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KINETIC THEORY OF GASES AND 
THERMODYNAMICS 

SECTION I 
Kinetic theory of gases 

 
Some important terms in kinetic theory of gases 
Macroscopic quantities:  
Physical quantities like pressure, temperature, volume, internal energy are associated with 
gases. These quantities are obtained as an average combined effect of the process taking 
place at the microscopic level in a system known as macroscopic quantities. These 
quantities can be directly measured or calculated with help of other measurable 
macroscopic quantities 
Macroscopic description: 
The description of a system and events associated with it in context to its macroscopic 
quantities are known as macroscopic description. 
Microscopic quantities: 
Physical quantities like speed, momentum, kinetic energy etc. associated with the 
constituent particle at microscopic level, are known as microscopic quantities 
Microscopic description: 
When the system and events associated with it are described in context to microscopic 
quantities, this description is known as microscopic description 
 
Postulates of Kinetic theory of gases 
(1) A gas consists of a very large number of molecules. Each one is a perfectly identical 
elastic sphere. 
 (2) The molecules of a gas are in a state of continuous and random motion. They move in 
all directions with all possible velocities. 
(3) The size of each molecule is very small as compared to the distance between them. 
Hence, the volume occupied by the molecule is negligible in comparison to the volume of 
the gas. 
(4) There is no force of attraction or repulsion between the molecules and the walls of the 
container. 
(5) The collisions of the molecules among themselves and with the walls of the container 
are perfectly elastic. Therefore, momentum and kinetic energy of the molecules are 
conserved during collisions. 



PHYSICS  NOTES                                                                                                www.gneet.com 

 

2 

www.gneet.com 

 

(6) A molecule moves along a straight line between two successive collisions and the 
average distance travelled between two successive collisions is called the mean free path 
of the molecules. 
(7) The collisions are almost instantaneous (i.e) the time of collision of two molecules is 
negligible as compared to the time interval between two successive collisions. 
 

 
Behavior of gases 
It has been observed from experiments that for very low densities, the pressure, volume 
and temperature of gas are interrelated by some simple relations. 
Boyle’s law 
At constant temperature and low enough density, the pressure of a given quantity (mass) 
of gas is inversely proportional to its volume 
Thus at constant mass and constant temperature 

𝑃 ∝
1

𝑉
 

Or PV = Constant 
 
Charles’s law 
At constant pressure and low enough density, the volume of a given quantity (mass) of a 
gas is proportional to its absolute temperature 
Thus at constant mass and constant pressure 

𝑉 ∝ 𝑇 

Or 
𝑉

𝑇
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Gay Lussac’s law 
For a given volume and low enough density the pressure of a given quantity of gas is 
proportional to its absolute temperature. 
Thus at constant mass and constant volume 

𝑃 ∝ 𝑇 

Or 
𝑃

𝑇
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 
Avogadro’s Number 
“For given constant temperature and pressure, the number of molecules per unit volume 
is the same for all gases” 
At standard temperature ( 273K) and pressure (1 atm), the mass of 22.4 litres of any gas is 
equal to its molecular mass ( in grams). This quantity of gas is called 1 mole. 
The number of particles ( atoms or molecules) in one mole of substance (gas) is called 
Aveogadro number, which has a magnitude NA = 6.023×1023 mol-1 
 
If N is the number of gas molecules in a container , then the number of mole of given gas is  
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𝜇 =
𝑁

𝑁𝐴

 

 
If M is the total mass of gas in a container, and mass of one mole of gas called molar mass 
MO, then the number of moles of gas is  

𝜇 =
𝑀

𝑀𝑂

 

 
 
Other important laws of an ideal gas 
Grahm’s law of diffusion states that when two gases at the same pressure and 
temperature are allowed to diffuse into each other, the rate of diffusion of each gas is 
inversely proportional to the square root of the density  of the gas 

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 ∝ √
1

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑔𝑎𝑠
 

Dalton’s law of partial pressure states that the pressure exerted by a mixture of several 
gases equals the sum of the pressure exerted by each gas occupying the same volume as 
that of the mixture  
P1, P2, …, Pn are the pressure exerted by individual gases of the mixture, then pressure of 
the mixture of the gas is  
P = P1 + P2+ …+ Pn 
 

Ideal gas-state equation and it different forms 
If we combine  Boyle’s law and Charle’s law we get 

𝑃𝑉

𝑇
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

For a given quantity of gas, which shows that for constant temperature and pressure, if 
quantity or mass of gas is varies, then volume of the gas is proportional to the quantity of 
gas. 
Thus constant on the right hand side of the equation depends on the quantity of the gas. If 
quantity is represented in mole then 

𝑃𝑉

𝑇
= 𝜇𝑅 

Equation is called an ideal gas-state equation 
Here R is universal  gas constant = 8.314 J mole-1 K-1

 

If  gas completely obeys equation  
𝑃𝑉 =  𝜇𝑅𝑇  − − − 𝑒𝑞(1) 

at all values of pressure and temperature, then such a ( imaginary) gas is called an ideal 
gas. By putting  

𝜇 =
𝑁

𝑁𝐴

 

In above equation we get 
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PV =  
𝑁

𝑁𝐴

RT = N
R

𝑁𝐴

T  

Putting R/NA = kB ( Boltzmann’s constant = 1.38×10-23 J K-1 ) 
 

PV = NkBT  

∴ P =
N

V
kBT  

If n = N/V number of molecules per unit volume of gas 
∴ P = nkBT    − − − eq(2)  

Putting  

𝜇 =
𝑀

𝑀𝑂

 

In equation (1) 

𝑃𝑉 =  
𝑀

𝑀𝑂

𝑅𝑇   

 

𝑃 =  
𝑀

𝑉

𝑅𝑇

𝑀𝑂

   

 

𝑃 =  
𝜌𝑅𝑇

𝑀𝑂

   − − − 𝑒𝑞(3)  

ρ is the density of gas 
 

Pressure of an ideal gas and rms speed of gas molecules 
 The molecules of a gas are in a state of random motion. They continuously collide against 
the walls of the container. During each collision, momentum is transferred to the walls of 
the container.  

The pressure exerted by the gas is due to the 
continuous collision of the molecules against the 
walls of the container. Due to this continuous 
collision, the walls experience a continuous force 
which is equal to the total momentum imparted to 
the walls per second. The force experienced per unit 
area of the walls of the container determines the 
pressure exerted by the gas.  
Consider a cubic container of side L containing n 
molecules of perfect gas moving with velocities C1, C2, 
C3 ... Cn  
A molecule moving with a velocity v1, will have 

velocities C1(x) , C1(y)  and C1(z)  as components along the x, y and z axes respectively. 
Similarly C2(x) , C2(y)  and C2(z)  are the velocity components of the second molecule and 
so on.  
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Let a molecule P shown in figure having velocity C1 collide against the wall marked I 
perpendicular to the x-axis. Only the x-component of the velocity of the molecule is 
relevant for the wall . Hence momentum of the molecule before collision is  m C1(x)  where 
m is the mass of the molecule.  
Since the collision is elastic, the molecule will rebound with the velocity C1(x) in the 
opposite direction. Hence momentum of the molecule after collision is –mC1(x) 
 
Change in the momentum of the molecule = Final momentum - Initial momentum 
Change in the momentum of the molecule = - mC1(x) - mC1(x)= –2mC1(x) 
During each successive collision on face I the molecule must travel a distance 2L from face 
I to face II and back to face I. 
 
Time taken between two successive collisions is = 2L/ C1(x) 
 

∴ 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 =  
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚

𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛
 

 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 =
−2𝑚𝐶1(𝑥)

2𝐿
𝑉1(𝑥)

=
−𝑚𝐶1

2(𝑥)

𝐿
 

Force exerted on the molecule =
−𝑚𝐶1

2(𝑥)

𝐿
 

 
According to Newton’s third law of motion, the force exerted by the molecule =  

= −
−𝑚𝐶1

2(𝑥)

𝐿
=

𝑚𝐶1
2(𝑥)

𝐿
 

 
Force exerted by all the n molecules is 

𝐹𝑥 =
𝑚𝐶1

2(𝑥)

𝐿
+

𝑚𝐶2
2(𝑥)

𝐿
+

𝑚𝐶3
2(𝑥)

𝐿
+ ⋯ +

𝑚𝐶𝑛
2(𝑥)

𝐿
 

 
Pressure exerted by the molecules 

𝑃𝑥 =
𝐹𝑥

𝐴
 

 

𝑃𝑥 =
1

𝐿2
(

𝑚𝐶1
2(𝑥)

𝐿
+

𝑚𝐶2
2(𝑥)

𝐿
+

𝑚𝐶3
2(𝑥)

𝐿
+ ⋯ +

𝑚𝐶𝑛
2(𝑥)

𝐿
) 

 

𝑃𝑥 =
𝑚

𝐿3
(𝐶1

2(𝑥) + 𝐶2
2(𝑥) + 𝐶3

2(𝑥) + ⋯ + 𝐶𝑛
2(𝑥)) 

 
Similarly, pressure exerted by the molecules along Y and Z axes are 
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𝑃𝑦 =
𝑚

𝐿3
(𝐶1

2(𝑦) + 𝐶2
2(𝑦) + 𝐶3

2(𝑦) + ⋯ + 𝐶𝑛
2(𝑦)) 

 

𝑃𝑧 =
𝑚

𝐿3
(𝐶1

2(𝑧) + 𝐶2
2(𝑧) + 𝐶3

2(𝑧) + ⋯ + 𝐶𝑛
2(𝑧)) 

 
Since the gas exerts the same pressure on all the walls of the container 

Px = Py = Pz  
 

𝑃 =
𝑃𝑥 + 𝑃𝑦 + 𝑃𝑧

3
 

 

𝑃 =
1

3

𝑚

𝐿3
[(𝐶1

2(𝑥) + 𝐶2
2(𝑥) + 𝐶3

2(𝑥) + ⋯ + 𝐶𝑛
2(𝑥))

+ (𝐶1
2(𝑦) + 𝐶2

2(𝑦) + 𝐶3
2(𝑦) + ⋯ + 𝐶𝑛

2(𝑦))

+ (𝐶1
2(𝑧) + 𝐶2

2(𝑧) + 𝐶3
2(𝑧) + ⋯ + 𝐶𝑛

2(𝑧))] 

 

𝑃 =
1

3

𝑚

𝐿3
[(𝐶1

2(𝑥) + 𝐶1
2(𝑦) + 𝐶1

2(𝑧)) + (𝐶2
2(𝑥) + 𝐶2

2(𝑦) + 𝐶2
2(𝑧)) + ⋯

+ (𝐶𝑛
2(𝑥) + 𝐶𝑛

2(𝑦) + 𝐶𝑛
2(𝑧))] 

 
 

𝑃 =
𝑚

3𝑉
[𝐶1

2 + 𝐶2
2+. . +𝐶𝑛

2] 

 

𝑃 =
𝑚𝑛

3𝑉
[
𝐶1

2 + 𝐶2
2+. . +𝐶𝑛

2

𝑛
] 

𝑃 =
𝑚𝑛

3𝑉
< 𝐶2 > 

Here V is volume of gas 
Where < C2 > is called the root mean square (RMS) velocity, which is defined as the square 
root of the mean value of the squares of velocities of individual molecules. 
Since mn = mass of gas and density ρ = mass/volume 

𝑃 =
𝜌

3
< 𝐶2 > 
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Relation between the pressure exerted by a gas and the mean 
kinetic energy of translation per unit volume of the gas 
 
Mean kinetic energy of translation per unit volume of the gas 

𝐸 =
1

2
𝜌 < 𝐶2 > 

Thus  

𝑃

𝐸
=

𝜌
3

< 𝐶2 >

1
2

𝜌 < 𝐶2 >
=

2

3
 

Or P = (2/3)E 

 
Average kinetic energy per molecule of the gas 
Let us consider one mole of gas of mass M and volume V. 
 

𝑃 =
𝜌

3
< 𝐶2 > 

 

𝑃 =
𝑀

3𝑉
< 𝐶2 > 

𝑃𝑉 =
𝑀

3
< 𝐶2 > 

From ideal gas equation for one mole of gas 
PV = RT 

𝑀

3
< 𝐶2 > = 𝑅𝑇 

 
𝑀 < 𝐶2 > = 3𝑅𝑇 

1

2
𝑀 < 𝐶2 > =

3

2
𝑅𝑇 

Average kinetic energy of one mole of the gas is equal to = (3/2) RT 
 
Since one mole of the gas contains NA   number of atoms where NA is the Avogadro 
number we have M = NA m 

1

2
𝑁𝐴𝑚 < 𝐶2 > =

3

2
𝑅𝑇 

1

2
𝑚 < 𝐶2 > =

3

2

𝑅

𝑁𝐴

𝑇 

1

2
𝑚 < 𝐶2 > =

3

2
𝑘𝐵𝑇 

kB  is Boltzmann constant 
Average kinetic energy per molecule of the gas is equal to (3/2) kBT 
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Hence, it is clear that the temperature of a gas is the measure of the mean translational 
kinetic energy per molecule of the gas 
 

Degrees of freedom 
The number of degrees of freedom of a dynamical system is defined as the total number of 
co-ordinates or independent variables required to describe the position and configuration 
of the system. 
 (i) A particle moving in a straight line along any one of the axes has one degree of 
freedom (e.g) Bob of an oscillating simple pendulum.  
(ii) A particle moving in a plane (X and Y axes) has two degrees of freedom. (eg) An ant that 
moves on a floor. 
(iii) A particle moving in space (X, Y and Z axes) has three degrees of freedom. (eg) a bird 
that flies. 
A point mass cannot undergo rotation, but only translatory motion. Three degree of 
freedom 
A rigid body with finite mass has both rotatory and translatory motion. 
The rotatory motion also can have three co-ordinates in space, like translatory motion ; 
Therefore a rigid body will have six degrees of freedom ; three due to translatory motion 
and three due to rotator motion. 
 
Monoatomic molecule 
Since a monoatomic molecule consists of only a single atom of point mass it has three 
degrees of freedom of translatory motion along the three co-ordinate axes  
Examples : molecules of rare gases like helium, argon, etc. 
 
Diatomic molecule rigid rotator 

The diatomic molecule can rotate about any axis at right angles to its 
own axis. Hence it 
has two degrees of freedom of rotational motion in addition to three 
degrees of freedom of translational motion along the three axes. So, a 
diatomic molecule has five degrees of freedom (Fig.). Examples : 
molecules of O2, N2, Cl2, etc 

 
 
Diatomic molecule like CO : Have five freedom as stated in rigid rotator apart from that 

they have two more freedoms due to vibration ( oscillation) 
about mean position 
Plyatomic molecules posses rotational kinetic energy energy 
of vibration in addition to their translational energy. 
Therefore when heat energy is given to such gases, it is 
utilized in increasing the translational kinetic energy, 
rotational kinetic energy and vibrational kinetic energy of the 
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gas molecules and hence more heat is required. This way polyatomic molecules posses 
more specific heat 

 
Law of equipartition of energy 
 
Law of equipartition of energy states that for a dynamical system in thermal equilibrium 
the total energy of the system is shared equally by all the degrees of freedom. The energy 
associated with each degree of freedom per moelcule is (1/2)kT 
where k is the Boltzmann’s constant. 
Let us consider one mole of a monoatomic gas in thermal equilibrium at temperature T. 
Each molecule has 3 degrees of freedom due to translatory motion.  
According to kinetic theory of gases, the mean kinetic energy of a molecule is (3/2)kT 
Let Cx , Cy and Cz be the components of RMS velocity of a molecule along the three axes. 
Then the average energy of a gas molecule is given by 

1

2
𝑚𝐶2 =

1

2
𝑚𝐶𝑥

2 +
1

2
𝑚𝐶𝑦

2 +
1

2
𝑚𝐶𝑧

2 

1

2
𝑚𝐶𝑥

2 +
1

2
𝑚𝐶𝑦

2 +
1

2
𝑚𝐶𝑧

2 =
3

2
𝑘𝑇 

Since molecules move at random, the average kinetic energy corresponding to each 
degree of freedom is the same. 

1

2
𝑚𝐶𝑥

2 =
1

2
𝑚𝐶𝑦

2 =
1

2
𝑚𝐶𝑧

2 =
1

2
𝑘𝑇 

∴ Mean kinetic energy per molecule per degree of freedom is (1/2) kT 

Mean free path 
“The linear distance travelled by a molecule of gas with constant speed between two 
consecutive collisions ( between molecules) is called free path. The average of such free 
paths travelled by a molecule is called mean free path” 
Suppose molecules of gas are spheres of diameter d. If the centre between the two 
molecules is less or equal to  d then they will collide when they come close. 
Consider a molecule of diameter d moving with average speed v, and the other molecule is 
stationary. The molecule under consideration will  sweep a cylinder of πd2vt. In time t. 
If the number of molecules per unit volume is n, then the number of molecules in this 
cylinder is nπd2vt. Hence the molecule will under go nπd2vt collisions in time t 
The mean free path l is the average distance between two successive collision 

𝑀𝑒𝑎𝑛 𝑓𝑟𝑒𝑒 𝑝𝑎𝑡ℎ =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑡
 

𝑙 =
𝑣𝑡

2𝜋𝑑2𝑣𝑡
 

𝑙 =
1

2𝜋𝑛𝑑2
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In this derivation other molecules are considered stationary. In actual practice all gas 
molecules are moving and there collision rate is determined by the average relative 

velocity < V >  Hence  mean free path formula is  𝑙 =
1

√2𝜋𝑛𝑑2
 

 

Solved Numerical 
Q) Find the mean translational kinetic energy of a molecules of He at 27O 
Solution: Since He is mono atomic degree of freedom is 3 
Kinetic energy =(3/2)kBT 
Here kB = Boltzmann’s constant = 1.38×10-23 J K-1

  Temperature T = 27+273 = 300 K 

𝐾 =
3

2
× 1.38 × 10−23 × 300 = 6.21 × 10−21𝐽 

Q) At what temperature rms velocity of O2 is equal to rms velocity of H2 ay 27OC? 
Solution 
 Kinetic energy 

1

2
𝑚 <  𝐶2 > =  

3

2
𝑘𝐵𝑇 

<  𝐶2 > =  
3𝑘𝐵𝑇

𝑚
 

But  rms velocity of O 2  rms velocity of He 
3𝑘𝐵𝑇

32
=

3𝑘𝐵 × 300

4
 

𝑇 = 2400 𝐾 
 
Q) Find rms velocity of hydrogen at 0OC temperature and 1 atm pressure. Density of 
hydrogen gas is 8.9×10-2 kg m-3 
Solution: 
From formula 

𝑃 =
𝜌

3
< 𝐶2 > 

< 𝐶 > =  √
3𝑃

𝜌
 

< 𝐶 > =  √
3 × 1.01 × 105

8.9 × 10−2
= 1845 𝑚𝑠−1 

 
Q) If the molecular radius of hydrogen molecule is 0.5Å, find the mean free path of 
hydrogen molecule at 0OC temperature and 1 atm pressure 
Solution 
d = 2×r = 1 Å 
From formula P = nKBT 

𝑛 =
𝑃

𝑘𝐵𝑇
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𝑛 =
1.01 × 105

1.38 × 10−23 × 273
= 2.68 × 1025 

From formula for mean path 𝑙 =
1

√2×3.14×2.68×1025×(1×10−10)2
= 8.4 × 10−7 𝑚 

 
 

SECTION II 
Thermodynamics 

Some important terms  
 
Thermodynamic system : It is apart of the universe under thermodynamic study. A system 
can be one, two or three dimensional. May consists of single or many objects or radiation 
 
Environment : remaining part of universe around the thermodynamic system is 
Environment. Environment have direct impact on the behavior of the system 
 
Wall: The boundary separating the Stem from the universe is wall 
 
Thermodynamic co-ordinates:  The macroscopic quantities having direct effect on the 
internal state of the system are called thermodynamic coordinates. For example 
Take the simple example of a sample of gas with a fixed number of molecules. It need not 
be ideal. Its temperature, T, can be expressed as a function of just two variables, volume, 
V, and pressure, p. We can, it turns out, express all gas properties as functions of just two 
variables (such as p and V or p and T). These properties include refractive index, viscosity, 
internal energy, entropy, enthalpy, the Helmholtz function, the Gibbs function. We call 
these properties 'functions of state'. The state is determined by the values of just two 
variables 

 
Thermodynamic system: The system represented by the thermodynamic co-ordinate is 
called a thermodynamic system 
 
Thermodynamic process: The interaction between a system and its environment is called 
a thermodynamic process 
 
Isolated system: If a system does not interact with its surrounding then it is called an 
isolated system. Thermal and mechanical properties of such system is said to be ina 
definite thermodynamic equilibrium state 
Heat (Q) and Work(W): The amount of heat energy exchanged during the interaction of 
system with environment is called heat (Q) and the mechanical energy exchanged is called 
work (W). 
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Thermodynamic variables: Thermodynamic variables describe the momentary condition 
of a thermodynamic system. Regardless of the path by which a system goes from one state 
to another — i.e., the sequence of intermediate states — the total changes in any state 
variable will be the same. This means that the incremental changes in such variables are 
exact differentials. Examples of state variables include: Density (ρ), Energy (E), Gibbs free 
energy (G), Enthalpy (H) , Internal energy (U), Mass (m) , Pressure (p) ,Entropy (S) 
Temperature (T), Volume (V) 
 
Extensive thermodynamic state variable: The variables depending on the dimensions of 
the system are called extensive variables. For examples mass, volume, internal energy 
 
Intensive thermodynamic state variable: The variables independent on the dimensions of 
the system are called intensive variables. For examples pressure, temperature, density  
 
 
Thermal equilibrium: When two system having different temperatures are brought in 
thermal contact with each other, the heat flows from the system at higher temperature to 
that at lower temperature. When both the system attains equal temperatures, the net 
heat exchanged between them becomes zero. In this state they are said to be in thermal 
equilibrium state with each other. 
 
Zeroth Law of thermodynamics: “If the system A and B are in the thermal equilibrium 
with a third system C, then A and B are also in thermal equilibrium with each other” 
 
Temperature may be defined as the particular property which determines whether a 
system is in thermal equilibrium or not with its neighbouring system when they are 
brought into contact 
adiabatic wall – an insulating wall (can be movable) that does not allow flow of energy 
(heat) from one to another. 
diathermic wall – a conducting wall that allows energy flow (heat) from one to another 

 
Specific heat capacity 
Specific heat capacity of a substance is defined as the quantity of heat required to raise 
the temperature of 1 kg of the substance through 1K. Its unit is J kg–1K–1. 
 
Molar specific heat capacity of a gas 
Molar specific heat capacity of a gas is defined as the quantity of heat required to raise the 
temperature of 1 mole of the gas through 1K. Its unit is J mol–1 K–1. 
Let m be the mass of a gas and C its specific heat capacity. Then ΔQ = m × C × ΔT where ΔQ 
is the amount of heat absorbed and ΔT is the corresponding rise in temperature. 
Case (i) 
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If the gas is insulated from its surroundings and is suddenly compressed, it will be heated 
up and there is rise in temperature, even though no heat is supplied from outside 
(i.e) ΔQ = 0 ∴ C = 0 
Case (ii) 
If the gas is allowed to expand slowly, in order to keep the temperature constant, an 
amount of heat ΔQ is supplied from outside, then  

𝐶 =
∆𝑄

𝑚∆𝑇
=

∆𝑄

0
= +∞ 

 (∵ ΔQ is +ve as heat is supplied from outside) 
Case (iii) 
If the gas is compressed gradually and the heat generated ΔQ is conducted away so that 
temperature remains constant, then 

𝐶 =
− △ 𝑄

𝑚∆𝑇
=

−∆𝑄

0
= +∞ 

 
 (∵  ΔQ is -ve as heat is supplied by the system) 
Thus we find that if the external conditions are not controlled, the value of the specific 
heat capacity of a gas may vary from +∞ to -∞  
Hence, in order to find the value of specific heat capacity of a gas, either the pressure or 
the volume of the gas should be kept constant. Consequently a gas has two specific heat 
capacities  

(i) Specific heat capacity at constant volume  
(ii)  Specific heat capacity at constant pressure. 

 
Molar specific heat capacity of a gas at constant volume 
Molar specific heat capacity of a gas at constant volume CV is defined as the quantity of 
heat required to raise the temperature of one mole of a gas through 1 K, keeping its 
volume constant 
Molar specific heat capacity of a gas at constant pressure 
Molar specific heat capacity of a gas at constant pressure Cp is defined as the quantity of 
heat to raise the temperature of one mole of a gas through 1 K keeping its pressure 
constant 
 
Specific heat of gas from the law of equipartition of energy 
The energy associated with each degree of freedom is (1/2)KBT. It means that, if the 
degree of freedom of a gas molecule is f then the average heat energy of each molecule of 
gas is  

𝐸𝑎𝑣𝑒 = 𝑓 ×
1

2
𝑘𝐵𝑇 

If number of moles of an ideal gas is μ , then the number of moles in the gas is μNA. 
Therefore the internal energy of μ mole of ideal gas is  
U = μNA Eaverage 
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𝑈 = 𝜇𝑁𝐴𝑓 ×
1

2
𝑘𝐵𝑇 

 

𝑈 =
𝑓

2
𝜇𝑅𝑇    (∵ 𝑅 = 𝑁𝐴𝑘𝐵) 

 

Work in thermodynamics 
The amount of mechanical energy exchanged between two bodies during mechanical 
interaction is called work. Thus work is a quantity related to mechanical interaction. A 
system can possess mechanical energy, but cannot posses work 
In thermodynamics the work done by the system is considered positive and the work 
done on the system is considered negative. 
The reason behind such sign convention is due to the mode of working of heat engine in 
which the engine absorbs heat from the environment and converts it into work W means 
the energy of the system is reduced by W 
 

Formula for the work done during the compression of gas at constant 
temperature 

 
 As shown in figure μ molecules of gas are enclosed in a 
cylindrical container at low pressure, and an air tight piston 
capable of moving without friction with area A is provide.. 
the conducting bottom of the cylinder is placed on an 
arrangement whose temperature can be contolled. 

 
At constant temperature , measuring the volume of the gas 
for different values of pressure, the graph of  P-V can be 
plotted as shown in figure. These types of process are 
called isothermal process and curved of P-V is called 
isotherm. 
Suppose initial pressure and volume of the pas is 
represented by P1 and V1 respectively. Keeping the 
temperature T of the gas to be constant , volume of gas 
decreases slowly by pushing piston down. Let final pressure 
and volume of the gas be is P2 and V2 
During the process, at one moment when pressure of the 

gas is P and volume V, at that time, let the piston moves inward by ∆x. then the volume of 
the gas decreases by ∆V. this displacement is to small that there is no apparent change in 
pressure.  
Hence work done on the gas  
∆W = F∆x 
∆W = PA∆x 
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∆W = P∆V 
If the volume of the gas is decreasing from V1 to V2 through such small changes, then the 
total work done on the gas 

𝑊 = ∑ 𝑃 △ 𝑉

𝑉2

𝑉1

 

If this summation is taking the limit as ∆V  0 the summation results in integration 

𝑊 = ∫ 𝑃𝑑𝑉
𝑉2

𝑉1

 

But the ideal gas equation for μ moles of gas is PV=μRT thus 

𝑊 = ∫
μRT

𝑉
𝑑𝑉

𝑉2

𝑉1

 

 

𝑊 = μRT ∫
𝑑𝑉

𝑉

𝑉2

𝑉1

 

 

𝑊 = μRT[lnV]
V1

V2  

 
𝑊 = μRT[V2 − V1] 

 

𝑊 = μRT ln (
V2

V1

) 

𝑊 = 2.303μRT log10 (
V2

V1

) 

Equation does not give the work W by an ideal gas during every thermodynamic process, 
but it gives the work done only for a process in which the temperature is held constant. 
 
Since V2 <V1 hence log(V2/V1 ) is negative . Thus we get negative value of work which 
represents that during the compression of gas at constant temperature, the work is done 
on the gas 
 
If the gas is expanded then Since V2 >V1 hence log(V2/V1 ) is positive . Thus we get negative 
value of work which represents that during the compression of gas at constant 
temperature, the work is done by the gas 
The P-V, T-V and T-P diagram for isothermal process will be like the curves given below 
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Work done at constant volume and constant pressure 
Constant volume : Also called as isochoric process 
If the volume is constant then dV = from equation 

𝑊 = ∫ 𝑃𝑑𝑉
𝑉2

𝑉1

 

Work done is zero  
The P-V, V-T and P-T diagrams for isochoric process will be like curves given below 
 

 
 
Constant pressure :Also called as Isobaric process 
If the volume is changing while pressure is constant then from equation 

𝑊 = ∫ 𝑃𝑑𝑉 = 𝑃 ∫ 𝑃𝑑𝑉
𝑉2

𝑉1

𝑉2

𝑉1

 

𝑊 = 𝑃[𝑉2 − 𝑉1] 
W = P∆V ( for constant pressure ) 

The P-V, V-T and P-T diagrams for isobaric process will be like curves given below 
 

 
 
Work done during adiabatic process 
No excahge of heat takes palce between system and it environment in this process. This is 
possible when (1) walls of a system are thermal insulator or (2) process is very rapid. 
The relation between pressure and volume for ideal gas is  

𝑃𝑉𝛾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Where 𝛾 =
𝐶𝑃

𝐶𝑉
 

For an adiabatic process 

𝑊 = ∫ 𝑃𝑑𝑉
𝑉2

𝑉1

 

Let  
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𝑃𝑉𝛾 = 𝐴 
 

𝑊 = ∫
𝐴

𝑉𝛾
𝑑𝑉

𝑉2

𝑉1

 

𝑊 = 𝐴 ∫
𝑑𝑉

𝑉𝛾

𝑉2

𝑉1

 

𝑊 = 𝐴 [
𝑉−𝛾+1

−𝛾 + 1
]

𝑉1

𝑉2

 

 

𝑊 =
1

1 − 𝛾
[𝐴𝑉2

−𝛾+1
− 𝐴𝑉1

−𝛾+1
] 

𝐵𝑢𝑡 𝐴 = 𝑃2𝑉2
𝛾

= 𝑃1𝑉1
𝛾

  
 

𝑊 =
1

1 − 𝛾
[𝑃2𝑉2

𝛾
𝑉2

−𝛾+1
− 𝑃1𝑉1

𝛾
𝑉1

−𝛾+1
] 

 

𝑊 =
1

1 − 𝛾
[𝑃2𝑉2 − 𝑃1𝑉1] 

𝑊 =
1

𝛾 − 1
[𝑃1𝑉1 − 𝑃2𝑉2] 

From ideal gas equation PV = μRT 

𝑊 =
μR

𝛾 − 1
[𝑇1 − 𝑇2] 

The P-V, T-V and P-T diagrams for adiabatic process will be lie the curves given below 
 

 
Solved Numerical 

Q) Calculate work done if one mole of ideal gas is compressed isothermally at a 
temperature 27O C from volume of 5 litres to 1 litre 
Solution: 
Formula for work done during iso-thermal process is 

𝑊 = 2.303μRT log10 (
V2

V1

) 

𝑊 = 2.303 × 1 × 8.31 × 300 × 𝑙𝑜𝑔 (
1

5
) 
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𝑊 = 2.303 × 1 × 8.31 × 300 × [𝑙𝑜𝑔1 − 𝑙𝑜𝑔5] 
𝑊 = 2.303 × 1 × 8.31 × 300 × [0 − 0.6990] 

W = -4012.5J 

 
First law of thermodynamics 

Suppose a sytem absorbs heat and as a result work is done by it ( 
by the system). We can think of different paths (process) through 
which the system can be taken from initial stage  (i) to final state 
(f) 
For the process iaf, ibf, icf. Suppose the heat absorbed by the 
system are Qa, Qb , Qc respectively and the values of the work 
done are respectively Wa, Wb, Wc. Here  
Qa ≠Qb ≠ Qc  and Wa ≠ Wb ≠ Wc, but difference of heat and work 
done turns out to be same 
Qa - Wa = Qb – Wb = Qc – Wc 

Thus value of Q – W depends only on initial and final state of the system. A 
thermodynamic state function can be defined such that the difference between any two 
states is equal to Q – W. Such a function is called internal energy U of system 
The system gains energy Q in the form of heat energy and spends energy W to do work. 
Hence the internal energy of the system changes by Q-W. 
If the internal energies of system in initial state is Ui and final state is Uf then 
Ui – Uf  = ∆U = Q – W Which is the first law of thermodynamics 
The first law is obeyed in all the changes occurring in nature 
Isochoric process 
Since in this process volume remains constant, the work done in this process is equal to 
zero. Applying first law of thermodynamics to this process, we get 
∆Q = ∆U + ∆W  
∆Q =  ∆W  
So heat exchange in this process takes place at the expense of the internal energy of the 
system. 
dQ = dU 

(
𝑑𝑄

𝑑𝑇
)

𝑉
= (

𝑑𝑈

𝑑𝑇
)

𝑉
 

𝑠𝑖𝑛𝑐𝑒 𝑈 =
𝑓

2
𝑅𝑇     

 

(
𝑑𝑄

𝑑𝑇
)

𝑉
=

𝑓

2
𝑅 

Thus above equation is for the energy required to increase temperature by one unit of one 
of  ideal gas it is molar specific heat at constant volume CV 

(
𝑑𝑄

𝑑𝑇
)

𝑉
=

𝑓

2
𝑅 = 𝐶𝑉 
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Isobaric process 
Applying first law of thermodynamics to isobaric process we get 

∆Q = ∆U + P(V2 – V1) 
∆Q = ∆U + P∆V 

But PV =  RT for one mole of gas 
∴ P∆V= R∆T thus 
∴ ∆Q = ∆U + R∆T 

𝑠𝑖𝑛𝑐𝑒 𝑈 =
𝑓

2
𝑅𝑇     

∴ (
𝑑𝑄

𝑑𝑇
)

𝑃
=

𝑓

2
𝑅

𝑑𝑇

𝑑𝑇
+ R

𝑑𝑇

𝑑𝑇
 

∴ (
𝑑𝑄

𝑑𝑇
)

𝑃
=

𝑓

2
𝑅 + R 

Since dQ/dT is specific heat at constant pressure = CP 
∴ CP =  CV + R 
OR CP – CV = R 

𝛾 =
𝐶𝑃

𝐶𝑉

=

𝑓
2

𝑅 + R

𝑓
2

𝑅
 

 

𝛾 = 1 +
2

𝑓
 

f is degree of freedom 
For monoatomic molecule f = 3 

𝐶𝑉 =
3𝑅

2
,   𝐶𝑃 =

5𝑅

2
 , 𝛾 =

5

3
 

 
For the diatomic molecules ( rigid rotator) f = 5   

𝐶𝑉 =
5𝑅

2
,   𝐶𝑃 =

7𝑅

2
 , 𝛾 =

7

5
 

For the diatomic molecules ( with vibration , molecule like CO) f = 7   

𝐶𝑉 =
7𝑅

2
,   𝐶𝑃 =

9𝑅

2
 , 𝛾 =

9

7
 

According to the equipartion theorem the change in internal energy is related to the 
temperature of the system by 

∆U= mCV∆T 
 
 

Isothermal process 
For isothermal process ∆U = 0.  
Applying first law of thermodynamics we get 
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∆Q = W 

∆Q = 𝑊 = 2.303μRT log10 (
V2

V1

) 

 
Adiabatic process 
Applying first law of thermodynamics we get 
∆Q = ∆U + ∆W 
For adiabatic process ∆Q = 0 

-∆U = ∆W 
The reduction in internal energy of the gas  ( due to which temperature fails) is equal to 
the work done during an adiabatic expansion. Again during an adiabatic compression the 
work done on the gas causes its temperature rise. Adiabatic processes are generally very 
fast. 
Example when we use air pump to fill air in bicycle tyre, pump get heated on pumping 
rapidly  

Solved Numerical 
Q) At 27OC, two moles of an ideal momoatomic gas occupy a volume V. The gas expands 
adiabatically to a volume 2V. Calculate (a) final temperature of the gas (b) Change in its 
internal energy (c) Work done by the gas during the process 
Take R = 8.31 J/mole/K 
Solution: 
For monoatomic gas γ = 5/3.  
T = 27+273 =300 
(a) Gas expanded adiabatically 

𝑃2𝑉2
𝛾

= 𝑃1𝑉1
𝛾

 
Since PV∝T 
P∝ T/V 
Thus  

𝑇2𝑉2
𝛾−1

= 𝑇1𝑉1
𝛾−1

 

∴ 𝑇2 = 𝑇1 (
𝑉1

𝑉2

)
𝛾−1

 

∴ 𝑇2 = 300 (
1

2
)

5
3⁄ −1

= 189𝐾 

(b) For adiabatic process ∆Q = 0 
-∆U = ∆W 

 

𝑊 = −∆𝑈 =
μR

𝛾 − 1
[𝑇1 − 𝑇2] 

−∆𝑈 =
2 × 8.31

5
3

− 1
[300 − 189] = 2767.23 𝐽 

∆U = -2767.23 J 
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(c) ∆W = -∆U 
∆W = 2767.23 J 

Isothermal and adiabatic curves 
The relation between the pressure and volume of gas can be represented graphically. The 
curve for an isothermal process is called isothermal curve or an isotherm and there are 
different isotherms for different temperatures for a given gas. A similar curve for an 
adiabatic process is called an adiabatic curve or adiabatic 
Since  

(
𝑑𝑃

𝑑𝑉
)

𝑖𝑠𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙
= −

𝑃

𝑉
 

And 

(
𝑑𝑃

𝑑𝑉
)

𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐
= −𝛾

𝑃

𝑉
 

So 
 

(
𝑑𝑃

𝑑𝑉
)

𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐
= 𝛾 (

𝑑𝑃

𝑑𝑉
)

𝑖𝑠𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙
 

Since γ > 1, so adiabatic curve is steeper-than the isothermal curve 
 
To permit comparison between isothermal ,adiabatic 
process, Isochoric and isobaric process an isothermal 
curve ,an adiabatic curve isochoric and Isobaric curves 
of gas are drawn on the same pressure-volume 
diagram starting from the same point. 
 
 
 
 

 
 
 

Solved Numerical 
Q)When a system is taken from state a to state b along the path acb it is found that a 

quantity of heat Q = 200J is absorbed by the system 
and a work W = 80J is done by it. Along the path adb, Q 
= 144J 
(i)What is the work done along the path adb 
(ii)IF the work done on the system along the curvered 
path ba is 52J, does the system absorb or linerate heat 
and how much 
(iii)If Ua = 40J, what is Ub 
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(iv)If Ud = 88J, what is Q for the path db and ad? 
 
 
Solution 
From the first law of thermodynamics, we have 
Q = ∆U + ∆W 
Q = (Ub – Ua) + W 
Where Ub is the internal energy in the state b and U is the internal energy in the stste a 

For the path acb, it is given that 
Q = 200J (absorption) and  
Q = 80J ( work done by the system) 
∴ Ub – Ua = = Q –W = 200-80 = 120J 
 
Which is the increase in the internal energy of the system for path acb. Whatever be the 
path between a and b the change in the internal energy will be 120 J only 
 

(i) To determine the work done along the path adb 
Given Q = 144J 

∆U = Ub – Ua = 120J 
Q = (Ub – Ua) + W  
 144 = 120 + W 
W = 24J 
Since W is positive, work is done by the system 
 
(ii) For the curved return path ba, it is given that 

Given W=-52J ( work done on the system) 
∆U = -120 J ( negative sign since ∆U = Ua – Ub) 
Q =  (Ua – Ub) + W  
Q = (-120 – 52) J = -172 J 
Negative sign indicates heat is extracted out of the system 
 
(iii) Since Ub – Ua = 120 J and Ua = 40 j 

Ub = Ua +120 = 40 +120 = 160J 
 

(iv)  For path db, the process is isochoric since it is at constant volume 
Work done is zero 
Q = ∆U + W  
Q = ∆U 
Q = Ub – Ud = 160 - 88 = 72 J 
For the path ad, 
Q = Qadb – Qdb = 144J -  72 J = 72J 

 



PHYSICS  NOTES                                                                                                www.gneet.com 

 

23 

www.gneet.com 

 

 
 
Q) A mass of 8 g of oxygen at the pressure of one atmosphere and at temperature 27OC is 
enclosed in a cylinder fitted with a frictionless piston. The following operations are 
performed in the order given 
(a) The gas is heated at constant pressure to 127OC 
(b) then it is compressed isothermally to its initial volume and 
(c) finally it is cooled to its initial temperature at constant volume 
(i) What is the heat absorbed by the gas during process (A)? 
(ii) How much work is done by the gas in process A 
(iii)What is the work done on the gas in process B 
(iv)How much heat is extracted from the gas in process (c) 
[Specific heat capacity of oxygen CV = 670 J/KgK; ] 
Solution:  
Volume of gas at temperature 27+273 = 300K = T2 

Molecular weight of Oxygen = 32 thus 8g = 0.2 mole 
At STP volume of 1 mole is 22.4 litre Thus volume of 0.25 mole  is  V1 = 22.4/4  
Thus for formula volume at 27OC is  

𝑉2

𝑇2

=
𝑉1

𝑇1

 

𝑉2 =
𝑇2

𝑇1

𝑉1 

𝑉2 =
300

273
×

22.4

4
=

560

91
× 10−3 𝑚3 

 
Similarly 
Volume at 127OC is  

𝑉 3 =  𝑉2 ×
400

300
=

4

3
𝑉2 

 
𝑉3

𝑉2

=
4

3
 

(i)  
For Isothermal compression  
dQ = dU + dW = mCv∆𝑇 + P(V3 – V2)  

𝑑𝑄 =
8

1000
× 670 × 100 + 1.013 × 105 × [

560 × 10−3

3 × 91
] 

dQ = 536 + 207.8 = 743.8 J 
(ii) dW = P(V3 – V2) = 207.8 J 
(iii) Work done in compressing the gas isothermally =  

𝑊 = 2.303μRT log10 (
V3

V2

) 
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𝑊 = 2.303 ×
m

M
RT log10 (

V3

V2

) 

𝑊 = 2.303 ×
8

32
× 8.31 × 400 ×  log10 (

4

3
) 

𝑊 = 831 × 0.2877 = 239.1 𝐽 
(d) Heat given out by the gas in stage (C) = mCV∆T  

8

1000
× 670 × 100 = 536 𝐽 

 
 

 
 

Heat Engine 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
A device converting heat energy into mechanical work is 
called heat engines. 
A simple heat engine is shown in figure. The gas enclosed in a cylinder with a piston 
receives heat from the flame of a burner. On absorbing heat energy the gas expands and 
pushes the piston upwards. So the wheel starts rotating. To continue the rotations of the 
wheel an arrangement is done in the heat engine so that the piston can move up and 
down periodically. For this, when piston moves more in upward direction, then hot gas is 
released from the hole provided on upper side 
Here gas is called working substance. The flame of the burner is called heat source and the 
arrangement in which gas is released is called heat sink. 
 Following figure shows working of the heat engines by line diagram 
 
In the heat engine, the working substance undergoes a cyclic process. For this the working 
substance absorbs heat Q1, from the heat source at higher temperature T, out of which a 
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part of energy is converted to mechanical energy (work  W) and remaining heat Q2 is 
released into the heat sink. 
Hence , the net amount of heat absorbed by the working substance is  
Q = Q1 – Q2 
But for a cyclic process, the net heat absorbed by the system is equal to the net work done 
∴ Q = W 
Q1 – Q2 = W 
In the cyclic process, the ratio of the network (W) obtained during one cycle is called the 
efficiency (η) of the heat engine. That is  

𝜂 =
𝑁𝑒𝑡 𝑤𝑜𝑟𝑘 𝑜𝑏𝑡𝑎𝑖𝑛𝑒 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒

𝐻𝑒𝑎𝑡 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒
 

 

𝜂 =
𝑊

𝑄1

=
𝑄1 − 𝑄2

𝑄1

 

 

𝜂 = 1 −
𝑄2

𝑄1

   − − − 𝑒𝑞(1) 

From equation(1) it can be said that if Q2 = 0, then the efficiency of the heat engine  
is η = 1. This means that the efficiency of heat engine becomes 100% and total heat 
supplied to the working substance gets completely converted into work. 
In practice, for any engine Q2 ≠ 0 means that some heat Q2 is always wasted hence η<1 
 

Cyclic process and efficiency calculation 
When a system after passing through various intermediate 
steps returns to its  original state, then it is called a cyclic 
process. 
Suppose a gas enclosed in cylinder is expanded from initial 
stage A to final stage B along path AXB as shown in figure 
If W1 be the work done by the system during expansion, 
then  
W1 = + Area AXBCDA 
Now late the gas be compressed from state B to state along 

the path BYA, so as to return the system to the initial state. If W2 be the work done on the 
system during compression, then W2 = -Area BYADCB 
According to sign convention, work done on the system during compression is negative 
and the net work done in the cyclic process AXBYA is  
W = Area AXBCDA – Area BRADCB = Area AXBYA 
Which is a positive quantity and hence net work will be done by the system 
So the net amount of work done during a cyclic process is equal to the area enclosed by 
the cyclic path. It is evident from the figure that if the cyclic path is being traced in 
anticlockwise direction, the expansion curve will be below the compression curve and net 
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work done during the process will be negative. This implies that the net work will now be 
done on the system. Applying first law of thermodynamics to cyclic process, we get 
ΔQ = ΔU + ΔW 
But ΔU = for cyclic process 
So ΔQ = ΔW 

Solved Numerical 
Q) An ideal monoatomic gas is taken round the cycle ABCD where co-ordinates of 
ABCDP_V diagram are A(p, V), B(2p, V), C(2p, 2V) and D(p, 2V). Calculate work done during 
the cycle 
Solution Area enclosed = pV 

Carnot Cycle and Carnot Engine 
Carnot engine consists of a cylinder whose sides are perfect insulators of heat except the 
bottom and a piston sliding without friction. The working substance in the engine is μ mole 
of a gas at low enough pressure ( behaving as an ideal gas). During each cycle of the 
engine, the working substance absorbs energy as heat from a heat source at constant 
temperature T1 and releases energy as heat to a heat sink at a constant lower temperature 
T2 <T1. 

The cyclic process, shown by P-V graph in figure a, is completed in four stages.  

 
 
The Carnot engine and its different stages are shown in figure b 

(I) First stage Isothermal expansion of gas from (a  b) 
Initial equilibrium state ( P1, V1, T1 )final equilibrium state (P2, V2, T1) Suppose gas 
absorbs heat Q1 during the process. Hence work done is 

𝑊1 = 𝑄1 = μRT1 ln (
V2

V1

)    − − − eq(1) 

Further P1V1 = P2V2    ---- eq(2) 
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(II) Second stage  Adiabatic expansion of gas ( b  c ) 
Now , the cylinder is placed on a thermally insulated stand and the gas is adiabatically 
expanded to attain the state c ( P3, V3, T2). 
During this ( adiabatic process the gas does not absorb any heat but does work while 
expanding, so its temperature decreases. For this process 

𝑃2𝑉2
𝛾

= 𝑃3𝑉3
𝛾

   − − − 𝑒𝑞(3) 
(III) Third Stage: Isothermal compression of gas ( cd) 

Now, the cylinder is brought in contact with heat sink at temperature T2 and isothermally 
compressed slowly to attain an equilibrium state d ( P4, V4, T2 ). Work done on the gas 
during this process of isothermal compression is negative as work is done on the gas from 
state c  d is 
  

𝑊2 = 𝑄2 = −μRT2 ln (
V4

V1

)    

 

𝑊2 = 𝑄2 = μRT2 ln (
V3

V4

)    − − − eq(4) 

Here Q2 is released by the gas into heat sink 
Further for isothermal process 

P3V3 = P4V4    ---- eq(5) 
(IV) Fourth Stage: Adiabatic compression of gas ( d a) 

Now, the cylinder is placed on a thermally insulated stand and compressed adiabatically to 
its original state a (P1V1 T1). This process is adiabatic, therefore, there’re is exchange of 
heat with surrounding, but the work is done on the gas and hence temperature increases 
from T2 to T1 
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For this adiabatic process 

𝑃4𝑉4
𝛾

= 𝑃1𝑉1
𝛾

   − − − 𝑒𝑞(6) 
 
Note that over the whole cycle, the heat absorbed by the gas is Q1 and the heat given out 
by the gas is Q2. Hence the efficiency η of the Carnot engine is  
 

𝜂 = 1 −
𝑄2

𝑄1

 

From equation (1) and (4) 
 

𝜂 = 1 −
T2 ln (

V3

V4
)   

T1 ln (
V1

V4
)

   − − − 𝑒𝑞(7) 

Multiplying equation (2), (3), (5) and 6 we get 

𝑃1𝑉1𝑃2𝑉2
𝛾

𝑃3𝑉3𝑃4𝑉4
𝛾

= 𝑃2𝑉2𝑃3𝑉3
𝛾

𝑃4𝑉4𝑃1𝑉1
𝛾

 
 

∴ (𝑉2𝑉4)𝛾−1 = (𝑉3𝑉1)𝛾−1 
 

∴ 𝑉2𝑉4 = 𝑉3𝑉1 
 

𝑉2

𝑉1

=
𝑉3

𝑉4

 

 

∴ 𝑙𝑛 (
𝑉2

𝑉1

) = 𝑙𝑛 (
𝑉3

𝑉4

) 

Using this result in equation (7) We get efficiency of Carnot engine as 
 

𝜂 = 1 −
𝑇2

𝑇1

    − − − 𝑒𝑞(8) 

Or  

𝜂 = 1 −
𝑙𝑜𝑤 𝑡𝑒𝑚𝑝 𝑜𝑓 𝑠𝑖𝑛𝑘

ℎ𝑖𝑔ℎ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑓 𝑠𝑜𝑢𝑟𝑐𝑒
 

Equation (8) shows that the efficiency of the Carnot engine depends only on the 
temperature of the source and the sink. Its efficiency does not depends on the working 
substance ( if it is ideal gas). 
If the temperature of the source (T1) is infinite or the temperature of the sink (T2) is 
absolute zero 9 which is not possible) then only, the efficiency of Carnot engine will be 
100%, which is impossible. 
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Refrigerator / Heat pump and Coefficient of Performance 
If the cyclic process performed on the working substance in heat engine is reversed, then 
the system woks as a refrigerator or heat pump. Figure below shows the block diagram of 
refrigerator/ heat pump 

 
In the refrigerator, the working substance absorbs heat Q2 from 
the cold reservoir at lower temperature T2, external work W, is 
performed on the working substance and the working substance 
releases heat Q1  into the hot reservoir at higher temperature T1 
The ratio of the heat Q1 absorbed by the working substance to 
the work W performed on it, is called the coefficient of 
performance (α) of the refrigerator. That is  

𝛼 =
𝑄2

𝑊
 

Here heat is released in surrounding 
Q1 = W + Q2 

Q1 = W + Q2 

W = Q1 – Q2  

𝛼 =
𝑄2

𝑄1 − 𝑄2

 

Here the value of α can be more than 1 ( ∵Q2 > Q1 – Q2), but it 
can not be infinite 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 


