes the need to program that loop and saves you effort.

Network-published shared variables without the RT FIFO option enabled
allow you to transfer data from a non-deterministic loop to the host over the
network. If your application requires a non-deterministic loop for reasons
other than communication, such as data logging, you can transfer the data to
the non-deterministic loop using a single-process shared variable RT FIFO
and then transfer data from the non-deterministic loop to the host using a
network-published shared variable without the RT FIFO option enabled.

By enabling the real-time FIFO of a shared variable, you can share data
across a network without affecting the determinism of the VIs. However, the

Table 5-1. Network Communication Programming

Use Case Examples Protocol

Latest value Display most recent I/O values of RT
target on host computer

Network-published
Shared Variables

Buffered values Transfer data to host computer for file
logging

Network Streams

Other protocols Transfer data to LabVIEW and
non-LabVIEW applications

TCP, UDP, serial, etc.

Lesson 5 Communication

LabVIEW Real-Time 1 Course Manual 5-4 ni.com

transfer of the data across the network is not deterministic. Due to network
latency, the most recently written data may not be available to a VI running
on a machine across the network. In this case, the VI attempting to read from
the network-published shared variable returns the previous value.

Initialize Your Network-Published Shared Variables
To prevent reading stale data from a previous run of your application,
undeploy and redeploy shared variable libraries to clear all shared variable
values. Use the Shared Variable Deployment page of the Application
Properties dialog box to configure a stand-alone RT application to deploy
shared variables before running the application and undeploy shared
variable libraries when the application exits. Refer to Lesson 7, Deploying
Your Application, for more information on configuring and building
stand-alone real-time RT applications.

You also can safeguard your application against stale shared variable data
by initializing all your shared variables before running the ongoing task
loops of your application. To initialize an unbuffered network-published
shared variable hosted on another computer, write the default value to the
shared variable, then wait for the initialized value to propagate through the
network to the Shared Variable Engine running on the host computer and
back to the RT target. Figure 5-1 shows an example of unbuffered
network-published shared variable initialization.

Figure 5-1. Initializing Network-Published Shared Variables

Lesson 5 Communication

© National Instruments Corporation 5-5 LabVIEW Real-Time 1 Course Manual

Location for Network-Published Shared Variables
You can choose to host network-published shared variables on the host or
the target.

In some cases, hosting shared variables on the RT target makes sense. In
other cases, it is more appropriate to host shared variables on a host PC.
Before finalizing your application, ensure that you are hosting shared
variables on the most appropriate device. The following table summarizes
the advantages and disadvantages of hosting shared variables on an RT
target.

Scope of Network-Published Shared Variables
When a VI that references a network-published shared variable runs, all
variables in the library containing the variable are deployed and published.
You should consider how to group variables into libraries to avoid deploying
unnecessary variables. Network-published shared variables are never
automatically undeployed, even after a system reboot. They remain on
the system, ready to provide or receive data.

Undeploying Shared Variables
There are many ways to remove shared variables from a system if they are
no longer in use.

• Programmatically undeploy variables using the VIs in the LabVIEW
DSC module.

• Programmatically undeploy variables by using the Library»Undeploy
Library method of the Application VI Server class.

• Manually undeploy a library by right-clicking the library in the Project
Explorer and selecting Undeploy.

• Manually undeploy a library by using the Distributed System Manager.
Start the Distributed System Manager by selecting Tools»Distributed
System Manager.

Table 5-2. Advantages and Disadvantages of Hosting Network-Published
Shared Variables on an RT Target

Target Advantages Disadvantages

Multiple PCs can access shared
variables hosted by a single RT
target

Adds CPU overhead on the RT
target

High uptime due to stability of the
RT target

Adds memory overhead on the RT
target

Lesson 5 Communication

LabVIEW Real-Time 1 Course Manual 5-6 ni.com

Network Stream Functions
Use the Network Streams functions for network communication when you
need to transfer every point of data. Use cases include:

• Transferring data losslessly between RT target and host computer

• Transferring data from an RT target to host computer for logging data to
file

• Transferring data from an RT target to host computer for data processing
and analysis that requires more memory than the RT target has available

Stream data continuously between two LabVIEW applications with
network streams. A network stream is a lossless, unidirectional,
one-to-one communication channel that consists of a writer and a reader
endpoint. Use the Network Streams functions to stream data with network
streams. Use the Network Stream Endpoint properties to view information
about endpoints.

You can use network streams to stream any data type between
two applications, but the following data types stream at the fastest rates:

• Numeric scalars

• Booleans

• 1D arrays of numeric scalars

• 1D arrays of Booleans

Network Streams Engine
Each endpoint uses a FIFO buffer to transfer data. The Network Streams
Engine (NSE) uses LogosXT to transfer data from the FIFO buffer on the
writer endpoint to the FIFO buffer on the reader endpoint.

Figure 5-2 illustrates the flow of data in a network stream.

Figure 5-2. Flow Data in a Network Stream

In Figure 5-2, data flows in the following order.

1. The writer endpoint writes data to a FIFO buffer.

2. The NSE transfers data over a network to another FIFO buffer on the
reader endpoint.

3. The reader endpoint reads the data from that FIFO buffer.

FIFO
Reader

Endpoint

FIFO
Writer

Endpoint
Network Streams Engine

Lesson 5 Communication

© National Instruments Corporation 5-7 LabVIEW Real-Time 1 Course Manual

Determining When to Use Network Streams Instead of Shared
Variables
Use shared variables to publish the latest value in a data set to many
computers. Conversely, use network streams to log every point of data on
one computer.

For example, assume that you are using an accelerometer to detect the
vibrations of a pump that is re-pressuring natural gas in a pipeline. You are
processing the vibration data on a CompactRIO target to monitor for bearing
fault to ensure that the pump does not fail. However, the CompactRIO target
does not have enough memory to analyze the data. Therefore, you must send
the data to a desktop computer that has enough memory to store, analyze,
and display that data.

Because shared variables are optimized for publishing the latest value of
data only, they could miss a critical data point. However, network streams
would stream every point of data to the desktop computer so you could
monitor the condition of the engine.

Note Network streams can induce jitter in deterministic loops. Therefore, if you want to
stream data from a deterministic loop with network streams, National Instruments
recommends that you first share the data with a non-deterministic loop. Then, use
network streams to stream the data to another device.

Network Stream Endpoints
Endpoints are the parts of applications that exchange data. Every network
stream must have a writer endpoint and a reader endpoint. Writer endpoints
write data to the stream. Reader endpoints read data from the stream.
LabVIEW identifies each endpoint with an endpoint URL, which you use to
establish connections between endpoints. When two endpoints connect,
they create a network stream. You use the Network Streams functions to
create endpoints and stream data between them.

When you specify a name for an endpoint with the writer name terminal of
the Create Network Stream Writer Endpoint function or the reader name
terminal of the Create Network Stream Reader Endpoint function,
LabVIEW uses that name to create a URL.

To create a valid network stream, use endpoint URLs to prompt a writer and
a reader endpoint to connect to each other. Perform this task by wiring the
URL of a remote endpoint to the reader url input on the Create Network
Stream Writer Endpoint function or the writer url input on the Create
Network Stream Reader Endpoint function.

The URL you must specify in these terminals varies depending on the
network location of the remote endpoint.

Lesson 5 Communication

LabVIEW Real-Time 1 Course Manual 5-8 ni.com

Note Endpoint URLs are not case sensitive. However, when you specify an endpoint
URL, you must replace any reserved characters that you use with the corresponding
escape codes to prevent parsing errors.

Organizing Network Stream Endpoint Names
You can organize endpoints by adding segments to their names that describe
the data they stream, the computer on which they reside, or other
characteristics. When you have multiple endpoints on different computers,
organizing endpoints in this way helps ensure that you connect each writer
endpoint to its corresponding reader endpoint.

Complete the following steps to organize endpoints by name.

1. Wire the writer name terminal of the Create Network Stream Writer
Endpoint function or the reader name terminal of the Create Network
Stream Reader Endpoint function.

2. Place a slash between each segment of the name that you specify in these
terminals.

For example, assume you have three writer endpoints within the same
application on a real-time (RT) target. One measures temperature,
and the other two measure voltage signals. These endpoints connect to
three corresponding reader endpoints in an application on a desktop
computer. Figure 5-3 shows examples of names that you could assign to
each endpoint. The arrows indicate the reader endpoint to which each writer
endpoint connects.

Lesson 5 Communication

© National Instruments Corporation 5-9 LabVIEW Real-Time 1 Course Manual

Figure 5-3. Organizing Network Stream Endpoint Names

In Figure 5-3, the name of each endpoint describes the target the endpoint
resides on, the type of data the endpoint streams, and whether the endpoint
reads or writes that data. This naming scheme shows which endpoints
correspond with each other.

Note The name of one endpoint cannot be the partial name of another endpoint within
the same application. For instance, in the above example, if you name one of the writer
endpoints RT Target/Voltage and the other RT Target/Voltage/Writer 1,
these endpoints will return an error instead of creating network streams.

Other Protocols
You can use other protocols to communicate with LabVIEW and
non-LabVIEW applications. For example, you may need to transfer data to
a third party device that uses the Transmission Communication Protocol
(TCP) for communication. You can use the TCP functions in LabVIEW for
TCP communication. Other protocols include User Datagram Protocol
(UDP), serial, and more.

TCP Communication
TCP is an industry-standard protocol for communicating over networks. VIs
running on the host computer can communicate with RT target VIs using the
TCP VIs and functions. However, TCP is non-deterministic, and using TCP
communication inside a deterministic loop can affect the determinism of the
deterministic loop.

Lesson 5 Communication

LabVIEW Real-Time 1 Course Manual 5-10 ni.com

You can use the TCP functions in LabVIEW for TCP communication.

UDP Communication
UDP is a network transmission protocol for transferring data between
two locations on a network. UDP is not a connection-based protocol, so the
transmitting and receiving computers do not establish a network connection.
Because there is no network connection, there is little overhead when
transmitting data. However, UDP is non-deterministic, and using UDP
communication inside a deterministic loop can affect the determinism of the
deterministic loop.

When using the UDP VI and functions to send data, the receiving computer
must have a read port open before the transmitting computer sends the data.
Use the UDP Open function to open a write port and specify the IP address
and port of the receiving computer. The data transfer occurs in byte streams
of varying lengths called datagrams. Datagrams arrive at the listening port
and the receiving computer buffers and then reads the data.

You can transfer data bidirectionally with UDP. With bidirectional data
transfers, both computers specify a read and write port and transmit data
back and forth using the specified ports. You can use bidirectional UDP data
transfers to send and receive data from the network communication VI on
the RT target.

UDP has the ability to perform fast data transmissions deterministically.
However, UDP cannot guarantee that all datagrams arrive at the receiving
computer. Because UDP is not connection based, you cannot verify the
arrival of datagrams. You must ensure that network congestion does not
affect the transmission of datagrams. Also, you must read data stored in the
data buffer of the receiving computer fast enough to prevent overflow and
loss of data.

Lesson 5 Communication

© National Instruments Corporation 5-11 LabVIEW Real-Time 1 Course Manual

You can use the UDP functions in LabVIEW for UDP communication.

Table 5-3. Network Communication Methods Comparison

Protocol Speed
Deterministic
Read/Write

Deterministic
Data Transfer Advantages Caveats Common Use

Network-published
Shared Variable

Fast With RT
FIFO
enabled

No Ease of
programming

LabVIEW
Only

Latest value,
host interface

Network Streams Faster No No Built-in
functions

LabVIEW
Only

Data streaming

TCP Fastest No No High transfer
rates

String data Data streaming

UDP Fastest No No High transfer
rates

String
data, lossy

Broadcast
latest values

Lesson 5 Communication

© National Instruments Corporation 5-13 LabVIEW Real-Time 1 Course Manual

Summary – Quiz

1. Match the following terms with their definitions:

2. True or False? When using front panel communication, a time-critical
loop that contains front panel controls and indicators is deterministic.

3. True or False? You should never use TCP and UDP functions inside
time-critical code.

4. Which of the following should you use to communicate from the
time-critical loop directly to the host VI?

a. Single-process shared variable with RT FIFO disabled

b. Single-process shared variable with RT FIFO enabled

c. Network-published shared variable with RT FIFO disabled

d. Network-published shared variable with RT FIFO enabled

TCP A. Fast, lossy communication protocol with
minimal error checking

UDP B. Commonly used protocol, fast and
lossless

Network-published
shared variables

C. Can transfer data directly from a
time-critical loop

Lesson 5 Communication

© National Instruments Corporation 5-15 LabVIEW Real-Time 1 Course Manual

Summary – Quiz Answers

1. Match the following terms with their definitions:

2. True or False? When using front panel communication, a time-critical
loop that contains front panel controls and indicators is deterministic.

False

3. True or False? You should never use TCP and UDP functions inside
time-critical code.

True

4. Which of the following should you use to communicate from the
time-critical loop directly to the host VI?

a. Single-process shared variable with RT FIFO disabled

b. Single-process shared variable with RT FIFO enabled

c. Network-published shared variable with RT FIFO disabled

d. Network-published shared variable with RT FIFO enabled

TCP B. Commonly used protocol, fast and
lossless

UDP A. Fast, lossy communication protocol
with minimal error checking

Network-published
shared variables

C. Can transfer data directly from a
time-critical loop

Lesson 5 Communication

LabVIEW Real-Time 1 Course Manual 5-16 ni.com

Notes

© National Instruments Corporation 6-1 LabVIEW Real-Time 1 Course Manual

6
Verifying Your Application

In this lesson, you learn how to debug an RT application and how to monitor
the performance and memory usage of an RT target.

Topics
A. Verifying Correct Application Behavior

B. Verifying Performance and Memory Usage

Lesson 6 Verifying Your Application

LabVIEW Real-Time 1 Course Manual 6-2 ni.com

A. Verifying Correct Application Behavior
When verifying your application, you must ensure that the application
behaves as expected. When you discover problems with your code, you can
use the LabVIEW debugging tools, such as execution highlighting and
single-stepping, while the host computer is connected to an RT target to step
through LabVIEW code to find the source of the unexpected behavior.

Note You must place a checkmark in the Allow debugging checkbox of the Execution
page of the VI Properties dialog box to use the LabVIEW debugging tools to debug a VI.

The only feature not supported by the LabVIEW Real-Time Module is the
Call Chain ring, which appears in the toolbar of a subVI block diagram
window while single-stepping.

Note Do not use the LabVIEW debugging tools to debug execution timing, because all
debugging tools affect the timing of an application.

The following pages review standard LabVIEW debugging techniques.
Refer to the Debugging Techniques topic of the LabVIEW Help for more
information about debugging in LabVIEW.

Standard Debugging Techniques
When your VI is not executable, the Run button on the toolbar appears with
a broken arrow. To list errors and warnings, click the Run button to open the
Error list window. Double-click the error message to locate the error on the
block diagram.

Use error handling to debug and manage errors in VIs. The LabVIEW error
handler VIs return error codes when an error occurs in a VI. Error codes
reveal the specific problem the VI encountered. When you configure an RT
target, LabVIEW automatically copies the error code files used by the error
handler VIs to the target.

You can use custom error codes with VIs that run on an RT target. Create
error files using the Error Code File Editor by selecting Tools»Advanced»
Edit Error Codes. If you use custom errors with LabVIEW, you must
rename the files to use a .err extension and then place the error files in the
<ni-rt>\system\user.lib\errors directory or the <ni-rt>\
system\errors directory on the RT target. Use the FTP client in MAX or
any other FTP client to transfer the error file to the networked device. Refer
to the Defining Custom Error Codes topic LabVIEW Help for information
about defining custom error codes.

Lesson 6 Verifying Your Application

© National Instruments Corporation 6-3 LabVIEW Real-Time 1 Course Manual

Execution highlighting animates the block diagram and traces the flow of
the data, allowing you to view intermediate values. To implement execution
highlighting, click Highlight Execution on the toolbar.

Use a probe to view values passing through a wire segment. Click a wire
with the Probe tool or right-click the wire to set a probe.

A breakpoint sets a pause at a location on the diagram. Click wires or objects
with the Breakpoint tool or right-click a wire to set breakpoints.

Use a conditional probe to set conditions for when to pause at the probe. For
example, you may want a breakpoint to occur only when the value in the
wire drops below zero. A conditional probe can accomplish this task.

Use single stepping to execute the diagram node by node. You can access
single stepping from the single step buttons on the block diagram toolbar.

Click Step Into or Step Over to begin single stepping.

• Step Into—Steps into a node. If the node contains a subVI, LabVIEW
opens the subVI and enables single stepping through the subVI.

• Step Over—Executes the next node, but visually does not single step
through the nodes.

• Step Out—Steps out of a node, if the block diagram has completed
execution; click Step Out to terminate single stepping mode.

B. Verifying Performance and Memory Usage
You can use one of the following methods to verify the performance and
memory usage of an application:

• Profile Performance and Memory tool

• Distributed System Manager

• RT Utility VIs

• Real-Time Execution Trace Toolkit

Profile Performance and Memory Tool
The Profile Performance and Memory window is a powerful tool for
statistically analyzing how an application uses execution time and memory.
You can use the Profile Performance and Memory window to display
information for all VIs and subVIs in memory. This information can
help you optimize the performance of your VIs by identifying potential
bottlenecks. For example, if you notice that a particular subVI takes a long
time to execute, you can improve the performance of that VI. The Profile
Performance and Memory window displays the performance information
for all VIs in memory in an interactive tabular format. From the Profile

Lesson 6 Verifying Your Application

LabVIEW Real-Time 1 Course Manual 6-4 ni.com

Performance and Memory window, you can select the type of information
to gather and sort the information by category. You also can monitor subVI
performance within different VIs. Select Tools»Profile»Performance and
Memory to display the Profile Performance and Memory window.

You must place a checkmark in the Profile Memory Usage checkbox
before starting a profiling session. Collecting information about VI memory
use adds a significant amount of overhead to VI execution, which affects the
accuracy of any timing statistics gathered during the profiling session.
Therefore, perform memory profiling separate from time profiling to return
an accurate profile.

Many of the options in the Profile window become available only after you
begin a profiling session. During a profiling session, you can take a snapshot
of the available data and save it to an ASCII spreadsheet file. The timing
measurements accumulate each time you run a VI.

You can verify memory usage with the Profile Performance and Memory
window. However, you also can verify and determine memory usage with
the Distributed System Manager and RT Utility VIs.

Figure 6-1. Profile Performance and Memory Window

Lesson 6 Verifying Your Application

© National Instruments Corporation 6-5 LabVIEW Real-Time 1 Course Manual

Distributed System Manager
The Distributed System Manager displays RT target resources in addition to
shared variable and I/O variable data. The Distributed System Manager
displays details about VIs running on an RT target and provides a dynamic
display of the memory and CPU resources of the target. You can stop VIs
and start idle VIs on the RT target using the Distributed System Manager.
Select Tools»Distributed System Manager to open the Real-Time System
Manager.

The Distributed System Manager is installed by default when you install
LabVIEW Real-Time. The Distributed System Manager interface runs on
the host and displays the RT system usage. If the target has no available CPU
resources to run report RT system usage, then the target does not report back
any information.

Memory and CPU Usage
In the Distributed System Manager, click the CPU/Memory tab of an RT
target to monitor CPU and memory usage on the target.

Figure 6-2. Distributed System Manager CPU/Memory Tab

The Distributed System Manager displays a CPU chart for each CPU in the
system. Each graph tracks the utilization of the CPU as a percentage of
capacity, over time. The Distributed System Manager also displays the
percentage of total CPU utilization devoted to each priority level, as well as

Lesson 6 Verifying Your Application

LabVIEW Real-Time 1 Course Manual 6-6 ni.com

the percentage devoted to interrupt service routines (ISRs) and Timed
Structures. The Distributed System Manager also displays a Memory chart
that tracks memory usage, in megabytes, over time.

You can monitor the memory usage to determine if memory leaks occur over
time. You can monitor the CPU usage statistics to determine if higher
priority loops are yielding enough time for lower priority loops to execute.

This view includes the following components:

• CPU N Usage Chart (%)—Tracks utilization of CPU N over time, as a
percentage of capacity.

• Memory Usage Chart (MB)—Tracks target memory usage over time.

• CPU N Statistics—Includes current CPU usage statistics including total
CPU usage, CPU usage by priority level, and CPU usage dedicated to
Timed Structures and interrupt service routines (ISRs). Each value
represents a percentage of total capacity.

• Memory Statistics—Displays current memory usage data.

– Allocated—The amount of memory, in MB, currently allocated on
the target.

– Available—The amount of memory, in MB, currently available on
the target.

– Contiguous—The largest contiguous block of available memory on
the target, in MB.

– Total—The total amount of memory available to the operating
system, in MB.

– Usage—The percentage of total memory currently allocated on the
target.

VI States
In the Distributed System Manager, click the VI States tab of an RT target
to start, stop, and monitor VIs on the RT target.

This view includes the following components:

• Port—Specifies the TCP/IP port at which the VI server listens for
requests on the RT target. Right-click the RT target in the Project
Explorer window and select Properties from the shortcut menu to
display the RT Target Properties dialog box. Select VI Server from the
Category list to display the VI Server page, where you can configure the
TCP/IP port for the VI Server.

• Update Interval—Sets the minimum time that the server waits between
updates. The actual update interval might exceed the time you specify if
higher priority tasks are running on the RT target.

Lesson 6 Verifying Your Application

© National Instruments Corporation 6-7 LabVIEW Real-Time 1 Course Manual

• Show Top Level VIs Only—Filters all subVIs from the list of RT target
VIs.

• Start Monitoring—Starts monitoring VIs on the RT target.

• Stop Monitoring—Stops monitoring VIs on the RT target.

• Start VI—Starts an idle VI that you select from the list of RT target VIs.

• Stop VI—Stops a VI that you select from the list of RT target VIs.

The VI States tab uses VI Server to communicate to the RT target. You must
configure the RT target to allow VI Server access on a TCP/IP port.
Configure VI Server access on the RT target opening the Real-Time Target
Properties window from the Project Explorer. Then you must configure the
Distributed System Manager to connect to the corresponding port on the RT
target.

Alerts
Use the Alerts tab of the Distributed System Manager to log and save system
information for viewing later. This can be very important for monitoring
system history. If an RT system has problems, you can return to the log to
see what the system properties were at the time the problem occurred.

This view includes the following components:

• Log Alert when memory usage is above—Enables alert logging when
memory usage on the RT target exceeds the value you specify.

• Log Alert when CPU usage is above—Enables alert logging when the
RT target CPU usage exceeds the value you specify.

• Log Alert when VI changes state—Enables alert logging when a VI
listed in the VI States view changes state.

• Recent Alerts—Lists recently-logged alerts.

• Clear—Removes all entries from the Recent Alerts list.

• Save—Saves the Recent Alerts list as a text file on the local computer.

Lesson 6 Verifying Your Application

LabVIEW Real-Time 1 Course Manual 6-8 ni.com

RT Utility VIs
Use the following RT Utility VIs in the RT target VI to programmatically
monitor CPU load and memory usage data on the RT target.

• RT Get CPU Loads VI—Monitors the distribution of load on the CPUs
in the system. For each CPU in the system, this VI returns the total load
as a percentage of capacity. This VI also returns the percentage of CPU
time devoted to each priority level, the percentage of idle CPU time, and
the percentage of CPU time devoted to Timed Structures and interrupt
service routines (ISRs).

• RT Get Memory Usage VI—Monitors memory usage on the RT target.
This VI returns the following memory usage data:

– Total (bytes)—amount of memory installed on the target, in bytes

– Available (bytes)—amount of memory available on the target, in
bytes.

– Largest contiguous (bytes)—size of the largest contiguous block of
available memory on the target, in bytes.

Real-Time Execution Trace Toolkit
The Real-Time Execution Trace Toolkit is a set of real-time event and
execution tracing tools that allows you to capture and display the timing and
execution data of VI and thread events for applications running on an RT
target.

With minimal modifications to your embedded code, these tools graphically
display multithreaded code execution while highlighting thread swaps,
mutexes, and memory allocation. Using this information, you can optimize
the real-time code for faster control loops and more deterministic
performance.

Lesson 6 Verifying Your Application

© National Instruments Corporation 6-9 LabVIEW Real-Time 1 Course Manual

This tool and topic is covered in the LabVIEW Real-Time 2 course.

Figure 6-3. Real-Time Execution Trace Toolkit

Lesson 6 Verifying Your Application

© National Instruments Corporation 6-11 LabVIEW Real-Time 1 Course Manual

Summary – Quiz

1. True or False? You must enable the Allow debugging option in
VI Properties in order to use the Execution Highlighting and
single-stepping tools on a deterministic VI.

2. Match the tool with what it can test:

Distributed System Manager A. CPU Usage

Performance and Memory
Profiler

B. Memory Usage

Probes C. Timing Behavior

Execution Highlighting D. Application Behavior

Lesson 6 Verifying Your Application

© National Instruments Corporation 6-13 LabVIEW Real-Time 1 Course Manual

Summary – Quiz Answers

1. True or False? You must enable the Allow debugging option in
VI Properties in order to use the Execution Highlighting and
single-stepping tools on a deterministic VI.

True

2. Match the tool with what it can test:

Distributed System Manager (A, B) A. CPU Usage

Performance and Memory
Profiler (B, C)

B. Memory Usage

Probes (D) C. Timing Behavior

Execution Highlighting (D) D. Application Behavior

Lesson 6 Verifying Your Application

LabVIEW Real-Time 1 Course Manual 6-14 ni.com

Notes

© National Instruments Corporation 7-1 LabVIEW Real-Time 1 Course Manual

7
Deploying Your Application

After developing a LabVIEW Real-Time Module application, you often
want to deploy the application so that it becomes the primary application for
the controller. In this lesson, you will learn how to create an executable from
an application, embed the executable on the target, launch the executable,
and communicate with the executable.

Topics
A. Introduction to Deployment

B. Creating a Build Specification

C. Communicating with Deployed Applications

D. System Replication

Lesson 7 Deploying Your Application

LabVIEW Real-Time 1 Course Manual 7-2 ni.com

A. Introduction to Deployment
When you complete the development work on a project, you may want to
deploy the project. Use the LabVIEW Application Builder, included with
the LabVIEW Professional Development System, to create stand-alone
LabVIEW Real-Time Module applications. You can embed a stand-alone
application on an RT target and launch the application automatically when
you boot the target.

Preparing Your Application for Deployment
Before deploying your application, you must prepare the application
for deployment. This involves reviewing the code for any unsupported
functions.

Some of the LabVIEW features that are unavailable when you target a
specific RT target include functions that modify front panel objects and
functions specific to other operating systems, such as ActiveX.

Note If you attempt to download and run a VI that has unsupported functionality on an
RT target, the VI still executes. However, the unsupported functions do not work and
return standard LabVIEW error codes.

Avoid Modifying Front Panel Objects
When a VI or stand-alone application runs on an RT target and there is no
front panel connection with LabVIEW on the host computer, you cannot
execute VIs that modify a front panel. For example, you cannot change or
read the properties of front panel objects with Property Nodes, because no
front panel exists. You must establish a front panel connection with the RT
target or open a remote front panel connection to read any front panel
properties or for any front panel Property Node changes to reflect on
the front panel objects. Refer to Lesson 5, Communication, for more
information about front panel connections.

The following features do not work on an RT target with no front panel
connection:

• Front panel Property Nodes and control references

• Dialog functions

• VI Server front panel functions

Lesson 7 Deploying Your Application

© National Instruments Corporation 7-3 LabVIEW Real-Time 1 Course Manual

Avoid OS-Specific Technologies
VIs on the RT target cannot run VIs that use Windows-only technology. The
following features do not work on an RT target:

• ActiveX VIs

• NET VIs

• VIs that use NI-IVI drivers

• Windows Registry Access VIs

• TestStand VIs (ActiveX-based)

• Report Generation Toolkit VIs

• Call Library Nodes that access an operating system API other
than RTOS

• Graphics and Sound VIs

• Database Connectivity Toolset

• XML DOM Parser and G Web Server for CGI Support

Refer to the Unsupported LabVIEW Features (RT Module on VxWorks
Targets) and Unsupported LabVIEW Features (RT Module on ETS Targets)
topics in the LabVIEW Help for more information about technologies to
avoid on RT targets.

Running a Stand-Alone Real-Time Application (RT Module)
You can create a stand-alone real-time application using the LabVIEW
Application Builder and set the application to run when you power on an
RT target. You can create multiple build specifications that configure the
settings of stand-alone real-time applications under an RT target. However,
you can set only one stand-alone real-time application as startup for an RT
target. When you set a build specification as the startup application for an
RT target, LabVIEW displays a green border around the icon for the build
specification in the Project Explorer window.

To run a built stand-alone real-time application, right-click the build
specification in the Project Explorer window and select Run as startup
from the shortcut menu. The Run as startup shortcut menu item sets the
application as the startup application, deploys the application to the target,
and prompts you to reboot the RT target.

Lesson 7 Deploying Your Application

LabVIEW Real-Time 1 Course Manual 7-4 ni.com

You also can complete the following steps to run a stand-alone real-time
application as the startup application on an RT target:

1. Build the stand-alone real-time application.

2. Right-click the build-specification and select Set as startup from the
shortcut menu to enable the application to run when you reboot or power
on the RT target.

3. Right-click the build specification and select Deploy from the shortcut
menu to deploy the application to the RT target.

4. Right-click the RT target and select Utilities»Reboot to reboot the RT
target and run the stand-alone real-time application.

Note You cannot run a stand-alone real-time application without setting the application
as startup and rebooting the RT target.

B. Creating a Build Specification
An RT build specification saves stand-alone applications on the host
computer or embeds applications on an RT target. You create a build
specification through the RT target in the Project Explorer. You can launch
a built application from the Project Explorer or outside of LabVIEW. Refer
to the Automatic Start on Target section of this lesson for information about
automatically launching stand-alone applications.

Complete the following steps to build and deploy a stand-alone real-time
application.

1. Create a build specification under the RT target in the Project Explorer.

2. Save the project to save the build specification settings.

3. (Optional) Right-click the build specification and select the Set
as Startup option to configure the target to run the application
automatically when the target reboots.

4. Right-click the build specification and select Deploy to build the
application and download it to the RT target.

5. Reboot the target.

Configuring Settings – Information
The Information category contains the Build specification name,
Executable filename, and Target destination directory for both the target
and host.

Lesson 7 Deploying Your Application

© National Instruments Corporation 7-5 LabVIEW Real-Time 1 Course Manual

Configuring Settings – Source Files
Use the Source Files category to set startup VIs and include additional VIs
or support files. You do not need to specifically include VIs called as subVIs
from the Startup VIs unless the subVIs are called dynamically.

Use the Destinations and Source File Settings categories to control where
files are created and to set the visual properties of each VI. These categories
are rarely used when building RT applications.

Configuring Settings – Advanced
Use the Advanced category to enable debugging in the executable, copy
error code files, and use an alias file. Enable debugging in an executable
to connect to the executable and debug it as it runs. However, debugging
requires additional resources on the target and slows the executable
considerably.

Configuring Settings – Preview
The Preview category shows you the destination of the files to be created
when you deploy the build.

Automatic Start on Target
Selecting the Set as Startup option configures the target to run the
application automatically when you power on or reboot the RT target. Use
this option to create headless systems that start automatically without any
interaction from the host or the development environment. You can select
Unset as Startup and then select Deploy to disable automatic startup.
Connecting to the target from any project other than the one containing the
startup VI also disables automatic startup.

Right-click the build specification and select Set as startup to set the
real-time application to begin execution when you start or reboot the RT
target.

Right-click a build specification and select Deploy from the shortcut menu
to deploy the stand-alone real-time application to the RT target. You must
redeploy the real-time application when you rebuild the application or
change the properties of the application for the changes to take effect on the
RT target.

Note You also can set a VI as the startup VI for an RT target without creating a
stand-alone real-time application if you do not have access to the Application Builder.
Refer to ni.com/info and enter the Info Code rdcsvi for information about setting
VIs as startup VIs for RT targets.

Lesson 7 Deploying Your Application

LabVIEW Real-Time 1 Course Manual 7-6 ni.com

Deploying the Build Specification
Select Build to build the application and Deploy to download the executable
to the target. In most cases, selecting Deploy also builds the application.

Removing Executables
At some point, you may want to remove an executable you stored on your
RT target. The easiest way to do this is to use FTP to access the module
and delete the file. You can use any FTP client software including Internet
Explorer. After you access the target, you can see all of the files stored
on the target.

Compact FieldPoint—At this point, if you try to remove the file, you get a
message that you do not have permission. You must set Compact FieldPoint
to safe mode before you can remove files from the flash. To put the module
in safe mode, flip the DIP switch labeled safe mode and cycle power to
the module. You must cycle power to the module because this switch, along
with the Disable VI and Reset switches, is read only at power-up. If you
have the VI set to launch on boot up, you also must flip the Disable VI
switch. After the module comes back online, you can delete the
startup.exe file. The file is located in NI-RT\Startup.

C. Communicating with Deployed Applications
You can create VIs on a host computer, as described in Lesson 5,
Communication, to communicate with a stand-alone application running on
an RT target. You also can debug a deployed executable using standard
debugging functions.

Debugging Executables
You can debug deployed executables as long as you enable the debugging
option when you build the executable. Notice that debuggable applications
use more memory and processor resources than non-debuggable
applications. To debug a stand-alone executable, perform the
following steps:

• Enable debugging on the Advanced page of the Application Builder
when you build the executable.

• Select Operate»Debug Application or Shared Library.

• Enter the IP address of the target and click Refresh.

• Select the application to debug and click Connect.

• Debug the application normally.

Lesson 7 Deploying Your Application

© National Instruments Corporation 7-7 LabVIEW Real-Time 1 Course Manual

D. System Replication
You can use RT target disk images to backup, restore, and replicate RT
targets. An RT target disk image is a copy of the file contents of the primary
RT target hard drive.

There are two different methods you can use to create and apply RT target
disk images. For networked RT targets, you can use the programmatic
method, which involves using the Real-Time Utilities VIs on host computer.
For USB-enabled RT targets, you can use the USB method, which involves
booting from an RT Desktop PC Utility USB drive and using the National
Instruments Real-Time Desktop PC Utility Collection menu.

Note You cannot use the programmatic method to load an image created with the USB
method. You also cannot use the USB method to load an image created with the
programmatic method.

Table 7-1 summarizes the supported backup, restoration, and replication
methods for an RT target based on whether the target is connected to the
network and whether the target is USB-enabled.

Backing Up RT Targets
After you install the necessary software components and drivers on an RT
target and create a stand-alone RT application on the target, you can create
a disk image of the target to serve as a backup image or as a prototype image
for RT target replication. You can use either the programmatic method or the
USB method to create an RT target disk image.

Table 7-1. Supported System Replication methods for an RT Target

Connected to Network? USB-Enabled? Supported Methods

Yes Yes Both

Yes No Programmatic

No Yes USB

No No Neither

Lesson 7 Deploying Your Application

LabVIEW Real-Time 1 Course Manual 7-8 ni.com

Creating RT Target Disk Images Programmatically
You can use the RT Create Disk Image VI on a Windows host computer to
create an RT target disk image based on an RT target connected to the
network, as shown in the Figure 7-1.

Figure 7-1. Create RT Target Disk Image Programmatically

Creating RT Target Disk Images with a USB Drive
Complete the following steps to create and store an RT target disk image on
an RT Desktop PC Utility USB Drive.

1. Connect a keyboard and monitor to the RT target.

2. Insert an RT Desktop PC Utility USB Drive into the RT target. Refer to
the Measurement & Automation Explorer Help for information about
creating an RT Desktop PC Utility USB Drive.

3. Restart the target to boot from the USB drive.

4. Select Backup, Restore, or Replicate the Real-Time System from the
National Instruments Real-Time Desktop PC Utility Collection menu.

5. Select Backup system to default folder to clear the default disk image
folder on the USB drive and create the new disk image in the default disk
image directory. You also can select Backup system to unique folder
to create the disk image in a unique folder on the USB drive.

Restoring and Replicating RT Targets
You can apply RT target disk images to restore and replicate RT targets. You
can use either the programmatic method or the USB method to apply an RT
target disk image.

To restore a previously backed-up RT target in the event of a hard drive
failure, apply the backup disk image to the target. To replicate an RT target,
apply an RT target disk image created from the original target to other RT
targets of the same model code. You can use the RT Get Target Information
VI to find the model code of an RT target.

Applying an RT target disk image copies files to the hard drive of the target
but does not deploy anything to memory on the target. If you need a target
to run an application on restart immediately after applying a disk image, you
must create a stand-alone application on the original target. To ensure that a
target runs as expected after applying the disk image, you must test the
original target before creating the disk image.

Lesson 7 Deploying Your Application

© National Instruments Corporation 7-9 LabVIEW Real-Time 1 Course Manual

Note Before attempting to apply an RT target disk image, ensure that the RT target can
boot the real-time operating system. Before attempting to apply an RT target disk image
to an unconfigured RT Desktop PC target, follow the instructions in the Using Desktop
PCs as RT Targets with the LabVIEW Real-Time Module manual in the <labview>\
manuals directory.

Using the Programmatic Method to Apply an RT Target Disk
Image
You can use the RT Apply Disk Image VI on a host computer to load an RT
target disk image onto any networked RT target with the same model code
as the original target from which the disk image was created. You can use
the RT Get Target Information VI to find the model code of an RT target.
For example, the VI shown in Figure 7-2 uses the RT Get Target Information
VI to obtain the model code of a target and then uses the RT Apply Target
Disk Image VI inside a Case structure to apply an appropriate RT target disk
image based on the model code.

Figure 7-2. Apply an RT Disk Image Programmatically

Using the USB Method to Apply an RT Target Disk Image
Complete the following steps to load an RT target disk image from an RT
Desktop PC Utility USB drive.

1. Connect a keyboard and monitor to the RT target.

2. Insert the RT Desktop PC Utility USB drive into the RT target and restart
the target to boot from the USB drive.

3. Select Backup, Restore, or Replicate the Real-Time System from the
National Instruments Real-Time Desktop PC Utility Collection menu.

4. Select Restore or Replicate a Real-Time System from the National
Instruments Real-Time Desktop PC Utility Collection menu.

5. Select Restore system from default folder to load the disk image
stored in the default disk image folder on the USB drive. You also can
select Select an image to restore to load an image from a unique
directory on the USB drive.

Lesson 7 Deploying Your Application

© National Instruments Corporation 7-11 LabVIEW Real-Time 1 Course Manual

Summary – Quiz

1. True or False? Front panel property nodes are supported in a stand-alone
real-time application.

2. True or False? If you are replicating a disk image onto an RT target, the
RT target does not need to be the same model as the target used to create
the disk image.

Lesson 7 Deploying Your Application

© National Instruments Corporation 7-13 LabVIEW Real-Time 1 Course Manual

Summary – Quiz Answers

1. True or False? Front panel property nodes are supported in a stand-alone
real-time application.

False

2. True or False? If you are replicating a disk image onto an RT target, the
RT target does not need to be the same model as the target used to create
the disk image.

False

Lesson 7 Deploying Your Application

LabVIEW Real-Time 1 Course Manual 7-14 ni.com

Notes

© National Instruments Corporation A-1 LabVIEW Real-Time 1 Course Manual

A
Additional Information about LabVIEW
Real-Time

This appendix contains useful information for LabVIEW Real-Time.

Topics
Using LabWindows/CVI DLLs in LabVIEW Real-Time

Appendix A Additional Information about LabVIEW Real-Time

LabVIEW Real-Time 1 Course Manual A-2 ni.com

Using LabWindows/CVI DLLs in LabVIEW Real-Time
LabWindows™/CVI™ extends the functionality of LabVIEW Real-Time in
two ways. First, it allows the use of ANSI C code on LabVIEW Real-Time
(RT) targets. Second, LabWindows/CVI offers programmatic access to the
shared memory of National Instruments RT plug-in devices, enabling you to
use the LabWindows/CVI environment to develop host applications for
these devices.

Benefits of Using LabWindows/CVI DLLs in Real-Time
LabWindows/CVI can compile code into a LabVIEW Real-Time
compatible DLL that can be called and executed by the LabVIEW
Real-Time environment. This feature reduces development time for
real-time applications in three ways:

• Engineers and scientists with large amounts of existing ANSI C code
greatly reduce their development time for their LabVIEW Real-Time
applications through code reuse.

• Engineers and scientists can develop portions of their LabVIEW
Real-Time applications in ANSI C.

• Engineers and scientists can take advantage of the LabWindows/CVI
development environment to create LabVIEW Real-Time VISA drivers
for non-NI PXI/PCI hardware. In doing this, third party hardware can be
incorporated into RT applications.

LabWindows/CVI Functions Supported by Real-Time
LabVIEW Real-Time hardware devices include an embedded real-time
operating system. The RTOS is different than traditional operating systems,
such as Windows, and supports a slightly different set of functions. When
creating a DLL in LabWindows/CVI, you can specify its use for LabVIEW
Real-Time. This causes the LabWindows/CVI compiler to automatically
verify that all the function calls made from that DLL are supported by the
RTOS. To make this specification, select the LabVIEW Real-Time Only
option as the run-time support in the Target Settings dialog box.

For further instructions, refer to the Using LabWindows/CVI with LabVIEW
Real-Time tutorial available by browsing to ni.com/info and entering
rdul38.

The following LabWindows/CVI libraries are supported for use with the
LabVIEW Real-Time Support Engine:

• Analysis or Advanced Analysis Library

• ANSI C Library

• Formatting and I/O Library

Appendix A Additional Information about LabVIEW Real-Time

© National Instruments Corporation A-3 LabVIEW Real-Time 1 Course Manual

• Internet Library

• Real-Time Utility Library

• TCP Support Library

• TDM Streaming Library

• UDP Support Library

• User Interface Library

• Utility Library

Note Not all of the functions in the preceding libraries are supported. For a complete
list of these exported functions, refer to the Using LabWindows/CVI Libraries in RT
Applications topic in the NI LabWindows/CVI Help.

In addition to the libraries listed previously you also link a Real-time only
project to the following libraries, which may require you to install additional
components on the RT target:

• RS-232 Library

• VISA Library

• NI-DAQmx Library

• Traditional NI-DAQ Library

• NI-DMM

• NI-Scope

• NI-FGEN

• NI-Switch

• NI-HSDIO

• NI-CAN

Note For a more detailed list of what functions and libraries are supported, refer to the
LabWindows/CVI Libraries in RT Applications topic in the NI LabWindows/CVI Help.

TCP Library Support
LabWindows/CVI 8.x includes TCP Library function support for LabVIEW
Real-Time application development. This feature allows DLLs on RT
targets to share data directly with nodes on the network, eliminating the
need to return to the LabVIEW code to pass data to another node. This can
be done through the ProcessTCPEvents function. TCP function calls, such
as TCP write or TCP read, trigger events when they are completed. In
previous versions of LabWindows/CVI these events were captured by
messaging, which is not supported under an RTOS. The Process TCP Events
function uses polling to capture TCP events.

Appendix A Additional Information about LabVIEW Real-Time

LabVIEW Real-Time 1 Course Manual A-4 ni.com

Use the Process TCP Events function to publish data as it is received. For
example, you may have a DLL that contains a function with multiple data
acquisition loops and you would like to publish the data as you acquire it.
However, because DLLs pass data back to the calling application only when
the function has finished executing, you would need to be able to send the
data from within the DLL.

Without TCP polling functions, the only way to send the data across the
network as you received it would be to implement a loop in LabVIEW and
call a function in LabWindows/CVI DLL that acquired data only a single
time. After you did that, each time the data was acquired, the function would
end and the data would be passed back to the LabVIEW Real-Time
application. After the data was back in LabVIEW, you could use the
LabVIEW TCP functions to publish the data. However this requires the
DLL to be called, loaded, and unloaded each time the LabVIEW loop
executes. It also undermines performance. With the added functionality of
the TCP function calls, the data can be sent from within the DLL in each
loop, allowing the DLL to be called only once, and therefore saving time and
memory.

© National Instruments Corporation B-1 LabVIEW Real-Time 1 Course Manual

B
Instructor’s Notes

This appendix contains information that the instructor needs to properly set
up and teach this course.

Course Setup

1. Confirm that all host computers are setup for static IP addresses. Course
instructions are simplified if all computers use 192.168.0.1 for the
IP address.

Do not use DHCP in this course; classrooms do not have enough
IP addresses allocated.

2. Place the following equipment at each student station:

• One CompactRIO system

• One temperature chamber

• One cross-over cable (grey or orange)

• One thermocouple cable

• One six-pin cable

• One PS-3 power supply

• Two power cables

The student connects the hardware in the configuration exercise. You do
not need to connect/test this equipment.

3. Place the following equipment at the instructor station.

• One CompactRIO system

• One PXI system

• One temperature chamber

• One cross-over cable (grey or orange)

• One thermocouple cable

• One six-pin cable

• One PS-3 power supply

• Three power cables

© National Instruments Corporation C-1 LabVIEW Real-Time 1 Course Manual

C
Additional Information and Resources

This appendix contains additional information about National Instruments
technical support options and LabVIEW Real-Time resources.

National Instruments Technical Support Options
Visit the following sections of the award-winning National Instruments
Web site at ni.com for technical support and professional services:

• Support—Technical support at ni.com/support includes the
following resources:

– Self-Help Technical Resources—For answers and solutions,
visit ni.com/support for software drivers and updates,
a searchable KnowledgeBase, product manuals, step-by-step
troubleshooting wizards, thousands of example programs, tutorials,
application notes, instrument drivers, and so on. Registered
users also receive access to the NI Discussion Forums at ni.com/
forums. NI Applications Engineers make sure every question
submitted online receives an answer.

– Standard Service Program Membership—This program entitles
members to direct access to NI Applications Engineers via phone
and email for one-to-one technical support as well as exclusive
access to on demand training modules via the Services Resource
Center. NI offers complementary membership for a full year after
purchase, after which you may renew to continue your benefits.

For information about other technical support options in your
area, visit ni.com/services or contact your local office at
ni.com/contact.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, National Instruments
Alliance Partner members can help. The NI Alliance Partners joins
system integrators, consultants, and hardware vendors to provide
comprehensive service and expertise to customers. The program
ensures qualified, specialized assistance for application and system
development. To learn more, call your local NI office or visit ni.com/
alliance.

javascript:WWW(WWW_Exchange)
javascript:WWW(WWW_Exchange)
javascript:WWW(WWW_Exchange)

Appendix C Additional Information and Resources

LabVIEW Real-Time 1 Course Manual C-2 ni.com

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit the
Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

Other National Instruments Training Courses
National Instruments offers several training courses for LabVIEW users.
These courses continue the training you received here and expand it to other
areas. Visit ni.com/training to purchase course materials or sign up for
instructor-led, hands-on courses at locations around the world.

National Instruments Certification
Earning an NI certification acknowledges your expertise in working with
NI products and technologies. The measurement and automation industry,
your employer, clients, and peers recognize your NI certification credential
as a symbol of the skills and knowledge you have gained through
experience. Visit ni.com/training for more information about the
NI certification program.

	LabVIEW Real-Time 1 Course Manual

	Copyrights
	Trademarks
	Patents

	Contents

	Student Guide
	A. NI Certification
	B. Course Description
	C. What You Need to Get Started
	D. Installing the Course Software
	E. Course Goals
	F. Course Conventions

	Lesson 1 Introduction to Real-Time Systems
	Topics
	A. What is a Real-Time System?
	Real-Time Terms
	Maximum Jitter
	Figure 1-1. Maximum Jitter

	Operating Systems
	Real-Time Operating Systems
	Selecting an Operating System

	Real-Time Development Tools
	Figure 1-2. Real-Time Development Tools

	B. Real-Time System Components
	Host Computer
	LabVIEW
	RT Engine
	RT Target
	USB Storage Devices

	Summary – Quiz
	Summary – Quiz Answers

	Lesson 2 Configuring Your Hardware
	Topics
	A. Hardware Setup and Installation
	B. Configuring Network Settings
	Using MAX to Detect Remote Systems
	Assigning an IP Address
	Specifying a Static IP Address
	Figure 2-1. Network Settings for Obtaining a Static IP Address
	Obtaining an IP Address Automatically from a DHCP Server
	Figure 2-2. Network Settings for Automatically Obtaining an IP Address

	C. Installing Software on Target
	D. Configuring Target I/O
	E. Connecting to Target in LabVIEW
	LabVIEW Projects
	Adding Folders to a Project
	Project Libraries
	Creating a Project
	Adding a Real-Time Target
	Connecting to a Target
	Adding VIs to a Target
	Running VIs on a Target
	Closing a Front Panel Connection Without Closing VIs

	Summary – Quiz
	Summary – Quiz Answers

	Lesson 3 Real-Time Architecture: Design
	Topics
	A. Host and Target Application Architecture
	Figure 3-1. Host and Target Application Architecture
	Host Application
	Target Application
	Deterministic versus Non-Deterministic Processes

	B. Multithreading
	What is Multithreading?
	Advantage of Multithreading
	Real-Time Multithreading Analogy
	Figure 3-2. Real-Time Multithreading Analogy

	Scheduling Threads
	Round Robin Scheduling
	Figure 3-3. Round Robin Scheduling

	Preemptive Scheduling
	Figure 3-4. Preemptive Scheduling

	LabVIEW Real-Time Scheduling
	Figure 3-5. LabVIEW Real-Time Scheduling

	Setting Priorities
	Dividing Tasks to Create Deterministic Multithreaded Applications
	Creating Deterministic Applications Using VIs Set to Different Priorities
	Assigning Priorities to VIs
	Time-critical VI Priority
	Creating Deterministic Applications Using the Timed Loop
	Figure 3-6. A Timed Loop

	C. Yielding Execution in Deterministic Loops
	Figure 3-7. Yielding Execution in Deterministic Loops
	Starvation
	Figure 3-8. Starvation

	Providing Sleep
	Sleeping and Deterministic Loops

	D. Improving Speed and Determinism
	Avoid Shared Resources
	Avoid Shared Resources – Priorities
	Shared Resources – SubVIs
	Shared Resources – Memory Management
	Preallocate Arrays
	Shared Resources – Memory Management Summary
	Avoid Contiguous Memory Conflicts
	Figure 3-9. Avoid Contiguous Memory Conflicts
	In Place Element Structure
	Avoid SubVI Overhead
	Setting VI Properties
	Use Low-Level Functions to Increase Execution Speed

	E. Sharing Data Locally on RT Target
	Single-Process Shared Variables with the RT FIFO Enabled
	How Are Shared Variables Used?
	Creating Shared Variables
	Shared Variable with the Real-Time FIFO Enabled
	Single Element FIFO
	Multi-Element FIFO

	Programming Shared Variable FIFOs – Initialization
	Programming Shared Variable FIFOs – Overflow
	Programming Shared Variable FIFOs – Underflow
	Programming Shared Variable FIFOs – Multiple Readers and Writers
	RT FIFO Functions

	Summary – Quiz
	Summary – Quiz Answers

	Lesson 4 Timing Applications and Acquiring Data
	Topics
	A. Timing Control Loops
	B. Software Timing
	Wait
	Figure 4-1. The Wait Express VI

	Wait Until Next Multiple
	Figure 4-2. The Wait Until Next Multiple Express VI
	Figure 4-3. Initialized Wait Until Next Multiple Express VI
	Figure 4-4. Software Timing Timeline

	µs Timing
	Timed Loop
	Figure 4-5. Timed Loop

	C. Hardware Timing
	DAQmx

	D. Event Response – Monitoring for Events
	Figure 4-6. Monitoring for An Event Using A Point-by-Point VI
	Event Response – Digital Change Detection
	Figure 4-7. Digital Change Detection

	Summary – Quiz
	Summary – Quiz Answers

	Lesson 5 Communication
	Topics
	A. Front Panel Communication
	B. Network Communication
	C. Network Communication Programming
	Table 5-1. Network Communication Programming
	Network-Published Shared Variables
	Initialize Your Network-Published Shared Variables
	Figure 5-1. Initializing Network-Published Shared Variables
	Location for Network-Published Shared Variables
	Table 5-2. Advantages and Disadvantages of Hosting Network-Published Shared Variables on an RT Target
	Scope of Network-Published Shared Variables
	Undeploying Shared Variables

	Network Stream Functions
	Network Streams Engine
	Figure 5-2. Flow Data in a Network Stream
	Determining When to Use Network Streams Instead of Shared Variables
	Network Stream Endpoints
	Organizing Network Stream Endpoint Names
	Figure 5-3. Organizing Network Stream Endpoint Names

	Other Protocols
	TCP Communication
	UDP Communication
	Table 5-3. Network Communication Methods Comparison

	Summary – Quiz
	Summary – Quiz Answers

	Lesson 6 Verifying Your Application
	Topics
	A. Verifying Correct Application Behavior
	Standard Debugging Techniques

	B. Verifying Performance and Memory Usage
	Profile Performance and Memory Tool
	Figure 6-1. Profile Performance and Memory Window

	Distributed System Manager
	Memory and CPU Usage
	Figure 6-2. Distributed System Manager CPU/Memory Tab
	VI States
	Alerts

	RT Utility VIs
	Real-Time Execution Trace Toolkit
	Figure 6-3. Real-Time Execution Trace Toolkit

	Summary – Quiz
	Summary – Quiz Answers

	Lesson 7 Deploying Your Application
	Topics
	A. Introduction to Deployment
	Preparing Your Application for Deployment
	Avoid Modifying Front Panel Objects
	Avoid OS-Specific Technologies
	Running a Stand-Alone Real-Time Application (RT Module)

	B. Creating a Build Specification
	Configuring Settings – Information
	Configuring Settings – Source Files
	Configuring Settings – Advanced
	Configuring Settings – Preview
	Automatic Start on Target
	Deploying the Build Specification
	Removing Executables

	C. Communicating with Deployed Applications
	Debugging Executables

	D. System Replication
	Table 7-1. Supported System Replication methods for an RT Target
	Backing Up RT Targets
	Creating RT Target Disk Images Programmatically
	Figure 7-1. Create RT Target Disk Image Programmatically
	Creating RT Target Disk Images with a USB Drive

	Restoring and Replicating RT Targets
	Using the Programmatic Method to Apply an RT Target Disk Image
	Figure 7-2. Apply an RT Disk Image Programmatically
	Using the USB Method to Apply an RT Target Disk Image

	Summary – Quiz
	Summary – Quiz Answers

	Appendix A Additional Information about LabVIEW Real-Time
	Topics

	Using LabWindows/CVI DLLs in LabVIEW Real-Time
	Benefits of Using LabWindows/CVI DLLs in Real-Time
	LabWindows/CVI Functions Supported by Real-Time
	TCP Library Support

	Appendix B Instructor’s Notes
	Course Setup

	Appendix C Additional Information and Resources

