
Educative Commentary on

JEE 2004 MATHEMATICS PAPERS

Note: The IIT’s have continued the practice, begun in 2003, of collecting back
the JEE question papers from the candidates. At the time of this writing, the
JEE 2004 papers were not officially available to the general public, either on
a website or on paper. So the text of the questions taken here was based on
the memories of candidates and hence is prone to deviations from the original.
In some cases, such deviations may result in a change of answers. However,
from an educative point of view, they do not matter much. Subsequently, the
text of the questions was made officially available. But, except for the order
of the questions, there are no serious deviations and so, we have retained these
memory-based versions. (Indeed, it was mind boggling to see how accurately
even the numerical data was remembered in the case of most problems.) Unlike
in 2003, the IITs have given no solutions for the 2004 papers. So there are no
comments on them here.

For convenience, the questions in the Screening Paper are arranged topicwise.
The actual order in the examination is quite different. Moreover, usually several
versions of the question paper are prepared. They have the same questions but
arranged in different orders. In the Main Paper, the first ten questions carry
two points each and the remaining ones 4 points each. The total time allotted
for the Main Paper was 2 hours. We reiterate that the solutions given here are
far more detailed than what is expected in an examination.

SCREENING PAPER OF JEE 2004

Q. 1 If f(x) = sin x+ cosx, and g(x) = x2 − 1, then g(f(x)) is invertible in the
interval

(A) [0, π
2 ] (B) [−π

4 , π
4 ] (C) [−π

2 , π
2 ] (D) [0, π]

Answer and Comments: (B). By a direct calculation, we have g(f(x)) =
2 sinx cos x = sin 2x for all x. This is a continuous function and so, by
the Intermediate Value Property (Comment No. 6, Chapter 16), it will
be invertible on an interval if and only if it is either strictly increasing or
strictly decreasing on that interval. Of the given four intervals, [−π

4 , π
4 ]

is the only one on which sin 2x increases strictly. This can be seen from
the fact that its derivative, viz., 2 cos 2x is positive for all x in the open
interval (−π

4 , π
4 ). Here we are implicitly using the Mean Value Theorem.

Of course, the graphs of the sine and other trigonometric functions are so
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familiar, that one can also get the answer directly. The only catch is that
we are dealing with the graph of sin 2x and not of sinx. Effectively, this
means we have to double the given intervals and see on which of them
the sine function is increasing. Clearly, [−π

2 , π
2 ] is such an interval (after

doubling). Hence the original interval is [−π
4 , π

4 ].

Normally, when we are given a function, say h, defined on a domain
D and are asked to test whether it is invertible on a given subset, say S,
of D, the question amounts to checking whether it is one-to-one on S, i.e.
whether the equality h(s1) = h(s2) for elements s1, s2 ∈ S necessarily im-
plies s1 = s2. In general, there is no golden way to do this and sometimes
the answer has to be obtained by common sense. For example, suppose S
is the set of all students in a class and h is the father function, i.e. h(x) is
the father of x. Then h is invertible on S if and only if the class contains
no siblings. In the present problem, the function given is from IR to IR
and hence methods based on calculus could be applied.

Note also that the function given was a composite function, viz. g ◦ f .
It was easy to calculate g(f(x)) explicitly and to answer the question from
it. Sometimes this may not be so. Suppose for example, that g(x) was
given as x − x2 + x3. In this case, the formula for the composite g(f(x))
is horribly complicated. However, rewriting g′(x) as (1 − x)2 + 2x2 we
see that it is always positive. Hence, again by Lagrange’s MVT, g is
a strictly increasing function. So the composite g ◦ f will be strictly
increasing or decreasing on an interval, depending upon whether f is so.
This observation obviates the need to calculate g(f(x)) and reduces the
problem to testing the behaviour of the function f(x). (See Comment No.
12 of Chapter 13 for a problem based on similar considerations.)

Q. 2 If f(x) is a strictly increasing and differentiable function with f(0) = 0,

then lim
x→0

f(x2) − f(x)

f(x) − f(0)
is equal to

(A) 0 (B) 1 (C) −1 (D) 2

Answer and Comments: (C). Since f(0) = 0 the term f(0) in the
denominator is really redundant. But its presence suggests that derivatives
may have to be taken for the solution. But, let us first try to tackle
the problem without derivatives. Since f(0) = 0, the given ratio equals
f(x2)

f(x)
−1 and so its limit will depend only on the limit of the ratio

f(x2)

f(x)
.

First we let x tend to 0 through positive values. When x is small (and
positive), x2 is considerably smaller than x in the sense that the ratio x2/x
tends to 0 as x → 0. As f is given to be strictly increasing, we expect
intuitively that f(x2) should also be considerably smaller than f(x), i.e.
the ratio f(x2)/f(x) should approach 0 as x → 0+. A similar argument

applies if x tends to 0 from the left. Thus we predict that lim
x→0

f(x2)

f(x)
= 0.
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As noted before, the given limit is obtained by subtracting 1 from this.
Hence (C) is the correct answer.

In a multiple choice question where you do not have to show the
work, an intuitive reasoning like this is quite valid. In fact, the ability to
think like this shows a certain mathematical maturity. Still, one should
be prepared to back intuition by a rigorous reasoning, should the need
arise. In the present case, the way to do this is fairly obvious. Again,

we work with the ratio
f(x2)

f(x)
instead of the given ratio and rewrite it as

f(x2) − f(0)

f(x) − f(0)
. If we divide both the numerator and the denominator by

x, the limit of the denominator as x → 0 is simply f ′(0). The numerator

becomes
f(x2) − f(0)

x
which can be rewritten as

f(x2) − f(0)

x2
× x. As x

tends to 0, so does x2 and so the limit of the first factor is f ′(0) while that

of the second factor is 0. Hence lim
x→0

f(x2)

f(x)
=

f ′(0) × 0

f ′(0)
= 0. This can also

be seen from l’Hôpital’s rule (a students’ favourite!). The ratio
f(x2)

f(x)
is of

the
0

0
form as x → 0. The derivative of the denominator at 0 equals f ′(0)

while that of the numerator is 2× 0× f ′(0), i.e. 0. Hence lim
x→0

f(x2)

f(x)
= 0.

The trouble with this argument is that it is valid only if f ′(0) 6= 0.
Otherwise, l’Hôpital’s rule is not applicable. Now, even though we are
given that f is differentiable and strictly increasing, it does not follow
that f ′(0) > 0. All we can say is that f ′(x) ≥ 0 for all x. But as remarked
in Exercise (13.8), f ′ may vanish at some points as we see from functions
like f(x) = x − sin x which are strictly increasing. (A simpler example
is the function f(x) = x3.) So the given hypothesis does not necessarily
imply that f ′(0) > 0 as we need in the argument above.

When f ′(0) = 0, it is tempting to try to salvage the situation by
applying the strong form of l’Hôpital’s rule (Theorem 5 of Chapter 16).

If we do so, then lim
x→0

f(x2)

f(x)
will equal lim

x→0

2xf ′(x2)

f ′(x)
provided the latter

exists. Now, we cannot hastily say that the limit of the denominator is
f ′(0) because f ′ is not given to be continuous at 0. But even if we assume
this for a moment, the difficulty still remains if f ′(0) = 0. In that case,
we can differentiate the numerator and the denominator once more and

write the limit of the ratio as lim
x→

2f ′(x2) + 4x2f ′′(x2)

f ′′(x)
. But there are still

some problems. First, it is not given that f is twice differentiable. And
even if we assume that it is so, what guarantee do we have that f ′′(0)
is non-zero? If f ′′(0) = 0, we can differentiate once more and pray that
f ′′′(0) 6= 0. The trouble is that there do exist strictly increasing functions
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which have derivatives of all orders everywhere but all whose derivatives
vanish at 0. One such example is the following function

f(x) =







e−1/x2

if x > 0
0 if x = 0

−e−1/x2

if x < 0

(Using the fact that the exponential function grows more rapidly than
any polynomial function, it can be shown that f (n)(0) = 0 for every posi-
tive integer n. Such functions are beyond the JEE level. For this function,
one can show directly that f(x2)/f(x) → 0 as x → 0. But this cannot be
concluded from the knowledge of the successive derivatives of f at 0. The
point is that even if we assume that f has derivatives of all orders, this
line of attack, based on repeated applications of the l’Hôpital’s rule is not
always going to work in the present problem.)

These failures suggest that there is perhaps some serious lacuna in our
original intuitive reasoning. From the fact that f is strictly increasing and
x2 is much smaller than x, we concluded that f(x2) must be considerably
smaller than f(x). But there is a catch here. In drawing a conclusion such
as this, we are implicitly assuming that the rate of growth of f is more or
less uniform. Without this assumption, the prediction may go wrong. As
a social analogy, suppose we are given that the richer a person, the longer
he tends to live. But this certainly does not mean that if A’s income is
considerably bigger (say 20 times bigger) than that of B, then A will live
as much longer than B! Even though the income difference is very high,
the corresponding difference in the life span may be only marginal, say,
only 1.2 times.

Once this point is appreciated, it is easy to see that not only our rea-

soning is fallacious, but the conclusion itself, viz. that lim
x→0

f(x2)

f(x)
= 0 is

probably wrong. Although it is rather difficult to actually give a coun-
terexample by a succinct formula, the essential idea can be seen from the
figure below in which we show a portion of the graph of f(x) on the right
of 0.
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To construct this graph, we first fix some sequence {xn}∞n=1 of positive
real numbers in which x1 < 1 and

xn+1 < (xn)2 (1)

for all n ≥ 1. This ensures that the sequence is strictly monotonically
decreasing and converges to 0. Similarly, let {yn}∞n=1 be a sequence of
positive real numbers with y1 = 1 and

yn+1 <
1

2
yn (2)

for all n ≥ 1, which ensures that the sequence {yn} is also monotoni-
cally decreasing and converges to 0. Now for each n, let An and Bn be
the points (xn, yn) and (x2

n, yn/2) respectively. Define f linearly on the
interval [x2

n, xn], i.e. let

f(x) =
yn

2
+

yn

2(xn − x2
n)

(x − x2
n) (3)

for x2
n ≤ x ≤ xn. Then the graph of f is the line segment BnAn. Note

further that f ′
+(x2

n) and f ′
−(xn) both equal the slope of this segment, viz.

yn

2(xn − x2
n)

. By choosing the yn’s carefully, we can ensure that the slope

of Bn+1An+1 is smaller than that of BnAn. It is now easy to join An+1

and Bn by a strictly increasing smooth curve which touches the segment
An+1Bn+1 at An+1 and the segment BnAn at Bn. This way we get a
function f which is strictly increasing and differentiable for x > 0. (Note
that if we join An+1 and Bn by a straight line segment, we would get
a function which is strictly increasing and continuous but which is not
differentiable at xn and x2

n.) Set f(0) = 0. While selecting the numbers

{xn} and {yn} if we further ensure that
yn

xn+1
→ 0 as n → ∞ then it can

be shown that f ′
+(0) also exists and equals 0, because with this stipulation,

we now have

0 ≤ f(x) − 0

x − 0
≤ yn

xn+1
(4)

for every x ∈ [xn+1, xn]. Finally, for x < 0, define f(x) = −f(−x), i.e.
make f an odd function. It is now easy to show that f ′(x) > 0 for all
x 6= 0 while f ′(0) = 0. Hence f is strictly increasing.

But by very construction, this function has the property that for every

n,
f(x2

n)

f(xn)
=

yn/2

yn
=

1

2
. Moreover, as n → ∞, xn → 0. So, if at all

lim
x→0

f(x2)

f(x)
exists it will have to be 1

2 . Thus, what we thought intuitively

clear is wrong. Consequently, for the limit in the given question, viz.
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lim
x→0

f(x2) − f(x)

f(x) − f(0)
, none of the given alternatives is correct. So the question

is incorrect as it stands. (It is of course possible that in the original JEE
question, the condition given was that f ′(x) > 0 for all x but this was
incorrectly paraphrased by the candidates to say that f is differentiable
and strictly increasing. In that case the original JEE question is correct.
It is impossible to decide the matter since the question papers are collected
back from the candidates.)

In case of a wrongly set question like this, the only practical advice
that can be given is that if the question becomes correct with a stronger
or additional hypothesis, then by all means assume that this is what the
papersetters intended. The logic is like this. Strictly speaking, none of the
alternatives is correct. But it is given that one of them is correct. In that
case, it has to be the one which holds true with a stronger hypothesis.

Q. 3 If y is a function of x and ln(x + y) − 2xy = 0, then the value of y′(0) is
equal to

(A) −1 (B) 0 (C) 2 (D) 1

Answer and Comments: (D). An equation like this cannot be solved
explicitly for y, even if we recast it as x + y = e2xy. So, to find y′ we have
to resort to implicit differentiation. Differentiating both the sides of the
given equation implicitly w.r.t. x, we get

1 + y′

x + y
= 2xy′ + 2y (1)

This can be solved explicitly for y′ as

y′ =
1 − 2xy − 2y2

2x2 + 2xy − 1
(2)

We want y′(0). Even though the given equation cannot be solved for y,
if we put x = 0 in it we get ln y = 0 and hence y = 1. So putting x = 0

and y = 1 in (2), we get y′(0) =
1 − 2

−1
= 1. Note that we could also

have gotten this directly from (1). In fact, this is a better idea, because
although in the present problem, we can solve (1) explicitly for y′ to get
(2), this may not always be possible. And, even when possible, it does not
really simplify the work, but in fact, increases the chances of numerical
mistakes.

Q. 4 Let f(x) =

{

xα lnx, x > 0
0, x = 0

. Then Rolle’s theorem is applicable to f

on [0, 1] if α equals

(A) −2 (B) −1 (C) 0 (D) 1
2
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Answer and Comments: (D). We certainly have f(0) = f(1) = 0. In
addition, for Rolle’s theorem to apply f must be continuous on [0, 1] and
differentiable on (0, 1). Both the requirements hold for x > 0. We only
need to check what happens at 0. As x → 0+, lnx → −∞. The other
factor, viz. xα tends to 0, 1 or ∞ depending upon whether α > 0, α = 0
or α < 0. Hence, the product xα lnx tends to −∞ for α ≤ 0. For α > 0,
however, it is of the form 0 × −∞ and can be shown to tend to 0, by

applying l’Hôpital’s rule to
lnx

x−α
. Hence f is continuous at 0 if and only

if α > 0.

Q. 5 Let f(x) = x3 + bx2 + cx + d and 0 < b2 < c. Then in (−∞,∞), f

(A) is bounded (B) has a local maximum
(C) has a local minimum (D) is strictly increasing

Answer and Comments: (D). One can get this from the general proper-
ties of a cubic function. First of all such a function can never be bounded.
Moreover, as the leading coefficient is positive, f will either be strictly in-
creasing, or else it will have both a local maximum and a local minimum.
Since only one of the alternatives is given to be correct, it has to be (D),
by elimination.

The honest way, of course, is to consider f ′(x) = 3x2 + 2bx+ c. This is
a quadratic with discriminant 4(b2 − 3c). Since b2 < c (which also implies
c > 0), rewriting the discriminant as 4(b2− c)−8c we see that it is always
negative. Hence f ′ maintains its sign throughout. Moreover, this sign is
positive. So f is strictly increasing all over IR.

Q. 6 Let f(x) be a differentiable function and

∫ t2

0

xf(x)dx =
2

5
t5, t > 0. Then

f

(

4

25

)

=

(A)
2

5
(B)

5

2
(C) −2

5
(D) 1

Answer and Comments: (A). Here the function f(x) is not given di-
rectly. Instead, we are given the integral of its product with x. From this
we can recover f(x) using the second form of the Fundamental Theorem of
Calculus. Differentiating both the sides of the given equality w.r.t. t, we
get (using Equation (18) in Chapter 17, with a slight change of notation),

t2f(t2)2t = 2t4

for t > 0. This gives f(t2) = t. Putting t =
2

5
gives the answer.

Q. 7 The value of the integral

∫ 1

0

√

1 − x

1 + x
dx is
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(A)
π

2
+ 1 (B)

π

2
− 1 (C) π (D) 1

Answer and Comments: (B). Rewrite the integrand as

√
1 − x√
1 + x

. The

substitutions 1 − x = u2 or 1 + x = v2 will get rid of one of the radical
signs but not both. It would be nice if we could get rid of both. Luckily,
putting x = cos 2θ will do the job. This is the key idea. The rest is
routine. (We could, of course, also put x = cos θ instead of x = cos 2θ.
Mathematically that hardly makes any difference. But then we would
have to work in terms of the trigonometric functions of θ

2 instead of θ and
that may increase the chances of numerical errors as every time we would
have to keep track of the fractional coefficient.) With x = cos 2θ, the

integrand

√

1 − x

1 + x
becomes tan θ and the given definite integral becomes

∫ π/4

0

sin2 θdθ = 2

∫ π/4

0

(1 − cos 2θ)dθ which comes out as
π

2
− 1.

Note that the converted integrand was again in terms of cos 2θ which
is precisely our old variable x. So probably, the substitution was not
needed after all! This comes as an afterthought. But to some persons
who are more good at algebraic manipulations, this may strike as the very

first idea. Indeed, if we rewrite

√
1 − x√
1 + x

as
1 − x√
1 − x2

, then the indefinite

integral

√

1 − x

1 + x
dx splits as

∫

1√
1 − x2

dx −
∫

x√
1 − x2

dx. For the first

integral there is a standard formula. For the second one, the substitution
x2 = u suggests itself.

It is hard to say which method is better. The best thing is to have a
mastery over both, choose the one that suits your inclination better and,
in case you can afford the time, to verify the answer by the other method
too.

Q. 8 If the area bounded by y = ax2 and x = ay2, a > 0, is 1 then the value of
a is

(A) 1 (B)
1√
3

(C)
1

3
(D) − 1√

3

Answer and Comments: (B). The two parabolas intersect at the point
(1/a, 1/a) besides the origin. By
symmetry, the area bounded splits
into two equal parts, the one above
the line y = x and the other below it.
Each has area 1

2 . Taking the upper
one, this gives an equation

∫ 1/a

0

√

x

a
− x dx =

1

2

O

(1 / a , 1 /a )

y = x

2

2y = a x

x = a y

x

y
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Evaluating the integral, this becomes
2

3
√

a

1

a
√

a
− 1

2a2
=

1

2
. Upon simpli-

fication, this becomes a2 =
1

3
. As a > 0, we must have a =

1√
3
.

Q. 9 If

(

2 + sin x

1 + y

)

dy

dx
= − cosx, y(0) = 1, then y

(π

2

)

=

(A) 1 (B)
1

2
(C)

1

3
(D)

1

4

Answer and Comments: (C). This is a straightforward problem in
which we have to find a particular solution of a first order differential
equation. Fortunately, the d.e. can be cast easily into the separate vari-
ables form as

dy

1 + y
= − cosx dx

2 + sin x

Integrating both the sides, we have

ln(1 + y) = − ln(2 + sinx) + c

or equivalently

1 + y =
k

2 + sin x

where k is some constant. The initial condition y = 1 when x = 0,

determines k as 4. Hence y =
4

2 + sin x
− 1. Putting x =

π

2
gives the

answer.

Q. 10 If θ and φ are acute angles satisfying sin θ =
1

2
and cosφ =

1

3
, then θ + φ

belongs to

(A)
(π

3
,
π

2

]

(B)

(

π

2
,
2π

3

)

(C)

(

2π

3
,
5π

6

)

(D)

(

5π

6
, π

)

Answer and Comments: (B). The equation sin θ =
1

2
, along with the

fact that θ is acute, determines θ as
π

6
. The equation cosφ =

1

3
also

determines φ uniquely. But there is no familiar angle whose cosine is
1

3
.

So we do not know φ exactly. But we can estimate it. The cosine function

decreases from 1 to 0. Moreover, cos−1(
1

2
) is a familiar angle, viz.

π

3
. So,

φ must lie somewhere between
π

3
and

π

2
. As θ =

π

6
, the sum θ + φ lies in

the interval
(π

6
+

π

3
,
π

6
+

π

2

)

. The key idea in this problem is that even

though the exact value of cos−1 1

3
is not a familiar figure, we can get easy

lower and upper bounds on it from the properties of the cosine function.
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Q. 11 The value of x for which sin
(

cot−1(1 + x)
)

= cos
(

tan−1 x)
)

is

(A) 1 (B)
1

2
(C) −1

2
(D) 0

Answer and Comments: (C). A straightforward way is to begin by
expressing both the sides as algebraic functions of x (i.e. without involving
any trigonometric functions). For example, using the identity sin θ =

1

cosec θ
= ± 1√

1 + cot2 θ
, the L.H.S. equals ± 1

√

(x + 1)2 + 1
. Similarly,

the R.H.S. equals ± 1√
x2 + 1

. Hence the given equation becomes

1√
x2 + 2x + 2

= ± 1√
x2 + 1

(1)

Because of the choice of the sign, this is equivalent to two separate equa-
tions. But no matter which sign holds, by squaring both the sides we get

x2 + 2x + 2 = x2 + 1 which gives x = −1

2
. In a multiple choice question,

there is no need to do anything further. But otherwise, one must show
that with this value of x, the given equation indeed holds. This follows
because tan−1(− 1

2 ) lies in the fourth quadrant and so its cosine is positive
while cot−1(− 1

2 +1) lies in the first quadrant and hence its sine is positive.

An alternate approach is to solve the given equation as a trigonometric
equation. Call cot−1(x + 1) as α and tan−1 x as β. Then both α, β lie in
the interval (−π

2 , π
2 ). The given equation becomes simply sin α = cosβ.

Writing sinα as cos(π
2 − α), this further becomes

cos(
π

2
− α) = cosβ (2)

The general solution of this trigonometric equation is

π

2
− α = 2nπ ± β (3)

where n is an integer. Because α, β both lie in (−π
2 , π

2 ), the only possible
value of n is 0. So there are only two possibilities, viz.

π

2
− α = β (4)

or
π

2
− α = −β (5)

If (4) holds, then cotα = tanβ. But this means x + 1 = x which is
impossible. Hence (5) must hold. In this case we have cotα = − tanβ,

which gives x + 1 = −x, i.e. x = −1

2
. Note that now there is no need

to check the original equation since all the conversions we made were
reversible.
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Q. 12 The sides a, b and c of a triangle are in the ratio 1 :
√

3 : 2. Then the
angles A, B, and C of the triangle are in the ratio

(A) 3 : 5 : 2 (B) 1 :
√

3 : 2 (C) 3 : 2 : 1 (D) 1 : 2 : 3

Answer and Comments: (D). The straightforward way is to determine
the angles using the cosine formula. Since they depend only on the relative
proportions of the sides, we may suppose without loss of generality that
a = 1, b =

√
3 and c = 2. The cosine formula will give us the values

of cosA, cos B and cosC, from which we shall get the values of 6 A, 6 B
and 6 C. This method would apply if the relative proportions of the sides
were some other numbers too. But in the present problem, we get a much
quicker solution if we observe that the sides can also be taken to be in the

ratio 1
2 :

√
3

2 : 1. By the sine rule, sinA, sin B and sinC are also in the

same ratio. But the numbers 1
2 ,

√
3

2 and 1 are in fact the sines of 30◦, 60◦

and 90◦. As these three figures add to 180 degrees, they must in fact be
the angles of the triangle ABC. So they are in the ratio 1 : 2 : 3.

The problem is a good example of how sometimes a particular numerical
data can lead to a quicker solution than the general method. Dividing each
of the three figures by 2 each did the trick.

Q. 13 The area of the triangle formed by the line x + y = 3 and the angle bisec-
tors of the pair of straight lines x2 − y2 + 2y = 1 is

(A) 2 (B) 3 (C) 4 (D) 6

Answer and Comments: (A). The formula for the equation of the pair
of angle bisectors of a general pair of straight lines is too complicated and
too seldom used to deserve to be remembered. Nor will it be of much
help here since in this problem we need to find the bisectors individually.
The best bet is to take advantage of the special features of the data that
permit an ad-hoc reasoning. The equation of the pair of straight lines can
be rewritten as

x2 = (y − 1)2 (1)

Hence the two lines are given by y − 1 = ±x. Separately, the lines are
y = x + 1 and y = −x + 1. They are inclined at 45◦ to the axes. So, even
without drawing a diagram, their angle bisectors are parallel to the axes.
The two lines intersect at the point (0, 1). Call this point as A. Then the
equations of the angle bisectors are x = 0 and y = 1. These meet the given
line x + y = 3 at the points B = (0, 3) and C = (2, 1) (say) respectively.
The area of the triangle ABC can be found from the determinant formula.
Or, since the triangle is already known to be right-angled at A, we simply
take half the product of the sides AB and AC each of which equals 2.

Q. 14 The radius of the circle, having centre at (2, 1) whose one chord is a di-
ameter of the circle x2 + y2 − 2x − 6y + 6 = 0 is
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(A) 1 (B) 2 (C) 3 (D)
√

3

Answer and Comments: (C). Let r be the desired radius. Let A
denote (2, 1) and B denote the centre of the other circle, viz. (1, 3).
Let CD be the diameter of the second circle which is also a chord of
the first circle. Then B is the midpoint
of CD and further AB ⊥ CD. The ra-
dius of the second circle is 2 units as
we see from its equation by completing
squares. So in the right-angled triangle
ABD, r is the hypotenuse while BD =
2. From the coordinates of A and B, we
get AB =

√

(2 − 1)2 + (1 − 3)2 =
√

5.
Hence r =

√
4 + 5 = 3.

O

y

A

B

D

r

x

C

2

2

This solution is a good combination of coordinate geometry and pure ge-
ometry. Although the data is in terms of coordinates, it is utilised through
pure geometry. Coordinate geometry was needed only to determine the
radius and the centre of the second circle. The problem can also be done
purely by coordinates (i.e. without using pure geometry). The equation
of a circle with radius r and centre at (2, 1) is

x2 + y2 − 4x − 2y + 5 − r2 = 0 (1)

The equation of the other circle is given as

x2 + y2 − 2x − 6y + 6 = 0 (2)

The equation of the common chord of these two circles is obtained by
subtracting (1) from (2). It comes as

2x − 4y + 1 − r2 = 0 (3)

Now, this chord is given to be a diameter of the second circle. Hence its
centre, viz. (1, 3), must satisfy (3). This gives 2 − 12 + 1 − r2 = 0, i.e.
r2 = 9. As r has to be positive we get r = 3.

In essence this solution amounts to considering the family of all circles
centred at the point (2, 1). This is a 1-parameter family, the parame-
ter being the radius r. We need one equation to determine the value of
this parameter. Such an equation is provided by the piece of data which
says that the common chord of this circle with the other given circle is a
diameter of the latter.

The second solution is simpler and obviates the need to draw a dia-
gram. Moreover, it also applies in more general situations. For example,
instead of being given that the common chord is a diameter of the second
circle, we could have been given that it has a certain length or that it
subtends a certain angle at some given point. Any such piece of informa-
tion would give us an equation in r, solving which we can get the answer.
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The pure geometry solution can also be modified accordingly. But such a
modification may not always be easy. But then, that’s precisely why pure
geometry solutions have their own charm.

Q. 15 The angle between the tangents drawn from the point (1, 4) to the parabola
y2 = 4x is

(A)
π

2
(B)

π

3
(C)

π

4
(D)

π

6

Answer and Comments: (B). A very straightforward problem once the
key idea is hit, viz., that to determine the desired angle, what we need is
neither the points of contacts of the tangents, nor even their equations,
but merely their slopes. So the right start is to express the equation of a
typical tangent to the parabola y2 = 4x in terms of its slope, say m. This
is a well-known equation given by

y = mx +
1

m
(1)

Since this tangent passes through (1, 4), we have 4 = m +
1

m
, or equiva-

lently,

m2 − 4m + 1 = 0 (2)

This is a quadratic in m consistent with the fact two tangents can be
drawn from (1, 4) to the given parabola. Their slopes, say m1 and m2 are
precisely the roots of (2). We could identify them by solving (2). But that
is hardly necessary. The (acute) angle, say θ, between the two tangents
from (1, 4) is given by

tan θ =
|m1 − m2|
1 + m1m2

(3)

From (2) we know m1 + m2 = 4 and m1m2 = 1. To find θ from (3) we
need to express |m1 − m2| in terms of m1 + m2 and m1m2. This can be
done by writing |m1 − m2| as

√

(m1 − m2)2 and hence as

|m1 − m2| =
√

m2
1 + m2

2 − 2m1m2

=
√

(m1 + m2)2 − 4m1m2 (4)

A straight substitution now gives |m1 − m2| =
√

12 = 2
√

3. Hence from

(3), tan θ =
√

3 which gives θ =
π

3
.

Q. 16 The locus of the middle point of the intercept of the tangents drawn from
an external point to the ellipse x2+2y2 = 2, between the coordinate axes is
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(A)
1

x2
+

1

2y2
= 1 (B)

1

4x2
+

1

2y2
= 1

(C)
1

2x2
+

1

4y2
= 1 (D)

1

2x2
+

1

y2
= 1

Answer and Comments: (C). As in most locus problems, the correct
start is to take the moving point as P = (h, k). Then the extremities of
the intercept of the tangent are (2h, 0) and (0, 2k) because P is given to
be the midpoint of this intercept. So, in the intercepts form the equation
of the tangent is

x

2h
+

y

2k
= 1 (1)

We can now apply the condition that this line be a tangent to the given
ellipse, which when expressed in the standard form is

x2

2
+

y2

1
= 2 (2)

But instead of relying on such a readymade formula, we can, in effect,
derive it. A typical point Q on (2) is of the form (

√
2 cos θ, sin θ), for some

θ. The equation of the tangent at Q is
√

2 cos θ x

2
+

sin θ y

1
= 1 (3)

(This too, can be derived fresh, by first calculating the slope of the tangent
at Q using differentiation. But that is probably going to the other extreme.
The formula for the tangent at a point on a conic is both natural and of
frequent use and hence worth remembering. The same cannot be said
about the condition for tangency.)

Since (1) and (3) represent the same straight line, comparing the
coefficients, we get

1

2h
=

cos θ√
2

(4)

and
1

2k
= sin θ (5)

Eliminating θ from (4) and (5) gives

1

2h2
+

1

4k2
= 1 (6)

As usual, to obtain the locus replace h and k by x and y respectively. (Note
the advantage of the parametric equations of an ellipse here. Instead of
taking Q as (

√
2 cos θ, sin θ), we could as well have taken it as (x1, y1). In

that case instead of (3), we would have had

x1x

2
+

y1y

1
= 1 (7)
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which looks simpler. Further, instead of (4) and (5), we would have gotten

1

2h
=

x1

2
(8)

and
1

2k
= y1 (9)

respectively. These too look better at least because of the absence of the
ugly radical signs. But there is a price to pay. To get an equation in h
and k by eliminating x1 and y1, we need one more equation besides (8)
and (9). That comes from the fact that the point Q lies on the ellipse and
hence satisfies

x2
1

2
+

y2
1

1
= 1 (10)

We can now get (6) by eliminating x1 and y1 from (8), (9) and (10). This
is more time consuming than eliminating the single variable θ from (4) and
(5). In effect, taking the point Q as (

√
2 cos θ, sin θ) instead of as (x1, y1)

means we have already extracted whatever information is available from
(10) and used it to reduce the number of parameters from 2 to 1.)

Q. 17 If the line 2x +
√

6y = 2 touches the hyperbola x2 − 2y2 = 4, then the
point of contact is

(A) (−2,
√

6) (B)

(

1

2
,

1√
6

)

(C) (−5, 2
√

6) (D) (4,−
√

6)

Answer and Comments: (D). One method is to solve the equations of

the line and the hyperbola simultaneously. Putting x = 1 −
√

3√
2
y in the

equation of the hyperbola we get

1 −
√

6y +
3

2
y2 − 2y2 = 4 (1)

which simplifies to y2 +2
√

6y +6 = 0. This is a quadratic which has −
√

6
as a double root. This is consistent with the fact that the line touches
the hyperbola, because a point of tangency can be thought of as a pair
of coinciding points of intersection. In fact, if (1) had two distinct roots,
that should alert you that something has gone wrong in your calculations.

Knowing y as −
√

6, x = 1+
√

3√
2

√
6 = 1+3 = 4. Hence the point of contact

is (4,−
√

6).

An alternative method is to take a general point on the hyperbola and
equate the equation of the tangent at it with that of the given line. For

this, first cast the equation of the hyperbola in the standard form as
x2

4
−

y2

2
= 1. Then a typical point, say P on it is of the form (2 sec θ,

√
2 tan θ).
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The equation of the tangent at P is

2 sec θ x

4
−

√
2 tan θ y

2
= 1 (2)

Since (2) represents the same line as the given line, viz., 2x +
√

6y = 2,
by comparing the coefficients, we get

sec θ = 2 (3)

and −
√

2 tan θ =
√

6 (4)

which give the point of contact as (4,−
√

6).

Q. 18 If ~a = î + ĵ + k̂, ~a ·~b = 1 and ~a ×~b = ĵ − k̂, then ~b =

(A) î (B) î − ĵ + k̂ (C) 2ĵ − k̂ (D) 2î

Answer and Comments: (A). As the vectors are given in terms of their
components, the most straightforward method to tackle the problem is to
obtain ~b by finding its components. Let ~b = b1î+b2ĵ+b3k̂. We need three
equations to determine the three unknowns b1, b2, b3. Equality of the dot
product ~a ·~b with 1 gives one such equation, viz.

b1 + b2 + b3 = 1 (1)

Also, ~a×~b =

∣

∣

∣

∣

∣

∣

î ĵ k̂
1 1 1
b1 b2 b3

∣

∣

∣

∣

∣

∣

= (b3 − b2)̂i + (b1 − b3)ĵ + (b2 − b1)k̂. We are

given that this vector equals ĵ − k̂. Equating the components of both the
sides, this gives a system of three equations :

b3 − b2 = 0 (2)

b1 − b3 = 1 (3)

and b2 − b1 = −1 (4)

Note that these three equations are not independent of each other. You
can get any one of them from the other two. Consequently, they cannot
determine the values of b1, b2, b3 uniquely. This is to be expected because
in general a vector ~b is not uniquely determined by its cross product with
a fixed vector ~a. Any multiple of ~a can be added to ~b without affecting the
cross product â ×~b. (Observations like this save you from being baffled.
Otherwise you might think that the earlier equation (1) is superfluous and
try to determine b1, b2, b3 solely from (2), (3) and (4). This is destined to
fail.)

Nevertheless, from (4) and (5) we get b2 = b3 and b1 = b3 +1. Putting
these into (1), we get 3b3 +1 = 1 and hence b3 = 0. So b1 = 1 and b2 = 0.

Therefore ~b = î.
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The solution above was purely algebraic in the sense that the problem
about vectors was reduced to the problem of solving a system of three
equations in three unknowns. This is analogous to solving a problem
of geometry using coordinates. But just as there are pure geometry solu-
tions, some problems on vectors are more conveniently amenable to vector
methods, as elaborated in Comment No. 7 of Chapter 21. In the present
problem, suppose, more generally, that we are given two vectors ~a and ~v
and a scalar λ and the problem asks you to find a vector ~b which satisfies
the conditions :

~a ·~b = λ (5)

and ~a ×~b = ~v (6)

Obviously, the answer is to be expressed in terms of ~a,~v and λ. Here the
algebraic method has little role. All we have is the equations (5) and (6).
Taking cross product of the two sides of (6) with the vector ~a and using
the standard expansion for the vector triple product, we get

~a × ~v = ~a × (~a ×~b)

= (~a ·~b)~a − (~a · ~a)~b

= λ~a − |~a|2~b (7)

We assume ~a 6= ~0 (as otherwise the problem is degenerate). Then |~a| 6= 0
and so from (7), we get

~b =
λ~a − ~a × ~v

|~a|2 (8)

This solves the more general problem. The solution to the given problem
is obtained by putting ~a = î + ĵ + k̂ (so that |~a|2 = 3), ~v = ĵ − k̂ and

λ = 1. Then ~a × ~v = −2î + ĵ + k̂ and we get ~b = î.

Q. 19 A unit vector in the plane of the vectors 2î + ĵ + k̂ and î − ĵ + k̂ and
orthogonal to the vector 5î + 2ĵ + 6k̂ is

(A)
6î − 5k̂√

61
(B)

3ĵ − k̂√
10

(C)
2î − 5ĵ√

29
(D)

2î + ĵ − 2k̂

3

Answer and Comments: (B). Another straightforward problem about
vectors, where the desired vector is found by solving a system of equations
in its components. Let ~u = u1î + u2ĵ + u3k̂ be a desired vector. Since it
is a unit vector, we have, first of all,

u2
1 + u2

2 + u2
3 = 1 (1)

Orthogonality of ~u with the vectors 5î + 2ĵ + 6k̂ gives one more equation,
viz.,

5u1 + 2u2 + 6u3 = 0 (2)
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We need one more equation. This is provided by equating the box product
of the vectors ~u, 2î + ĵ + k̂ and î− ĵ + k̂ with 0, as these three vectors are

given to lie in the same plane. This gives

∣

∣

∣

∣

∣

∣

u1 u2 u3

2 1 1
1 −1 1

∣

∣

∣

∣

∣

∣

= 0, i.e.

2u1 − u2 − 3u3 = 0 (3)

(2) and (3) constitute a system of two homogeneous linear equations in
three unknowns. By Theorem 7 in Chapter 3, the general solution of this
system is

u1 = 0r, u2 = 27r and u3 = −9r (4)

where r is some real number. To determine the value of r we use (1), i.e.
the fact that ~u is a unit vector. Note that it is foolish to actually compute
(27)2 and 92 and add. All we want is a unit vector in the direction of the

vector 27ĵ − 9k̂. We might as well divide by the scalar 9 and get a unit
vector in the direction of the vector 3ĵ − k̂. There are two such vectors,

viz. ±3ĵ − k̂√
61

. The question asks only for one of these two.

In the solution above, the coplanarity of the vectors ~u, 2î + ĵ + k̂ and
î − ĵ + k̂ was used by setting their box product to 0 so as to get (3). We
can use it in a more direct way and get an alternate solution as follows.
Any vector, say ~u in the plane spanned by 2î + ĵ + k̂ and î − ĵ + k̂ is a
linear combination of them i.e. is of the form α(2î + ĵ + k̂) + β(̂i − ĵ + k̂)
for some scalars α and β, or in terms of components,

~u = (2α + β)̂i + (α − β)ĵ + (α + β)k̂ (5)

We now have only two unknowns, viz., α and β and so we need only
two equations to determine them. One such equation is provided by the
fact that ~u is a unit vector while the other is provided by the fact that
it is perpendicular to the vector 5î + 2ĵ + 6k̂. These conditions give,
respectively,

6α2 + 4αβ + 3β2 = 1 (6)

18α + 9β = 0 (7)

From (7), β = −2α. Putting this into (6) gives a quadratic in α, viz.,

10α2 = 1. This gives α = ± 1√
10

and correspondingly β = ∓ 1√
10

. Putting

these into (5) gives ~u = ±3ĵ − k̂√
10

as before. This solution is quicker

because the coplanarity of the vectors ~u, 2î + ĵ + k̂ and î− ĵ + k̂ has been
used to reduce the number of variables by one. (In spirit this is analogous
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to taking a typical point on a conic in its parametric form.) Whenever
a problem amounts to constructing a system of equations (based on the
given data) in several variables and solving it, it is a good idea to see if
you can use some piece of information cleverly to reduce the number of
variables.

The problem can also be done by vector methods. Call the vectors
2î+ ĵ+ k̂, î− ĵ+ k̂ and 5î+2ĵ+6k̂ as ~a,~b,~c respectively. We want to find a
unit vector ~u in the plane spanned by ~a and ~b and which is perpendicular
to ~c. Letting ~u = α~a + β~b we get a system of equations in α and β, viz.,

α2|~a|2 + 2αβ(~a ·~b) + β2|~b|2 = 1 (8)

α(~a · ~c) + β(~b · ~c) = 0 (9)

which is very analogous to (6) and (7) and is solved by exactly the same

method to get two possible values for ~u in terms of the vectors ~a,~b,~c,
their lengths and their dot products with each other. Putting back the
particular values of ~a,~b,~c will give the answer. So the second solution
above was really a vector method in disguise.

Q. 20 If the lines
x − 1

2
=

y + 1

3
=

z − 1

4
and

x − 3

1
=

y − k

2
=

z

1
intersect, then

the value of k is

(A)
2

9
(B)

9

2
(C) 0 (D) −1

Answer and Comments: (B). Typical points on the two lines are of
the form (2r + 1, 3r − 1, 4r + 1) and (s + 3, 2s + k, s) respectively where
r and s are some real numbers. The lines will intersect if and only if the
system of equations

2r + 1 = s + 3 (1)

3r − 1 = 2s + k (2)

and 4r + 1 = s (3)

has a solution. This can be done in a number of ways which differ more in
the form than in their mathematical content. For example, we can solve

any two of these, say (1) and (3) for r and s to get r = −3

2
, s = −5.

Putting these values into (2) we get

−9

2
− 1 = −10 + k (4)

which implies k =
9

2
. Or one can rewrite the equations in the form

2r − s = 2 (5)

3r − 2s = k + 1 (6)

and 4r − s = −1 (7)
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which is a non-homogeneous system of three linear equations in the two
unknowns r and s. By Theorem 6 in Chapter 3, this system is consis-

tent (i.e. has a solution) if and only if the determinant

∣

∣

∣

∣

∣

∣

2 −1 2
3 −2 k + 1
4 −1 −1

∣

∣

∣

∣

∣

∣

vanishes. Upon expansion this is the same as (4).

Q. 21 The value of λ for which the system of equations 2x − y − z = 12,
x − 2y + z = −4, x + y + λz = 4 has no solution is

(A) 3 (B) −3 (C) 2 (D) −2

Answer and Comments: (D). A straightforward problem about the
existence of solution to a non-homogeneous system of linear equations in
three unknowns. The determinant, say ∆, of the coefficients is

∆ =

∣

∣

∣

∣

∣

∣

2 −1 −1
1 −2 1
1 1 λ

∣

∣

∣

∣

∣

∣

(1)

By direct expansion, ∆ = −3λ − 6. If ∆ 6= 0, by Cramer’s rule the
system has a unique solution. When ∆ = 0 either the system may have
no solution or it may have infinitely many solutions. This gives λ = −2.
In a multiple choice test this is good enough to tick the correct answer.
But to complete the solution honestly, one must show that for this value
of λ, the first possibility (viz. no solutions) indeed holds. This can be
done by adding the last two equations, which gives 2x− y − z = 0. But it
is inconsistent with the first equation, viz., 2x − y − z = 12.

Q. 22 If A =

[

α 2
2 α

]

and |A3| = 125, then the value of α is

(A) ±3 (B) ±2 (C) ±5 (D) 0

Answer and Comments: (A). It would be horrendous to first calculate
the matrix A3 and then take its determinant. The key idea is to use the
product formula for the determinant which says that the determinant of
the product of two square matrices (of the same order) is the product
of their determinants. Applying this twice in succession, we have |A3| =
|A|3. So in the present problem, |A| = 5. But, by a direct computation,
|A| = α2 − 4. So we get α2 − 4 = 5 giving α = ±3.

Q. 23 ω is an imaginary cube root of unity. If (1 + ω2)m = (1 + ω4)m, then the
least positive integral value of m is

(A) 6 (B) 5 (C) 4 (D) 3

Answer and Comments: (D). It would be horrendous to apply the
binomial theorem to expand the two sides. Instead, we note that ω satisfies
1 + ω + ω2 = 0. Further 1 + ω4 = 1 + ω3ω = 1 + ω = −ω2. So the given
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equation is reduced to (−ω)m = (−ω2)m, i.e. to ωm = ω2m. Cancelling
ωm from both the sides, we get ωm = 1. The least positive m for which
this holds is 3.

Q. 24 If x2 + 2ax + 10 − 3a > 0 for all x ∈ IR, then

(A) −5 < a < 2 (B) a < −5 (C) a > 5 (D) 2 < a < 5

Answer and Comments: (A). The given expression is a quadratic in
x with positive leading coefficient. So it will be positive for all x if and
only if it never vanishes, i.e. if and only if it has no real roots. From
the discriminant criterion, this is equivalent to saying that a2 < 10 − 3a,
i.e. a2 − 3a − 10 < 0. The L.H.S. again is a quadratic expression in a
with positive leading coefficient and roots −5 and 2. So the inequality
a2 − 3a − 10 < 0 will hold if and only if a lies between −5 and 2.

The problem requires two applications of the criterion for the sign of
a quadratic expression. Because of their frequent occurrences in the JEE,
such problems have become rather routine.

Q. 25 If one root of the equation x2 + px+ q = 0 is the square of the other, then

(A) p3 + q2 − q(3p + 1) = 0 (B) p3 + q2 + q(1 + 3p) = 0
(C) p3 + q2 + q(3p − 1) = 0 (D) p3 + q2 + q(1 − 3p) = 0

Answer and Comments: (D). Take the roots as α and α2. Then

α2 + α = −p (1)

and α3 = q (2)

We need to eliminate α in these two equations. The most direct way to do
so would be to write α = q1/3 from (2) and put this value in (1). However,
instead of working with q1/3, it is preferable to retain it as α and then
whenever we encounter α3, replace it with q. From (1),

−p3 = α3(α + 1)3

= q(α3 + 1 + 3α2 + 3α)

= q(q + 1 − 3p)

which implies p3 + q2 + q(1 − 3p) = 0.

Q. 26 The first term of an infinite geometric progression is x and its sum is 5.
Then

(A) 0 ≤ x ≤ 10 (B) 0 < x < 10 (C) −10 < x < 0 (D) x > 10
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Answer and Comments: (B). Let r be the common ratio of the pro-
gression. The key idea is that for the infinite progression to have a sum it
is necessary that |r| < 1, i.e.

−1 < r < 1 (1)

The problem consists of translating this inequality to an inequality about
x. From the formula of the sum of an infinite G.P., we have

x

1 − r
= 5 (2)

or in other words,

r = 1 − x

5
(3)

Combining (3) and (1) we get,

−1 < 1 − x

5
< 1 (4)

Subtracting 1 from all the three terms and multiplying throughout by 5
we get

−10 < −x < 0 (5)

which implies 0 < x < 10.

Q. 27 n−1Cr = (k2 − 3) nCr+1, if k ∈

(A) [−
√

3,
√

3] (B) (−∞,−2) (C) (2,∞) (D) (
√

3, 2]

Answer and Comments: (D). The question is somewhat ambiguous
because it is not specified for which values of n and r the given equal-
ity holds. Even though the binomial coefficient nCr has a combinatorial
significance only when 0 ≤ r ≤ n, sometimes we have to consider it even
when n > r (in which case we set it equal to 0). In such a case the equality
is of the form 0 = 0 and hence is true for all k.

We take the question to mean that the given equality holds for some
integers n, r with n positive and 0 ≤ r ≤ n − 1. Using the identity

nCr+1 =
n

r + 1
× n−1Cr (1)

(which is proved by directly expanding both the sides), we get

k2 = 3 +
r + 1

n
(2)

The problem amounts to asking which of the given lower and upper bounds
on k will make (2) possible for suitable n and r. Because of our assump-
tions on n and r, we have 1 ≤ r + 1 ≤ n. Hence the ratio in the R.H.S. of
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(2) always lies between
1

n
and 1. Hence by (2),

k2 ∈ [3 +
1

n
, 4] (3)

This closed interval is contained in the semi-open interval (3, 4] for every
n ≥ 1. This implies that k ∈ [−2,−

√
3) ∪ (

√
3, 2]. From this it does not

follow that k is necessarily in the interval (
√

3, 2]. But the question only
asks us to give a sufficient condition for the equality to hold. In that
case (D) can be taken to be correct answer. (Strictly speaking this is also
wrong, because it is not true that for every k ∈ (

√
3, 2] the given equation

will hold for some n and r. For example, if k2 is irrational, then there
cannot exist any integers n and r satisfying the given condition. This
question is therefore poorly set and confusing. Again, it is hard to say
whether the flaw lies in the original question or in its reported version.)

Q. 28 Three distinct numbers are selected from first 100 natural numbers. The
probability that all three numbers are divisible by both 2 and 3 is

(A)
4

35
(B)

4

33
(C)

3

55
(D)

4

1155
Answer and Comments: (D). As 2 and 3 are relatively prime to each
other, divisibility by both of them is equivalent to divisibility by 6. In the
set {1, 2, . . . , 99, 100} there are exactly 16 numbers that are divisible by 6.
So the total number of selections is

(

100
3

)

while the number of favourable

selections is
(

16
3

)

. Therefore the desired probability is

(

16
3

)

(

100
3

) =
16 × 15 × 14

100 × 99 × 98
=

4

1155

MAIN PAPER OF JEE 2004

Problem No. 1: Find the centre and the radius of the circle given by
|z − α|
|z − β| = k, k 6= 1 where, z = x+ iy is a complex number and α = α1 + iα2, β =

β1 + iβ2 are fixed complex numbers.

Analysis and Solution: Let A, B be the points represented by the com-
plex numbers α, β respectively. It is well-known (see the solution to Exercise
(8.12)(b)) that the given locus is a circle (popularly called the Apollonius circle).
Further, this circle has as a diameter the segment PQ where P and Q are the
points which divide the segment AB in the ratio k : 1 internally and externally,
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respectively. The problem does not ask you to prove this. In fact the problem
seems to be designed to test whether you already know this fact from geometry.
For, those who do will have an easy time. All that they have to do is to identify
P and Q. From the section formula, we have,

P =
kβ + α

k + 1
and Q =

kβ − α

k − 1
(1)

Then the centre of the circle is simply the midpoint of PQ. From (1), this
corresponds to the complex number

kβ+α
k+1 + kβ−α

k−1

2
(2)

which comes out to be
k2β − α

k2 − 1
upon simplification. The radius is simply 1

2 |PQ|.

Again, from (1) this equals
|kβ+α

k+1 − kβ−α
k−1 |

2
, which, upon simplification, becomes

k|α − β|
|k2 − 1| (3)

(Note that if k = 1, then the locus is not a circle but a straight line, viz., the
perpendicular bisector of the segment AB. This is consistent with (3) because
a straight line can be considered as a limiting case of a circle as its radius tends
to ∞.)

This solution depends on the knowledge of a fact from geometry which,
although quite well-known in the past, is not so anymore because of the deem-
phasis on pure geometry in the school syllabi. So those who don’t know it are at
a slight disadvantage. The papersetters are apparently aware of this. For, the
complex numbers z, α, β are also specified in terms of their real and imaginary
parts, which are not at all needed in the solution above. The idea probably
is that those who do not know the circle of Apollonius, can attempt a direct
solution by converting the problem to a problem in coordinate geometry. If we
do so, then the given equation, upon squaring, becomes

(x − α1)
2 + (y − α2)

2 = k2[(x − β1)
2 + (y − β2)

2] (4)

which can be rewritten as

x2 + y2 +
2α1 − 2k2β1

k2 − 1
x +

2α2 − 2k2β2

k2 − 1
y +

k2(β2
1 + β2

2) − α2
1 − α2

2

k2 − 1
= 0 (5)

This is the equation of a circle with centre at

(

k2β1 − α1

k2 − 1
,
k2β2 − α2

k2 − 1

)

. This

tallies with (2). The radius can be obtained by completing the squares. The

calculation is not all that horrendous if we keep in mind that
1

k2 − 1
is a common

factor for all the three terms involved. The radius then comes out to be
√

(α1 − k2β1)2 + (α2 − k2β2)2 − (k2 − 1)[k2(β2
1 + β2

2) − α2
1 − α2

2]

|k2 − 1| (6)
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Strictly speaking, this ought to be an acceptable answer, since it is in terms of
the data of the problem. But, generally, obvious simplifications are mandatory.
Carrying these out, the numerator of (6) becomes, after lots of cancellations,
k
√

(α1 − β1)2 + (α2 − β2)2. Going back to the complex numbers, this is the
same as k|α − β| and so we see that (6) tallies with (3).

To conclude, two morals can be drawn. First, it pays to know pure geometry,
even if it is not directly a part of the syllabus. Secondly, even if you don’t,
coordinates are a reliable device to lean onto, provided you are prepared to do
the algebraic manipulations.

Problem No. 2: Suppose ~a,~b,~c, ~d are four distinct vectors satisfying the
conditions ~a×~b = ~c× ~d and ~a×~c = ~b× ~d. Prove that ~a ·~b +~c · ~d 6= ~a ·~c +~b · ~d.

Analysis and Solution: We are given

~a ×~b = ~c × ~d (1)

and ~a × ~c = ~b × ~d (2)

Subtracting (2) from (1) we get ~a× (~b−~c) = (~c−~b)× ~d. The R.H.S. can be

rewritten as ~d × (~b − ~c). Taking all terms on one side this gives

(~a − ~d) × (~b − ~c) = ~0 (3)

Now suppose, the assertion to be proved did not hold true, i.e. suppose we had,

~a ·~b + ~c · ~d = ~a · ~c +~b · ~d (4)

Then we can rewrite this as

~a ·~b − ~a · ~c = ~b · ~d − ~c · ~d (5)

and further as

~a · (~b − ~c) = ~d · (~b − ~c) (6)

because the dot product is commutative. Bringing all terms on one side this
becomes

(~a − ~d) · (~b − ~c) = 0 (7)

Now let ~u = ~a − ~d and ~v = ~b − ~d. Then as the given vectors are all distinct,
neither ~u nor ~v is a zero vector. By (3), ~u and ~v must be parallel to each
other. But by (7), they must also be perpendicular to each other. This is a
contradiction. So Equation (4) is false.

The problem is based on the basic properties of the cross and the dot prod-
ucts. Both are distributive over addition, which was used several times. Also
needed was the commutativity of the dot product and the anti-commutativity
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of the cross product. The key idea was that the hypothesis implies Equation
(3) because of the properties of the cross product, while the negation of the
conclusion, (i.e., Equation (4)), implies (7) because of similar properties of the
dot product. But (4) and (7) can never hold together. When you present the
solution in an examination, it is not necessary to write so many intermediate
steps. Nor is it necessary that you introduce separate symbols for the vectors
~a − ~d and ~b − ~c.

Problem No. 3: Using permutations or otherwise, prove that
(n2)!

(n!)n
is an

integer, where n is a positive integer.

Analysis and Solution: The basic idea is that if we have n types of objects,
with say ki objects of type i for i = 1, 2, . . . , n, then the number of permutations
of these k1 + k2 + . . . + kn objects equals

(k1 + k2 + . . . + kn)!

k1!k2! . . . kn!
(1)

As the number of permutations is always a whole number, i.e. an integer,
(1) in particular implies that the numerator is divisible by the denominator. If
we put each ki = n, we get that (n2)! is divisible by (n!)n.

The argument given here is combinatorial in that it consists of giving the
ratio (1) a combinatorial interpretation as the cardinality of a suitable set S,
in the present problem the set of all permutations of the given objects. An
alternate proof can also be given which is purely number theoretic. It is based
on the following simple result.

Lemma: The product of any n consecutive positive integers is divisible by n!.

Again, the best proof is combinatorial. Denote the consecutive integers by

k, k+1, k+2, . . . , k+n−2 and k+n−1. Then the ratio
k(k + 1) . . . (k + n − 1)

n!
is nothing but the binomial coefficient

(

k+n−1
n

)

. This, being the number of ways
to choose n objects from k + n − 1 ones, is an integer. A proof by induction is
also possible. (See Comment No. 9 of Chapter 4.)

Now, assuming the Lemma, we can show that
(n2)!

(n!)n
is an integer by directly

expanding the numerator and grouping the factors suitably. The numerator is
the product of the consecutive integers from 1 to n2. Let us break these into n
factors, each of which is itself the product of n consecutive integers. Thus, the
first factor is the product 1 × 2 × 3 × . . . × n (which is simply n!), the second
factor is the product of the integers from n + 1 to 2n, and so on, the last factor
being the product of the n consecutive integers from n2 − n + 1 to n2. By the
Lemma, each product is divisible by n!. As there are n such factors, we see
that the entire product (n2)! is divisible by the n-th power of n!, i.e. by (n!)n,
completing the solution.
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Although the problem does not ask it, it is interesting to note that a stronger
result is actually true. That is, (n2)! is divisible not only by the n-th power of
n!, but by its (n + 1)-th power, i.e. by (n!)n+1. A combinatorial proof of this
is given in the answer to Exercise (4.25)(b). A purely number-theoretic proof is
also possible using the Lemma above, except that we apply it with n replaced
by n − 1, i.e. we shall use the fact that the product of any n − 1 consecutive
positive integers is divisible by (n − 1)!.

As before, we write (n2)! out as the product of the integers from 1 to n2.
However, this time we mark with a hat every factor that is a multiple of n, i.e.
the factors n, 2n, 3n, . . . , n2 − n and n2. For example, for n = 5, we have

25! = 1.2.3.4.5̂.6.7.8.9.1̂0.11.12.13.14.1̂5.16.17.18.19.2̂0.21.22.23.24.2̂5 (2)

Note that before the first hat and in between any two consecutive hats, we
have a product of n − 1 consecutive positive integers. So each such product is
divisible by (n − 1)!. As there are n such products, we see that the product
of the non-hatted integers is divisible by [(n − 1)!]n. Now consider the hatted
integers. Their product is simply nn × n!. Putting the two together, the prod-
uct of all integers (hatted as well as non-hatted) from 1 to n2 is divisible by
[(n − 1)!]n × nn × n! which is nothing but (n!)n+1.

Although it does not earn you any extra credit to prove a stronger result in
an examination like the JEE, when you are using a problem as a motivation to
learn, it is always a good idea to see if you can get a stronger conclusion with
the same hypothesis or the same conclusion with a weaker hypothesis. This way
you can sometimes anticipate a new question.

Continuing in the same vein, it is natural to see if we can strengthen the
given problem even more. That is, can we prove that (n2)! is divisible by a
still higher power of (n!), i.e. by (n!)n+2 ? But this is easily seen to be false
for n = 2 or 3. In fact, if you look keenly at the factorisation of (n2)! as given
above, you will realise that if n is a prime, then (n2)! cannot be divisible by
(n!)n+2. For a composite n the situation is different.

Problem No. 4: If M is a 3 × 3 matrix with MT M = I (where I is the
3 × 3 identity matrix), and det (M) = 1, then prove that det (M − I) = 0.

Analysis and Solution: Matrices have been re-introduced into the JEE syl-
labus very recently. So it is not quite clear what degree of depth may be assumed
of them. We first give a fairly sophisticated solution under the additional as-
sumption that the entries of M are real and then follow it by an elementary one
(which is valid even for complex matrices).

Let M =





a11 a12 a13

a21 a22 a23

a31 a32 a33



.
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Let λ be a (possibly complex) variable and let

p(λ) = det (M − λI) =

∣

∣

∣

∣

∣

∣

a11 − λ a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ

∣

∣

∣

∣

∣

∣

(1)

Then p(λ) is a polynomial in λ of degree 3. The assertion det (M − I) = 0
is equivalent to saying that λ = 1 is a root of p(λ), or using the terminology
introduced in Exercise (2.37), that 1 is a characteristic root of the matrix M . So
the problem amounts to showing that if M is a real 3×3 matrix with MT M = I
and det (M) = 1 then M must have 1 as a characteristic root.

To see this, let λ1, λ2 and λ3 be the characteristic roots of M , i.e. the roots
of the polynomial p(λ). As we are given that det (M) = 1, from Exercise (3.27),
we have

λ1λ2λ3 = 1 (2)

The entries of M and hence the coefficients of p(λ) are all real. Hence, even
though some of the roots may be complex, they must occur in conjugate pairs.
The product of each such pair is a positive real number. So from (2), the number
of real characteristic roots is odd and further their product is positive. Hence
there is at least one characteristic root of M which is positive. Without loss of
generality, we suppose λ1 is one such root. We claim λ1 = 1. For this it suffices
to show that λ2

1 = 1. This can be done as follows.
We already know that det (M − λ1I) = 0. By Theorem 8 of Chapter 3, this

is equivalent to saying that the system of real linear equations

(M − λ1I)x = 0 (3)

has at least one non-trivial real solution. In slightly different terms this means
that there exists a non-zero column vector x with real entries such that

Mx = λ1x (4)

Taking transpose of both the sides, we get

xT MT = λ1x
T (5)

Multiplying (5) with (4),

xT MT Mx = λ2
1x

T x (6)

Now we use (for the first time) the hypothesis that MT M = I. Because of this,
the L.H.S. of (6) is simply xT x which is a positive real number as it is the sum
of the squares of the entries of the real column vector x which is assumed to
be non-zero. Hence from (6), we get λ2

1 = 1. As proved before, this shows that
λ1 = 1 and completes the solution.

Note that to get the existence of a positive characteristic root of M from
(2), we crucially needed that 3 is an odd integer. Indeed, the argument would
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go through if M were an n× n matrix for any odd positive integer n. The only
change is that in deriving (3), we would need Theorem 4 of Chapter 3, which is
the higher dimensional analogue of Theorem 8.

Although this solution is fairly lengthy (far more lengthy than justified by
the number of marks the problem carries) and involved, it truly explains the
significance of the condition det (M − I) = 0, viz. that the system Mx = x

has at least one non-trivial solution. A slicker but less educative solution, based
entirely on the properties of determinants, can be given as follows. Specifically,
the properties that we shall need are :

(i) the determinant of the transpose of a (square) matrix is the same as the
determinant of that matrix,

(ii) determinant of the product of two square matrices of the same order is
the product of their determinants, and

(iii) if A is an n×n matrix and α is a real number then det (αA) = αndet (A).

We are given a 3× 3 matrix M with MT M = I and det (M) = 1. From (i),
we have det (MT ) = 1. Further,

det (M − I) = det (MT )det (M − I)

= det (MT (M − I)) by (ii)

= det (I − MT )

= det (I − MT )T by (i) again

= det (I − M)

= (−1)3det (M − I) by (iii) (7)

Thus we have shown that det (M − I) = − det (M − I), which implies
det (M − I) = 0 as was to be proved. Note again that this argument will
remain valid if instead of 3 we have any odd positive integer. Note also that
this solution does not require that the entries of M be real. So it is more general
than the earlier solution. In this sense, it is the best solution.

Although neither solution made a crucial use of the fact that the size of the
matrix M is 3, this case (along with the assumption that the entries of M are
real) has an interesting application for vectors. Denote the row vectors of the
matrix M by u1,u2,u3 respectively. In other words, if we take M as above, then
u1 = a11i + a12j + a13k etc., where (i, j,k) is a fixed righthanded orthonormal
basis. It is then easy to see (and fairly well-known) that the condition that
MT M = I is equivalent to saying that (u1,u2,u3) is an orthonormal basis.
(This follows because the (p, q)-th entry of the product matrix MT M is simply
the dot product of the vectors up and uq, for p = 1, 2, 3 and q = 1, 2, 3.)
The condition MT M = I implies det (MT )det (M) = det (I) = 1 and hence
det (M) = ±1 since MT and M have the same determinants. It is further
true that the + or − sign holds depending upon whether the orthonormal basis
(u1,u2,u3) is right-handed or left-handed. We are given that the first possibility
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holds. Thus the hypothesis of the problem can be paraphrased to say that M
is a 3 × 3 matrix whose row vectors form a right-handed orthonormal basis.

The conclusion of the problem is that the determinant of the matrix M − I
is 0. If we write this matrix out, then we see that its row vectors are nothing
but the vectors u1 − i,u2 − j and u3 − k. As the determinant equals the box
product of its row vectors, its vanishing is equivalent to saying that the three
vectors u1 − i,u2 − j and u3 − k are linearly dependent. This can be further
paraphrased to say that there exists a non-zero vector v which is perpendicular
to all of them. Put differently this means that there exists a non-zero vector v

such that

u1 · v = i · v (8)

u2 · v = j · v (9)

and u3 · v = k · v (10)

Here (i, j,k) was a fixed right-handed system we started with. We could as
well replace it with some other right-handed system, say (w1,w2,w3). Then
geometrically, this means that given any two right-handed systems (w1,w2,w3)
and (u1,u2,u3), there exists a direction (viz., the direction of the vector v),
which makes the same angles with u1,u2,u3 respectively as it does with the
vectors w1,w2,w3 respectively. This is a purely geometric result. Thus we see
that matrices have non-trivial applications to geometry. (A direct proof can be
given using the concept of what are called direction cosines.) As already noted,
the result can also be expressed in terms of the box product. Thus our little
discovery can also be put as follows.

For any two right-handed systems (w1,w2,w3) and (u1,u2,u3), we have

[(u1 − w1) (u2 − w2) (u3 − w3)] = 0 (11)

whose direct proof is not easy.

Problem No. 5: A plane passes through the point (1, 1, 1) and is par-
allel to the lines whose direction ratios are (1, 0,−1) and (−1, 1, 0). If it cuts
the coordinate axes at A, B, C respectively, find the volume of the tetrahedron
OABC.

Analysis and Solution: This is a very straightforward problem. Let the
points A, B, C be respectively (a, 0, 0), (0, b, 0) and (0, 0, c). The volume of the
tetrahedron OABC equals 1

6 |abc|. So the real task is to determine a, b, c from
the data. The equation of the plane passing through A, B, C is

x

a
+

y

b
+

z

c
= 1 (1)

A vector n perpendicular to this plane is given by

n =
1

a
i +

1

b
j +

1

c
k (2)
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Direction ratios of a line are nothing but the components of any vector parallel
to that line. Thus, we are given that the vectors i−k and −i+ j are parallel to
the plane (1). So each of them is perpendicular to the vector n. This gives us
two equations in a, b, c, viz.,

1

a
− 1

c
= 0 (3)

and
1

a
− 1

b
= 0 (4)

We need one more equation in a, b, c. This is provided by the hypothesis that
the plane given by (1) passes through the point (1, 1, 1). This means

1

a
+

1

b
+

1

c
= 1 (5)

Solving (3) to (5) simultaneously is very easy, because (3) and (4) immediately
give a = b = c. (5) then gives a = b = c = 3. The desired volume, therefore, is
1
6 × 3× 3× 3 = 9

2 cubic units. (One can also find the volume of the tetrahedron

OABC by taking the box product of the vectors
−→
OA,

−→
OB and

−→
OC and writing

this box product as a certain 3 × 3 determinant. But that is silly. When it is
already known that the edges OA, OB, OC of the tetrahedron are at right angles
to each other, its volume is simply one-sixth of the product of their lengths.)

The purpose of the problem is apparently to test whether a student knows
how to apply vectors to the so-called solid coordinate geometry. This branch
of mathematics is not elaborately studied in schools. But analogy with plane
coordinate geometry and use of vectors can often pull you through at least as far
as the lines and planes are concerned. For example, Equation (1) above is the
direct analogue of the equation of a straight line in the two intercepts form. In
going from (1) to (2) all you need is the dot product. More generally, the vector
pi+qj+rk is normal to any plane whose equation is of the form px+qy+rz = s
for any s. To see this, first fix any point P0 = (x0, y0, z0) on the plane. Then
px0 + qy0 + rz0 = s. Moreover, a point P = (x, y, z) will lie on the plane if and
only if p(x − x0) + q(y − y0) + r(z − z0) = s − s = 0. This amounts to saying

that the vector
−→
P0P is perpendicular to the vector pi + qj + rk.

Problem No. 6: T is a parallelopiped in which A, B, C, D are ver-
tices of one of the faces. The corresponding vertices of the opposite face are
A′, B′, C′, D′. T is compressed to form another parallelopiped S with the face
ABCD remaining the same and A′, B′, C′, D′ shifted to A′′, B′′, C′′, D′′ respec-
tively. If the volume of S is 90% that of T , prove that the locus of A′′ is a
plane.

Analysis and Solution: This is one of those problems which take a while to
understand but which are very simple once you understand them correctly. Let
M ′ be the foot of the perpendicular from the vertex A′ to the plane of the face
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ABCD. Then the volume, say V ′ of T is given by

V ′ = area of ABCD × A′M ′ (1)

When T is compressed
to S, the vertices A, B, C, D
remain fixed. But the ver-
tices A′, B′, C′, D′ move to
A′′, B′′, C′′, D′′ respectively.
Let M ′′ be the foot of the
perpendicular from A′′ to
the plane of the face ABCD.
Since the volume of S is 90 %
of V ′, we get B

C

A’

M’

M’’

B’

D’ C’

D

A’’ B’’

D’’

A

C’’

9

10
V ′ = area of ABCD × A′′M ′′ (2)

Dividing (2) by (1) and calling A′M ′ as h, we get

A′′M ′′ =
9

10
h (3)

Here h is a constant. A′′M ′′ is the (perpendicular) distance of the point
A′′ from the base plane ABCD. The points B′′, C′′, D′′ are also at this height
above the base plane. All these four points lie in a plane parallel to the base
plane and at a height 9

10h above it. A′′ is free to move anywhere on this plane.
(Once the position of A′′ is fixed, those of B′′, C′′ and D′′ are automatically
determined.) Hence the locus of A′′ is a plane parallel to the plane of the face
ABCD and at a distance 9

10h from it, where h is the perpendicular distance
between the faces ABCD and A′B′C′D′.

In case you have difficulty in understanding a problem in solid geometry,
an analogy with a problem in a plane often helps. In the present problem,
for example, the plane analogue would be as follows. Suppose ABB′A′ is a
parallelogram. Its vertices A′, B′ are moved to points A′′, B′′ respectively so
that ABB′′A′′ is a parallelogram whose area is 90% of that of the parallelogram
ABCD. Find the locus of A′′. Since the area of a parallelogram with a fixed
base is proportional to its height, we see that the vertex A′′ has to move on a
line parallel to AB. The key idea in the present problem is exactly same, except
that instead of the area of a parallelogram, we are dealing with the volume of a
parallelopiped with one face fixed.

(In the problem asked, the vertex A′′ (and hence also the vertices B′′, C′′ and
D′′) could also lie on the other side of the face ABCD at a distance 9

10h from
it. In that case, the locus of A′′ is not a single plane, but a union of two parallel
planes lying on opposite sides of the plane of the face ABCD, each at a distance
9
10h from it. But in the statement of the problem, it is given that the original
parallelopiped T is ‘compressed’ to the new parallelopiped S. Physically this
means that the volume is gradually reduced from V ′ to 9

10V ′. In this process
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the moving vertices cannot possibly cross over to the other side of the plane
ABCD. So this possibility is discarded.)

The solution given above was based on ‘pure’ solid geometry. The problem
can also be done using coordinates or vectors (in which case the volume of the
parallelopiped will be the scalar triple product of the vectors representing the
three edges meeting at one of the vertices). But neither approach will simplify
the problem. In fact, they may only serve to complicate it. The essential idea
is very simple, viz., that the volume of a paralleopiped is the product of the
area of any face of it and the perpendicular distance between that face and its
opposite face. There is no need to complicate it with coordinates or vectors.
Indeed, this problem is a good test of a student’s ability to grasp the essence of
a problem without cluttering it with unnecessary gadgets.

Problem No. 7: Given that

∣

∣

∣

∣

cos−1

(

1

n

)∣

∣

∣

∣

<
π

2
, evaluate

lim
n→∞

2

π
(n + 1) cos−1

(

1

n

)

− n

[Hint: If f is differentiable at 0 and f(0) = 0, then lim
n→∞

nf

(

1

n

)

= f ′(0).]

Analysis and Solution: This is a problem about evaluating the limit of a

sequence, specifically, the sequence {an} where an =
2

π
(n + 1) cos−1

(

1

n

)

− n

as n tends to ∞. The purpose of specifying that

∣

∣

∣

∣

cos−1

(

1

n

)∣

∣

∣

∣

<
π

2
is not quite

clear. Apparently, it comes from the fact that traditionally the inverse cosine
function is not single-valued. Thus, depending on what value we assign to

cos−1

(

1

n

)

, the value of an will change and so will the value of lim
n→∞

an. In

fact, with some interpretations of cos−1

(

1

n

)

, the given limit need not even

exist. To avoid this confusion, it is stipulated that for a positive integer n, by

cos−1

(

1

n

)

, we shall only mean that unique value of it which lies between −π

2

and
π

2
. (However, nowadays, it is a standard practice that the values of cos−1

are always taken to lie in the interval [0, π]. With this convention, whenever n

is an integer greater than 1, cos−1

(

1

n

)

, will automatically lie between 0 and

π

2
and so there was really no need to specify this. In fact, today a stipulation

like this is more likely to cause than to clear a confusion.)
Anyway, coming back to the limit lim

n→∞
an, the hint given suggests that we

should first cast an into the form nf

(

1

n

)

for some suitable function f(x) which
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is differentiable and vanishes at 0. We do not have much of a choice here. We
want

nf

(

1

n

)

=
2

π
(n + 1) cos−1

(

1

n

)

− n (1)

to hold for every positive integer n. Dividing both the sides by n, and calling
1

n
as x, this means we should take

f(x) =
2

π
(1 + x) cos−1 x − 1 (2)

(Strictly speaking we need to have (2) only for x of the form
1

n
where n is a

positive integer. We are free to define it differently for other values of x. But
nothing is to be gained by doing so. The definition above makes sense for all
x ∈ [−1, 1] and satisfies the conditions that f(0) = 0 and also that f ′(0) exists.)

To get the answer, all that is left is to find f ′(0) where f is as above. Direct
differentiation gives

f ′(x) =
2

π
(cos−1 x − 1 + x√

1 − x2
) (3)

for all x ∈ (−1, 1). In particular,

f ′(0) =
2

π
(
π

2
− 1) = 1 − 2

π
(4)

which is the answer to the problem.
The problem would have been more interesting had the hint not been given.

With the hint thrown in, the only work needed is a manual one. But then
again, without the hint, the problem would have been too complicated. The
most straightforward approach in that case would be to replace the discrete
variable n by a continuous variable x and consider

lim
x→∞

2

π
(x + 1) cos−1

(

1

x

)

− x (5)

Since cos−1

(

1

x

)

tends to
π

2
as x → ∞ we see that (5) is an indeterminate

form of the type ∞−∞. There are several ways to convert this to some more
manageable indeterminate form. For example, taking a factor x out, the limit
above equals

lim
x→∞

x ×
[

2

π

(

1 +
1

x

)

cos−1

(

1

x

)

− 1

]

(6)

which is an indeterminate form of the ∞ × 0 type. To cast it into the most

familiar
0

0
form, we make a change of variable. Put u =

1

x
. Then u → 0+ as
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x → ∞ and so the desired limit now becomes

lim
u→0+

2
π (1 + u) cos−1 u − 1

u
(7)

We can now apply l’Hôpital’s rule to evaluate this limit. Note that we now have
to find the derivative of the numerator w.r.t. u. But the numerator is precisely
f(u) where f is as defined by (2) above. So ultimately this approach involves
the same work at the end but we spend a lot more time in reaching that stage
than we would with the hint. The result in the hint itself is hardly profound,
as all it needs is the definition of a derivative. But had the hint not been given,
only the highly experienced persons could have thought of applying the result
contained in the hint to the present problem.

Problem No. 8: Let p(x) = 51x101−2323x100−45x+1035. Using Rolle’s
theorem prove that p(x) has at least one root in the interval (451/100, 46).

Analysis and Solution: As in the last problem, in this problem, there is little
for you to figure out. Everything is given to you. The conclusion of Rolle’s
theorem deals with a zero of the derivative of a function. So if we want to apply
Rolle’s theorem to get a root of p(x) the first task is to get hold of a function,
say f(x), whose derivative is p(x). Clearly, any such function is of the form

f(x) =
1

2
x102 − 23x101 − 45

2
x2 + 1035x + c (1)

where c is an arbitrary constant to be determined later. Evidently, f(x) is
differentiable on the entire real line and so there is no difficulty in applying
Rolle’s theorem to f(x) from this angle. The only thing is that we have to
ensure that

f(451/100) = 0 (2)

and f(46) = 0 (3)

by suitably choosing the constant c. (We are doing this because in the customary
formulation of the Rolle’s theorem, when it is to be applied to a function f(x)
over an interval [a, b], it is required that f(a) = f(b) = 0. What is really vital
is only that f takes equal values at a and b and not that this common value
be 0. For, if f(a) = f(b), one can apply Rolle’s theorem to the new function
g(x) = f(x) − f(a) which indeed vanishes at both a and b. So, we could as
well drop the constant c from (1) and instead of (2) and (3), verify merely
that f(451/100) = f(46). But we stick to the traditional formulation of Rolle’s
theorem.)

Instead of computing f(46) and f(451/100) by directly evaluating every term
of (1) for these values of x, a little regrouping will simplify the work considerably.
(A hunch for this comes because 46 and 1035 are multiples of 23 and surely there
must be some purpose behind choosing such clumsy figures in the problem.) For
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example, if we put x = 46 in (1), we get

f(46) =
1

2
× (46)102 − 23 × (46)101 − 45

2
× (46)2 + 1035× 46 + c

= 23 × (46)101 − 23 × (46)101 − 45 × 23 × 46 + 23 × 45 × 46 + c

= c (4)

So if we take c = 0, we have f(46) = 0. Putting c = 0 and x = 451/100 in (1),
we now have

f(451/100) =
1

2
(45)102/100 − 23 × (45)101/100 − 45

2
(45)2/100 + 1035 × (45)1/100

=
45

2
× (45)2/100 − 23 × 45 × (45)1/100 − 45

2
(45)2/100

+23 × 45 × (45)1/100

= 0 (5)

Therefore, by Rolle’s theorem, f ′(x), which is the same as p(x), has at least
one root in the interval (451/100, 46).

The bulk of the computational work in the problem is in proving (4) and
(5). This can be shortened a little by factorising the non-constant part of f(x),
i.e. by writing it as

f(x) =
1

2
x101(x − 46) − 45

2
x(x − 46) + c

=
x

2
(x − 46)(x100 − 45) + c (6)

which makes it easier to see that f(451/100) and f(46) are equal, each being
equal to c.

In fact, this alternate method would come to rescue even if the paper-setters
had played a dirty trick in framing the problem. Suppose, for example, that
the problem had asked you to show, using Rolle’s theorem, that the given poly-
nomial p(x) had at least one root in the interval (1, 50) (instead of the interval
(451/100, 46)). Note that technically this does not mean that the papersetters
have asked you to apply Rolle’s theorem to the interval [1, 50]. Indeed, Rolle’s
theorem is not applicable to this interval because no matter what c is, f(1) and
f(50) can never be equal. However, if we can find a suitable subinterval, say
[a, b] of [1, 50], to which Rolle’s theorem can be applied, then the interval (a, b),
and therefore the bigger interval (1, 50) would contain at least one zero of p(x).

The crucial question now is how to identify these magic numbers a and b.
Nobody can get the correct values a = 451/100 and b = 46 by trial and error or
simply by guessing from (1). However, from the factorised form (6), it is not so
difficult to get them. Fortunately, the papersetters have not played this dirty
trick and so a solution based on the computations (4) and (5) is also possible.

Problem No. 9: If y(x) =

∫ x2

π2/16

cosx. cos
√

θ

1 + sin2
√

θ
dθ, find

dy

dx
at x = π.
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Analysis and Solution: This is a straightforward application of the second
form of the Fundamental Theorem of Calculus (or rather, its generalisation
given in Equation (18) of Chapter 17). The only catch is that the variable x
also occurs in the integrand besides appearing in the upper limit of integration.
In such cases, we cannot apply the Fundamental Theorem blindly. (See Exercise
(17.17)(b) for another problem where a similar difficulty arises.)

The correct procedure here is to recognise that as far as the given definite
integral is concerned, x and hence any expression depending solely on x is a
constant and is therefore to be pulled out of the integral sign. Thus, we have

y(x) = cosx

∫ x2

π2/16

cos
√

θ

1 + sin2
√

θ
dθ (1)

which is a product of two functions of x, the first being the function cosx and the

second being

∫ x2

π2/16

cos
√

θ

1 + sin2
√

θ
dθ. So the derivative can be obtained by apply-

ing the product rule for derivatives. In doing this, we shall need the derivative of
the second factor, for which we shall apply the Fundamental Theorem without
any difficulty now because the integrand does not involve x at all.

For the actual calculation,

y′(x) = − sinx

∫ x2

π2/16

cos
√

θ

1 + sin2
√

θ
dθ + cosx

d

dx

∫ x2

π2/16

cos
√

θ

1 + sin2
√

θ
dθ

= − sinx

∫ x2

π2/16

cos
√

θ

1 + sin2
√

θ
dθ + cosx

cos
√

x2

1 + sin2
√

x2

d

dx
(x2)

= − sinx

∫ x2

π2/16

cos
√

θ

1 + sin2
√

θ
dθ +

2x cos2 x

1 + sin2 x
(2)

We are interested in y′(π). Since sinπ = 0, we are spared of the trouble of

evaluating the horrible definite integral

∫ π2

π2/16

cos
√

θ

1 + sin2
√

θ
dθ. The second term

has value
2π(−1)2

1 + 0
i.e., 2π at x = π. So y′(π) = 2π.

Problem No. 10: If A, B are two independent events, prove that
P (A ∪ B).P (A′ ∩ B′) ≤ P (C), where C is the event that exactly one of A and
B occurs.

Analysis and Solution: In symbols, the event C is the disjunction of the
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two mutually exclusive events A∩B′

and A′ ∩ B. These events are shown
by shaded regions in the accompa-
nying Venn diagram. From the Venn
diagram, we see at once that P (C) =
P (A ∪ B) − P (A ∩ B) and also that
P (A′ ∩ B′) = 1 − P (A ∪ B).

AB’ AB A’B

A

A’B’

B

Substituting these values, the inequality we are asked to prove becomes

P (A ∪ B) − [P (A ∪ B)]2 ≤ P (A ∪ B) − P (A ∩ B) (1)

or, equivalently,

P (A ∩ B) ≤ [P (A ∪ B)]2 (2)

As the events A and B are given to be (mutually) independent, the L.H.S. equals
P (A)P (B) and so the problem is now reduced to proving that

P (A)P (B) ≤ [P (A ∪ B)]2 (3)

But this is very easy to show. Since the event A is contained in the event A∪B,
(i.e., the occurrence of A always implies that of A ∪ B), we have

P (A) ≤ P (A ∪ B) (4)

Similarly,

P (B) ≤ P (A ∪ B) (5)

If we multiply (4) and (5) and keep in mind that all the factors are non-negative,
we get (3).

The problem can also be done by letting x = P (A), y = P (B) and then
expressing the various other probabilities in terms of x and y. But the solution
inspired by the Venn diagram is natural and simple.

Problem No. 11: If a, b, c are positive real numbers, prove that

[(1 + a)(1 + b)(1 + c)]7 > 77a4b4c4

Analysis and Solution: The inequality to be proved can be rewritten as

[

(1 + a)(1 + b)(1 + c)

7

]7

> a4b4c4 (1)

The very form of the L.H.S. suggests that the A.M.-G.M. inequality will be
needed in the proof. Indeed, if the denominator in the brackets and the exponent
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of the L.H.S. were 8 instead of 7, then we could write the L.H.S. as the product
of three factors, viz., as

(

1 + a

2

)8(
1 + b

2

)8 (
1 + c

2

)8

(2)

and applying the A.M.-G.M. inequality separately to each factor we would get

[

(1 + a)(1 + b)(1 + c)

8

]8

=

(

1 + a

2

)8 (
1 + b

2

)8(
1 + c

2

)8

≥ (
√

a)8(
√

b)8(
√

c)8

= a4b4c4 (3)

It is tempting to try to derive (1) from (3). This would be possible if we could
show

[

(1 + a)(1 + b)(1 + c)

7

]7

>

[

(1 + a)(1 + b)(1 + c)

8

]8

(4)

Unfortunately (4) is not true. For, cancelling the common factors (which are
all positive) (4) is equivalent to showing that

88

77
> (1 + a)(1 + b)(1 + c) (5)

which is clearly false if a, b, c are sufficiently large as the L.H.S. is a fixed number.
Nevertheless, the failed attempt has a noteworthy feature. In the proof of

(3), we expressed the L.H.S. as a certain product of three factors and showed
separately that each factor was bigger than or equal to the corresponding fac-
tor of the R.H.S. In other words, the proof of (3) consisted of proving three
independent but similar inequalities and multiplying them. It is worthwhile to
paraphrase this proof slightly. Let

f(x) =

(

1 + x

2
√

x

)8

(6)

By the A.M.-G.M. inequality, f(x) ≥ 1 for all x > 0. We applied this fact
separately with x = a, x = b and x = c and multiplying the three inequalities
got

f(a)f(b)f(c) ≥ 1 (7)

which is a mere recasting of (3). Let us try a similar approach for proving (1).
We can paraphrase (1) to say that

g(a)g(b)g(c) > 1 (8)

where the function g(x) is defined by

g(x) =
(1 + x)7

77/3x4
(9)
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for x > 0. Now comes the crucial observation. If at all a result like (8) is to
hold for all positive a, b, c, then it is mandatory that g(x) > 1 for all x > 0. For
suppose g(u) ≤ 1 for some u > 0, then taking a = b = c = u we would contradict
(8). Thus we have reduced the inequality (1) to showing that g(x) > 1 for all
x > 0. In effect, we have reduced a problem about a function of three variables
to a similar problem about a function of just one variable. This simplification
was possible because both the L.H.S. and the R.H.S. of (1) could be factorised
as products of three highly similar factors, each involving only one of the three
variables a, b, c. Had such a factorisation not been possible, this approach would
not work. For example, suppose we want to prove the inequality

(a + b − c)(b + c − a)(c + a − b) ≤ abc

for any three positive real numbers a, b, c. This can be done by other means
(see Exercise (14.1)). But the method above would not apply.

Therefore, from now on we concentrate all our efforts on showing that g(x) >
1 for all x > 0. Taking the seventh root, this is equivalent to showing that

1 + x > 71/3x4/7 (10)

for all x > 0. We shall give two proofs of (10). The first and the more straight-
forward proof uses calculus. To simplify the notations, we put t = x1/7. Then
(10) is equivalent to proving that

1 + t7 > 71/3t4 (11)

for all t > 0. To do this we let h(t) = 1 + t7 − 71/3t4 and study the in-
creasing/decreasing behaviour of this function for 0 < t < ∞. Since h′(t) =
7t6 − 71/34t3 = t3(7t3 − 71/34), the only critical point of h(t) in (0,∞) is

t0 =
41/3

72/9
. Moreover h′(t) < 0 for 0 < t < t0 and h′(t) > 0 for t0 < t < ∞.

Hence the function h(t) has its absolute minimum on (0,∞) at t0. Therefore if
we can show that h(t0) > 0 then it would mean h(t) > 0 for all t ∈ (0,∞). And
that will prove (10).

Thus we have to show that h

(

41/3

72/9

)

> 0. A direct computation gives

h

(

41/3

72/9

)

= 1 +
47/3

714/9
− 71/344/3

78/9

=
714/9 + 47/3 − 7 × 44/3

714/9

=
7 × 75/9 + 16 × 41/3 − 7 × 4 × 41/3

714/9

=
7 × 75/9 − 12 × 41/3

714/9
(12)

It is not necessary to find the exact value of this quantity. All we want to
show is that the numerator is positive i.e. to show that 7 × 75/9 is bigger than
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12 × 41/3. With a calculator, the approximate values of these two numbers
are 20.6346426 and 19.048812624 respectively. However, calculators are not
allowed at the JEE. Doing the comparison without calculators is a little messy,
if attempted directly. But with a convenient middleman, it is not so bad. A
good middleman is 20. By taking cubes, it is easy to show that 41/3 < 5

3

and so we get 12 × 41/3 < 12 × 5
3 = 20. So we would be through if we show

that 7 × 75/9 > 20. This amounts to showing that 714 > (20)9 = 29 × 109.
This can be simplified if we notice that 74 = 2401 > 2400 = 24 × 102. So
714 = 49 × 712 > 49 × (2400)3 = 49 × (24)3 × 106. Therefore, it is enough to
show that 49 × (24)3 > 29 × 103 or equivalently, to show that 49 × 33 > 103.
This can be done by actually computing the L.H.S. by hand. It comes to 1323
which certainly exceeds 1000.

Admittedly, this argument is far too long to be expected for a 4 point ques-
tion. But note that the gain is that we now got the actual minimum of the

function h(t) (viz., h(t0) where t0 =
41/3

72/9
)) and hence also of the function g(x)

defined by (9), the minimum now being g(x0) with x0 = t70. This minimum is
less than 1. So we not only have (8) and hence (1) but the best possible lower
bound on g(a)g(b)g(c), viz. (g(x0))

3.
Our second proof of (10) is not so ambitious. But it is much shorter. It

is based on the A.M.-G.M. inequality applied in a very clever way. Sometimes
while applying the A.M.-G.M. inequality to a sum of two terms, it pays to split
one or both the terms suitably. For example, showing directly that 2 secx +
cos2 x ≥ 3 (where 0 < x < π

2 ) is a little complicated. But if we write this
expression as the sum of three terms, viz., as sec x + secx + cos2 x and then

apply the A.M.-G.M. inequality, the result comes effortlessly.
More generally, suppose a, b are any two positive real numbers and m, n are

positive integers. If we rewrite ma + nb as the sum of m + n terms, i.e. as
a + a + . . . + a + b + b + . . . + b and then apply the A.M.-G.M. inequality we get
the following result

(

ma + nb

m + n

)m+n

≥ ambn (13)

with equality holding only if a = b. (Actually, this is true even when m, n are
any two positive numbers, not just integers. But the proof is not so elementary.
See Exercise (14.8).)

We can apply (13) to prove (9) as follows. In (13) take m = 3, n = 4, a =
1

3
and b =

x

4
. Then we have

(

1 + x

7

)7

≥ x4

3344
(14)

Taking the seventh roots of both the sides, we get

1 + x ≥ 7
x4/7

33/744/7
(15)
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To derive (10) from (15), we must show that

7

33/744/7
> 71/3 (16)

which can be done by direct verification. Taking the 21-st powers of both the
sides, (16) is equivalent to saying 714 > 39412. Rewriting 39412 as 33 × 36 ×
(16)6 = 27 × (48)6 we indeed see that it is less than 49 × (49)6 = (49)7 = 714.

Thus we now have two proofs of the inequality asked, viz., (1). Both these
proofs were based on the idea of reducing the inequality for a function of three
variables (viz. a, b, c), to an inequality about a function of just one variable.
We emphasize that such a reduction can work only when the three variables are
completely independent of each other, i.e. we are free to assign any values to
them within their permitted variations (e.g. such as that the values must be
positive). Indeed we used this freedom in the important observation we made
after (9). If there is some relationship (often called a constraint) which the
variables have to satisfy together then this method no longer works. Suppose
for example, that A, B, C are any three angles in the interval [0, π]. Then the
maximum value of the function sinA sinB sin C is 1 obtained by taking the
product of the maximum values of each factor. But if A, B, C are the angles
of a triangle ABC then they are not independent of each other. They have to
satisfy the constraint A+B+C = π. In this case, finding the maximum value of
sin A sin B sinC is a problem in trigonometric optimisation. And the answer is

no longer 1 but much less, viz., is
3
√

3

8
attained when the triangle is equilateral.

Finally, we give a proof of (1) which is qualitatively different, that is, it
does not go through the factorisation of the L.H.S. of (1). Instead, it begins by
expanding the product (1 + a)(1 + b)(1 + c) as the sum of 8 terms, viz.

(1 + a)(1 + b)(1 + c) = 1 + a + b + c + ab + bc + ca + abc (17)

As already noted, the form of the L.H.S. of (1) suggests that the A.M.-G.M.
inequality is to be applied. For this, the expression in the brackets of the L.H.S.
ought to be the A.M. of seven terms. But by (17), the numerator is a sum of
eight and not seven terms. So we simply drop one of these 8 terms! Which one
should it be? In the interest of symmetry, it has to be either the first term 1
or the last term abc. We desire that (1) should hold for all (positive) values of
a, b, c. If these values are large, then so will be abc and dropping such a large
term may prove to be injudicious. So we drop the term 1. As the term dropped
is positive, we now have

[

(1 + a)(1 + b)(1 + c)

7

]7

>

[

a + b + c + ab + bc + ca + abc

7

]7

(18)

The R.H.S. is indeed the seventh power of the A.M. of seven numbers and so we
are now in a position to apply the A.M.-G.M. The product of the seven terms
in the numerator of the bracketed expression of the R.H.S. is a4b4c4. So their
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geometric mean is a4/7b4/7c4/7. Hence the A.M.-G.M. inequality gives

[

a + b + c + ab + bc + ca + abc

7

]7

≥ a4b4c4 (19)

Note that here we do not have strict inequality. In fact equality does hold when
a, b, c all equal 1. However, in (18) we do have strict inequality. So combining
(18) and (19) we get (1).

Admittedly, this is a very tricky solution. But questions about inequalities
do sometimes require you to look at the problem with a keen eye and come up
with the key idea. In the present problem dropping one of the terms from the
R.H.S. of (17) was the key idea.

Problem No. 12: Find the equation of a circle which touches the line
2x + 3y + 1 = 0 at the point (1,−1) and cuts orthogonally the circle which has
the line segment joining (0, 3) and (−2,−1) as a diameter.

Analysis and Solution: This is a straightforward problem about finding a
member of a family of curves satisfying certain conditions. The circles touching
a given line at a given point form a 1-parameter family of curves. The value
of the parameter is then to be determined from the given additional piece of
information. The choice of the parameter is left to us and depending upon which
parameter we choose, the work will vary a little.

Call the given line L and the desired circle as C. Let C′ be the circle having
(0, 3) and (−2,−1) as the ends of a diameter. Then the equation of C′ is
x(x + 2) + (y − 3)(y + 1) = 0, i.e.

x2 + y2 + 2x − 2y − 3 = 0 (1)

Using Equation (22) in Chapter 9, the equation of a typical circle which touches
L at the point (1,−1) is of the form

(x − 1)2 + (y + 1)2 + λ(2x + 3y + 1) = 0 (2)

where λ is a parameter. If the circles represented by (1) and (2) cut each other
orthogonally, then (applying the condition for orthogonality), we have

2(λ − 1) − 2

(

3λ

2
+ 1

)

= −3 + 2 + λ (3)

This gives the value of λ as − 3
2 . Putting this into (2), the equation of the desired

circle C is

x2 + y2 − 5x − 5

2
y +

1

2
= 0 (4)

Although this solution is short and simple, it requires you to remember two
things, first the parametrisation (given by (2)) of the family of circles touching
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a given line at a given point and, secondly, the condition for orthogonality of
two circles in terms of their equations. Both these are fairly standard. But in
case you are unfamiliar with or unsure of them, there is a way to get the answer
with fresh thinking using only the very basic formulas and concepts. We give
one such solution here.

Call the point (1,−1) as P . Let L′ be the line through P perpendicular to
L. Then any circle which touches L at P must have its centre, say M , on L′.
Moreover, the radius of such a circle must equal the distance between P and
M (which is also the perpendicular distance of the centre M from the line L).
Now let α be the angle L′ makes with
the positive x-axis. Then the point
M can be written in the form (1 +
r cosα,−1+r sinα) for some real num-
ber r. (Here r may be taken as the
algebraic distance of M from P . It is
positive on one side of L and negative
on the other. The geometric distance
of M from P is |r|.) It is easy to cal-
culate the angle α. the slope of L is
− 2

3 . Hence that of the line L′ is 3
2 ,

i.e., tanα = 3
2 . So sinα = 3√

13
and

cosα = 2√
13

.

O

.

P

r

M

L

x

y

α

(1, − 1)

L’

With this background, the centre, say M , of a typical circle which touches
the line L at P is of the form

M = (1 +
2r√
13

,−1 +
3r√
13

) (5)

for some real number r and its radius is |r|. Our interest is in finding the value of
r for which this circle cuts the circle C′ orthogonally. Again, instead of writing
the equation of C′ in the form (1), we identify its centre, say M ′, and radius,
say r′, and then apply the condition of orthogonality in a geometric form. Since
C′ has (0, 3) and (−2,−1) as ends of a diameter, we get

M ′ = (
−2 + 0

2
,
−1 + 3

2
) = (−1, 1) (6)

and r′ =
1

2

√

(0 + 2)2 + (3 + 1)2 =
1

2

√
20 =

√
5 (7)

The condition for orthogonality of the intersection of these two circles is

(MM ′)2 = r2 + r′2 (8)

From (5) to (8), we get

(

2 +
2r√
13

)2

+

(

−2 +
3r√
13

)2

= r2 + 5 (9)
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Upon simplification, this is a linear equation in r giving r = 3
√

13
4 . With this

value of r, M becomes (5
2 , 5

4 ) and the equation of the desired circle C becomes

(

x − 5

2

)2

+

(

y − 5

4

)2

=
117

16
(10)

which tallies with (4).

Note that in this second solution, we found the equation of the circle C at the
end because the question specifically asked for it. If the question had, instead,
asked you to identify only the radius of C, then we already had the answer
before getting (10). On the contrary, to get it from the earlier approach, we
would have to complete the squares in (4). In that case, the second approach
would be slightly better than the first one. But that is only a minor advantage.
The real advantage, as pointed out earlier, is that it is based on the most basic
and simple ideas and not on any readymade formulas. Such formulas, of course,
save you precious time in an examination. But once in a while, you forget some
formulas that are not so frequently used (e.g., the condition for orthogonality
or for tangency) and in such a case it is important to be able to salvage the
situation. (Note, incidentally, that from (5) we could get the equation of a
typical circle touching the line L at the point (1,−1) as

(

x − 1 − 2r√
13

)2

+

(

y + 1 − 3r√
13

)2

= r2 (11)

or, in a simpler form,

(x − 1)2 + (y + 1)2 − 2r√
13

(2x + 3y + 1) = 0 (12)

which is the same as (2) if we take λ = − 2r√
13

. This is not surprising. In effect,

in the second approach we have derived the parametric equation of the given
family of curves instead of using it readymade. That is why the second solution
took longer than the first.)

Finally, there is also a brute force solution starting from taking the equation
of the desired circle C in the general form, viz.,

x2 + y2 + 2gx + 2fy + c = 0 (13)

Here there are three unknowns, viz., g, f and c. To determine their values, we
need three equations. These are given by the three conditions :

(i) that the point (1,−1) lies on C,

(ii) that the line 2x + 3y + 1 = 0 touches the circle C, and

(iii) that C and C′ cut each other orthogonally.
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These conditions imply, respectively, (using the condition for tangency, (1) and
the condition for orthogonal intersection)

2 + 2g − 2f + c = 0 (14)

(−2g − 3f + 1)2 = 13(g2 + f2 − c) (15)

and 2g − 2f = c − 3 (16)

Luckily, this system is not at all difficult to solve. (14) and (16) immediately
give c = 1

2 . Also g = f − 5
4 . These substitutions reduce (15) to the quadratic

(

−5f +
7

2

)2

= 13

(

2f2 − 5

2
f +

17

16

)

(17)

which simplifies to f2 + 5
2f + 25

16 = 0. This has f = − 5
4 as a double root. Hence

finally, g = − 5
2 . The equation of the desired circle now comes exactly as (4).

The brute force method, as the name indicates, is often chided by authors and
is rarely recommended. The criticism is indeed valid in general. For example,
in the present problem, in the brute force method we had three unknowns while
in the earlier two solutions we had just one each (viz., λ and r respectively).
This happened because we carefully utilised the conditions in the problem to
get rid of two unknowns. And we also got the reward because surely it is easier
to solve a single equation in one unknown than to solve a system (especially a
non-linear one such as containing Equation (15) above) of three equations in
three unknowns.

So generally, brute force methods are not the right ones. But once in a while,
there are exceptions. The present problem is one such. As a slight variation,
instead of starting with (13) one can take the equation of the circle C in the
form

(x − a)2 + (y − b)2 = r2 (18)

Now that the centre is at (a, b) and the radius is r, the conditions (i), (ii) and
(iii) can be applied in a more direct and geometric manner (using (6) and (7)
for the last condition). We then get the following three non-linear equations in
the three unknowns a, b, c.

(a − 1)2 + (b + 1)2 = r2 (19)

(2a + 3b + 1)2 = 13r2 (20)

and (a + 1)2 + (b − 1)2 = r2 + 5 (21)

which, despite being a non-linear system, is easy to solve.

Problem No. 13: At a point P on the parabola y2 − 2y − 4x + 5 = 0, a
tangent is drawn which meets the directrix at Q. Find the locus of the point R

which divides QP externally in the ratio
1

2
: 1.
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Analysis and Solution: Locus problems are generally straightforward and the
present one is no exception. But there is a slight hitch right at the start. The
equation of the parabola is not in the standard from. Fortunately, it is possible
to convert the given equation to the standard form merely by shifting the origin
suitably. (The problem would have been considerably more complicated if we
also had to rotate the axes to do so.)

Completing squares, the equation of the parabola can be written as

(y − 1)2 = 4(x − 1) (1)

We now have a choice. We can shift the origin to the point (1, 1) and introduce
new coordinates (X, Y ) by X = x − 1, Y = y − 1. That would translate (1) to
the equation

Y 2 = 4X (2)

which is in the standard form, We can then do the problem entirely in these
new coordinates. The desired locus will then be an equation in X and Y . At
the end we put back X = x − 1 and Y = y − 1 to get the equation of the locus
in the given coordinates x and y.

However, we can follow essentially the same procedure implicitly without
introducing X and Y . For example, the equation of the directrix of (2) is
X = −1. So the directrix of (1) is given by x − 1 = −1 i.e. x = 0. This
could as well be done by inspection directly from (1). We shall follow this direct
approach.

First, note that a typical point P on (1) can be represented parametrically as
(t2+1, 2t+1). The equation of the tangent at P can be obtained by remembering
the equation of the tangent to a parabola in the standard form. But we can as

well get it directly by first finding its slope
dy

dx
from the parametric equations

x = t2 + 1 (3)

y = 2t + 1 (4)

Differentiating,
dy

dt
= 2 and

dx

dt
= 2t. So

dy

dx
=

dy/dt

dx/dt
=

1

t
. Therefore the

equation of the tangent to the parabola at the point P = (t2 + 1, 2t + 1) is

y − 2t − 1 =
1

t
(x − t2 − 1) (5)

This meets the directrix x = 0 at Q = (0, t + 1 − 1
t ). The point R divides QP

externally in the ratio
1

2
: 1 which is the same as the ratio 1 : 2. Letting (h, k)

be the current coordinates of R, by the section formula we get

h =
2 × 0 − 1 × (t2 + 1)

−1 + 2
= −t2 − 1 (6)

and k =
2 × (t + 1 − 1

t ) − 1 × (2t + 1)

−1 + 2
= 1 − 2

t
(7)
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We need to eliminate t from these two equations. (7) gives t = 2
1−k . Putting

this in (6) and simplifying, we get

(h + 1)(k − 1)2 + 4 = 0 (8)

Hence the desired locus is (x + 1)(y − 1)2 + 4 = 0.
The equations (6) and (7) could have been obtained slightly more easily if

we had observed that to say that R divides QP externally in the ratio 1 : 2
means that R lies on the (ex-
tended) ray PQ and PR =
2QR. But this is the same
thing as saying that Q is the
midpoint of PR. Hence we get
t2+1+h = 0 and 2(t+1− 1

t ) =
2t + 1 + k.

.

R

Q

P.

.

Problem No. 14: Suppose |c| ≤ 1

2
and let

f(x) =



























b sin−1

(

x + c

2

)

, −1

2
< x < 0

1

2
, x = 0

e
a
2

x − 1

x
, 0 < x <

1

2

If f(x) is differentiable at x = 0, then find the value of a and prove that
64b2 = 4 − c2.

Analysis and Solution: Problems of this type are very common at the JEE.
The stipulation |c| < 1

2 ensures that |c + x| ≤ 1 for all x ∈ (− 1
2 , 0) and hence

that sin−1
(

x+c
2

)

is defined for these values of x. (Actually for this purpose it
would suffice if − 3

2 ≤ c ≤ 2. An unnecessarily strong stipulation can sometimes
confuse a student by leading him to wrongly believe that the full strength of
the stipulation is crucially needed in the solution.)

We are given that f is differentiable at 0. This also implies that it is contin-
uous at 0. So let us first see what inference we can draw from the left and right
continuity of f at 0. The left handed limit of f at 0 is easy to compute since
the sin−1 function is continuous everywhere in its domain. This gives

b sin−1
( c

2

)

= lim
x→0−

b sin−1

(

x + c

2

)

= f(0) =
1

2
(1)

As for the right-handed limit f(0+), we see that it is nothing but the right
handed derivative of the function e

a
2

x at the point x = 0. As this function is

differentiable everywhere with derivative
a

2
e

a
2

x we get
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a

2
= f(0+) = f(0) =

1

2
(2)

from which we at once get a = 1.
Equation (1) gives us a relation in b and c. But the relationship which is

asked, viz., 64b2 = 4 − c2 does not follow from this. This is not surprising,
because if it did then the hypothesis that f is differentiable at 0 would be su-
perfluous as both the conclusions would follow simply from the continuity of f
at 0. Once in a while, the papersetters do include some redundant hypothesis.
For example, in the Main Paper of JEE 2003, Problem 8 never required that
the function p(x) was a polynomial. It could just as well have been any contin-
uously differentiable function. But this is an exception. Normally, every bit of
hypothesis is needed.

The trouble is that in the present problem, not only is (1) inadequate to imply
the desired relationship, viz. 64b2 = 4 − c2, but in fact the two relationships
can never hold together. Even if we ignore the given restrictions on the values
of c, we know that sin−1

(

c
2

)

is at most π
2 in magnitude. So, from (1) we get

|b| ≥ 1

2
× 2

π
=

1

π
(3)

On the other hand, if 64b2 = 4−c2 is to hold true, then 64b2 is at most 4, which
gives

|b| ≤ 1

4
(4)

Since π < 4, 1
4 < 1

π . So we see that (3) and (4) are inconsistent with each other.
A candidate who sees such inconsistency is bound to be confused. The only

practical advice that can be given is that after pointing out such inconsistency,
simply ignore it and try to derive the relationship asked by some other means.
In the present problem, so far we have used only continuity of the given function.
Let us now see what we can get from the differentiability of f at 1

2 . For this we
first need to find f ′

−(0) and f ′
+(0). From the very definition,

f ′
−(0) = lim

h→0−

f(h) − f(0)

h

= lim
h→0−

b sin−1(h+c
2 ) − b sin−1( c

2 )

h
by (1) (5)

But this limit is nothing but the left handed derivative of the function b sin−1
(

x+c
2

)

at the point x = 0. As the sin−1(u) function is differentiable at all u ∈ (−1, 1),
by the chain rule, the derivative of b sin−1

(

x+c
2

)

at the point x = 0 is simply

the value of
b

2

1
√

1 − (x+c
2 )2

at x = 0. This value is
b√

4 − c2
. Hence from (5)
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we get

f ′
−(0) =

b√
4 − c2

(6)

Let us now compute f ′
+(0). As we Aleda know that a = 1 and f(0) = 1

2 ,
analogously to (5) we have

f ′
−(0) = lim

h→0+

f(h) − f(0)

h

= lim
h→0+

eh/2−1
h − 1

2

h
(7)

The catch now is that unlike in the approach we followed for (5), we cannot

quite write this limit as the (right handed) derivative of the function
ex/2 − 1

x
at the point x = 0 because this function is not even defined at 0. It is tempting
to simply define it to be 1

2 at 0. That would make it continuous at 0. But to find
its derivative will take us back to square one. There are three ways to overcome
this difficulty. The first, and the most sophisticated, method is to apply what
is called the generalised Mean Value Theorem (which is an extension of the
Lagrange Mean Value Theorem and a special case of the Taylor’s theorem) to
the function ex/2 which has derivatives of all orders everywhere. Its value at
x = 0 is 1 while that of its derivative is 1

2 . Its second derivative is 1
4ex/2. So

applying this theorem for this function to the interval [0, h], we get

eh/2 = 1 +
1

2
h +

h2

2!

1

4
eu/2 (8)

for some u ∈ (0, h). (This u could depend on h. So, if one prefers, one can write
u(h) instead of mere u. Note, however, that u(h) need not be single valued.)

Combining (7) and (8) together, we get

f ′
+(0) = lim

h→0+

h2

8 eu/2

h

= lim
h→0+

eu/2

8
(9)

Now note that although we do not know the exact value of u we do know that
it lies in the interval (0, h). As the function ex/2 is monotonically increasing,
we have 1 < eu/2 < eh/2 for h > 0. As h → 0+, both 1 (which is a con-
stant) and eh/2 tend to 1. So by the Sandwich Theorem for limits, we get that
lim

h→0+
eu/2 = 1. Therefore we now have

f ′
+(0) =

1

8
(10)
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We are given that f is differentiable at 0. This means that f ′
−(0) = f ′

+(0).

So from (4) and (8) we get
b√

4 − c2
=

1

8
. Squaring both the sides we get

64b2 = 4 − c2 as was to be proved. (As remarked before, (1) gives us another
equation in b and c which is inconsistent with the present one. But we are
ignoring this inconsistency.)

A somewhat simpler way to evaluate the limit in (7) is also based on the
MVT. As mentioned before, the limit we are after is simply the right-handed
derivative g′+(0) of the function g(x) defined by

g(x) =

{

ex/2−1
x , x > 0

1
2 , x = 0

(11)

We already saw that g is right continuous at 0. Also it is differentiable at
every x > 0. Under these conditions, it can be shown as a standard application
of the Lagrange’s MVT, that in case the right handed limit of the derivative of

g exists at 0, then it is also the right handed derivative of g at 0. In symbols,
if g′(0+) exists then g′+(0) also exists and the two are equal. (Note, however,
that g′(0+) need not always exist as we see from a function like g(x) = x2 sin 1

x
for x 6= 0 and g(0) = 0. Here g′+(0) does exist and equals 0. But it cannot be

obtained from lim
x→0+

g′(x) = lim
x→0+

2x sin
1

x
− cos

1

x
which fails to exist.)

From (11) we have that

g′(x) =
x
2 ex/2 − ex/2 + 1

x2
(12)

for x > 0. To evaluate lim
x→0+

g′(x) we apply l’Hôpital’s rule, giving

g′+(0) = g′(0+) = lim
x→0+

x
2 ex/2 − ex/2 + 1

x2
(
0

0
form)

= lim
x→0+

1
2ex/2 + x

4 ex/2 − 1
2ex/2

2x

= lim
x→0+

1

8
ex/2 =

1

8
(13)

As noted before, this proves (10).

The third way to go from (7) to (10) is to write
eh/2−1

h − 1
2

h
as

eh/2 − 1 − h
2

h2

and find its limit by applying the l’Hôpital’s rule twice. This would give

f ′
+(0) = lim

h→0+

eh/2 − 1 − h
2

h2
(
0

0
form)

= lim
h→0+

1
2eh/2 − 1

2

2h
(
0

0
form again)
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= lim
h→0+

1
4eh/2

2
=

1

8
(14)

Thus we see that all the three methods give the same value of f ′
+(0), as they

ought to, of course. In the first method, we did not apply l’Hôpital’s rule at all.
In the second one we applied it once, while in the third one we applied it twice.
So it might appear that the l’Hôpital’s rule simplifies the work and further, the
more you apply it the more simple the calculations become. For the lovers of
l’Hôpital’s rule (and this includes the vast majority of the JEE candidates!) this
is surely a feather in the cap of that rule. These lovers should bear in mind that
what is needed in the second and the third method is the strong form of the
l’Hôpital’s rule whose proof requires the Mean Value Theorem in one form or
the other. Because of this, the three derivations are not radically different. The
second and the third one appear short because you are borrowing readymade
theorems based on the Mean Value theorem. In the first method you are using
the generalised MVT directly.

In passing, we mention one more method of evaluating the limit in (7). It is
based on the power series expansion of the exponential function, viz.,

ex =
∞
∑

n=0

xn

n!
= 1 +

x

1
+

x2

2!
+ . . . +

xn

n!
+ . . . (15)

If we apply this with x = h
2 we get

eh/2−1
h − 1

2

h
=

1

h

(

h
2 + h2

8 + h3

48 + . . . + hn

2nn! + . . .

h
− 1

2

)

=
1

h2

(

h2

8
+

h3

48
+ . . . +

hn

2nn!
+ . . .

)

=
1

8
+

h

48
+ . . . +

hn−2

2nn!
+ . . . (16)

for every h 6= 0. On the R.H.S. we have a sum of an infinite number of terms,
each being a power of h. As h → 0+, the first term, being a constant, stays
as it is. But each of the remaining terms tends to 0. Hence the limit of the
expression is 1

8 .
This argument is certainly attractive and often finds quick acceptance by

those who are not worried about rigour. But those who are, will object, first
of all, that the expansion of ex (or of any other function) as a power series is
beyond the JEE level. Serious questions of convergence have to be answered to
make it valid. Moreover, in the argument above, the limit of an infinite number
of terms was found by adding the limit of each one of them. This is not valid in
general and to make it so in the present case again requires a lot of work well
beyond the JEE level.

So, the acceptability of this method at the JEE is questionable. Still, the
method is not wrong in itself if handled with care. Unfortunately, many old
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texts manipulate infinite series with little regard to rigour. For example, a

quick proof of the fact that
d

dx
ex = ex is obtained if we differentiate the R.H.S.

of (15) term-by-term. As a result, many students are tempted to use them. It is
best to avoid power series in the JEE. But there is nothing wrong in using them
for a quick verification of the answer arrived at by other methods, or to predict
the answer before applying other methods. And, in situations where you don’t
have to show your reasoning, who is going to prevent you from using them?

Problem No. 15: Prove that for x ∈
[

0,
π

2

]

, sin x + 2x ≥ 3x(x + 1)

π
.

Analysis and Solution: If we let

f(x) = sin x + 2x − 3x(x + 1)

π
(1)

then the problem is equivalent to showing that f(x) ≥ 0 for all x ∈ [0, π
2 ]. This

elementary simplification enables us to do the problem by studying the proper-
ties of a single function rather than those of two separate functions represented
by the two sides of the inequality to be proved. Note that f(0) = 0. So if we
could show that f is increasing on [0, π

2 ] then the assertion would follow. For
this we consider

f ′(x) = cosx + 2 − 6x + 3

π
(2)

We would be through if f ′(x) ≥ 0 for all x ∈ [0, π
2 ]. Unfortunately, this is

not the case. Even though f ′(0) = 3 − 3
π > 0, at the other end we have

f ′(π
2 ) = 2 − 3π+3

π = −1 − 3
π < 0. So this simple-minded approach will not

work. The function f(x) is not increasing throughout. It is increasing near 0
but decreasing near the other end π

2 .

But something can be salvaged. Note that f(π
2 ) = 1+π− 3π

4 − 3
2 = π

4 − 1
2 > 0

since π > 3. In other words, the graph of y = f(x), although sloping downward
near π

2 , is nevertheless above the x-axis. Of course, it could have gone below
the x-axis at some intermediate points. We have to rule out this possibility.

This can be done in several ways. Each one of them looks intuitively ob-
vious but requires non-trivial results from theoretical calculus for a rigorous
justification. Suppose c ∈ (0, π

2 ) is a point such that

f(c) < 0 (3)

From the fact that f(0) = 0 while f ′(0) > 0 it follows that if h is sufficiently
small and positive then

f(h) > 0 (4)
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Clearly we may suppose h < c.
Then from (3), (4) and the Inter-
mediate Value Property (IVP) for
continuous functions, there exists
some a ∈ (h, c) such that f(a) =
0. Similarly, from f(c) < 0 and
f(π

2 ) > 0, we get that there exists
some b ∈ (c, π

2 ) such that f(b) = 0.
Thus we have

O
x

y

..
a bc π / 2

.
h

0 < a < b <
π

2
(5)

and f(0) = f(a) = f(b) = 0 (6)

We now apply Rolle’s theorem to the intervals [0, a] and [a, b] to get points
c1 ∈ (0, a) and c2 ∈ (a, b) such that

f ′(c1) = f ′(c2) = 0 (7)

Clearly, c1 < c2 since c1 < a < c2. We now apply Rolle’s theorem to the
function f ′ over the interval [c1, c2] to get yet another point c3 ∈ (c1, c2) such
that

f ′′(c3) = 0 (8)

But if we differentiate (2), we get f ′′(x) = − sinx− 6
π which is negative through-

out the interval (0, π
2 ). This contradicts (3). So f(x) ≥ 0 for all x ∈ [0, π

2 ].
Our second argument is based on the concept of a local minimum. Suppose,

the graph of f(x) does go below the x-axis for some values of x in the interval
[0, π

2 ]. Then consider the lowest point, say (c, f(c)) on the graph. That such
a point exists follows from the fact that every continuous function on a closed,
bounded interval has an absolute minimum. Moreover c must be an interior
point since at both the end points, f is already shown to be non-negative.
Therefore the point c is also a point of local minimum of f(x). Therefore f ′′(c),
in case it exists must be non-negative. But as we already saw, f ′′(x) is negative
everywhere. So again we get a contradiction.

The second argument appears shorter. But the proof of the property of
points of local minima used in it is again based on the Mean Value Theorems.
So the two arguments are not radically different.

Note that we made little use of the particular function f . In essence the
theorem we proved is that if a function is non-negative at both the end points
of an interval and its second derivative is negative throughout that interval,
then the function is non-negative throughout that interval.

Problem No. 16: Evaluate

∫ π/3

−π/3

π + 4x3

2 − cos
(

|x| + π
3

)dx.
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Analysis and Solution: From the very expression of the integrand, we see
that finding an andiderivative for it is not going to be easy. So this is one of
those definite integrals which have to be evaluated by some other means. Also
we note that the interval of integration, viz., [−π/3, π/3] is symmetric about
the origin. Chances are that this fact will be crucially needed in the solution,
especially if even or odd functions are involved. (Of course, sometimes such
predictions may turn out to be false. But it is a good habit to make a note of
the special features of a given problem before attacking it.)

We also note that the denominator of the integrand is an even function of
x. The numerator is neither even nor odd. In fact, it is a sum of two terms
of which the first, being a constant, is an even function of x, while the second,
viz., 4x3 is an odd function of x. This suggests that if we split the numerator,
then the integrand will be a sum of two functions, one even and the other odd.
In symbols, let I denote the given integral and let

I1 =

∫ π/3

−π/3

π

2 − cos
(

|x| + π
3

)dx (1)

and I2 =

∫ π/3

−π/3

4x3

2 − cos
(

|x| + π
3

)dx (2)

Then clearly

I = I1 + I2 (3)

Let us tackle I1 and I2 separately. I2 is easier, because since the integrand is
odd and the interval of integration is symmetric about the origin, without doing
any further work we get that

I2 = 0 (4)

For I1, too, the symmetry of the interval and the evenness of the integrand
imply

I1 = 2

∫ π/3

0

π

2 − cos
(

|x| + π
3

)dx (5)

This may not appear as much of a simplification. But the gain is that now we
can get rid of the nagging absolute value sign because throughout the interval
of integration |x| = x. Hence

I = I1 = 2

∫ π/3

0

π

2 − cos
(

x + π
3

)dx (6)

We can find an antiderivative for the integrand by expanding cos(x + π
3 ). But

that would involve both sinx and cosx and hence will be rather complicated.
Instead, let us make a change of variable by setting u = x + π

3 . Then we get

I = I1 = 2π

∫ 2π/3

π/3

du

2 − cosu
(7)
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We have just about exhausted whatever simplification was possible. We now
have to get to the task of finding an antiderivative. The standard substitution
t = tan u

2 converts the integrand to a rational function in t and we get

I = I1 = 2π

∫

√
3

1/
√

3

2 dt

3t2 + 1
(8)

which can be further evaluated by the standard techniques as

I = I1 =
4π

3

∫

√
3

1/
√

3

dt

t2 + (1/
√

3)2

=
4π

3

√
3
[

tan−1
√

3t
]

√
3

1/
√

3

=
4π√

3

(

tan−1 3 − tan−1 1
)

(9)

=
4π√

3
(tan−1

(

1

2

)

(10)

The conversion from (9) to (10) is based on the trigonometric identity

tan−1 a − tan−1 b = tan−1

(

a − b

1 + ab

)

As the focus of the problem is on integration and not trigonometry, such a
conversion is not very vital. But if you leave the answer at (9) you better at
least replace tan−1 1 by π

4 .

Problem No. 17: A curve passes through (2, 0) and the slope of the

tangent to it at a point (x, y) on it is
(x + 1)2 + (y − 3)

x + 1
. Find the equation of

the curve and the area bounded by it and the x-axis in the fourth quadrant.

Analysis and Solution: This is a combination of two problems. The first part
consists of obtaining a particular solution of a differential equation, while the
second one is a problem of finding the area of a plane region.

For the first part, the differential equation

dy

dx
=

(x + 1)2 + (y − 3)

x + 1
(1)

is to be solved subject to the initial condition that

y = 0 when x = 2 (2)

The very form of the R.H.S. of (1) suggests that a change of variables will
simplify the equation considerably. Let u = x + 1 and v = y − 3. Then
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dv

du
=

dv

dy

dy

dx

dx

du
= 1 × dy

dx
× 1 =

dy

dx
and (1) changes to

dv

du
=

u2 + v

u
(3)

which can be rewritten as

dv

du
− v

u
= u (4)

This is a linear equation with integrating factor e−
∫

du
u = e− ln u =

1

u
. Multi-

plying (4) by the I.F. we get

1

u

dv

du
− v

u2
= 1, i.e.,

d

du
(
v

u
) = 1 (5)

from which the general solution of (4) is
v

u
= u + c. (Of course this could also

have been written down from the readymade formula for the solution of a linear
differential equation. But, once again, we are illustrating how the burden on
the memory can often be lessened.)

Translated in terms of the original variables, the general solution of (1) is

y − 3

x + 1
= x + 1 + c (6)

The initial condition (2) gives 0 − 3 = (2 + 1)(3 + c) i.e., c = −4. Hence the
equation of the given curve is

y = 3 + (x + 1)(x − 3) = x2 − 2x (7)

The curve therefore is a vertically upward parabola which cuts the x-axis at the
points (0, 0) and (2, 0). Being such a familiar curve, the desired region can be
identified mentally even without a diagram. Its area is

∫ 2

0

−(x2 − 2x)dx =

[

x2 − x3

3

]2

0

=
4

3
(8)

square units.
The two parts of the problem are completely independent of each other. the

second part is too trivial to be asked separately. That is why it is probably
clubbed with the first part. The problem would have been more interesting if
in finding the area, the original differential equation could have been used. For
example, the region could have involved the normal to the curve at some point
on it. In that case, instead of finding the slope of the normal from the solution
(7) one could save time by getting it directly from (1).

Problem No. 18: A box contains 12 red and 6 white balls. Balls are drawn
from it one at a time without replacement. If in 6 draws there are at least 4
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white balls, find the probability that exactly one white ball is drawn in the next
two draws. (The answer may be left in terms of the binomial coefficients.)

Analysis and Solution: The wording of the question can be misleading to
someone not having a good command over English. He is likely to think that 6
balls are drawn in all and at least the first 4 are white. The correct interpretation
is, of course, that 8 balls are drawn in all and it is given further that at least 4
of the first 6 balls are white. It would have been better if this was spelt out in
the statement of the problem.

Now coming to the solution, let A be the event that at least 4 of the first 6
balls are white and B be the event that at least one ball in the 7th and the 8th
draws is white. We have to find the conditional probability of B given A, or in
symbols, P (B|A). By the law of conditional probability, this equals

P (A ∩ B)

P (A)
(1)

We proceed to compute the numerator and the denominator separately. First
consider P (A). Here A is the event that at least 4 balls in the first 6 draws are
white. It is convenient to apply ‘divide and rule’ here, That is we break up A
into three mutually exclusive events depending upon the number of white balls
in the first 6 draws. Specifically, let A1 be the event that exactly 4 of the first
6 balls are white, A2 be the event that exactly 5 are white white, and A3 be
the event that exactly 6 are white. It is easy to find the probabilities of these
events. For simplicity we distinguish balls of the same colour. (The problem
can also be done assuming that they are indistinguishable. But the solution will
be a bit complicated since we shall have to regard various outcomes as identical.
The answer will not change.)

In all 6 balls can be chosen from the balls in the bag in
(

18
6

)

ways. The event

A1 occurs in exactly
(

12
2

)

×
(

6
4

)

ways. Hence

P (A1) =

(

12
2

)(

6
4

)

(

18
6

) (2)

Similarly,

P (A2) =

(

12
1

)(

6
5

)

(

18
6

) and P (A3) =

(

12
0

)(

6
6

)

(

18
6

) (3)

(Note that we are not distinguishing between two sequences of draws as long
as the balls drawn in them are the same but possibly in a different order. If we
wanted to make a distinction of this kind, then to begin with, the number of
ways to draw 6 balls from 18 would no longer be

(

18
6

)

but 18P6, i.e. the number
of permutations of 6 symbols out of 18. Similar changes will be needed to find
the numbers of favourable cases. The probabilities will, however, remain the
same since the extra factor we have to put in, viz. 6!, will cancel out anyway.)
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We are specifically permitted to leave the answer in terms of the binomial
coefficients. This is a welcome declaration on the part of the papersetters. In
absence of such a declaration, many students spend their precious time in doing
the purely arithmetical task of evaluating the coefficients. Worse still, if they
make a numerical mistake, they stand to lose even though the conceptual part
of their solutions is quite correct.

Of course, just because we have a certain freedom does not mean we have to

use it every time. (Or else it is not a freedom in the first place!). The binomial
coefficients in the numerators of (1) and (2) are very easy to compute. And since
we want to add the three probabilities and their denominators are common, it
will be better to simplify the numerators and add to make the answer a little
more appealing. So

P (A) = P (A1) + P (A2) + P (A3) =
66 × 15 + 12 × 6 + 1

(

18
6

) =
1063
(

18
6

) (4)

We now turn to the numerator of (1), viz., P (A∩B). Since A = A1∪A2∪A3,
we have

A ∩ B = (A1 ∩ B) ∪ (A2 ∩ B) ∪ (A3 ∩ B) (5)

Further as A1, A2, A3 are mutually exclusive, so are A1 ∩B, A2 ∩B and A3 ∩B.
Hence from (5),

P (A ∩ B) = P (A1 ∩ B) + P (A2 ∩ B) + P (A3 ∩ B) (6)

Let us compute P (A1 ∩ B). This is, the probability that exactly 4 white balls
came in the first 6 draws and exactly one white ball came in the next two draws.
Now, after A1 takes place, the bag contains 10 red and 2 white balls. So 2 balls
can be drawn out of these 12 balls in

(

12
2

)

ways and out of these, exactly one

white ball will occur in
(

2
1

)(

10
1

)

i.e. in 20 ways. (Note again that we are not
distinguishing whether the white ball is the seventh or the eighth.)

So, given A1, B can occur in 20 out of the
(

12
2

)

ways. As P (A1) is already
known from (2), we get

P (A1 ∩ B) = P (A1) × P (B|A1) = P (A1) ×
20
(

12
2

) =
990
(

18
6

) × 20

66
=

300
(

18
6

) (7)

Similarly,

P (A2 ∩ B) = P (A2) ×
11
(

12
2

) =
72
(

18
6

) × 11

66
=

12
(

18
6

) (8)

while P (A3 ∩ B) = 0 because after A3 no white balls are left. Hence from (6),
(7) and (8),

P (A ∩ B) =
312
(

18
6

) (9)
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Hence ultimately, from (1), (4) and (9), the desired probability is

312
(

18
6

) ×
(

18
6

)

1063
=

312

1063
(10)

Although the answer could have been left in terms of the binomial coeffi-
cients, we have calculated it fully. This was not so difficult because in most of
the binomial coefficients we encountered, the lower index was small. The only
exception was

(

18
6

)

. But it got cancelled out in (10) anyway. So the papersetters
could have as well insisted upon the answer in a numerical form as a ratio of
two integers. The right strategy in such cases is to evaluate the easy binomial
coefficients as they come along and leave the tough ones hoping that they may
get cancelled later.

In fact, insistence on a numerical answer in a problem like this makes life
easier for the examiner. For, nobody can arrive at such a crazy answer by
bluffing, or by clever guesswork or by sheer luck. If a student comes up with

the answer
312

1063
it is safe to assume that his reasoning as well as calculations

are correct. This spares the examiner the need to go through each and every
line. All he needs to do is to ensure that the answer is not a borrowed one. It is
only when the answer is not correct that he need check where the mistake has
occurred and how serious it is.

Problem No. 19: Let

A =





a 1 0
1 b d
1 b c



 , B =





a 1 1
0 d c
f g h



 , U =





f
g
h



 , V =





a2

0
0



 , X =





x
y
z





If AX = U has infinitely many solutions, prove that BX = V has no unique
solution. If further, afd 6= 0, then show that BX = V has no solution.

Analysis and Solution: Although matrices are involved in the statement of
the problem, the problem itself is not so much about matrices as about the
existence and uniqueness of solutions of systems of linear equations in which
the number of variables equals the number of unknowns. Matrices are only a
convenient tool. The basic result that is needed is that a system such as

AX = U

has a unique solution if ∆ 6= 0, where ∆ is the determinant of the matrix A.
When ∆ = 0, then the system has,

(i) no solution if at least one of ∆1, ∆2 and ∆3 is non-zero

(ii) either no solution or else infinitely many solutions if ∆1 = ∆2 = ∆3 = 0,

where, for i = 1, 2, 3, ∆i is the determinant of the matrix obtained by replacing
the i-th column of A by the column vector U .
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First we apply this result to the system

AX = U (1)

which is given to have infinitely many solutions. As a result, ∆, ∆1, ∆2, ∆3 all
vanish, where

∆ =

∣

∣

∣

∣

∣

∣

a 1 0
1 b d
1 b c

∣

∣

∣

∣

∣

∣

, ∆1 =

∣

∣

∣

∣

∣

∣

f 1 0
g b d
h b c

∣

∣

∣

∣

∣

∣

, (2)

∆2 =

∣

∣

∣

∣

∣

∣

a f 0
1 g d
1 h c

∣

∣

∣

∣

∣

∣

and ∆3 =

∣

∣

∣

∣

∣

∣

a 1 f
1 b g
1 b h

∣

∣

∣

∣

∣

∣

(3)

We could expand these determinants right now. But we are not sure exactly
which ones among them will be needed. So let us postpone this and consider
the system

BX = V (4)

about whose solutions we have to prove something. We apply the same criterion
as above. However, this time let us denote the corresponding determinants by
∆′, ∆′

1, ∆
′
2, ∆

′
3. That is,

∆′ =

∣

∣

∣

∣

∣

∣

a 1 1
0 d c
f g h

∣

∣

∣

∣

∣

∣

, ∆′
1 =

∣

∣

∣

∣

∣

∣

a2 1 1
0 d c
0 g h

∣

∣

∣

∣

∣

∣

, (5)

∆′
2 =

∣

∣

∣

∣

∣

∣

a a2 1
0 0 c
f 0 h

∣

∣

∣

∣

∣

∣

and ∆′
3 =

∣

∣

∣

∣

∣

∣

a 1 a2

0 d 0
f g 0

∣

∣

∣

∣

∣

∣

(6)

The first part of the problem amounts to showing that if ∆, ∆1, ∆2, ∆3 are
all 0, then so is ∆′. For this it is hardly necessary to expand ∆′. From (3) and
(5), we see that if we take the transpose of ∆2 and interchange the second and
the third rows, we get ∆′. Hence ∆′ = −∆2. Since ∆2 vanishes so does ∆′.
Hence the system (4) can have no unique solution.

For the second part, we have to show that under the additional hypothesis
afd 6= 0, (4) has no solution. From the criterion above, this amounts to showing
that at least one of ∆′

1, ∆
′
2 and ∆′

3 is non-zero. By direct expansions, these
determinants equal, respectively, a2(dh − gc), a2cf and −a2df . We are given
that afd 6= 0. This means a, f, d are all non-zero. Hence −a2df is also non-zero.
In other words, ∆′

3 6= 0. As ∆′ = 0, this means (4) has no solution.
Problems based on the criterion for the existence and uniqueness of solutions

of systems of three linear equations in three unknowns are quite common at the
JEE. But in most of these problems, the coefficients of the system are in terms
of some single parameter (often denoted by λ) and you are asked to identify the
values of this parameter for which the system has a unique solution, no solution
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etc. (Q. 21 in the Screening Paper is a typical illustration.) The present problem
is a welcome departure from these stereotyped problems. Another nice feature
of the problem is the use of the properties of determinants made in its solution
(for example, that the determinant of the transpose of a matrix is the same as
that of the original matrix). This saved a lot of computations. For example,
we could show ∆′ = 0 without calculating it because we could relate it to ∆2

which was given to vanish. Many students believe that the use of matrices in
systems of equations is only to provide a compact notation. Such students feel
more comfortable in solving systems of linear equations (especially when the
system has only 2 or 3 equations) by writing them out fully and manipulating
them. In the present problem, such an approach would be very complicated to
say the least.

Problem No. 20: P1 and P2 are two planes passing through the origin.
L1 and L2 are two lines passing through the origin such that L1 is in P1 but
not in P2 while L2 is in P2 but not in P1. Show that there exist points A, B, C
(none of them being the origin) and a suitable permutation A′, B′, C′ of these
points such that

(i) A is on L1, B is on P1 but not on L1 and C is not in P1, and

(ii) A′ is on L2, B′ is on P2 but not on L2 and C′ is not in P2.

Analysis and Solution: This problem is more like a puzzle. Very little math-
ematics is needed in it except the knowledge of some very elementary facts from
solid geometry. For example, we need to know that P1 ∩ P2 is a straight line,
say L. Further the lines L1, L2 and L are concurrent at O. Let O be the origin
and IR3 the euclidean (3-dimensional) space. Note that we have two chains of
subsets here, each inclusion being strict.

{O} ⊂ L1 ⊂ P1 ⊂ IR3 (1)

{O} ⊂ L2 ⊂ P2 ⊂ IR3 (2)

Conditions (i) and (ii) can be stated as

A ∈ L1 − {O}, B ∈ P1 − L1 and C ∈ IR3 − P1 (3)

A′ ∈ L2 − {O}, B′ ∈ P2 − L2 and C′ ∈ IR3 − P2 (4)

respectively. Further we want A′, B′, C′ to be the same points as A, B, C but
possibly in a different order. Now A is already in L1 and hence in P1 too. We
claim that A 6∈ P2. For, if A were in P2, then it would lie on P1 ∩ P2 which is
the line L. As A ∈ L1 already, this would mean that A ∈ L1 ∩ L = {O}, i.e. A
would equal the origin O, a contradiction.

So we must have A 6∈ P2. Therefore A will have to equal C′ since A′, B′ lie
in P2 by (2) and (4). By a similar reasoning, we must have A′ = C. Therefore,
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by elimination, B′ = B. This de-
termines the permutation completely.
With this knowledge, it is also easy
to obtain the desired points. Since
B = B′, this common point must lie
on P1 ∩ P2, i.e. on L. Then take A
to be any point on L1 other than O
and C to be any point on L2 other
than O. This ensures C 6∈ P1 and
C′(= A) 6∈ P2 as required.

.

.

.
O

A

B C

L
P

P
L

L1

1

2
2

CONCLUDING REMARKS

Although there were a couple of mistakes (Q. 2 and Q. 27) in the Screening
Paper, the Main Paper has only one mistake, viz., the mistake in Problem 14.
While a mistake in a question is always bad, it hurts more in a multiple choice
paper. In a conventional paper, a student who feels that there is a mistake in
some problem can elaborate his contention. And if found correct, some remedial
measures can be taken. In a multiple choice question paper, the answers are to
be shown only on a special card by blackening appropriate boxes and so there
is simply no provision to write anything else.

Slicker solutions were possible for several questions in the screening paper.
In Q. 12 it was probably intended. But in Q. 5, 11 and 21 it was possible to get
the correct answer without doing the full honest work.

On the background of the total absence of Number Theory in 2003, this year
Q. 28 and Problem 3, make at least a passing reference to divisibility. This year
the axe has fallen on the binomial and trigonometric identities.

There is some duplication of ideas within the same paper. For example,
Problem 1 and Problem 13 in the Main Paper both involve the section formula.
Q. 15, 16 and 17 in the Screening Paper all involve tangents to a conic. So there
is not only a duplication, but a triplication of ideas!

There is also some duplication of ideas between the Screening and the Main
Papers taken together. For example Q. 16 and Problem 13 both ask for loci
of a point which divide a certain portion of the tangent to a conic in a certain
ratio. Similarly, Q. 14 in the Screening Paper is not qualitatively different from
Problem 12 in the Main Paper.

Such duplication is probably unavoidable as the two papers are set by dif-
ferent teams working independently of each other. Over the coming years, a
general consensus will hopefully emerge as to which problems are suitable for
which paper. In that case, such a duplication will probably be minimised. At
present there seems to be little awareness of the expected difference of the pur-
pose and the standards of the two papers. The Screening Paper is mostly to
weed out those candidates who need not have even appeared for the JEE. So,
simple, strightforward questions spread over the entire syllabus make sense in
the Screening Paper. In the Main Paper, on the other hand, the very presump-
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tion is that the candidates have already proved their basic credentials. So the
testing has to be more delicate and imaginative, designed more to test the innate
qualities than familiarity with certain topics.

With this yardstick, problems like Problems 5, 12, 13, 16, 17 and 18 have
no place in the Main Paper. Problems 3, 7 and 8 are good problems basically,
but have been diluted by the hints thrown in. The really good problems are
Problems 2, 4, 6, 10, 11, 19 and 20. For the reasons elaborated earlier, Problem
19 is innovative and probably the best problem in the whole paper. Also, instead
of asking a stereotype problem on finding maxima/minima, it is commendable
that the inequalities in Problems 11 and 15 test this indirectly. (It is doubtful,
of course, if anybody would try Problem 11 by minimising the function g(x) we
considered in its solution.)

The tragedy is that when such good problems are clubbed together with
the mediocre ones, the selection is dominated by the latter. For example, it
takes some time and intelligence even to understand Problem 6 and 20. But a
mediocre student can simply leave them and comfortably bag more marks by
doing Problems 12 and 18. It can be argued that an intelligent student has
an equal opportunity to do the mediocre problems. But when the time is so
severely limited, this is a lame argument.

The present Main Paper would have been a more valid test of a student’s
qualities if the mediocre problems listed above had been dropped, the three
problems 3, 7 and 8 made more challenging (in the manner indicated in the
respective comments about them) and one problem each on binomial identities
and trigonometry thrown in (with no reduction in the total time allowed). The
mediocre problems could also be included by allowing three hours instead of
two. That would indeed give the intelligent student the chance to finish the
mediocre problems first and then to devote the rest of the time to the challenging
problems.


