
Kanban as a Tool in the Agile Toolbox

• Cognizant 20-20 Insights

Executive Summary
The ability of a software development team to
be agile has an attraction at an elemental level.
Who would not want to “be agile”? On its face,
it beckons. More to the reality of the industry, it
was large-scale, long-running projects that badly
missed the mark in terms of schedule, cost or
scope that pointed out the need for new ways
to organize and execute work. Slowly, responses
emerged and a framework crystalized ten years
ago when industry visionaries gathered to
set a new course with a broadly-framed Agile
Manifesto. The Agile movement was born out of
frustration, not surface attraction. The quest for
agility involves serious choices.

New practitioners are often reminded that “Agile
is not a methodology.” Approaches to task and
team organization to better deliver business value
through the software development process may
involve a lightweight methodology as in Scrum or
more simply be classified as a set of management
policies as in Kanban. Either, for purposes of this
paper, is considered a tool. Many combinations of
methodology and policies have emerged over the
last decade in the attempt to color in the picture
broadly sketched by the Manifesto. Akin to consti-
tutional case law guided by principles, real-world
practices have been shaped by the variety of
choices made by individuals and the organiza-
tions in which they serve. Tool selection and use
are important choices.

Kanban is a more recent addition to the toolbox,
with landmark use in the software engineer-
ing process at Microsoft starting in 2004 and
maturing substantially since then. This paper
examines the elements of Kanban as a tool, par-
ticularly in relation to Agile Scrum. In essence,
the examination is an entry point deliberation,
whether by itself or in combination with Scrum
(i.e., Scrumban). The initial scope and complexity
surrounding a Kanban implementation are indeed
critical choices.

Tools for Agility
Overview

The Manifesto for Agile Software Develop-
ment signed in February 2001 has proven to be
a powerful statement of vision that has held
together well over the decade and guided inno-
vations in self-organizing teams. The Manifesto
contains twelve principles1 with four commonly-
referenced attributes that reflect its essential
spirit and vision:

•	 Individuals and interactions over processes
and tools.

•	 Working software over comprehensive
documentation.

•	 Customer collaboration over contract
negotiation.

•	 Responding to change over following a plan.

Further, practitioners have noted two axioms that
are central to agility efforts2 and break from past

cognizant 20-20 insights | january 2012

practices of time-consuming, detailed front-end
specifications and a lock-step, sequential imple-
mentation of all development efforts:

•	 Axiom 1: It is possible to divide the work into
small value-adding increments that can be in-
dependently scheduled.

•	 Axiom 2: It is possible to develop any value-
adding increment in a continuous flow from
requirement to deployment.

With these guiderails in place for the path to
agility, the selection and use of a methodology
(e.g., Scrum) and a set of management practices
(e.g., Kanban) are choices to be made in the
context of the engagement and the culture of the
organization.

Toolbox to Achieve Agile Principles

The literature is replete with admonitions from
seasoned veterans that “tools are tools” — nothing
more and nothing less. However, the policy
decisions and choices surrounding the use of the
tools is where the cookbook steps turn to craft.
Organizations are well-advised to “measure twice
and cut once” when selecting tools to achieve
Agile goals. Anyone who has spent time in large-
scale Agile projects or been enrolled when large
organizations plunge headlong into Agile (i.e.,
“doing Agile”) knows how diverting it can be to
wrangle with unrealistic expectations and uneven
levels of understanding surrounding the use of
Agile tools. Agile coaches certainly have a role to
play and many do it extremely well, but careful
decisions around entry points into the Agile envi-
ronments will pay dividends for those who have
hired the coaches.

One primary reviewer cited a continuum along
which the toolset lies ranging from very prescrip-
tive (in terms of roles, steps and detailed instruc-
tion) to very lightweight. Scrum is on the right
side of the continuum and Kanban serves as the
right terminus. Methodologies like rational unified
process (RUP), with its many roles, lie to the left.

In line with the Agile Manifesto assertion favoring
“Individuals and interactions over processes
and tools,” the movement towards Scrum
practices has become a standard entry point for
Agile adoption. More recently, the simple set of
powerful Kanban practices is enlisting a growing
number of advocates recognizing that less is
really more. This care and attention to the weight
of prescribed activities centers on the degrees of
freedom granted to self-organizing teams, which

is a central consideration addressed by Manifesto
principles:

•	 Build projects around motivated individuals.
Give them the environment and support they
need, and trust them to get the job done.

•	 The best architectures, requirements, and
designs emerge from self-organizing teams.

•	 At regular intervals the team reflects on how to
become more effective, then tunes and adjusts
its behavior accordingly.

A toolset that helps a development team or even
an organization get to an established cadence
of delivering high-quality software is the right
fit. This obviously is a tailored fit based on the
skill-set, motivations and experience level of the
team; no cookbook recipes will work.

One of the key findings of this search for an
appropriate entry point is that the adoption of
the premise that “less is more” coupled with
continuous improvement practices that are
sincerely adopted by a self-organized team can
build out to the level that meets the production
goal.

Scrum
Basic Elements

There are many texts and blogs about Scrum,
with detail for the curious, novice and experi-
enced practitioners. A basic description works for
this tool review:3

•	 Split the organization into small, cross-func-
tional, self-organizing teams.

•	 Split the work into a list of small, concrete deliv-
erables. Sort the list by priority and estimate
the relative effort of each item.

•	 Split time into short fixed-length iterations
(usually one to four weeks) with potentially
shippable code demonstrated after each
iteration.

•	 Optimize the release plan and update priorities
in collaboration with the customer, based on
insights gained by inspecting the release after
each iteration.

•	 Optimize the process by having a retrospec-
tive after each iteration.

Change in Processes Required

Scrum is notable as a lightweight methodology.
Its prescriptions include both team organization
and practices.

cognizant 20-20 insights 2

cognizant 20-20 insights 3

•	 Organization: Must have a product owner, a
Scrum master and a limited-size, cross-func-
tional development team.

•	 Practices: Have a daily stand-up, deliver
working product in fixed length iterations (i.e.,
Sprints), conduct Sprint planning meetings
to establish a contract on what work will be
delivered, and have retrospectives.

These mandates seem straightforward, but it is
clear that some degree of organizational change
is required at the onset. The reality is that even
this limited set of prescriptions may be difficult
to implement. The concept of an empowered
product owner may be adopted in name only as
decision-making in organizations of all sizes can
be tricky; “final say” is often elusive. The change
required for even this lightweight footprint
requires broad-based if not universal understand-
ing and full-fledged endorsement at all levels of
the organization. The term “Scrum-but” is often
heard in recounts of Agile adoption, signaling
that organizational challenges and resistance to
new practices are not easily conquered by those
seeking to be Agile.

Kanban
Basic Elements

Lead industry practitioner David Anderson
characterizes Kanban as a limited pull, work-in-
progress system that is incremental and evo-
lutionary.4 Derived from the Toyota Production
System (TPS) and introduced more recently
into the software development world, a Kanban
system is in essence a simple but powerful set of
practices and policies. The term Kanban refers
to a “signal card” that represents a unit of work
that moves through the organization’s work flow
only when there is capacity to address the work
at that step in the work-flow process (i.e., a “pull
work system”).

Almost every description of Kanban as a tool to
manage and improve workflow starts with three
basic elements:5

•	 Visualize the Workflow: A visual representation
of the process lets you see exactly the state
of the work activity (e.g., ready, in progress,
done). A Kanban board is used which has a set
of columns reflecting the steps of the work
flow. With this tool, the work and the work flow
is made visible to make activities and issues
obvious.

•	 Work in Process: Kanban limits work in progress
(WIP) through an explicit policy statement
by the team to promote quality, focus and
finishing (i.e., the team will accept no more
than two active work assignments per team
member at any one time). There is a limit to
the number of things you can be working on
and still do well.

•	 Measure and Improve Flow: Kanban promotes
the measurement and tracking of workflow as
a prompt for continuous improvement in order
to continuously and predictably deliver value.

Each of these elements appears to be a simple
construct, but veteran practitioners Mike
Cottmeyer and Dennis Stevens report powerful
implications and offer testimonials associated
with the adoption of these elements even in the
most basic form:6

•	 Visual control systems are valuable in changing
behavior because they display status in an
easy-to-see format. This ensures that everyone
has a shared understanding of work status and
process constraints. Transparency is a key to
achieving organizational change.

•	 WIP limits encourage everyone to work as
a team and prevent any one individual from
getting too far ahead of anyone else.

•	 Kanban elevates awareness of constraints and
forces the team to address them before they
can bring additional work into the queue.

•	 New work is pulled into the system when there
is capacity to handle it, rather than being
pushed into the system based on demand.

•	 With Kanban, the focus of management and
the team becomes the flow of work, not the
utilization of the team.

•	 While Scrum has retrospectives at the end of
each iteration to address these items, Kanban
explicitly points out constraints in real time
and encourages the team to address them as
they arise.

As highlighted, the use of a basic Kanban board
(manual and/or virtual for distributed teams)
serves to bring everyone onto the same page,
improve focus and prompt questions that lead to
revision of policies and practices. When the team’s
experience grows, the Kanban board will change
to expand and refine the workflow representa-
tion, thereby reflecting a more sophisticated level

cognizant 20-20 insights 4

of adoption. Some examples of work-flow adjust-
ments include:

•	 Insertion of additional queues between ini-
tially-defined columns to better articulate
waiting states associated with bottlenecks and
improvement opportunities.

•	 Use of a “priority next” queue to address the
reality on the ground of development attention
to some “must have” work items.

As well, policies associated with a work item, not
just its positioning on the board, will also evolve
as teams experience real-life situations that don’t
fit neatly on the Kanban board. That is, “classes
of service” may need to be addressed by explicit
policies agreed upon by the team.7 For example,
a class of service for a “live site bug” could have
agreed upon rules such as:

•	 It is a top priority.

•	 It can break WIP limits.

•	 It can skip the design step.

•	 It can be released without product owner
approval.

•	 It has an automatic same-day deadline.

No Change in Processes Required:
Use as an Overlay

A particularly noteworthy attribute associated
with Kanban is the potential to apply its use to an
existing software development lifecycle or project
management methodology. Kanban does not ask
for a sweeping revolution of how people work;
rather, it encourages gradual change. It’s change
that is understood and agreed upon by consensus
among the workers and their collaborators.8 As
such, Kanban is a lean Agile system that can
be used to enhance any software development
lifecycle including Waterfall, which has implica-
tions for its immediate adoption in the application
value management (AVM) arena.9

The literature review turned up many testimo-
nials and endorsements of Kanban (such as the
following) because the “up-front” organizational
changes required are so limited:

•	 “Kanban is just about managing workflow.
Initially, it doesn’t replace anything the orga-
nization is doing. What it does do, however, is
drive change. In Kanban you start with whatever
process you have, visualize it, introduce WIP
limits and then evolve from there.”10

•	 “One of the great things about Kanban is that
you apply it to your existing process. You are

simply identifying ways to improve what you
are already doing, so you don’t have to start
from scratch and you don’t have to worry about
“throwing the baby out with the bath water” —
meaning that you won’t lose the things you are
already doing well. No sudden changes means
there is minimal risk in applying Kanban as
part of your improvement journey.”11

Scrumban
Common Elements

When it is not used in a stand-alone mode or
implemented as part of an AVM proposition,
Kanban has been most closely associated with
Scrum in practice. An overview of the similarities
and differences12 can suggest to teams seeking to
improve their agility how the combination might
work to their benefit.

Similarities reside in the fact that both:

•	 Are lean and Agile.

•	 Use pull scheduling.

•	 Limit WIP.

•	 Use transparency to drive process
improvement.

•	 Focus on delivering releasable software early
and often.

•	 Are based on self-organizing teams.

•	 Require breaking the work into pieces.

•	 Are continuously optimizing the release plan
based on empirical data (velocity/lead time).

Why the Combination?

Explicitly limiting WIP is a key difference between
the Scrum task board and the Kanban Board13 (as
highlighted above). Time-boxing, by its nature, sets
a bound on how much WIP there can be, but it can
still allow much more than would be desirable.14
One common challenge in Scrum is late delivery
within the Sprint. Late delivery introduces risk,
tends to destabilize velocity and results in delayed
value delivery to the customer.15

Author Corey Ladas suggests a number of
intersection points between Scrum constructs
and Kanban practices in his seminal writing,
Scrumban:16

•	 “One simple technique that brings us much
closer to our Kanban definition is to set a mul-
titasking limit for individuals. You might have a
simple principle like: prefer completing work to
starting new work, or you might express that
as a rule that says: try to work on only one

cognizant 20-20 insights 5

item at a time, but if you are blocked, then you
can work on a second item, but no more.”

•	 “Another common technique is the late binding
of tasks to owners. Some teams will pre-assign
all of the known tasks during iteration planning.
That’s generally not a good idea because it
artificially creates a critical path. Waiting until
the “last responsible moment” to assign tasks
to people maximizes knowledge and brings
you closer to pull.”

•	 “Another enhancement we can make to our
previous board is to add a ready queue between
the backlog and work-in-process. The ready
queue contains items that are pending from
the backlog, but have high priority. We still
haven’t bound any individual to these tasks,
but as soon as somebody becomes available,
they should take one of these tasks instead of
picking something out of the general backlog.
This enables us to decouple the process of
assigning work from the process of prioritizing
work, and it simplifies assignment. The ready
queue also has a Kanban limit, and it should

be a small limit, since its only purpose is to
indicate which work item should be started
next.”

This is sophisticated usage of the tools without
a doubt. And, it is hard not to conclude that the
Scrumban nexus is best suited for those with a
firm command of the principles, frameworks and
management practices outlined above. The com-
bination and orchestration suggested here is
clearly the result of evolution, not top-down Agile
mandates.

The end-state value suggests that the trip on the
evolutionary path is worthwhile:

“Transaction costs of negotiating scope and
developing a schedule for each release was
onerous” and “Effort estimate is turned
back to productivity (analysis, coding,
testing).”

Source: Anderson, David J. and Rick Garber,
A Kanban System for Sustaining Engineering
on Software Systems.

Scrum Kanban

Time boxed iterations prescribed. Time boxed iterations optional. Can have separate
cadences for planning, release, and process improve-
ment. Can be event driven instead of time boxed.

Team commits to a specific amount of work for
this iteration.

Commitment optional.

Uses velocity as default metric for planning and
process improvement.

Uses lead time as default metric for planning and
process improvement.

Cross-functional teams prescribed. Cross-functional teams optional. Specialist teams
allowed.

Items must be broken down so they can be
completed within one sprint.

No particular item size is prescribed.

Burn down chart prescribed. No particular type of diagram is prescribed.

WIP limited indirectly (per Sprint). WIP limited directly (per workflow state).

Estimation prescribed. Estimation optional.

Cannot add items to ongoing iteration. Can add new items whenever capacity is available.

A Sprint backlog is owned by one specific team. A Kanban board may be shared by multiple teams or
individuals.

Prescribes three roles (product owner/
Scrum master/team).

Doesn’t prescribe any roles.

A Scrum board is reset between each Sprint. A Kanban board is persistent.

Prescribes a prioritized product backlog. Prioritization is optional.

What is Different?

Figure 1

cognizant 20-20 insights 6

Kanban — Entry Point Considerations
As Agile adoption has grown, a number of imple-
mentations have met resistance, struggled
mightily or been abandoned. Software develop-
ment in matrixed, global businesses is a difficult
task, to be sure. An understanding and appre-
ciation of the level of organizational change
associated with the introduction of Agility
measures cannot be understated.

“Change is a difficult business. People get
attached to their habits and tribal affilia-
tions. People resist changes that threaten
their social status. Effective process change
addresses human issues of fear and hope
before interfering with workers’ routines.
Deming and the Lean thinkers have much
to say about this. One thing you can do is
to take an evolutionary approach and keep
changes small and incremental whenever
possible.”

Source: Ladas, Corey, Scrumban — Essays on
Kanban Systems for Lean Software Development.

Given this reality, a set of considerations and
advanced groundwork is advised with the intro-
duction of Scrum:

With Kanban, the ability to start without wholesale
process change has been noted. That makes its
use attractive and accessible.

Lead practitioner David Anderson has outlined
Foundational Principles (three), Core Properties
(five) and Steps to Get Started (12). His articula-
tion of Foundational Principles has extended the
framework for Kanban’s management principles
outlined above.

Foundational Principles

•	 Start with what you do now.

•	 Agree to pursue incremental, evolutionary
change.

•	 Respect the current process, roles, responsi-
bilities and titles.

Core Properties

•	 Visualize the work flow.

•	 Limit WIP.

•	 Manage flow.

•	 Make process policies explicit.

•	 Improve collaboratively (using models and the
scientific method).

Steps to Get Started

•	 Agree on a set of goals for introducing
Kanban.

•	 Map the value stream.

•	 Define some point where you want to control
input. Define what is upstream and who are
the upstream stakeholders.

•	 Define some exit point beyond which you do
not intend to control.

•	 Define a set of work items types based on the
work requests that come from the upstream
stakeholders.

•	 Analyze the demand for each work item type.

•	 Meet with the upstream and downstream
stakeholders.

•	 Create a board/card wall to track the value
stream you are controlling.

Attribute Category Attribute

Stable and Certain ∆ Environment ¬ Turbulent + Unpredictable

Defensive Goal-Setting ∆ Strategy ¬ Proactive Learning Organization

Routine, Low-Discretion Roles ∆ Technology ¬ Complex, High Discretion Roles

Economic Work Orientation ∆ Culture ¬ Self-Actualizing Work Orientation

Mechanistic and Bureaucratic ∆ Structure ¬ Organic

Authoritarian ∆ Management ¬ Democratic

Assessment

Source: Augustine, Sanjiv, Managing Agile Projects, Assess the Status Quo, p.109.
Figure 2

cognizant 20-20 insights 7

•	 Optionally, create an electronic system to track
and report the same.

•	 Agree with the team to have a standup
meeting in front of the board; invite upstream
and downstream stakeholders (attendance not
mandatory).

•	 Agree to have regular operations review
meeting for retrospective analysis of the
process; invite upstream and downstream
stakeholders (attendance not mandatory).

•	 Educate the team on the new board, WIP
limits and the pull system. Nothing else in
their world should have changed.

Conclusion
Some level of Kanban implementation in pursuit
of agility is advisable as the risks are low due to
its very nature as an overlay and the ability to
be implemented in multiple environments (e.g.,
Scrum, Waterfall, shared services and application
maintenance work). The ability to use Kanban’s
core properties to guide team self-organization
and as the basis for continuous improvement at
a deeper and more refined level over time makes
its use an attractive option when looking into the
Agile Toolkit.

References
Anderson, David J. and Donald G. Reinertsen, Kanban: Successful Evolutionary Change for Your
Technology Business.

Appelo, Jurgen, Management 3.0: Leading Agile Developers, Developing Agile Leaders.

Augustine, Sanjiv, Managing Agile Projects.

Azizyan, Gayane, Miganoush Katrin Magarian, and Mira Kajko-Matsson, Survey of Agile Tool Usage and
Needs.

Hiranabe, Kenji, Kanban Applied to Software Development: from Agile to Lean.

Klipp, Paul, Getting started with Kanban.

Kniberg, Henrik and Mattias Skarin, Kanban and Scrum: Making the Most of Both.

Ladas, Corey, Scrumban - Essays on Kanban Systems for Lean Software Development.

NetObjectives, Lean Agile Project Management Course Material.

Rasmusson, Jonathon, The Agile Samurai: How Agile Masters Deliver Great Software (Pragmatic Pro-
grammers).

Footnotes
1	 http://agilemanifesto.org/principles.html

2 	 Ladas, Corey, Scrumban: Essays on Kanban Systems for Lean Software Development
(Kindle Locations 223-224), Modus Cooperandi Press. Kindle Edition.

3 	 Kniberg and Skarin, Kanban and Scrum – Making the Most of Both.

4 	 Anderson, David, The Principles of the Kanban Method.

5 	 For example, Klipp, Paul, Getting Started with Kanban (Kindle Locations 23-25),
Kindle Edition and www.kanban.com.

6 	 Cottmeyer, Mike and Dennis Stevens, Kanban for Agile Teams.

7 	 Klipp, Paul, Ibid.

8 	 Anderson, Ibid.

About Cognizant

Cognizant (NASDAQ: CTSH) is a leading provider of information technology, consulting, and business process out-
sourcing services, dedicated to helping the world’s leading companies build stronger businesses. Headquartered in
Teaneck, New Jersey (U.S.), Cognizant combines a passion for client satisfaction, technology innovation, deep industry
and business process expertise, and a global, collaborative workforce that embodies the future of work. With over 50
delivery centers worldwide and approximately 137,700 employees as of December 31, 2011, Cognizant is a member of
the NASDAQ-100, the S&P 500, the Forbes Global 2000, and the Fortune 500 and is ranked among the top performing
and fastest growing companies in the world. Visit us online at www.cognizant.com or follow us on Twitter: Cognizant.

World Headquarters

500 Frank W. Burr Blvd.
Teaneck, NJ 07666 USA
Phone: +1 201 801 0233
Fax: +1 201 801 0243
Toll Free: +1 888 937 3277
Email: inquiry@cognizant.com

European Headquarters

1 Kingdom Street
Paddington Central
London W2 6BD
Phone: +44 (0) 20 7297 7600
Fax: +44 (0) 20 7121 0102
Email: infouk@cognizant.com

India Operations Headquarters

#5/535, Old Mahabalipuram Road
Okkiyam Pettai, Thoraipakkam
Chennai, 600 096 India
Phone: +91 (0) 44 4209 6000
Fax: +91 (0) 44 4209 6060
Email: inquiryindia@cognizant.com

© Copyright 2012, Cognizant. All rights reserved. No part of this document may be reproduced, stored in a retrieval system, transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the express written permission from Cognizant. The information contained herein is
subject to change without notice. All other trademarks mentioned herein are the property of their respective owners.

About the Author
David E. Toombs is an Associate Director in Cognizant’s Advanced Solutions Group (ASG) with over 20
years of experience with large-scale, strategic programs in a variety of industries. David has certifica-
tions from the Project Management Institute and the Stanford Advanced Project Management Program.
He can be reached at David.Toombs@cognizant.com.

9 	 “If you are starting from a phased, waterfall-type process and you have functionally-aligned teams, then
you might start with a kanban process.” Ladas, Corey, Scrumban: Essays on Kanban Systems for Lean
Software Development (Kindle Locations 1067-1070), Modus Cooperandi Press, Kindle Edition, Further,
the rhetorical question that follows suggests the direct applicability of Kanban over Scrum practices
to the AVM environment: “Have you ever tried to talk about planning in two week iterations with a
team that is responsible for production support? The idea that can’t add anything to the sprint once
it is started is going to fail – you’d probably abort every sprint.” — Cottmeyer, Mike and Dennis Stevens,
Kanban for Agile Teams.

10 	 Cottmeyer, Mike and Dennis Stevens, Ibid.

11	 Klipp, Paul, Ibid.

12 	 Taken directly from: Bria, Mike, Comparing Kanban to Scrum, InfoQ for similarities and Kniberg, Henrik
and Mattias Skarin,Kanban and Scrum: Making the Most of Both, p.50 for differences.

13 	 Cottmeyer, Mike and Dennis Stevens, Ibid.

14 	 Ladas, Ibid.

1 5 	 Cottmeyer, Ibid.

16 	 Ladas, Ibid.

