
Java with BlueJ Part I

Ron McFadyen

September 9, 2015

2

c©2015 Ron McFadyen
Department of Applied Computer Science
University of Winnipeg
515 Portage Avenue
Winnipeg, Manitoba, Canada
R3B 2E9

r.mcfadyen@uwinnipeg.ca

ron.mcfadyen@gmail.com

This work is licensed under Creative Commons Attribution NonCommercial
ShareAlike 4.0 International Public License. To view a copy of this license
visit
http://creativecommons.org/licenses/by-nc-sa/4.0/

This work can be distributed in unmodified form for non-commercial pur-
poses. Modified versions can be made and distributed for non-commercial
purposes provided they are distributed under the same license as the origi-
nal. Other uses require permission of the author.

The website for this book is
www.acs.uwinnipeg.ca/rmcfadyen/CreativeCommons/

To Callum

3

4

Contents

1 Introduction 9

1.1 Java, the beginning . 9

1.2 The Java Compiler and the Java Virtual Machine 11

1.3 BlueJ . 12

1.4 A First Program . 13

1.5 Using BlueJ to Run HelloWorld 14

2 Basics 19

2.1 Literals . 19

2.2 Variables . 19

2.3 Primitive Data Types . 23

2.3.1 Numeric Data Types: byte, short, int, long 23

2.3.2 Numeric Data Types: float, double 26

2.3.3 Numeric Expressions 29

2.3.4 boolean Data Type 36

2.3.5 char Data Type . 40

2.4 Operators . 43

2.5 The String Class . 46

2.6 Output . 54

2.6.1 System.out . 54

2.6.2 Redirecting System.out 58

2.6.3 JOptionPane . 60

2.7 Input . 61

2.7.1 The Scanner Class . 61

2.7.2 The JOptionPane Class 65

3 Control Structures 67

3.1 Compound statements . 67

3.2 while . 68

5

6 CONTENTS

3.3 if . 78
3.4 for . 89
3.5 do . . . while . 104
3.6 switch . 109

4 Classes in the Java Class Libraries 115
4.1 Random . 115
4.2 Character . 120
4.3 Scanner . 127
4.4 Math . 134
4.5 Integer . 137

5 ArrayLists 141

6 One-Dimensional Arrays 149
6.1 Initializing arrays . 151
6.2 Storage of arrays and copying arrays 152
6.3 The enhanced for . 153
6.4 Passing string values into main() 155
6.5 Parallel arrays . 156
6.6 Partially filled arrays . 158
6.7 Array utilities in Java class libraries 161

7 Designing Java Classes 165
7.1 Using Multiple Classes . 167
7.2 Fields . 168
7.3 Methods . 171
7.4 Constructors . 176
7.5 Visibility Specifications: Public, Private 180
7.6 Overloading . 182
7.7 Associations . 183
7.8 Reusing code . 188
7.9 Parameter lists and arguments 190
7.10 Varargs: a variable number of arguments 193
7.11 Code listings: Student, Subject 195

8 A Brief Introduction to Graphical User Interfaces 203
8.1 Brief Introduction to Simple GUI Builder 205

8.1.1 Listings . 214

Preface

This book is Part I of a two-part set that introduces the Java programming
language. The text assumes the student will be using the BlueJ development
environment and provides some introductory BlueJ material. Our experi-
ence has been that BlueJ is easy to learn and provides a good programming
environment for the beginner programmer.

The material in chapters 1 through 5, and 7 are required topics.

• Chapter 1: This is a high-level introduction to Java. The typical
HelloWorld program is discussed along with how to run HelloWorld in
BlueJ.

• Chapter 2: Basic concepts having to do with constants, variables, data
types, expressions and input/output are covered.

• Chapter 3: This chapter covers the major control structures a pro-
grammer uses.

• Chapter 4: Java provides a great deal of functionality in its class
libraries. In this chapter we introduce several of these classes such
as Random . . . Random gives the programmer the ability to simulate
throwing dice or tossing coins. As well, useful functionality in utility
classes such as Math, Integer, and Character are covered.

• Chapter 5: Many applications require a program to work with col-
lections of data. For example, the set of courses at a university is a
collection. Java programs must be able to manage such a set and the
ArrayList data structure is well-suited to the task.

• Chapter 7: The program code in a Java system is managed in struc-
tures where the basic component is the class. A Java class contains
data and executable code. This chapter covers concepts that must be
understood if one is to design and implement a Java-based system.

7

8 CONTENTS

Chapters 6 and 8 are considered optional and are covered as time permits.
Chapter 6 covers one-dimensional Arrays . . . arrays provide some of the capa-
bility of the ArrayList, but programming arrays is much more difficult than
programming ArrayLists. Chapter 8 introduces concepts on Graphical User
Interfaces (GUIs) as provided for in a BlueJ extension. GUIs are required if
one is going to create interactive programs, but there are many concepts to
master and the topic is typically covered in great detail in advanced courses.

The examples in the text, and solutions to many exercises, are available on
the website for this text.

Chapter 1

Introduction

This book is about programming in Java. We begin with short descriptions
of Java and BlueJ. We feel that BlueJ is one of the simplest development
environments for the beginning programmer to use. All of the examples in
this text have been tested using BlueJ. Sample solutions for most exercises
are available on the website for this text.

1.1 Java, the beginning

James Gosling is referred to as the father of the Java programming lan-
guage. He graduated with a BSc (1977) from the University of Calgary
and a PhD (1983) from Carnegie Mellon University. Later, in 1994 at Sun
Microsystems he created the Java language while leading a team that was
purposed with developing a handheld home-entertainment controller tar-
geted at the digital cable television industry. That project did not produce
the expected outcome, but in 1995, the team announced that the Netscape
Navigator Internet browser would incorporate Java technology, and from
there its adoption for implementing systems began.

James Gosling has received several awards, including:

• 2007 - appointed an Officer of the Order of Canada.[1]
• 2013 - named an Association of Computing Machinery Fellow for

”Java, NeWS, Emacs, NetBeans, and other contributions to program-
ming languages, tools, and environments”.[2]
• 2015 - awarded the IEEE John von Neumann Medal for ”the Java

programming language, Java Virtual Machine, and other contributions
to programming languages and environments”.[3]

9

10 CHAPTER 1. INTRODUCTION

In 2010 Oracle acquired Sun Microsystems and took over the development of
the language. The language has gone through a number of updates, and at
the time of writing the current release is referred to as Java 8. All programs
in this text have been tested on Java 8.
This text is about programming Java applications. The student may be
interested Java applets (these run in a web browser) which are discussed in
a future appendix.

1.2. THE JAVA COMPILER AND THE JAVA VIRTUAL MACHINE 11

1.2 The Java Compiler and the Java Virtual Ma-
chine

When someone develops a Java program they must first enter the Java code
in a text file. Such files have names that end with ”.java” and are known
as source code files. In order to execute a Java program the program must
first be translated into Java bytecode. We say source code files are human-
readable but bytecode files are just 0’s and 1’s and are not human-readable.
A program that performs this transation is called a compiler, and we say
that the source code is compiled into bytecode. The compiler made available
by Oracle is called javac. Bytecode files always have a name that ends with
”.class”. The bytecode is not directly executable on a computer - bytecode
is not machine code, but it is close to that. Bytecode is ”executed” by a
special program call the Java Virtual Machine, or JVM. Java programs are
portable in the sense that you can write a program and deploy it anywhere
- as long as there is a JVM for that platform. The process of developing,
compiling, and running a Java program is shown below.

12 CHAPTER 1. INTRODUCTION

1.3 BlueJ

BlueJ is an integrated development environment that provides a program-
mer with a framework that includes an editor, a compiler, and a runtime
environment. It is our experience that BlueJ is very suitable for the begin-
ning Java programmer.
BlueJ is available as a free download from
http:www.bluej.org.
We expect that if you are reading this text then BlueJ is already installed
on available student workstations. If not please consult your technical ser-
vices staff. If you need BlueJ on your own computer then please visit
http://www.bluej.org and follow their download and installation instruc-
tions.
Below is a picture showing HelloWorld in a BlueJ project. Note the button
available to compile the source code.

1.4. A FIRST PROGRAM 13

1.4 A First Program

Shown in Listing 1.1 is the traditional first program, HelloWorld, that ap-
pears in many Java texts. When executed, this program does one simple
thing: it displays the message ”Hello World”.

Listing 1.1: HelloWorld.java

1 public class HelloWorld

2 {

3 public static void main(String [] args)

4 {

5 String message = "Hello World";

6 System.out.println(message);

7 }

8 }

When you inspect this program one thing that is immediately obvious is
that there is a lot of overhead to do just one thing. Each line of the program
is explained below:

1. The first line gives a name to the program: HelloWorld.

2. The program is actually a Java class and the lines making up the class
are delimited by the { in line 2 and the } in the very last line.

3. Line 3 begins the definition of a method named main. In general, a
method can take arguments and the text String[] args() is the way
those are indicated for a main method - much more on this in later
chapters.

4. The lines that comprise the main method begin with the { in line 4
and end with the } in line 7.

5. Line 5 is an assignment statement that says the value to be assigned to
the variable message is the text Hello World. When this line executes
the string Hello World is stored in memory locations reserved for the
variable message.

6. Line 6 is an example of how output is obtained. When this line exe-
cutes the contents of message are transferred to a display unit.

14 CHAPTER 1. INTRODUCTION

1.5 Using BlueJ to Run HelloWorld

Very little instruction is required to learn how to use BlueJ. This text as-
sumes that BlueJ is demonstrated in lectures and/or a laboratory setting.
More information is available at the BlueJ web site; for instance, there is a
tutorial at http://www.bluej.org/tutorial/tutorial-201.pdf.

In this section we discuss typical steps one can follow to run HelloWorld in
the BlueJ environment.

1. Download the sample programs from the text’s web pages.

2. Unzip the sample programs storing them in a folder on your computer.
Open the folder and locate the file HelloWorld.java.

3. Start BlueJ and then create a new project:

An empty project actually contains one item
. . . a file named ReadMe.txt that will be discussed later on in the text.

4. Now, to get a copy of HelloWorld . . . Click the HelloWorld.java file,
hold the mouse button down, drag the file to your new BlueJ project
window, and then release the mouse button:

This action copies the file and now you have HelloWorld in your
project.

1.5. USING BLUEJ TO RUN HELLOWORLD 15

5. Double-click the image in the project representing HelloWorld . . . the
BlueJ editor opens showing you the contents. You should see the 8
lines shown in Listing 1.1. You should see the editor open as shown
below:

6. The next step is to compile the program. There are two ways to do this
. . . use the compile button on the editor window, or use the compile
button on the project window with HelloWorld selected. If you click
the compile button on the editor window the response will be that the
code compiled with no errors:

7. Finally, to run the program you must close the editor by clicking the
close button. You are now back at the BlueJ project where you must
right-click the HelloWorld icon and select, from the options shown, to
execute the main method:

16 CHAPTER 1. INTRODUCTION

8. As a result of the above, BlueJ is ready to run the main method and
prompts you for any argument values for main. Since there are none
(arguments are discussed much later in the text), click the OK button:

9. The program runs and you see the output in a window (named the
Terminal Window) that pops up:

1.5. USING BLUEJ TO RUN HELLOWORLD 17

Exercises

1. Run the Hello World program.

2. Modify the Hello World program so it displays your name instead of
”Hello World”. To do this you must use the BlueJ editor and alter line
5. Then you must recompile the program and run the new version.

18 CHAPTER 1. INTRODUCTION

Chapter 2

Basics

This chapter covers material that gives you the necessary information to
run basic programs that use constants and variables, perform calculations,
obtain input from a user, and generate output. The topics covered are
literals, variables, primitive data types, the String class, input, and output.
Java is an object-oriented language and with the last three topics you will
begin to get an understanding of what object-oriented means. Literals,
variables, and the primitive data types are concepts you will find in most (if
not all) programming languages you encounter.

2.1 Literals

It is common for programs to include constants; in Java these are referred
to as literals. Examples include: 123, 123.45, ’a’, "Gosling", true. Most
of the time a programmer codes numeric literals and boolean literals in the
same way we would normally write them down (e.g. 123, 123.45, true,
false). With practice you will get used to using single quotes to specify a
single character (e.g. ’a’), or double quotes to specify a text string (e.g.
"Gosling").

2.2 Variables

The variable is a fundamental concept in programming. In general terms we
say a variable is a named location in a computer’s memory, and the value
stored in that location is controlled during the execution of programs. A
variable is a name associated with a piece of computer memory - a piece of

19

20 CHAPTER 2. BASICS

memory that holds a value that a program can use and change as it executes.

The Java programming language requires us to declare the type of data to be
associated with a variable. Java makes a distinction between primitive dataprimitive types
types and other data types defined via classes. In the Java class libraries
there are many pre-defined classes, for example: String and System. The
Java language contains eight primitive data types: byte, short, int, long,
float, double, char and boolean:

• byte, short, int, and long are used for cases where the data is to be
treated as whole numbers (numbers without a fractional component).
For example, 33, 498, -100 are whole numbers. These data types differ
with regards to the magnitude of number they can represent.

• float and double are used for cases where the data is numeric and
where one expects values to have a fractional component such as:
101.5, 26.334, -55.5. When written we show them with a decimal
point. Again, these two types differ with regards to size in terms of
the number of significant digits and in the magnitude of the number
they can represent.

• char is used when there are individual characters to be handled. Ex-
amples of individual characters are ’a’, ’b’, ’q’, ’$’. Values are
enclosed in single quotes.

• boolean is used when the situation requires one to work with logical
values of true and false. In a Java program these values are written
just as we do in English: true, false.

A Java programmer declares a variable in a declaration statement, and then
uses the variable name later in a program to assign a value, to alter the
current value, and to reference the value currently stored. Two example
programs follow; in Listing 2.1 the program defines and uses a variable, and
in Listing 2.2 the program alters the value stored in a variable.

In Listing 2.1 note the following:

• In line 10 an int variable named i is declared,

• In line 11 the value 14 is assigned to i (that is, the value 14 is stored
in the memory location reserved for i),

• Line 12 displays the value of i

2.2. VARIABLES 21

Listing 2.1: Using a variable

1 /**

2 * This Java class declares

3 * an int variable named i,

4 * assigns the value 14 to i,

5 * and displays i.

6 */

7 public class Variable

8 {

9 public static void main(String [] args){

10 int i;

11 i = 14;

12 System.out.println(i);

13 }

14 }

Listing 2.2 starts off like Listing 2.1 but modifies the value of i to 30 in line
13 just before it is displayed for the second time. This program changes the
value associated with the variable.

Listing 2.2: Changing the value stored in a variable

1 /**

2 * This Java class declares

3 * an int variable named i,

4 * assigns it a value and then

5 * changes its value.

6 */

7 public class VariableChanged

8 {

9 public static void main(String [] args){

10 int i;

11 i = 14;

12 System.out.println(i);

13 i = 30;

14 System.out.println(i);

15 }

16 }

22 CHAPTER 2. BASICS

Naming Variables

A convention used by many Java programmers is to choose names that are
concise yet meaningful. A name you choose should indicate the intent of its
use. In situations where the intent of use involves more than one word a
Java programmer will often name the variable in camel case. For instance,camel case
suppose you need a variable to keep track of net pay. In order to have a
proper name a programmer could choose the name netPay for the variable.
Two words are involved: net and pay. the first word is in lower case and
other word is catenated to it, and only the first letter of the second word
is capitalized. Camel case is a style where words are catenated together
forming a variable name - the first word is all lower case, the second and
subsequent words have only the first letter capitalized.

Some examples of variables named according to camel case:

netPay grossPay
dayOfWeek shippingAddress
monthOfYear billingAddress
studentNumber lastName

Camel case is a good convention to follow when declaring variables. How-
ever, Java will accept any variable name as long as the name starts with a
letter and contains any mixture of letters, digits, and the underscore char-
acter (’ ’). Some valid variable names include: a123, net pay, gross pay.

Java variable names are case-sensitive. This means that variable names such
as NetPay and netPay are different variables.

Java reserves the use of certain names . . . keywords. Keywords are reservedkeyword
for special purposes and cannot be used as variable names. For example,
int is reserved for situations where one declares a variable to be of type int;
you cannot declare a variable with the name int. In the sample programs
shown so far we have seen a few of these reserved words: public, class,
void, static. In subsequent chapters we will see other keywords introduced
such as while, do, if, else.

2.3. PRIMITIVE DATA TYPES 23

Exercises

1. Java requires that all variables be declared. What type of message
does the Java compiler report if a variable is not declared before it is
used? Consider Listing 2.1. Change line 11 to read

abc = 14;

instead of
i = 14;

Compile the program. What is the response you get from the compiler?

2. Java does not permit reserved words to be used as variable names.
Consider Listing 2.1 again. Change all references to the variable i to
public, as shown here:

int public;

public = 14;

System.out.println(public);

Compile the program. What is the response you get from the compiler?

3. Java variable names are case sensitive so two variables named Message

and message do not refer to the same thing. Modify line 6 in the
HelloWorld so that the variable message is misnamed as Message with
a capital M. What is the response you get from the Java compiler?

2.3 Primitive Data Types

2.3.1 Numeric Data Types: byte, short, int, long

These data types are used for numeric values where there is no fractional
component - all values are whole integers. These types differ with respect to
the amount of memory used (and therefore minimum and maximum values):

data type memory minimum value maximum value

byte 1 byte -128 127
short 2 bytes -32768 32767
int 4 bytes -2147483648 2147483647
long 8 bytes -9223372036854775808 9223372036854775807

Calculations can involve any of addition, subtraction, multiplication, divi-
sion, and modulo operations are represented by +, -, *, /, and % respectively.
Some examples follow:

24 CHAPTER 2. BASICS

operator example of use example’s result

+ 7 + 11 18

- 12 - 5 7

* 3 * 4 12

/ 13 / 5 2

% 13 % 5 3

Integer Arithmetic

If the operands of an arithmetic operation are both integers, the result is
an integer. Consider division - there is no remainder . . . 13/5 evaluates to 2

and not 2.6. Modulo gives the remainder when the first operand is divided
by the second operand . . . 13%5 evaluates to 3.

Example: Division and Modulo

The following example program uses division and modulo to obtain the last
two digits of an integer. The output follows the listing.

Listing 2.3: Obtain the last two digits of an integer

1 public class IntegerArithmetic

2 {

3 public static void main(String [] args)

4 {

5 // Use integer arithmetic

6 // Division: no remainder

7 // Modulo: yields the remainder

8 int number , digit;

9 number = 1297;

10 // Get right -most digit

11 digit = number % 10;

12 System.out.println(digit);

13 // Decrease number by a factor of 10

14 // and get next digit

15 number = number / 10;

16 digit = number % 10;

17 System.out.println(digit);

18 }

19 }

2.3. PRIMITIVE DATA TYPES 25

Figure 2.1: Last two digits

Default Integer Data Type

If a numeric literal has no decimal point (such as 10025) then the data type
used is int. If a programmer wanted to use the long data type the value
would have a suffix of L or l; for example, 10025L. L is recommended since
the lowercase l appears too much like digit 1. We say that int is the default
integer data type.

Exercises

4. We have seen some simple expressions in Java. Modify the program
in Listing 2.2 to use a simple expression. Alter the statement

i = 30;

to the following (so the value in i is multiplied by 3):
i = i*3;

This statement causes i to be multiplied by 3 and the result is stored
back in i.

5. Modify the program in Listing 2.3 so that each of the four digits are
displayed on separate lines.

6. Write a program to determine what happens when:

(a) 1 is added to the largest int value,
(b) 1 is subtracted from the smallest int value,
(c) an integer is divided by zero.

7. What values are produced by the following expressions:
99 / 10

99 / 10 * 10

99 % 10

99 - 99 % 10

99 - 99 / 10

99 / 10 * 10 + 99 % 10

26 CHAPTER 2. BASICS

2.3.2 Numeric Data Types: float, double

These data types are used to represent values that have decimal places. For
example, the numbers 11.5, 12.25, -300.123, and 0.0 are written with
decimal places. Even the value zero written as 0.0 is a double.

The float and double types differ with respect to the number of significant
digits they store (approximately 7 for float and 16 for double) and the overall
magnitude of a value that can be represented. The table below shows the
amount of memory used and the maximum value per type:

data type memory maximum

float 4 bytes 3.4028235× 1038

double 8 bytes 1.7976931348623157× 10308

Of course a programmer can perform calculations on doubles and floats.
The operators we will discuss at this time include +, -, *, and / as shown
in the following table.

operator example of use example’s result

+ 7.1 + 1.1 8.2
- 12.1 - 5.0 7.1
* 2.2 * 2.2 4.84
/ 10 / 4 2.5

Listing 2.4 illustrates some simple double calculations in order to compute
and display fuel consumption as litres per 100 kilometres travelled.

Listing 2.4: Perform simple double calculations

1 public class FuelConsumption

2 {

3 public static void main(String [] args)

4 {

5 // Calculate fuel consumption as

6 // litres per 100 kilometres travelled.

7 // All calculations involve doubles.

8 double litres , km , km100;

9 litres = 60.6;

10 km = 500.25;

11 km100 = km /100.0;

12 // calculate litres per 100km

13 double consumption = litres/km100;

2.3. PRIMITIVE DATA TYPES 27

14 System.out.println(consumption);

15 }

16 }

Doubles as approximations

Programmers must be aware that not every number can be represented ex-
actly as a double or float. You know that some fractions cannot be written,
using decimals, exactly or completely. Most people use the decimal number
system where we can write out the fraction 1/4 exactly as 0.25. However,
the fraction 1/3 is a repeating decimal. If we write it out as a decimal num-
ber we either stop at some number of digits, or, we write it as 0.33333 . . . ,
to indicate the number has an infinite representation. A similar case arises
with computers - there are fractions that cannot be represented exactly in a
computer. With limited space we are often storing just an approximation.

One must be aware that round-off can occur when calculations are done with
float and double. Hence they are not appropriate for certain situations: for
example if your program needs to represent monetary values. A highly rec-
ommended book on Java is Effective Java[4]. This is a great reference for
the experienced programmer . . . for monetary calculations the BigDecimal
class is recommended. More about this much later on in the text.

The following program demonstrates a calculation: using the minus operator
to have one value subtracted from another. If you performed the calculation
yourself, you would say the answer is 0.05. However this program prints
a different answer. We have included this example to illustrate how some
values are just approximate values.

Listing 2.5: Approximations.java

1 public class Approximations

2 {

3 public static void main(String [] args)

4 {

5 // the following result should be

6 // 0.05 but the value printed is

7 // 0.04999999999999716

8 System.out.println (100.25 -100.20);

9 }

10 }

28 CHAPTER 2. BASICS

The output from the above is:

Default Decimal Data Type

When a numeric literal (such as 100.25) appears in a program and has a
decimal point, the data type used is double; we say that double is the de-
fault data type for values with a decimal point. If the programmer wanted
to use a float value then the suffix f would be used, as in 100.25f.

To a non-programmer literals such as 100.0 and 100 may seem the same,
but a Java programmer knows the first is represented internally as a double

and the second is represented as an int.

We say that double and int are the default numeric data types. We focus
on these numeric data types for the rest of this text.

Exercises

8. Modify the program in Listing 2.4 to calculate and display fuel con-
sumption as the number of kilometres travelled per litre of fuel.

9. Write a program that converts a value in centimetres to an equivalent
value in inches. Use the conversion: one inch equals 2.54 centimetres.
Use variables of type double.

10. Write a program that converts a value in dollars to an equivalent value
in euros. Use the conversion: one euro equals 1.5 dollars. Use variables
of type double.

11. Modify Listing 2.5 to run some different calculations, such as:
System.out.println(100.5-100.00);

System.out.println(100.33-100.00);

2.3. PRIMITIVE DATA TYPES 29

2.3.3 Numeric Expressions

Calculations arise in almost every computerized application. For instance,

• calculating gross pay

• calculating tax payable

• resizing of text on a computer monitor

• direction of a ball when it strikes a border

Calculations are defined using Java expressions which comprise operators
and operands. The operators we consider here are addition, subtraction,
multiplication, division, and modulo. Operands are either literals, vari-
ables, or sub-expressions. Subtraction, multiplication, division, and modulo
are represented by +, -, *, /, and % respectively. All of these operators
are binary operators, meaning that they have two operands. Expressions
involving these are written in an infix manner where one operand is on the
left of the operator and the other operand in on the right of the operator.
Sub-expressions are expressions enclosed in parentheses, (and).

Some examples of expressions, going from simple to more complex are:

Some Java Expressions

1 32.0

2 9.0 / 5.0

3 105 % 10

3 9.0 / 5.0 * c

4 9.0 / 5.0 * c + 32.0

5 9.0 / 5.0 * c + 32.0

Expressions 3 through 5 are complex and to fully understand how Java
evaluates these requires knowledge of operator priorities and associativity.

Operator Priorities

Java gives each operator a priority and then uses those priorities to control
the order of evaluation for an expression. Higher priority operators are ex-
ecuted before lower priority operators. Sometimes a programmer may need
to override these priorities and would use a sub-expression for that purpose;
a sub-expression is always evaluated before the expression in which it is
contained is evaluated. Consider the following table of operator priorities:

30 CHAPTER 2. BASICS

Operator Priorities
Highest to Lowest

* / %

+ -

Multiplication is given the same priority as division and modulo, and ad-
dition is given the same priority as subtraction. However, the priority of
multiplication, division, and modulo is higher than that of addition and
subtraction. The following table shows expressions, the order of evaluation
shown with equivalent sub-expressions, and the final result.

Java expressions involving priorities

expression equivalent evaluation final result

9.0 / 5.0 + 32.0 (9.0 / 5.0)+ 32.0 33.8

105 - 105 % 10 105 - (105 % 10) 100

1 + 3 * 2 1 + (3 * 2) 7

The next two examples show situations where operator priorities must be
overridden in order to have correct calculations:

Example: Calculate Net Pay

Suppose we must calculate an employee’s net pay. Suppose for the employee
we have their gross pay, deductions from gross, and their tax rate in variables
named grossPay, deductions, and taxRate respectively. Suppose net pay
is calculated by subtracting deductions from gross pay and then multiplying
by the tax rate. If we code this as

grossPay - deductions * taxRate

we will get the wrong result since * has higher priority than -. We can code
this using a sub-expression as:

(grossPay - deductions)* taxRate

2.3. PRIMITIVE DATA TYPES 31

Example: Calculate Area of Trapezoid

Consider the formula for calculating the area of a trapezoid:

If we were to code the formula as
a + b / 2 * h

the area would be calculated incorrectly due to division and multiplication
having higher priority than addition. To force the correct evaluation we can
use a sub-expression and override operator priorities: the formula can be
written as:

(a + b)/ 2.0 * h

Sub-expressions are used to change the order of evaluation . . . in this case
to have a + b evaluated first before the division and multiplication.

32 CHAPTER 2. BASICS

Operator Associativity

When an expression involves more than one operator of the same priority it
is necessary to understand the order in which they are evaluated. If more
than one multiplication or division appears they are evaluated from left to
right; similarly for addition and subtraction. In programming terms we sayleft associative
these operators are left associative.
Suppose if we want to convert a temperature in Celsius to an equivalent
Fahrenheit temperature using the formula

f =
9

5
c+ 32

a programmer can code this as 9.0 / 5.0 * c + 32.0. This would be
correct as the expression is evaluated by Java as required: the division,
9.0 / 5.0, is performed, then the multiplication, and then the addition.
If division and multiplication were right-to-left associative the result of the
above would be incorrect.

Mixed Mode Expressions

Expressions could contain a mixture of types. Java permits conversions be-
tween integer and floating-point types.

There are two types of conversions: widening and narrowing conversions. Bywidening
widening we mean that the type being converted to contains all values of the
other type. For example, any value of the short type (a 2-byte integer) can
be represented as an int type (a 4-byte integer). In the following program
(see line 12) the value of s, a 2-byte integer, will be converted to an int

value, a 4-byte integer.

Listing 2.6: Example of widening

1 /**

2 * This Java class declares a short variable ,

3 * assigns it a value , and then assigns the

4 * value to a variable of type int

5 */

6 public class ShortToInt

7 {

8 public static void main(String [] args){

9 short s;

2.3. PRIMITIVE DATA TYPES 33

10 int t;

11 s = 100;

12 t = s;

13 System.out.println ("s is: "+s);

14 System.out.println ("t is: "+t);

15 }

16 }

Java allows these widening conversions automatically:

• from byte to short, int, or long, float, or double

• from short to int, long, float, or double

• from int to long, float, or double

• from long to float or double

• from float to double

• from char to int, long, float, or double

Example 1
Consider the expression

(100 - 10)* 0.10

The sub-expression involves integers and the result is an integer producing
a value of 90. Next in the evaluation will be the multiplication involving 90
and 0.10; note these are different types: int and double. Java automati-
cally converts the 90 to 90.0 before the multiply is performed.

Example 2
Consider the expression

(9/5) * 1 + 32.0

The sub-expression, 9/5, involves integers and the result is an integer yield-
ing a value of 1. Next in the evaluation will be the multiplication involving
1 and 1, which yields the int value of 1. Now we have 1 plus 32.0. For
this to be performed the 1 is converted to 1.0 and the final result is 33.0.
Note that this would be considered inaccurate (wrong) for the conversion of
1 degree Celsius to Fahrenheit. To obtain a more accurate result 9.0/5.0

should be used instead of 9/5.

Narrowing conversions are cases where there could be a loss of precision narrowing
going from one type to another. For example converting from a double to

34 CHAPTER 2. BASICS

an int is not allowed unless the programmer directly indicates that casting
is to be performed. We will leave casting until a later chapter.

Unary Minus

There are several unary operators where the operator takes one operand.
The unary minus is one most people would be familiar with. A unary minus,
-, can be placed immediately in front of an expression to negate the value
of the expression. For instance the value of -(50-75) is 25. The unary
minus precedes its operand as shown above. Its priority is higher than
multiplication, division, and modulo.

Exercises

12. Write a program to calculate an employee’s gross pay where variables
hoursWorked and rateOfPay hold the employees hours worked and rate
of pay respectively. Gross pay is calculated as hours worked times rate
of pay. Test your program with hoursWorked = 40 and rateOfPay =
$7.50 per hour.

13. Write a program to calculate the provincial sales tax and the gen-
eral sales tax payable for an item where the variables pstPayable, gst-
Payable, price represent the provincial sales tax payable, the general
sales tax payable, and an item’s price. Use the formulas:

pstPayable = price ∗ 0.05

gstPayable = price ∗ 0.08

Test your program with price = $50.00.

14. Suppose a customer is charged an amount and the customer gives the
clerk an amount that is larger. An amount equal to the difference
between the amount given and the amount charged must be returned
to the customer. Write a program that calculates this amount to be
returned to the customer. Use variables amountCharged, amount-
Given, amountReturned to represent the different amounts. Test your
program with amountCharged = $75.50 and amountGiven = $100.00.

15. Write a program that uses the formula

9

5
c + 32

2.3. PRIMITIVE DATA TYPES 35

where c represents degrees Celsius to calculate the equivalent Fahren-
heit value. Test your program using c = 22.0.

16. Write a program that uses the formula

(f − 32) 5

9

where f represents degrees Fahrenheit to calculate the equivalent Cel-
sius value. Test your program using f = 22.0.

17. Write a program that uses the formula

1

2
h

to calculate the area of a triangle. Run your program for h=25.

36 CHAPTER 2. BASICS

2.3.4 boolean Data Type

The boolean type has two values: true and false. We will see that the
boolean type can be useful when we discuss control structures in the next
chapter. There are three operators defined for booleans: and, or and not
represented in Java as &&, ||, and ! respectively. && and || are binary
operators where the operator appears between the two operands; ! is a
unary operator that precedes its operand.

Boolean operators

operator in Java meaning

AND && Evaluates to true if and only if both operands are true;
evaluates to false otherwise.

OR || Evaluates to true if at least one operand is true;
evaluates to false if both operands are false.

NOT ! NOT: negates the operand.

Three truth tables below show the results for Boolean operators for all pos-
sible values of their operands.

Boolean operation of AND

a b a && b

true true true
false true false
true false false
false false false

Boolean operation of OR

a b a || b

true true true
false true true
true false true
false false false

Boolean operation of NOT

a ! a

true false
false true

The following table gives some example boolean expressions. The last 3
examples are complex expressions. To understand those evaluations we need

2.3. PRIMITIVE DATA TYPES 37

to know Java rules for evaluating these expressions (discussed in the notes
below).

Examples
boolean x, y, z;

x=false; y=true; z=true;

example result

1 y true
2 y && z true
3 x || y true
4 !x true
5 x && y || ! z false
6 ! x || y true
7 ! (x || y) false

A Boolean expression may have multiple operators. Consider example 5
from above,

x && y || ! z

We need to be clear on how Java evaluates such an expression. Java assigns
priorities to these Boolean operators: ! is highest, followed by &&, followed priorities
by ||. Higher priority operators are evaluated before lower priority opera-
tors. So, for the above expression !z is evaluated first yielding false. So
now the expression effectively becomes:

x && y || false

As && has higher priority than || it is evaluated next yielding false. So
now the expression effectively becomes:

false || false

which evaluates to false.
sub-expressions

Java allows sub-expressions; these are expressions enclosed in parentheses.
A sub-expression is evaluated before the expression of which it is a part,
and that value is substituted in its place. Consider examples 6 and 7 from
above. They are the same except for the use of parentheses. In example 6:

! x || y

the ! is evaluated first and the expression effectively becomes:
true || y

which evaluates to true. In example 7:
! (x || y)

the sub-expression (x || y) is evaluated first, and then ! is evaluated. Since
x||y evaluates to true, the result for the expression is false.

38 CHAPTER 2. BASICS

Some further points about the Boolean operators (not very important to us
yet):

• When && is being evaluated and if the first operand is false, then the
result must be false and so the second operand is not evaluated.

• When || is being evaluated and if the first operand is true, then the
result must be true and so the second operand is not evaluated.

• There are other operators (&, |, and ^) that you may be interestedother operators
in learning about subsequent to this course. These, amongst other
features, are discussed in Java in a Nutshell [5].

Relational Operators

There are a number of operators defined for comparing one value to another.
These are summarized in the table below (assume x and y are of type int).
These operations evaluate to a boolean (true or false):

Relational operators

operator meaning example

< less than x < y

> greater than x > 5

<= less than or equal to 22 <= y

>= greater than or equal to x > y

== equal to x == y

!= not equal to x != 0

Note that == is the operator used to test for equality, and != is used to test
two operands to determine if they are not equal. Listing 2.7 illustrates the
use of relational operators. Later in the chapter on control structures we
will use relational operators in many examples.

Listing 2.7: Comparing char values

1 public class CompareNumber

2 {

3 public static void main(String [] args)

4 {

5 // i1 and i2 are two char variables

6 int i1 = 111;

7 int i2 = 555;

8 // Display i1 and i2

2.3. PRIMITIVE DATA TYPES 39

9 // Display true or false according

10 // to whether they are equal or not

11 System.out.println("The int values");

12 System.out.println(i1);

13 System.out.println(i2);

14 System.out.println("Testing i1==i2");

15 System.out.println(i1==i2);

16 System.out.println("Testing i1 <i2");

17 System.out.println(i1 <i2);

18 System.out.println("Testing i1 >i2");

19 System.out.println(i1 >i2);

20 }

21 }

Figure 2.2: Results of comparing numeric values

40 CHAPTER 2. BASICS

2.3.5 char Data Type

char is used when you need to handle characters individually. When you
see a char value in a program you see it enclosed in single quotes, as in:
’a’, ’A’, ’q’, ’%’.

Java organizes memory for char values so that each value is stored using two
bytes of memory. One byte of memory is eight bits. We can consider a bit
as being either on or off, or, 0 or 1. A byte of memory can be considered to
be a sequence of eight 0’s and 1’s. Just for interest, the bit sequences and
corresponding integer value for a few characters is listed below:

character bit sequence corresponding integer value

’a’ 0000000001100001 97

’b’ 0000000001100010 98

’c’ 0000000001100011 99

’A’ 0000000001000001 65

’B’ 0000000001000010 66

’C’ 0000000001000011 67

’1’ 0000000000110000 48

’2’ 0000000000110001 49

’3’ 0000000000110010 50

’$’ 0000000000100100 36

’\t’ 0000000000001001 9

’\n’ 0000000000001010 10

Recall the relational operators defined for comparing one value to another;
these operators produce a boolean value of true or false. These are shown
again in the table below; assume x and y are of type char.

Relational operators

operator meaning example

< less than x < y

> greater than x > ’a’

<= less than or equal to ’a’ <= y

>= greater than or equal to x > y

== equal to x == y

!= not equal to x != ’$’

Recall that == is the operator used to test for equality, and != is used to test
two values to determine if they are not equal. Listing 2.8 illustrates their

2.3. PRIMITIVE DATA TYPES 41

use in a program. Later on in the section on the Character class you will
see useful techniques for analyzing individual characters in a string.

Listing 2.8: Comparing char values

1 public class CompareChar

2 {

3 public static void main(String [] args)

4 {

5 // c1 and c2 are two char variables

6 char c1 = ’a’;

7 char c2 = ’z’;

8 // Display c1 and c2

9 // Display true or false according

10 // to whether they are equal or not

11 System.out.println("The char values");

12 System.out.println(c1);

13 System.out.println(c2);

14 System.out.println("Testing c1==c2");

15 System.out.println(c1==c2);

16 System.out.println("Testing c1 <c2");

17 System.out.println(c1 <c2);

18 System.out.println("Testing c1 >c2");

19 System.out.println(c1 >c2);

20 }

21 }

Exercises

18. Write a program that will print the integer values for the characters
’!’, ’@’, ’#’, ’$’, ’%’, ’^’, ’&’, ’*’, ’(’, ’)’. Note that
Java allows a statement such as int value = ’a’;

19. Since Java uses two bytes of memory there are 16 bits used to represent
char values. How many different char values can be represented?

42 CHAPTER 2. BASICS

Figure 2.3: Results of comparing char values

2.4. OPERATORS 43

2.4 Operators

We have seen arithmetic, relational, and boolean operators so far. The table
below shows these operators and several others: method invocation, post-
increment, post-decrement, conditional operator, and assignment. We will
soon encounter these in sections and chapters to follow.

Priorities of Operators

priority Java operator meaning

16 name of method(. . .) method invocation
++ post-increment
-- post-decrement

15 - unary minus
! boolean not

14 new object creation

13 / division
* multiplication
% modulo

12 + addition
- minus
+ string catenation

10 < less than
<= less than or equal to
> greater than
>= greater than or equal to

9 == equals
!= not equals

5 && boolean and

4 || boolean or

3 ? : conditional operator

2 = assignment
+= assignment with operation
-= assignment with operation
*= assignment with operation
/= assignment with operation
%= assignment with operation

Previously we stated some operators had the same priority as others, and
that some had a lower/higher priority that some others. In the table above

44 CHAPTER 2. BASICS

you see the actual operator priorities. For example, both unary minus and
boolean not have the same priority (15) which is much higher than most
others. Assignment has the lowest priority (2).

There are several operators we do not discuss in this text. There are opera-
tors for every level from 1 to 16; we have not included any of the operators at
levels 1, 6, 7, or 8. You could consult a reference such as Java in a Nutshell
[5] at some future date.

Complex Expressions

Expressions can be very complex . . . each operand can itself be an expression
that evaluates to true or false. Consider the following complex expression
where a, b, c, d, x, z are numeric types:

boolean answer = a+b > c+d && x<z

The && operator has two operands:
a+b > c+d

and
x<z

and each will evaluate to either true or false. If you look at the priorities
of operators you will see the additions will be done first, followed by the re-
lational operators, followed by &&, and finally the assignment to the variable
answer.

Some programmers prefer to include extra spaces and parentheses in expres-
sions like the above . . . in order to make the expression more readable, as in:

boolean answer = ((a+b)> (c+d)) && (x<z)

In this example the parentheses do not change the order of operations;
rather, they may make it easier for someone to read.

The Assignment Operator

What is often referred to as the assignment statement is really a Java expres-
sion followed by a semicolon. The assignment operator, having a priority of
2, is usually the last operator to be evaluated. The assignment operator is
right associative. That is, when several assignment operators appear in an
expression they are evaluated/performed from right to left. So, if you have
the statement:

int q = (j=1)+1;

then j will have the value 1 and q will have the value 2. That would be an

2.4. OPERATORS 45

odd statement to include; what is more likely is to have several variables all
initialized to the same value, as in:

int i = j = k = 1;

46 CHAPTER 2. BASICS

2.5 The String Class

It is very common for a program to work with text strings and the Java
String class is provided to facilitate the many things that programmers need
to do with text strings. String literals are written as a sequence of characters
that are delimited by double quotes. For example:

"this is a line of text"

"my first name is Joe"

"Joe was born on May 1, 1999"

The assignment statement:
String fullName = "Joe Smith";

declares fullName to be of type String. fullName is a variable and the
Java compiler allocates memory for fullName. The memory location for
fullName will contain a reference (an address) to the storage location where
the text string ”Joe Smith” is actually stored. Memory for primitive types is
handled differently. The memory location associated with a primitive type
contains the value (not an address) of the variable. For example, an int

variable will have a memory location reserved for it where the value of the
variable is stored.

There is a subtle difference that may be hard to appreciate at this time: a
variable (of type String) holds a reference to the value instead of holding
the actual value. The diagram below attempts to show the difference.

Object References

2.5. THE STRING CLASS 47

Since text strings are objects of type String another way to declare fullName
and assign it a value is to use the new operator:

String fullName = new String("Joe Smith");

In general, the new operator is used to instantiate (to create) an object. new operator
Because text strings are so common Java provides the short cut for allocat-
ing a string, such as:

String fullName = "Joe Smith";

The only way to work with objects is through the methods that are defined
in the class from which the object is instantiated. The String class provides
many methods for working with text strings such as:

Useful String methods

method name type description

charAt(. . .) char returns the character at a speci-
fied position (provided as the ar-
gument) where position is one of
0, 1, . . . , up to the length of the
string.

equals(. . .) boolean used to determine if two strings
are identical

equalsIgnoreCase(. . .) boolean used to determine if two strings
are identical irrespective of case

indexOf(. . .) int returns the first position of a
character provided as an argu-
ment, or -1 if it is not present

length() int returns the length of a string

toLowerCase() String converts all characters to lower
case

toUpperCase() String converts all characters to upper
case

trim() String removes leading spaces (blanks)
and trailing spaces from a string

Table 2.1: Some of the useful String methods

At some time you should view the official documentation for the String class.
Perhaps you will do this when you are developing a program and you want
to look up the String methods. If you are using BlueJ its very easy to see the

48 CHAPTER 2. BASICS

documentation for a class. As Figure 2.4 illustrates, you just need to click
on Help and then click on Java Class Libraries. Choosing this results in an
internet browser opening to a page where, on the left pane, you can find and
click on the entry for String (or some other class) to view documentation
which includes information about methods.

Figure 2.4: Getting documentation on Java classes

Several example programs follow that demonstrate how to use the various
methods of the String class. To use a String method it is necessary that
you reference the object and the method. For example, to obtain the length
of s use the expression s.length(). Note the variable name is followed by
a period which is followed by the method name and any arguments enclosed
in parentheses. In object-oriented terminology we are asking the object s to
execute its length() method.

Example, obtaining the length of a string

In many applications it is necessary to examine a text string, character-
by-character, to ensure it conforms to certain rules. For instance, when a
user resets a password there may be restrictions that at least one character
is in uppercase, that at least one character is alphabetic, etc. To do this
processing where we examine the string character-by-character we need to
know how long the string is. The String class has a method named length

which returns, to the point where it is called, an integer value that is the
length of the string. The following program shows the method being used;
see line 9 in particular:

int passwordLength = password.length();

When this line executes the method is invoked and returns a value to where
it was invoked. The value returned is assigned to passwordLength. Note the

2.5. THE STRING CLASS 49

name of the method is followed by parentheses even though no argument is
passed . . . this is necessary so the Java compiler knows that the code specifies
a method name.

Listing 2.9: Finding the length of a string

1 public class UsingStringLength

2 {

3 public static void main(String [] args)

4 {

5 // variable password is of type String

6 // variable passwordLength is of type int

7 String password = "my123Password";

8 // use the length () method

9 int passwordLength = password.length ();

10 // Display the string and its length

11 System.out.println("password is");

12 System.out.println(password);

13 System.out.println("length is");

14 System.out.println(passwordLength);

15 }

16 }

Figure 2.5: Showing the string and its length

Example, getting the character at a specific position

In many applications where strings are being processed a specific character
is expected in a specific position. For instance, a social insurance number
can be coded as 3 digits, a hyphen, 3 digits, a hyphen followed by 3 more
digits. The following program obtains the character at position 3. The

50 CHAPTER 2. BASICS

method charAt(. . .) returns the character at a specific position to the point
where the method is invoked. The method charAt(. . .) must always have
an argument value (the position) passed to it. For Java, positions within a
string begin at 0 and so the first hyphen should be at position 3. Note in
the program, at line 9, shown here:

char firstHyphen = sin.charAt(3);

how the method is invoked (a period separates the name of the string, sin,
from the name of the method) and how the value 3 is passed to the method
(in parentheses as an argument value).

Listing 2.10: Obtaining a character within the string at a specific position

1 public class UsingStringCharAt

2 {

3 public static void main(String [] args)

4 {

5 // variable password is of type String

6 // variable passwordLength is of type int

7 String sin = "123 -987 -555";

8 // use the charAt () method

9 char firstHyphen = sin.charAt (3);

10 // Display the string and

11 // the character in position 3

12 System.out.println("SIN is");

13 System.out.println(sin);

14 System.out.println("character at position 3

is");

15 System.out.println(firstHyphen);

16 }

17 }

Figure 2.6: Showing the string and the character at position 3

2.5. THE STRING CLASS 51

Example, determining if one string equals another string

To determine if one object is equal to another object you must use a method
which, by convention, is named equals. The String class has a method
equals and another method named equalsIgnoreCase. Both of these
methods require an argument to be passed. If we want to compare two
strings, say s1 and s2, to see if they are equal we can use either of these
two expressions:

s1.equals(s2)

s2.equals(s1)

Both must return the same boolean value. The following program initializes
two strings and then displays the value when they are compared for equality.
Note line 15, repeated here:

boolean equalsResult = s1.equals(s2);

On the right hand side of the assignment operator is the expression:
s1.equals(s2)

We say, in object-oriented terms, that we are asking the object s1 to exe-
cute its equals() method with the argument s2. When line 15 executes the
method is invoked, a value is returned to this point in the statement, and
that result is assigned to the boolean variable equalsResult.

Listing 2.11: How to compare two strings

1 public class UsingStringEquals

2 {

3 public static void main(String [] args)

4 {

5 // variable password is of type String

6 // variable passwordLength is of type int

7 String s1 = "John A. Smith";

8 String s2 = "John A Smith";

9 // Display s1 and s2

10 // Display true or false according

11 // to whether they are equal or not

12 System.out.println("The strings");

13 System.out.println(s1);

14 System.out.println(s2);

15 boolean equalsResult = s1.equals(s2);

16 System.out.println(equalsResult);

17 }

18 }

52 CHAPTER 2. BASICS

Figure 2.7: Showing the result of using equals()

Catenation operator +

We have seen the + operator before, but the operands were always numeric.
The + operator can also be used to add (i.e. catenate) strings. It is used
frequently in statements that generate output. If at least one operand is a
string then a result is formed by joining two strings. Joining two strings is
called catenation.

When one operand is not a string then the equivalent string representing
that non-string’s value is generated, and then the catenation of two strings
is carried out forming a new string as a result. For instance if you want to
display a message ”The value of X is ” followed by the value of x you just
code:

System.out.println("The value of x is "+x);

However, suppose you wanted to display a string and show the sum of two
numbers. Consider:

int x = 10;

int y = 11;

System.out.println("the total is "+x+y);

Someone might expect the output from the above to be:
The total is 21

but it is not, rather the output is:
The total is 1011

The reason this happens is that the expression is evaluated from left to
right. The first + is adding a string and a number producing the string
"The total is 10". Hence the second + is adding a string and a number
producing the string "The total is 1011".

2.5. THE STRING CLASS 53

Exercises

20. Evaluate the following Java expressions:
"x = "+100

"The remainder is "+ (21 % 10)

(21 % 10)+ " is the remainder"

"x = "+100+200

100 +"is the value of x"

100 + 200 +"is the value of x"

"" + 100 + 5

21. Write a program with 3 String variables: firstName, middleInitials,
lastName. Assign values to these variables to represent your name.
Print a line that shows your name displayed with the last name first,
followed by a comma, followed by your first name, and then your
middle initials. For example:
Smith, John A

54 CHAPTER 2. BASICS

2.6 Output

We discuss two different ways to generate output from a program: using
System.out and JOptionPane. We discuss the use of System.out in the
next two sections; in the second of these we discuss how you can redirect
the output which normally appears in the Terminal Window to a file.

In the third section we discuss the JOptionPane class and how that can be
used to present information and data in the form of dialog boxes.

2.6.1 System.out

A simple way to generate output for the user is to use the println(. . .)
and print(. . .) methods that belong to the pre-defined Java class named
System and an object within System named out. The output generated is
said to go to the standard output device. When you use this type of output
with BlueJ you will see a window pop up named ”Terminal Window” that
contains the output produced by the program.

The following program listing illustrates ways of producing output. The
println(. . .) and print(. . .) methods take one argument which is a text
string. Often that text string is composed of multiple catenations. Notice
the last println(. . .) introduces special characters for new line (\n) and
tab (\t). The special characters are not displayed, they are used to control
the appearance of the output.

Listing 2.12: Using println()

1 public class UsingPrintln

2 {

3 public static void main(String [] args)

4 {

5 double grossPay , taxesPaid , taxRate ,

netPay , deductions;

6 grossPay = 100.00;

7 deductions = 10.00;

8 taxRate = 0.10;

9 // Calculate taxes and net pay

10 taxesPaid = netPay = (grossPay -

deductions) * taxRate;

11 //

2.6. OUTPUT 55

12 // Each time println () executes the output

will start on a new line

13 // Produce one line of output with one

double value

14 System.out.println(grossPay);

15 // Often a good idea is to label the output

so it is self -describing

16 // Produce one line of output with a label

and a value

17 System.out.println("Gross Pay is

"+grossPay);

18 // Several items can be catenated

19 // Note that one text string must appear on

one line

20 // but a long one can be formed over

multiple lines

21 System.out.println("Gross Pay = "+grossPay

22 +" Deductions = "+grossPay);

23 // You can force output to go onto more

than one line

24 // by embedding control characters in a

string

25 // ’\n’ is the new line character

26 // ’\t’ is the tab character

27 System.out.println("\tGross Pay = "+grossPay

28 +"\n\tDeductions = "+grossPay

29 +"\n\tNet Pay = "+netPay);

30 }

31 }

56 CHAPTER 2. BASICS

The println(. . .) method causes the display to advance to a new line and
then displays output. The print(. . .) method differs from println(. . .)
in that it does not automatically advance to a new line when it displays
output; instead, output begins at the point where the previous print(. . .)
or println(. . .) left off. If we change all the println(. . .) to print(. . .)
expressions for the previous example the output we get is:

Exercises

22. Write a program to calculate the total of the provincial sales tax,
the general sales tax, and the price of an item. Use the variables
totalPayable, pstPayable, gstPayable, and price to represent the
total payable, the provincial sales tax payable, the general sales tax
payable, and the item’s price. Use the formulas:

pstPayable = price ∗ 0.05

gstPayable = price ∗ 0.08

totalPayable = price+ pstPayable+ gstPayable

2.6. OUTPUT 57

Test your program with price = $50.00. Your program must display
price, pstPayable, gstPayable, and totalPayable. Similar to lines
27-29 in Listing 2.12 create output that is nicely aligned with values
on separate lines.

58 CHAPTER 2. BASICS

2.6.2 Redirecting System.out

By default the println(. . .) and print(. . .) methods create output that
is displayed on the standard output device (also called the Console) - with
BlueJ we know this as the window named Terminal Window. The output is
handled this way because the default value of System.out is a PrintStream

object directed to standard output. If we redirect the output to a file we
can reuse our knowledge of println(. . .) and print(. . .) to create files.
The following program has a main() method that writes a line to a text
file named myfile.txt. Note the 3 import statements in lines 1, 2, and 3.
Further remarks follow the program listing.

Listing 2.13: Redirecting output to a file.

1 import java.io.File;

2 import java.io.PrintStream;

3 import java.io.FileOutputStream;

4 /**

5 * Redirect output to a file

6 */

7 public class RedirectOutputToFile

8 {

9 public static void main(String [] args)

10 throws Exception {

11 System.out.println("1. to standard output");

12 PrintStream standard = System.out;

13 File f = new File("myfile.txt");

14 FileOutputStream fs =new

FileOutputStream(f);

15 PrintStream ps = new PrintStream(fs);

16 System.setOut(ps);

17 System.out.println("2. to the other file");

18 ps.close ();

19 System.setOut(standard);

20 System.out.println("3. to standard output");

21 }

22 }

Some comments:

• In line 13 we declare a file named myfile.txt. If this file already
exists any existing lines are removed.

2.6. OUTPUT 59

• Lines 14 and 15 create a new PrintSteam that replaces the standard
output in line 16.

• Line 17 results in a line of text being written to the file myfile.txt.

• Its important that a program closes a file (line 18) in order to release
resources and to allow other programs or users to access the file.

• In line 19 the value of System.out is reset to its initial value.

• The output generated in line 20 goes to the Terminal Window.

If you run the above program you will find that a new file is created in your
BlueJ project folder. You will not see it when you have your project open in
BlueJ, but if you navigate to the project folder in your file system you will
see the file named myfile.txt. You can open the file with a text editor.

Exercises

23. Write a program that prompts the user for their first name, last name,
and middle name. The program creates a file named names.txt where
the names are on separate lines of the file.

60 CHAPTER 2. BASICS

2.6.3 JOptionPane

In some situations a programmer may prefer to use JOptionPane message
dialogs in order to provide the user a more interactive experience. The
following program shows how to display some information to the user and
where the program waits for the user to respond with the click of a button.
When the pop-up window appears, the program is suspended until the user
clicks the OK button. Note that line 1 is an import statement that directs
the compiler to the location where it finds details regarding the JOptionPane
class.

Listing 2.14: Using println()

1 import javax.swing.JOptionPane;

2 public class UsingDialogBox

3 {

4 public static void main(String [] args)

5 {

6 double netPay , grossPay , deductions;

7 grossPay = 100.00;

8 deductions = 10.00;

9 // Calculate net pay

10 netPay = grossPay - deductions;

11 JOptionPane.showMessageDialog(null , "net

pay is "+netPay);

12 }

13 }

When line 11 executes the pop-up window becomes visible and the program
waits for the user to press the OK button:

Exercises

24. Write a program that prompts the user for their first name, last name,
and middle name. The program then displays the names in a dialogue
box.

2.7. INPUT 61

2.7 Input

We examine two ways a programmer can arrange to get input from the user
by using pre-defined Java classes: the Scanner class and the JOptionPane

class.

2.7.1 The Scanner Class

A Scanner object can be used with the standard input stream which is
named System.in. The typical statement used is:

Scanner keyboard = new Scanner(System.in);

System is a pre-defined Java class that has an object named in. Once a
variable like keyboard is defined the programmer can use methods defined
for a scanner object to get values (Java refers to these as tokens) the user
has typed on the keyboard. Some of the most useful methods are listed
below.

Useful Scanner methods

hasNext() returns true if the scanner has more tokens
next() returns the next token
nextLine() returns the next line
nextInt() returns the next int in the input stream
nextDouble() returns the next double in the input stream
nextBoolean() returns the next boolean in the input stream

The program below shows one how to use next(), nextDouble(), and
nextInt() to obtain a user’s name, hours worked and rate of pay. Note
that line 1 is an import statement that directs the compiler to the location
where it find details of the Scanner class. The program uses pairs of state-
ments; for example consider lines 12 and 13 repeated here:

System.out.println("\n\nEnter your name and press enter");

name = keyboard.next();

Line 12 prompts the user, and then in line 13 the user’s input is obtained.
The listing is followed with the contents of the Terminal Window for a sam-
ple run. This shows the output (prompts) from the program and the input
provided by the user via the keyboard.

Listing 2.15: Using JOptionPane for input

1 import java.util.Scanner;

2 public class UsingScannerForInput

3 {

62 CHAPTER 2. BASICS

4 public static void main(String [] args)

5 {

6 double rateOfPay;

7 String name;

8 int hoursWorked;

9 // Declare a scanner object for the keyboard

10 Scanner keyboard = new Scanner(System.in);

11 // Prompt the user for a name

12 System.out.println("\n\nEnter your name (no

spaces) and press enter");

13 name = keyboard.next();

14 // Prompt the user for hours worked

15 System.out.println("Enter the hours worked

(no decimal places) and press enter");

16 hoursWorked = keyboard.nextInt ();

17 // Prompt the user for the rate of pay

18 System.out.println("Enter your rate of pay

and press enter");

19 rateOfPay = keyboard.nextDouble ();

20
21 // Calculate gross pay and display all the

information

22 double grossPay = hoursWorked * rateOfPay;

23 System.out.println("\n Your name: "+name

24 +"\n hours worked: "+hoursWorked

25 +"\n rate of pay: "+rateOfPay

26 +"\n gross pay : "+grossPay);

27 }

28 }

2.7. INPUT 63

Figure 2.8: Terminal Window showing interaction with user

64 CHAPTER 2. BASICS

Exercises

25. Write a program that prompts the user for their birthday as the day
(as an integer), followed by the month (as text), followed by the year
(as an integer) with at least one space between the values. Use the
Scanner methods next() and nextInt() to get these values. Then
the program displays the birthday in the format month day, year. For
example, if the user entered

1 January 1990

then the program would display
January 1, 1990.

2.7. INPUT 65

2.7.2 The JOptionPane Class

To provide a user with a more interactive experience the programmer can use
JOptionPane to prompt the user and to obtain text input from the user. One
of the methods defined in JOptionPane is showInputDialog(. . .). When
this method executes the user is prompted to enter text. The text the user
enters becomes the value of the method. Typically showInputDialog(. . .)
is on the right-hand-side of an assignment statement; for example:

String name = JOptionPane.showInputDialog("Enter name");

When the above line executes the user sees the pop-up window:

The user then uses the keyboard to enter something in the white box in the
pop-up, and then clicks the OK button. The text the user entered is the
value returned by the method.

The following program uses two pop-ups to obtain values from the user;
comments follow the listing.

Listing 2.16: Using JOptionPane for input

1 /**

2 * This Java class uses JOptionPane to obtain

3 * input from the user

4 */

5 import javax.swing.JOptionPane;

6 public class UsingJOptionPane

7 {

8 public static void main(String [] args){

9 String firstName =

JOptionPane.showInputDialog("Enter first

name");

10 String lastName =

JOptionPane.showInputDialog("Enter last

name");

66 CHAPTER 2. BASICS

11 System.out.println ("Your name is:

"+firstName+" "+lastName);

12 }

13 }

• Line 5 is required since we need to tell the Java compiler where it can
find the JOptionPane class.

• When line 9 executes it causes a dialog box to be displayed to the user:

The user enters a value in the box and presses OK. Then control
returns to the program and the value entered is assigned to firstName.

• A similar dialog box is displayed when line 10 executes.

• In line 11 the values obtained from the dialog boxes is displayed in
BlueJ’s terminal window.

Exercises

26. Write a program that uses a dialogue box to prompt the user for a
temperature in Celsius. Then the program uses a dialogue box to
display the equivalent temperature in Fahrenheit.

27. Write a program that uses a dialogue box to prompt the user for a
temperature in Fahrenheit. Then the program uses a dialogue box to
display the equivalent temperature in Celsius.

Chapter 3

Control Structures

Programmers need 3 basic control structures when coding programs. These
three things are: sequences, decisions, and loops. A sequence structure is
one that comprises instructions that are to be executed sequentially one after
the other. A decision structure allows for exactly one of a set of sequences to
be executed. A loop structure comprises a sequence that is to be executed
iteratively. Java has one sequence structure, two (some may say more)
different decision structures, and several ways of coding loops.

3.1 Compound statements

Java statements delimited by curly braces form a compound statement. The
opening brace, ”{”, appears first followed by Java statements and then the
closing brace, ”}” follows. Any time you include a ”{” you must have a
matching ”}”. Pairs like these must be used properly - a pair must never
overlap with another pair, but as we will see one compound statement can
contain another compound statement (see sections on nesting statements).
An example is the following compound statement where the values of x and
y are interchanged:

{

temp = x;

x = y;

y = temp;

}

As you go through the examples in this text you will see many cases where
compound statements are used.

67

68 CHAPTER 3. CONTROL STRUCTURES

3.2 while

The JVM executes the statements in a program sequentially, one statement
after another. However, the while statement can change this. A while

statement contains a statement to be executed repeatedly as long as some
logical expression is true. The statement executed repeatedly is often a com-
pound statement. The general syntax is

while (logical expression)

statement

The order of execution of Java statements can be visualized using a flow
diagram:

How the JVM executes a while

3.2. WHILE 69

A logical expression is an expression that evaluates to a boolean value, i.e.
true or false. Java has several operators which evaluate to true and false in-
cluding the relational and equality operators. Recall the relational operators
are <, <=, >=, and >:

Relational operators

operator meaning example

< less than count < 100
> greater than netPay > 100
<= less than or equal to netPay <= grossPay
>= greater than or equal to number >= 0

Recall the equality operators are == and !=.

Equality operators

operator meaning example

== equal to netPay == grossPay
!= not equal to netPay != grossPay

Recall the logical operators and, or, and not where operands are boolean

values and the result is a boolean:

Boolean operators

operator in Java meaning

AND && Evaluates to true if and only if both operands are true;
evaluates to false otherwise.

OR || Evaluates to true if at least one operand is true;
evaluates to false if both operands are false.

NOT ! NOT: negates the operand.

Some sample boolean expressions follow where
boolean found = false; int i = 5; int j = 100;

expression result

j == 100 true

j != 100 false

found && i<100 false

!found && i<100 true

!found || i==-1 true

i<100 && j<100 false

70 CHAPTER 3. CONTROL STRUCTURES

Example 1

The following program prints numbers from 0 to 9. It does so by executing
a compound statement repeatedly. The variable count is initialized in line 8
to the value 0 and as the while loop executes count takes on the values 1, 2,
3, etc. A detailed explanation of the program follows the program listing. As
you examine the code note the use of indentation - for readability purposes
it is common practice to indent the lines comprising a while loop.

Listing 3.1: Displaying numbers

1 /**

2 * Display the numbers from 0 to 9.

3 */

4 public class Numbers0To9

5 {

6 public static void main(String [] args)

7 {

8 int count = 0;

9 System.out.println("Numbers");

10 while (count < 10){

11 System.out.println(count);

12 count = count + 1;

13 }

14 System.out.println("*******");

15 }

16 }

The JVM starts sequential execution with the statement in line 8 - the
variable count is initialized to 0. The JVM then moves on to Line 9 which
results in the printing of a heading for the output. Next, the JVM encounters
the while loop in Line 10. Observe that lines 11 and 12 are part of a
compound statement. This compound statement is executed for count equal
to 0, 1, 2, and so on, up to count equal to 9; when count has the value 9
the compound statement is executed and count is assigned the value 10 in
line 12. That’s the last time the compound statement is executed since the
logical expression evaluates to false - the JVM will move on to the statement
following the while statement (line 14) where normal sequential execution
resumes. The output follows:

3.2. WHILE 71

Figure 3.1: Output from Numbers0To9

72 CHAPTER 3. CONTROL STRUCTURES

Example 2

Consider another program which displays the digits of a positive number
provided by the user. The program includes a scanner object in line 7 that
is used to get input from the user via the keyboard. Lines 14 to 19 form a
while loop where
• Line 15: the rightmost digit is obtained using the expression

number % 10

• Line 16: the digit is displayed
• Line 17: the value of number is reduced by a factor of 10 using the

expression number / 10

• Line 18: number is displayed
Eventually the value of number will be reduced to 0 and the loop terminates.

Listing 3.2: Display digits

1 import java.util.Scanner;

2 public class DisplayDigits

3 {

4 public static void main(String [] args)

5 {

6 // Arrange to use a scanner object for

keyboard input

7 Scanner keyboard = new Scanner(System.in);

8 // Prompt the user for a positive number

9 System.out.println("Enter a positive number "

10 +"and then press Enter: ");

11 int number = keyboard.nextInt ();

12 System.out.println("The number is "+number);

13 System.out.println("\tdigit\tnumber");

14 while (number > 0){

15 int digit = number % 10;

16 System.out.print("\t"+digit);

17 number = number / 10;

18 System.out.println("\t"+number);

19 }

20 System.out.println("end of list");

21
22 }

23 }

3.2. WHILE 73

An example of output follows where the user entered the value 3476:

Output from DisplayDigits

74 CHAPTER 3. CONTROL STRUCTURES

Nesting statements

The statement executed repeatedly can be any Java statement including
another while (or any other statement discussed in this chapter).

Example 3

The program in Listing 3.3 displays the product i*j for i and j where both
i and j take on values 1 through 4. The outer while (lines 15-23) executes
4 times, the first time with i as 1 and the next time with i as 2, then 3, and
then 4. The inner while (lines 18-21) is executed entirely for each value of
i; that is, for each value of i, the variable j takes on the value 1, then 2, then
3, then 4. Note the indentation in the program: each line within the outer
while is indented the same amount, and each line within the inner while

is indented a further amount.

Listing 3.3: Nesting one while inside another while

1 /**

2 * Program with one while inside another while.

3 * The program prints i, j, and i*j

4 * where i varies from 1 to 4 and

5 * where j varies from 1 to 4

6 */

7 public class NestedWhiles

8 {

9 public static void main(String [] args)

10 {

11 int i, j;

12 System.out.println("\ti\tj\ti*j");

13 // i takes on values 1,2,3,4

14 i = 1;

15 while (i < 5){

16 j = 1;

17 // j takes on values 1,2,3,4

18 while (j < 5){

19 System.out.println("\t"+i+"\t"+j+"\t"+(i*j));

20 j = j + 1;

21 }

22 i = i + 1;

23 }

24 System.out.println("program ended");

3.2. WHILE 75

25 }

26 }

Figure 3.2: Output from NestedWhiles

76 CHAPTER 3. CONTROL STRUCTURES

Exercises

1. What happens when a user enters the value 0 when DisplayDigits is
executed?

2. What happens when a user enters a negative value when DisplayDigits
is executed?

3. What happens when a user enters something that is not an integer
when DisplayDigits is executed?

4. Write a program that will sum the digits of a number. For example if
the number is 124, then the sum of its digits is 7 = 1+2+4.

5. Write a program that obtains integers from the user and displays their
total. The program keeps getting integers until the user enters a value
less than zero or greater than 100.

6. Write a program that will sum the integers from -100 to 100. Note the
answer you expect is a sum equal to 0.

7. Write a program that converts from Celsius to Fahrenheit for Celsius
values starting at -40 and going up +40 in increments of 1.

8. Write a program that converts from Fahrenheit to Celsius for Fahren-
heit values starting at -40 and going up +40 in increments of 1.

9. Write a program to convert from Euro Dollars to US Dollars for Euros
ranging from 100 to 1,000 in steps of 100. Prompt the user for the
exchange rate for converting Euros to US dollars. At the time of
writing the exchange rate was 1.12; that is, 1 Euro was worth 1.12 US
dollars.

10. Consider the calculation of n factorial defined as:

n! = 1× 2× 3× ...× n where n > 0

Use a while to calculate n! Prompt the user for the value of n.

11. How many times is the print statement in Listing 3.3 (line 19) exe-
cuted?

12. Modify the program in Listing 3.3 so that i and j vary from 1 to 10.

3.2. WHILE 77

Autoincrement

Because statements that increment a variable’s value, such as i = i + 1;

are so common Java has a special unary operator ++ for this. The state-
ment i++; has the same effect as the above assignment statement. ++ is
a unary operator (takes one operand). The operand can be before or after
the ++. The difference relates to when the increment occurs which is only
relevant in more complex expressions.

Java has a similar operator, - -, which has the effect of decrementing the
value of a variable, and so the following two statements are equivalent:

count = count - 1;

count--;

Exercises

13. Modify the program in Listing 3.3 to use the ++ operator.

14. Use nested whiles to print a 4× 4 times-table. The times-table should
appear as follows

1 2 3 4

1 1 2 3 4
2 2 4 6 8
3 3 6 9 12
4 4 8 12 16

78 CHAPTER 3. CONTROL STRUCTURES

3.3 if

The structure of an if statement is shown below. The else and statement-2
are optional - we say the if statement has an optional else clause. Statement-
1 is sometimes referred to as the then clause.

When the JVM executes an if statement, the JVM will first evaluate the
logical expression. If the expression is true then statement-1 is executed;
if the expression is false then statement-2, if present, is executed. The if
statement conditionally executes either statement-1 or statement-2. The
JVM process can be visualized as:

How the JVM executes an if

3.3. IF 79

Example 1

Suppose one needs to display one of two possible messages. To do this we
can use an if with a then clause and an else clause. Consider the following
program that displays one of two messages depending on the value of the
expression number > 0. In lines 9 and 10 the user is prompted for a num-
ber; in line 14 the if determines to print "positive" or "not positive"

according to the value of number > 0. Note that compound statements are
used even though it was not necessary - some programmers always code
compound statements. The output of a run where the user supplied the
value 123 follows.

Listing 3.4: Using an if statement

1 import java.util.Scanner;

2 public class PositiveOrNot

3 {

4 public static void main(String [] args)

5 {

6 // Use a scanner object for keyboard input

7 Scanner keyboard = new Scanner(System.in);

8 // Prompt the user for a number

9 System.out.println("Enter a number "

10 +"and then press Enter: ");

11 int number = keyboard.nextInt ();

12 System.out.print("the number "+number+" is

");

13 // Display a message if number is positive

or not

14 if (number > 0) {

15 System.out.println("positive");

16 }

17 else {

18 System.out.println("not positive");

19 }

20 }

21 }

80 CHAPTER 3. CONTROL STRUCTURES

Using an if statement.

3.3. IF 81

Exercises

15. Write a program that obtains a number from the user and displays
whether the number is an even number or an odd number. Note the
expression number % 2 equals 0 if number is even and 1 if number is
odd.

16. Write a program that obtains two numbers from the user and displays
the larger of the two numbers.

82 CHAPTER 3. CONTROL STRUCTURES

Nesting statements

The syntax of the if statement provides for the conditional execution of any
Java statement, including other if statements, whiles, etc.

Example 2

Suppose we need to handle monetary transactions and the program oper-
ates in a country where there are no pennies in circulation. In this case cash
transactions will be rounded to the nearest nickel; electronic transactions
are for the exact amount but there is a surcharge of 25 cents.

Consider the program in Listing 3.5 where the user is prompted to sup-
ply two things: the nature of the transaction (cash vs debit card) and the
amount of the transaction. In the section on doubles we discussed the use
of an integer data type for monetary transactions, and so the amount of a
transaction is in pennies. In line 12 int variables are defined to hold the
amount. In line 14 the user is prompted for the type and cost of a purchase.

The structure of the code involves the use of nested if statements. The
outer if (lines 19 to 26) determines if payment is by cash or debit card.
The then clause (lines 20-24) handles a cash payment and the else clause
(lines 25-26) handles a debit card payment. For the case of a cash payment
there is an inner if (lines 20 to 23) nested inside the then clause that rounds
the cost up or down to the nearest nickel. The else clause of the outer adds
the additional charge for using a debit card.

Following the listing is sample output showing the result for a cash transac-
tion for $121.21.

Listing 3.5: Using an if statement

1 import java.util.Scanner;

2 /**

3 * Determine value of payment to be received from

customer

4 * based on whether or not it is cash payment.

5 * Cash payments are rounded off to the nearest

nickel and

6 * debit card payments have a surcharge of 25 cents.

7 */

8 public class RoundCostUpDown

3.3. IF 83

9 {

10 public static void main(String [] args)

11 {

12 int originalCost , actualCost;

13 String typePayment;

14 System.out.println("Enter type of payment

and "

15 +"value of purchase in pennies: ");

16 Scanner kb = new Scanner(System.in);

17 typePayment = kb.next();

18 originalCost = kb.nextInt ();

19 if (typePayment.equals("cash")) {

20 if (originalCost % 5 < 3)

21 actualCost = originalCost -

originalCost %5;

22 else

23 actualCost = originalCost + (5 -

originalCost %5);

24 }

25 else

26 actualCost = originalCost + 25;

27 System.out.println(originalCost+"

"+actualCost);

28 }

29 }

Using nested if statements.

84 CHAPTER 3. CONTROL STRUCTURES

Example 3

Sometimes the information we need to implement in a Java program is given
by a table structure. For instance suppose we have the following table that
is to be used to determine the appropriate numeric grade to be given for a
specific letter grade. Consider the table:

letter grade numeric grade

A 4
B 3
C 2
D 1
F 0

If a person is given a letter grade, its a simple matter for that person to
find the grade in the letter grade column and look across to determine the
numeric grade. However, it may not be obvious how to do this in a Java
program. We will consider 3 different ways this might be coded, the last of
which we would say is the preferred approach.

A first approach is to code an if statement for each line of the table where
the logical expression relates to the letter grade value in the line. For in-
stance the statement

if (letterGrade.equals("A"))

numericGrade = 4.0;

will assign numericGrade the value 4.0 when the letter grade is "A". A
program needs similar statements for the other letter grades. For example
at most one of the following logical expressions will evaluate to true:

if (letterGrade.equals("A"))

numericGrade = 4.0;

if (letterGrade.equals("B"))

numericGrade = 3.0;

if (letterGrade.equals("C"))

numericGrade = 2.0;

If you examine the program in Listing 3.6 you will see the variable numericGrade
initialized to 0.0 and so there are just 4 if statements to catch ”A”, ”B”,
”C” and ”F”.

3.3. IF 85

Listing 3.6: Using an if statement

1 import java.util.Scanner;

2 /**

3 * Determine a numeric equivalent to a letter grade.

4 * Note the standard indentation of extra spaces.

5 */

6 public class LetterGradeToNumericGrade1

7 {

8 public static void main(String [] args)

9 {

10 String letterGrade;

11 // default value for numericGrade

12 // corresponds to "F"

13 double numericGrade =0.0;

14 System.out.println("Please enter letter

grade:");

15 Scanner kb = new Scanner(System.in);

16 letterGrade = kb.next();

17 if (letterGrade.equals("A"))

18 numericGrade = 4.0;

19 if (letterGrade.equals("B"))

20 numericGrade = 3.0;

21 if (letterGrade.equals("C"))

22 numericGrade = 2.0;

23 if (letterGrade.equals("D"))

24 numericGrade = 1.0;

25 System.out.println(letterGrade+" is

equivalent to "+numericGrade);

26 }

27 }

When this first version executes every logical expression is evaluated. This
can be avoided to some degree if we use nested ifs - we can avoid some
unnecessary evaluations.

Consider the program in Listing 3.7. When you review this program note
the nesting of the ifs - each else clause contains an if. Only a minimum
number of logical expressions are evaluated. For instance if the letter grade
is ”B” only two logical expressions are evaluated.

86 CHAPTER 3. CONTROL STRUCTURES

Listing 3.7: Using an if statement

1 import java.util.Scanner;

2 /**

3 * Determine a numeric equivalent to a letter grade.

4 * Note the standard indentation of extra spaces

5 * for nested if statements.

6 */

7 public class LetterGradeToNumericGrade2

8 {

9 public static void main(String [] args)

10 {

11 String letterGrade;

12 double numericGrade;

13 System.out.println("Please enter letter

grade:");

14 Scanner kb = new Scanner(System.in);

15 letterGrade = kb.next();

16 if (letterGrade.equals("A"))

17 numericGrade = 4.0;

18 else

19 if (letterGrade.equals("B"))

20 numericGrade = 3.0;

21 else

22 if (letterGrade.equals("C"))

23 numericGrade = 2.0;

24 else

25 if (letterGrade.equals("D"))

26 numericGrade = 1.0;

27 else

28 numericGrade = 0.0;

29 System.out.println(letterGrade+" is

equivalent to "+numericGrade);

30 }

31 }

The indentation you see in the above program is the standard way to show
one control structure embedded in another control structure.

However, when there are nested ifs and when the logical expressions differ
only in the value being tested: ”A”, ”B”, . . . , a Java programmer can change

3.3. IF 87

the indentation. Each of the cases being tested for are essentially the same
and to stress that, a programmer would alter the indentation to that shown
below in Listing 3.8. Then, the nested ifs are be referred to as an if else-if
structure.

Listing 3.8: Using an if statement

1 import java.util.Scanner;

2 /**

3 * Determine a numeric equivalent to a letter grade.

4 * Note how "else if" appears on one line

5 * and how they are aligned.

6 */

7 public class IfElseIfIndentation

8 {

9 public static void main(String [] args)

10 {

11 String letterGrade;

12 double numericGrade;

13 System.out.println("Please enter letter

grade:");

14 Scanner kb = new Scanner(System.in);

15 letterGrade = kb.next();

16 if (letterGrade.equals("A"))

17 numericGrade = 4.0;

18 else if (letterGrade.equals("B"))

19 numericGrade = 3.0;

20 else if (letterGrade.equals("C"))

21 numericGrade = 2.0;

22 else if (letterGrade.equals("D"))

23 numericGrade = 1.0;

24 else

25 numericGrade = 0.0;

26 System.out.println(letterGrade+" is

equivalent to "+numericGrade);

27 }

28 }

Later on in the section on the switch statement we will see yet another way
to determine the pertinent line of the grade table.

88 CHAPTER 3. CONTROL STRUCTURES

Exercises

17. Consider how a numeric grade could be translated into a letter grade,
as defined in this table:

range grade

80-100 A
70-79 B
60-69 C
50-59 D
0-49 F

Given a mark, its a simple matter to figure out which range it falls into
and determine the corresponding grade. Write a program which ob-
tains a numeric value and translates that into a letter grade. Consider
using statements of the form: if (mark > ...)

18. Modify your program for the above question so that it validates the
mark obtained from the user to ensure the value is in the range [0, 100].

19. Write a program that obtains 10 numbers from the user and then
displays the largest of these numbers. Control the input using a while

and nest an if inside the while.

3.4. FOR 89

3.4 for

The for statement is commonly used where there is a need for a statement
to be executed a specific number of times. This type of looping construct
is sometimes called a counted loop. The syntax of the for statement we
consider here is

for (initialization; logical expression; increment)

statement

Contrasting the for syntax to the while syntax:

1. The keyword beginning the statement is for

2. Instead of a single logical expression inside parentheses there are three
components separated by semi-colons.

(a) An initialization section
(b) A logical expression (just as the while has)
(c) An increment section

JVM and the for

The JVM executes a for as shown:

90 CHAPTER 3. CONTROL STRUCTURES

The for is heavily used in Java programming. We will use several examples
to show its application.

3.4. FOR 91

Example 1

Below we use a for to manage a loop that displays the numbers from 0 to
9. You should compare this to Numbers0To9 in Section 3.2.

Listing 3.9: Using for

1 /**

2 * Display numbers 0 to 9 using a for

3 */

4 public class Numbers0To9WithFor

5 {

6 public static void main(String [] args)

7 {

8 System.out.println("Numbers");

9 for (int count =0; count < 10; count++)

10 System.out.println(count);

11 System.out.println("*******");

12 }

13 }

Comparing the above program to Numbers0To9 in section 3.2 we note:

1. The initialization component declares and initializes the variable count.
Because it is declared inside the for, this variable count is known only
here inside the for. This is known as its scope.

2. The second component is the logical expression - the loop executes as
long as this evaluates to true

3. The update component is an autoincrement for count.

Notice how the lines that comprise the for statement are indented to en-
hance readability. This program displays the values 0, 1, . . . 9 and so it
should be evident that count takes on values 0, 1, . . . 9, and that the for

executes 9 times.

The for statement is the preferred programming idiom for a counted loop.

92 CHAPTER 3. CONTROL STRUCTURES

Example 2

A common situation where a counted loop arises in the processing of strings.
A string of text comprises individual characters. The String method length()

returns the length of a string, and the charAt(. . .) is used to access indi-
vidual characters. The argument provided to charAt(. . .) is the index of
a character within the string - the index of the first character is 0, and the
index of the last character is length()-1. Consider the following program
that displays the characters comprising a string one-by-one. To do this, the
program has a for loop (lines 14-17) that executes once for each character
in the string.

Listing 3.10: Display characters in a string one-by-one.

1 /**

2 * Displays a text string character -by -character.

3 * Get individual characters using the charAt (...)

method

4 */

5 public class GetIndividualCharacters

6 {

7 public static void main(String [] args){

8 // a string of characters

9 String text = "abc123";

10 // the length (number of characters) of the

string

11 int textLength = text.length ();

12 System.out.println("text string is: "+text);

13 System.out.println("now , each character

one -by-one");

14 for (int i=0; i<textLength; i++){

15 char c = text.charAt(i);

16 System.out.println(c);

17 }

18 }

19 }

3.4. FOR 93

Table 3.1: Process individual characters of a string

94 CHAPTER 3. CONTROL STRUCTURES

Nested statements

The for statement contains a statement to be repeated. This statement
can be any Java statement. Consider the following example where an if

statement appears inside a for statement.

Example 3

This program examines a line of text and counts the number of times ’a’

appears. The program uses the String method length() to obtain the
length of a text string and the method charAt(. . .) to obtain an individual
character within a text string. The program has a for loop (lines 17-20)
that executes once for each character in the text string; the for contains an
if where the current character is compared to ’a’.

Listing 3.11: Counting lower case alphabetic characters

1 import java.util.Scanner;

2 /**

3 * Count the number of lowercase ’a’s

4 * in a line provided by the user.

5 */

6 public class CountLetters

7 {

8 public static void main(String [] args)

9 {

10 String text;

11 System.out.println("Enter text: ");

12 Scanner kb = new Scanner(System.in);

13 text = kb.nextLine ();

14 int count = 0;

15 for (int i=0; i<text.length (); i++){

16 if (text.charAt(i) == ’a’)

17 count ++;

18 }

19 System.out.println("The line contains

"+count

20 +" a\’s");

21 }

22 }

3.4. FOR 95

Example 4

The program in Listing 3.12 below displays the product i*j for i and j

where both i and j take on values 1 through 4. The output produced is the
same as Example 3 in the section on the while statement.

The outer for (lines 10-13) executes 4 times, the first time with i as 1 and
the next time with i as 2, then 3, and then 4. The inner for (lines 11-12) is
executed entirely for each value of i; that is, for each value of i, the variable
j takes on the value 1, then 2, then 3, then 4.

Note the indentation in the program: each line within the outer for is
indented the same amount, and each line within the inner for is indented a
further amount.

Listing 3.12: Using nested for statements

1 /**

2 * Print values of i, j , and i*j where

3 * i varies from 1 to 4 in increments of 1, and

4 * where j varies from 1 to 4 in increments of 1.

5 */

6 public class NestedFor

7 {

8 public static void main(String [] args){

9 System.out.println("\ti\tj\ti*j");

10 for (int i=1; i<=4; i++){

11 for (int j=1; j<=4; j++)

12 System.out.println("\t"+i+"\t"+j+"\t"+(i*j));

13 }

14 System.out.println("program ended");

15 }

16 }

96 CHAPTER 3. CONTROL STRUCTURES

Table 3.2: Display i, j, and i*j

3.4. FOR 97

Example 5

In this example we create a 5 × 5 times table. This table comprises rows
and columns where the entry at the intersection the ith row and jth column
is the product of i and j, i ∗ j:

1 2 3 4 5

1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20
5 5 10 15 20 25

We develop this example in two steps. In the first step we simply produce
the values that will appear as entries in the times table, and in the second
step we will see it properly formatted with column and row headings.

. . . Step 1, products for the times table

This version produces all the values for the first row, then for the second
row, etc. This will require an outer for controlling the row number and an
inner for controlling the column number:

for (int i=1; i<=5; i++){

for (int j=1; j<=5; j++){

System.out.print(i*j);

...

In the above the outer for uses the variable i to ensure the loop controlling
rows executes 5 times, and the inner for uses the variable j to ensure this
loop executes 5 times, once for each column. As the inner loop is executed
completely for each value of i, the print statement in the inner loop executes
a total of 5×5 = 25 times. Now, consider the following program where nested
fors are used to produce values for the times table.

98 CHAPTER 3. CONTROL STRUCTURES

Listing 3.13: Step 1 products for the times table.

1 /**

2 * Produce values for a 5x5 times table using

nested for statements

3 */

4 public class TimesTableStep1

5 {

6 public static void main(String [] args)

7 {

8 // variable i represents row i

9 for (int i=1; i<=5; i++) {

10 // variable j represents row j

11 for (int j=1; j<=5; j++) {

12 // multiply i and j

13 // print (...) keeps all values for

i on same line

14 System.out.print("\t"+i*j);

15 }

16 System.out.println ();

17 }

18 }

19 }

Table 3.3: Generating products.

3.4. FOR 99

. . . Step 2, formatting the times table

The completed program and its output are shown next. To reasonably
format the times table we have added a title for the output (line 10), column
headings (lines 12-14). Then, for each row of the table, a row heading
is printed (line 19). Note the mixed use of the print() and println()

methods.

Listing 3.14: Step 2 formatted times table.

1 /**

2 * 5x5 times table with column and row headings

3 * using nested for statements

4 */

5 public class TimesTableWithFors

6 {

7 public static void main(String [] args)

8 {

9 // heading and column headings

10 System.out.println("\n\t5x5 Times Table");

11 System.out.println ();

12 for (int i=1; i<=5; i++)

13 System.out.print("\t"+i);

14 System.out.println ();

15
16 // Compute and print rows of times table

17 for (int i=1; i<=5; i++){

18 // row heading and row contents

19 System.out.print(i);

20 for (int j=1; j<=5; j++)

21 System.out.print("\t"+i*j);

22 System.out.println ();

23 }

24 }

25 }

100 CHAPTER 3. CONTROL STRUCTURES

Table 3.4: Formatting the times table

3.4. FOR 101

Exercises

20. Modify the program in Example 1 to display the value of count in line
11 outside the scope of the for. Does your program compile? What
message do you get from the compiler?

21. Consider Example 1 again. The variable count is defined in the for

statement and so the scope of count is the for statement. Modify the
example properly in order to display the value of count in the print
statement (line 11). To do this you must declare count before the for
statement, as in:

int count;

for (count =0; count < 10; count ++)

...

22. Write a program that prompts the user for 10 values, and then displays
the sum, the average, the minimum, and the maximum of those 10
values.

23. Write a program that converts from Celsius to Fahrenheit for Celsius
values starting at -40 and going up +40 in increments of 1.

24. Write a program that converts from Fahrenheit to Celsius for Fahren-
heit values starting at -40 and going up +100 in increments of 1.

25. Write a program to convert from Euro Dollars to US Dollars for Euros
ranging from 100 to 1,000 in steps of 100. Prompt the user for the
exchange rate for converting Euros to US dollars. At the time of
writing the exchange rate was 1.12; that is, 1 Euro was worth 1.12 US
dollars.

26. Write a program that will sum the digits of a number. For example if
the number is 124, then the sum of its digits is 7 = 1+2+4

27. Write a program that prompts the user for an identification number
(e.g. student number, credit card number, etc.). The program must
then display each digit of the number.

28. Consider the calculation of n factorial defined as:

n! = 1× 2× 2× ...× n where n > 0

102 CHAPTER 3. CONTROL STRUCTURES

Write a program that will list in table form, the value of n and n!
for n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Display n and n! The output will look
similar to:

n n!
1 1
2 2
3 6
4 24

. . .

29. The fibonacci sequence is the following integer sequence:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .
We can define them more generally as:
Fn = Fn−1 + Fn−2 for n > 1
where F1 = 1 and F0 = 0
Write a program that prompts the user for n and then displays Fn.

30. Consider the formula where the value of f depends on x:
f(x) = 3 + 5x− 7x2 + 3x3 + 6x4

For computational purposes we can re-express the formula as:
f(x) = 3 + x(5 + x(−7 + x(3 + 6x)))
which reduces the total number of calculations. Write a program to
evaluate f(x) for x = 0, 1, 2, 3, . . . 10

31. Modify the Times Table example so that it produces an n × n times
table. Prompt the user for the value of n.

32. Write a program that reads an integer value and then displays that
number of asterisks. For instance, if the value read is 11 then the
output is:

33. Write a program that reads an integer value representing the number of
students majoring in Mathematics and then another value representing
the number of students majoring in Statistics. The program then
displays two lines of asterisks to illustrate the number of students
majoring in those subject areas. For example if the values were 11
and 15 the output would be:
Mathematics ***********
Statistics ***************

3.4. FOR 103

34. Modify the previous program so that it reads 5 pairs of values, where
each pair comprises a major (a text string) and the number of students
in that major (an integer). For example if the input was

Mathematics 14
Statistics 15
English 25
French 15
Geology 10

the output would be:

Mathematics **************
Statistics ***************
English *************************
French ***************
Geology **********

104 CHAPTER 3. CONTROL STRUCTURES

3.5 do . . . while

The do . . . while statement is useful when it is known the loop body must
execute at least once. The syntax of the do . . . while statement is

do statement while (logical expression) ;

JVM and the do . . . while

The JVM executes a do . . . while as shown:

In words we express the process followed by the JVM as:

1. execute the statement

2. evaluate the logical expression

3. if the expression is true then go back to step 1, otherwise carry on
with the statement following the do . . . while

When one compares this control structure to other Java control structures
(compound, if, for, and switch statements) there is one difference that
stands out: the semi-colon at the end. This semi-colon is necessary - if you
remove it the compiler will not recognize your do . . . while and the program
will not be executable.

3.5. DO . . . WHILE 105

Example 1

Let us consider a simple program to display the numbers from 0 to 9 us-
ing a do . . . while. Lines 11 and 12 form the compound statement that is
executed repeatedly. The process of executing the do . . . while is straight-
forward:

1. execute lines 11 and 12

(a) display a number

(b) increment the value of count

2. evaluate count < 10 in line 14, and if the expression is true then
repeat these steps starting at step 1.

Note the semi-colon at the end of line 14.

Listing 3.15: Display numbers 0 . . . 9.

1 /**

2 * Display the numbers from 0 to 9.

3 */

4 public class Numbers0To9UsingDoWhile

5 {

6 public static void main(String [] args)

7 {

8 int count = 0;

9 System.out.println("Numbers");

10 do{

11 System.out.println(count);

12 count = count + 1;

13 }

14 while (count < 10);

15 System.out.println("*******");

16 }

17 }

106 CHAPTER 3. CONTROL STRUCTURES

Example 2

Consider a program someone can use to develop their addition skills. The
program should behave as follows:

1. Give the user two numbers to add.

2. Evaluate the user’s answer.

3. Prompt the user whether or not to repeat.

4. Go back to step 1 if the user wants to try another addition.

As well as including a do . . . while this program makes use of three Java
classes: Random (Chapter 4.1), Scanner (Chapter 4.3), and String (Section
2.5). Consider these points:

1. (line 14) The variable generator references an instance created from
the Random class. The Random class has many methods that can be
used to generate random values; in lines 20 and 21 there is the expres-
sion generator.nextInt(10)+1 to obtain random values between 1
and 10.

2. The variable kb defined in line 13 references an instance of the Scanner
class and is used to manage input from the standard input device, the
keyboard.

3. The String variable response defined in line 15 is used to hold the
user’s response to the prompt "To try again enter Y". The pro-
gram uses two methods from the String class: toLowerCase() and
equals(...).

(a) (line 31) toLowerCase() converts the user’s response to all lower
case characters

(b) (line 33) equals("y") is used to compare the user’s response in
lower case to the lower case ”y” and evaluates to true if the user’s
response had been ”Y” or ”y”. If true then execution resumes at
line 20, otherwise execution of the do . . . while terminates and
execution resumes at line 34.

3.5. DO . . . WHILE 107

Listing 3.16: Developing addition skills.

1 import java.util.Scanner;

2 import java.util.Random;

3 /**

4 * Give the user two random integers to add.

5 * Inform user if their answer is correct.

6 * Prompt the user to try again.

7 * The user always attempts one addition.

8 */

9 public class Additions

10 {

11 public static void main(String [] args)

12 {

13 Scanner kb = new Scanner(System.in);

14 Random generator = new Random ();

15 String response;

16 System.out.println("Welcome. "

17 +"Try some additions:");

18 do

19 {

20 int n1 = generator.nextInt (10) +1;

21 int n2 = generator.nextInt (10) +1;

22 System.out.println(n1+"+"+n2+"=?");

23 int answer = kb.nextInt ();

24 if (answer == n1+n2)

System.out.println("Correct!");

25 else System.out.println(

26 "Sorry that is not correct "

27 +"... the sum is "+(n1+n2));

28 System.out.println(

29 "To try again enter Y: ");

30 response = kb.next();

31 response = response.toLowerCase ();

32 }

33 while (response.equals("y"));

34 System.out.println("Goodbye");

35 }

36 }

108 CHAPTER 3. CONTROL STRUCTURES

Exercises

35. Modify Example 1 so the program will display the sum of the numbers
from 0 to 9.

36. Modify Example 2 so the user gets a report when the program ends:
the number of correct and the number of incorrect answers.

37. Write a program that chooses a random number between 1 and 100,
and then asks the user to guess what the number is. If a user guesses
the number the program informs the user and stops, otherwise the
program informs the user if they too high or too low, and the user is
prompted to guess again. Use a do . . . while to control the iteration.

38. One can simulate the tossing (rolling) of a six-sided die through the
use of the Random class. In many games two dice are thrown and the
player’s turn depends on the total value of the two dice. The following
code instantiates two dice that can be used in a game:

Random die1 = new Random ();

Random die2 = new Random ();

Now, if we want to roll the two dice and know the total thrown we
could use:

int toss1 = die1.nextInt (6)+1;

int toss2 = die2.nextInt (6)+1;

total = toss1 + toss2;

In some games a player rolls the dice at least once. Suppose we want to
simulate a player rolling the dice until ”snake eyes” are thrown. Snake
eyes is the term used to describe a throw where two one’s appear.
Write a program that uses a do . . . while to simulate the rolling of
two dice. The program must list the totals thrown until ”snake-eyes”
appear.

3.6. SWITCH 109

3.6 switch

The switch statement is a decision structure where one choice, of possibly
many, different choices are made. The general structure of the switch state-
ment is

switch (expression) {

case value1 : statement list1
case value2 :statement list2
case value3 :statement list3
. . .

default : default statement list

}

JVM and the switch

The JVM executes a switch as shown:

110 CHAPTER 3. CONTROL STRUCTURES

The switch statement contains a number of case groups where each group
contains a list of statements. The switch statement has an expression which
is used to determine where execution continues: If the value of the expres-
sion matches a value for a case group, then execution continues with the
case group’s statement list. If the expression does not match any of the
specified values then the default statement list is executed, if one exists.

Each statement list has a well-defined starting point. The statements of a
statement list are executed one-by-one until the JVM encounters a break

statement. When a break is executed, the execution of the switch ter-
minates and the statement following the switch is executed next (normal
sequential execution of statements resumes). If a statement list does not
have a break statement then the the next statement list will execute, and
so on until either a break is encountered or the end of the switch is reached.

The default case group is optional: If the switch expression’s value does
not match a case value and if there is no default case group then the switch
statement terminates - and the statement following the switch is executed
next.

Normal usage of the switch is that each case group has a statement list and
the last statement of the group is a break. However, there are times when
it is useful for a statement group to be empty, and there are times when it
is useful for a statement group to not have a break statement.

Note that when all statement lists end with a break statement it is possible
to replace a switch statement with nested if statements where the logical
expressions are of the form

expression.equals(value) for String expressions, and
expression == value for other types.

The expression and matching values can only be of certain data types that
include: char, byte, short, int, and the String type. Other included types
are enumeration types and the wrapper classes: Character, Byte, Short,
Integer.

3.6. SWITCH 111

Example 1

Previously we considered translating a letter grade to a numeric grade using
an if. In the program below each case group represents a line from the
table:

letter grade grade point

A 4
B 3
C 2
D 1
F 0

In this program a letter grade is obtained from the user. When the switch

executes the expression grade is evaluated and compared to each case value.
If the value of grade matches a value in some case, then the statement list
for that case is executed. If the value of grade is not an ”A”, ”B”, ”C” or
”D” the program assumes it must be ”F” and so the default case is executed
and 0.0 is assigned to nGrade.

Listing 3.17: Translate grade to its numeric value.

1 import java.util.Scanner;

2 /**

3 * Letter grade translated to a numeric grade.

4 */

5 public class LetterGradeToNumericGradeWithSwitch

6 {

7 public static void main(String [] args)

8 {

9 String grade;

10 double nGrade;

11 System.out.println("Enter letter grade:");

12 Scanner kb = new Scanner(System.in);

13 grade = kb.next();

14 switch (grade) {

15 case "A": nGrade = 4.0;

16 break;

17 case "B": nGrade = 3.0;

18 break;

19 case "C": nGrade = 2.0;

20 break;

112 CHAPTER 3. CONTROL STRUCTURES

21 case "D": nGrade = 1.0;

22 break;

23 default: nGrade = 0.0;

24 }

25 System.out.println(grade+" --> "+nGrade);

26 }

27 }

If this program did not have any break statements then every grade would
be assigned the same numeric value: 0.0. Consider this code:

grade = kb.next();

switch (grade) {

case "A": nGrade = 4.0;

case "B": nGrade = 3.0;

case "C": nGrade = 2.0;

case "D": nGrade = 1.0;

default: nGrade = 0.0;

}

System.out.println(grade+" --> "+nGrade);

Now suppose grade has the value "A" then every assignment statement
executes and the last one executed is nGrade = 0.0 so the numeric grade
assigned is 0.0.

3.6. SWITCH 113

Exercises

39. Write a program that prompts the user for a date in the yyyy mm dd

format and then prints the date in the form month name dd, yyyy. For
example, if the user provides 2000 01 01 then the program displays
January 1, 2000.

40. Write a program where the user provides the name of a month and the
program displays the number of days in that month. We will ignore
the fact that February sometimes has 29 days (in a leap year). In a
sense Java lets you combine cases by allowing empty statement lists.
For example, April, June, September, and November each have 30
days and so you can write code such as:

case "April":

case "June":

case "September":

case "November":

numDays = 30;

break;

If the switch expression evaluates to any of
"April", "June", "September", "November"

then numDays = 30 will be executed.

41. Suppose we need a program that accepts a month followed by a day
and then reports the number of days left in the year. Again, we shall
ignore the concept of leap year. For example, suppose the user entered:

October 30

As October has 31 days, November has 30 days, and December has 31
days, the number of days left is (31− 30) + 30 + 31 = 62.

Incorporate the following type of switch where each statement group
simply increments a variable and where there are no break statements
(so statement lists are executed from the selected case until the end of
the switch). Note the use of the combined assignment operator +=.

int numberOfDays = 0;

switch (month) {

case "January": numberOfDays += 31;

case "February": numberOfDays += 28;

case "March": numberOfDays += 31;

...

}

114 CHAPTER 3. CONTROL STRUCTURES

Chapter 4

Classes in the Java Class
Libraries

4.1 Random

The Random provides a capability to generate pseudorandom values. The
term pseudorandom is used because the stream of values we can get are
generated algorithmically - if one knows the initial value used and the algo-
rithm, we can predict the sequence of random values. The interested reader
who wants to learn more about random number generation should consult
the book The Art of Computer Programming Volume 2 [6]. In what follows
we will use the word random but do remember the values obtained are pseu-
dorandom.

The Random class provides methods the programmer can use to generate
random values that include boolean, integer, and double types. The Math
class also has a method random() that can be used to generate random
double values between 0.0 (inclusive) and 1.0.

In order to generate random values a program must instantiate an object
from the Random class. There are two constructors for this purpose: one
that takes an argument (a seed or initial value) and one that does not (the
no-arg constructor). The advantage to using a seed is that the stream of
values is always the same and this can assist in debugging code. One cannot
predict the values to be obtained if the no-arg constructor is used since it
bases its’ seed on the system time.

115

116 CHAPTER 4. CLASSES IN THE JAVA CLASS LIBRARIES

Example 1

We begin with a simple example to simulate rolling a six-sided die. Tradi-
tionally the values of the sides are 1, 2, 3, 4, 5, 6. Random has a method
nextInt(. . .) that returns an int value between 0 and the argument pro-
vided. So, if g is a Random object, then to obtain random values as if one
is rolling a six-sided die one uses: g.nextInt(6)+1. The following program
simulates tossing a die 10 times.

Listing 4.1: Translate grade to its numeric value.

1 import java.util.Random;

2 /**

3 * Display 10 rolls of a 6-sided die.

4 */

5 public class RollDie

6 {

7 public static void main(String [] args)

8 {

9 System.out.print("\n\n10 rolls: ");

10 Random g = new Random ();

11 for (int i=0; i<10; i++)

12 System.out.print(g.nextInt (6) +1+" ");

13 }

14 }

Four sample runs of RollDie.java:

RollDie run four times

4.1. RANDOM 117

Example 2

Consider the tossing of a coin where one side of the coin is considered a head
and the other a tail. There are many approaches one could use, for example:

1. nextInt(2) generates 0 and 1

2. nextRandom() generates true and false

3. nextInt() generates integers - approximately half are negative, the
other half positive (or half are even and half are odd.

The next program simulates tossing a coin 100 times and tabulating the
number of occurrences for the two outcomes. In the long run we expect the
number of heads and the number of tails to be equal, but that’s not likely
to occur on a single run.

Listing 4.2: Translate grade to its numeric value.

1 import java.util.Random;

2 /**

3 * Toss a coin 100 times and tabulate the

4 * number of heads and the number of tails.

5 */

6 public class TossCoin

7 {

8 public static void main(String [] args)

9 {

10 int heads = 0;

11 System.out.print("\n100 tosses: ");

12 Random g = new Random ();

13 for (int i=0; i <100; i++)

14 if(g.nextBoolean ())heads ++;

15 System.out.println("\nHeads: "+heads

16 +"\nTails: "+(100 - heads));

17 }

18 }

118 CHAPTER 4. CLASSES IN THE JAVA CLASS LIBRARIES

A result from running TossCoin.java:

RollDie run four times

4.1. RANDOM 119

Exercises

1. Modify Example 1 using a seed value when instantiating g. For exam-
ple the line

Random g = new Random()

can be replaced by
Random g = new Random(101)

Run the program twice and notice the sequence of random numbers
is the same both times. Using a seed can be useful if you are having
difficulty debugging your program.

2. In the game of craps there are names given to various outcomes of
rolling two dice. For example:

Names of rolls

snakes eyes two 1s
hard four two 2s
yo-leven 6 and 5
natural 1 and 6, 2 and 5, 3 and 4

Write a program that will simulate throwing 2 dice until snake eyes
occurs. The program must list each throw including the snake eyes.

3. In the standard game of Pig players take turns rolling a single die. In
a turn a player repeatedly rolls a die according to:

• If a player rolls a 1, the player scores nothing for that turn and
it becomes the next player’s turn.

• If a player rolls any other number, that number is added to the
player’s turn total and the player’s turn continues.

• If a player chooses to ”hold”, the player’s turn total is added to
the player’s total score, and it becomes the next player’s turn.

Write a program to simulate the rolling of a single die until a 1 turns
up. Your program must list each roll.

4. Consider the game of Pig again. Write a program to simulate a player’s
turn where the player’s strategy is to continue rolling as long as the
turn score is less than 25. That is, the player holds if the turn score is
25 or better. Of course, if a 1 is rolled, the player gets a turn score of
0. Your program must list each roll and at the end of the turn display
the turn total.

120 CHAPTER 4. CLASSES IN THE JAVA CLASS LIBRARIES

4.2 Character

The Character class has many static methods that can be used. Because the
methods are static the programmer does not instantiate an object. Instead,
when using one of these class methods it must be prefixed with Character.,
for example Character.toLowerCase(ch). The following table lists some
common static methods of the Character class:

Method Description

getNumericValue(...) Returns the int value that the specified
character represents.

isDigit(...) Determines if the specified character is
a digit.

isLetter(...) Determines if the specified character is a
letter.

isWhitespace(...) Determines if the specified character is
white space

toLowerCase(...) Converts the character argument to
lowercase

toUpperCase(...) Converts the character argument to
uppercase

Three examples follow

1. Detecting the type of character

2. Getting the numerical value of a numeric character

3. Validating input

4.2. CHARACTER 121

Example 1

If the data you have is a string then the String method charAt(. . .) can
be used to access a character at a specific index. When used in conjunction
with a for statement the characters of a string can be accessed one-by-one.
In the following program we access the characters of a string one-by-one
and determine the type of each character using the Character methods
isDigit() and isLetter().

Listing 4.3: Types of characters.

1 import java.util.Scanner;

2 /**

3 * A string provided by the user is examined

4 * character by character to determine its type.

5 */

6 public class CharacterTypes

7 {

8 public static void main(String [] args)

9 {

10 Scanner kb = new Scanner(System.in);

11 System.out.print("Enter a line: ");

12 String line = kb.nextLine ();

13 // characters are examined one -by -one

14 for (int i = 0; i < line.length (); i++){

15 char c = line.charAt(i);

16 if(Character.isLetter(c))

17 System.out.println(i+"\t"+c

18 +"\t\tletter");

19 else if(Character.isDigit(c))

20 System.out.println(i+"\t"+c

21 +"\t\tdigit");

22 else

23 System.out.println(i+"\t"+c

24 +"\t\tother");

25 }

26 }

27 }

Below is the output from CharacterTypes.java for when the user provides
the string "A$12"

122 CHAPTER 4. CLASSES IN THE JAVA CLASS LIBRARIES

4.2. CHARACTER 123

Example 2

The Character method getNumericValue() can be used to obtain the dec-
imal value of a character. This program examines the text provided by the
user and sums the numeric values of the characters that are digits.

Listing 4.4: Types of characters.

1 import java.util.Scanner;

2 /**

3 * The sum of numeric characters is calculated.

4 */

5 public class SumNumericValues

6 {

7 public static void main(String [] args) {

8 Scanner kb = new Scanner(System.in);

9 System.out.print("\nEnter a line: ");

10 String line = kb.nextLine ();

11 int sum = 0;

12 // characters are examined one -by -one

13 for (int i = 0; i < line.length (); i++){

14 char c = line.charAt(i);

15 if(Character.isDigit(c)){

16 sum += Character.getNumericValue(c);

17 }

18 }

19 System.out.println("sum = \t"+sum);

20 }

21 }

Below is the output from SumNumericValues.java for when the user provides
the string "1A 4c!6" which contains the numeric characters 1, 4, 6.

124 CHAPTER 4. CLASSES IN THE JAVA CLASS LIBRARIES

Example 3

In many situations a user’s input must be validated. Suppose a user is
prompted for a student number that must comprise only digits. If the user
enters invalid characters, and the program were to use the Scanner method
nextInt(), then the program would crash. Instead the programmer must
use the Scanner method next() and then analyze the characters to deter-
mine if the user entered a correctly formatted value.

Consider the following code that utilizes the Character method isDigit(. . .)
to determine if a user has entered a numeric string (a valid student number).

Listing 4.5: Validation of input.

1 import java.util.Scanner;

2 /**

3 * A string provided by the user is examined

4 * to determine whether or not it is numeric.

5 */

6 public class ValidateStudentNumber

7 {

8 public static void main(String [] args)

9 {

10 Scanner kb = new Scanner(System.in);

11 System.out.println("Enter a number: ");

12 String number = kb.next();

13 // characters are examined one -by -one

14 boolean valid = true;

15 for (int i = 0; i < number.length (); i++){

16 char c = number.charAt(i);

17 if(! Character.isDigit(c)) valid =

false;

18 }

19 if (valid) System.out.println("Valid");

20 else System.out.println("Invalid");

21 }

22 }

4.2. CHARACTER 125

Below is the output from ValidateStudentNumber.java for two runs of the
program.

Exercises

5. Java allows char values to be used directly in arithmetic expressions.
Modify Example 2 to just add the character instead of its numerical
value using a statement such as
sum += c;

instead of
sum += Character.getNumericValue(c);

The sum in this case is the sum of the internal representations of those
characters.

6. Modify Example 3 so it stops examining characters if it encounters a
non-numeric character. Consider using a for that begins:
for (int i=0; valid && i<number.length(); i++)

7. Write a program to validate a phone number where the number is
expected to be a string of 10 digits. For example if the user en-
tered 2343214567 the number would be valid, but if the user entered
ADG3214567 the number would be invalid.

8. The standard US zip code is five digits. Write a program that prompts
the user for a zip code and then determines if it is valid or not. To
be valid the code must be five characters in length and all characters
must be digits.

9. In 1983 the US Postal Service extended zip codes (ZIP+4) to include
the five digits of the ZIP code, a hyphen, and four more digits that
determine a more specific location within a given ZIP code. Write
a program to validate a zip code entered by the user where the user
might have entered a standard zip code (5 characters) or a zip+4 code

126 CHAPTER 4. CLASSES IN THE JAVA CLASS LIBRARIES

(10 characters including the dash separating the first 5 digits from the
last 4 digits).

10. Sweden has a personal identity number (personnummer) that is issued
by the Swedish Tax Agency. This identity number has 10 digits with a
hyphen between the 6th and 7th digits, and is such that the 10th digit
is a check digit. The check digit is calculated using the first 9 digits. A
weighted sum of products is calculated as

∑
(digiti × weighti) where

the weights are 2, 1, 2, 1, 2, 1, 2, 1, 2. However if a product is more
than 9 it is replaced by the sum of its digits. The check digit must be
equal to 10 minus the last digit (but note that if the last digit of the
sum is zero, the check digit is 0). Write a program to verify the user
has entered a valid personnummer:

• 10 digits with a dash between the 6th and 7th digits, and

• the check digit is correctly based on the first 9 digits.

For example consider the personnummer 811228-9874. To verify the
check digit (the last digit, the 4) is correct we need to follow the above
procedure. The sum of the weighted products is:
(8×2)+(1×1)+(1×2)+(2×1)+(2×2)+(8×1)+(9×2)+(8×1)+(7×2)
which are:
(16) + 1 + 2 + 2 + 4 + 8 + (18) + 8 + (14)
and modifying where the product > 9:
(1 + 6) + 1 + 2 + 2 + 4 + 8 + (1 + 8) + 8 + (1 + 4)
we have:
7 + 1 + 2 + 2 + 4 + 8 + 9 + 8 + 5 = 46
And finally 10− 6 = 4. So, the personnummer above is valid.

4.3. SCANNER 127

4.3 Scanner

Previously we used a Scanner object to obtain data from the user via the
standard input device, the keyboard. The input is considered to be a se-
quence of tokens where tokens are strings separated by delimiters which by
default are whitespace. To Java, whitespace includes spaces, tabs, newline,
and a few other characters. A Scanner object is said to parse the input
stream making tokens available.

A programmer can specify exactly what constitutes a token. Consider that a
program could be reading a file where tokens are separated by commas (e.g.
a CSV file that is easily generated from Excel). The interested reader is
referred to the Java documentation for more information on how to specify
delimiter patterns. For our purposes we use the defaults for a scanner object
and so tokens are strings where the strings are delimited by whitespace.

In this text we cover three usages for the Scanner class:

• As discussed earlier for handling input from standard input: System.in.
• Obtaining tokens from a string.
• Obtaining tokens from a file.

To use the methods in the Scanner class we must instantiate a Scanner, for
example:

• Scanner s = new Scanner("System.in");

• Scanner s = new Scanner(s); //s is of type String

• Scanner s = new Scanner(f); //f is of type File

The Scanner class is in the java.util package and so programs need to in-
clude:

import java.util.Scanner;

We will illustrate the use of a scanner object for reading a file and another
for scanning a string.

128 CHAPTER 4. CLASSES IN THE JAVA CLASS LIBRARIES

Declaring a Scanner for a text file

Recall that each class we create in BlueJ is stored as a file with the .java
extension, and the compilation process creates another file with the .class
extension. In a BlueJ project there is another file you will have noticed called
Readme.txt. The .java files and the .txt file are both text files whereas the
class file is a binary file. Text files are human-readable but a class file con-
tains Java bytecode and to view and make sense of its contents would be
quite difficult.

To read a text file we can declare a Scanner object which is associated with
that file. Let us consider only files that are in our project. When the file is
contained in our project we only need to name it as a string, as in:

Scanner f = new Scanner(new File("Readme.txt"));

Consider the following table of Scanner methods. We will use a number of
these in the examples that follow.

method name description

next() Gets next token

nextBoolean() Gets next token and converts it to an boolean

nextInt() Gets next token and converts it to an int

nextDouble() Gets next token and converts it to an double

hasNext() Returns true if there is at least one more token
available, false otherwise

hasNextBoolean(...) Returns true if there is at least one more to-
ken available and that token is of type boolean,
false otherwise

hasNextInt() Returns true if there is at least one more token
available and that token is of type int, false
otherwise

hasNextDouble() Returns true if there is at least one more to-
ken available and that token is of type double,
false otherwise

hasNextLine() Returns true if there is at least one more line
available, false otherwise

nextLine() Returns an entire line, up to the next end-of-line
character and returns the line as a String (the
end-of-line character is consumed but it is not
part of the return value).

4.3. SCANNER 129

Note that the above methods can result in errors that cause a program to fail.
For instance, if a program uses nextInt(), but the next token is a character
string, then an exception will occur. If a program executes next(), but the
input stream is empty, then an exception will occur.

Example 1. Reading Readme.txt

Consider the following program the reads the file Readme.txt and displays
its lines including line numbers. Note the program has three import state-
ments to direct the compiler to definitions for Scanner, File and
FileNotFoundException.

The File class itself is quite complex but for our purposes we are just nam-
ing the file and instantiating a File object. Errors can arise when a program
processes a file - the obvious one is trying to read a file that does not ex-
ist. The Java file FileNotFoundException is associated with that condition.
Note the program also contains a throws clause - Java requires this and for
our purposes here we are declaring that we know this situation might arise.

Two Scanner methods used here are:
1. hasNext() which returns true or false according to whether or not

there are more tokens to be retrieved.
2. nextLine() which retrieves the next line (of course this may retrieve

several tokens embedded in one string).

130 CHAPTER 4. CLASSES IN THE JAVA CLASS LIBRARIES

Listing 4.6: Displaying contents of Readme.txt.

1 import java.util.Scanner;

2 import java.io.File;

3 import java.io.FileNotFoundException;

4 /**

5 * Display contents of Readme.txt with line numbers

6 */

7 public class DisplayReadme

8 {

9 public static void main(String [] args)

10 throws FileNotFoundException

11 {

12 Scanner f = new Scanner(

13 new File("Readme.txt"));

14 int i=1;

15 System.out.println(

16 "<<<< File Readme.txt >>>>");

17 while (f.hasNext ()){

18 String line = f.nextLine ();

19 System.out.println ((i++)+" "+line);

20 }

21 System.out.println(

22 "<<<< end of listing >>>>");

23 }

24 }

When BlueJ creates Readme.txt it initializes the file with default contents.
The programmer can edit this file to store relevant information about the
project. If the file has not been edited then it has certain contents by default
which are:

4.3. SCANNER 131

132 CHAPTER 4. CLASSES IN THE JAVA CLASS LIBRARIES

Example 2. Scanning a string

You can define a Scanner object to process a string with Scanner methods.
The method hasNext() returns true if there is another token in the string,
and the method next() will return the next token in the string. Consider
the following program that scans a string obtaining its tokens one-by-one.

Listing 4.7: Display tokens in a string.

1 import java.util.Scanner;

2 /**

3 * Display tokens in a string

4 */

5 public class ScanString

6 {

7 public static void main(String [] args)

8 {

9 String sample = "one two \tthree";

10 Scanner s = new Scanner(sample);

11 System.out.println(

12 "<<<<"+sample+">>>>");

13 while (s.hasNext ()){

14 String token = s.next();

15 System.out.println(token);

16 }

17 System.out.println(

18 "<<<< end of tokens >>>>");

19 }

20 }

4.3. SCANNER 133

Exercises

11. Modify Example 1 to use next() instead of nextLine(). Display each
token on a separate line.

12. Modify Example 2 to get the value for the variable sample from the
user.

13. Write a program that prompts the user for 10 boolean values. Display
the number of true values entered by the user.

134 CHAPTER 4. CLASSES IN THE JAVA CLASS LIBRARIES

4.4 Math

The class Math contains fields for π and e and methods for performing ba-
sic numeric operations including exponential, logarithm, square root, and
trigonometric functions.

The methods in the Math class are static methods and so one does not in-
stantiate an instance. To use a method you must prefix the method name by
Math.. For example to get the absolute value of an int x the programmer
just codes

int y = Math.abs(x);,
or to determine the circumference of a circle of radius r:

double circumference = 2.0 * Math.PI * r.

Next we list a number of the Math method and then we present an example.

4.4. MATH 135

The Math Class

Fields

field type description

E double e
PI double π

Static Methods

method type description

sin double sine of an angle (in radians).
e.g. Math.sin(2.5)

cos double cosine of an angle (in radians).
e.g. Math.cos(2.5)

tan double tangent of an angle (in radians).
e.g. Math.tan(2.5)

toRadians double converts an angle in degrees to an angle in
radians. e.g. Math.toRadians(180.0)

toDegrees double converts an angle in radians to an angle in
degrees. e.g. Math.toDegrees(3.14)

exp double Euler’s number e raised to a power.
e.g. Math.exp(2.5)

log double natural logarithm (base e).
e.g. Math.log(2.5)

log10 double base 10 logarithm. e.g. Math.log10(2.5)
pow double Returns the value of the first argument

raised to the power of the second argu-
ment. e.g. Math.pow(x, y)

random double Returns a double value with a positive
sign, greater than or equal to 0.0 and less
than 1.0.
e.g. Math.random()

abs int returns the absolute value of an int.
e.g. Math.abs(i)

abs double returns the absolute value of a double.
e.g. Math.abs(x)

max int returns the larger of two int values.
e.g. Math.max(5, 2)

max double returns the larger of two double values.
e.g. Math.max(5.6, 2.0)

min int returns the smaller of two int values.
e.g. Math.min(5, 20)

min double returns the smaller of two double values.
e.g. Math.min(5.3, 20.7)

hypot double returns the
√
x2 + y2.

e.g. Math.hypot(2.5, 3.3)

136 CHAPTER 4. CLASSES IN THE JAVA CLASS LIBRARIES

Example 1

The following program prompts the user for three int values and reports
the largest of the three.

Listing 4.8: Use Math.max() to find largest of 3 values.

1 import java.util.Scanner;

2 /**

3 * Prompt for 3 int values and report the largest

4 */

5 public class FindMax

6 {

7 public static void main(String [] args){

8 Scanner kb = new Scanner(System.in);

9 System.out.println(

10 "Please enter 3 int values");

11 int i = kb.nextInt ();

12 int j = kb.nextInt ();

13 int k = kb.nextInt ();

14 int mx = Math.max(i, Math.max(j,k));

15 System.out.println("largest is "+mx);

16 }

17 }

Exercises

14. Write a program that accepts int values until the user enters a zero.
The program must display the smallest value greater than zero.

15. Write a program that obtains the radius of a circle from the user and
calculates the area of the circle.

16. Write a program that obtains the radius of a sphere from the user and
calculates the volume of the sphere.

17. Write a program that obtains the x and y values of a right-angled
triangle from the user and calculates the length of the hypotenuse.

4.5. INTEGER 137

4.5 Integer

The Integer class has many static fields and methods that can be used.
Because these are static the programmer does not instantiate an object. In-
stead, when using one of these class fields or methods it must be prefixed
with Integer., for example Integer.MAX_VALUE. The following lists some
common static fields and methods of the Integer class:

Field Description

MAX VALUE A constant holding the maximum value an int

can have, 231−1.

MIN VALUE A constant holding the minimum value an int

can have, −231.

Method Description

max() Returns the greater of two int values as if by
calling Math.max. E.g Integer.max(34, 55)

min() Returns the smaller of two int values as if by
calling Math.min. E.g Integer.min(34, 55)

parseInt() Parses the string argument as a signed decimal
integer. E.g. parseInt(" 23 ")

An example follows that demonstrates how to extract an integer value em-
bedded in a string.

138 CHAPTER 4. CLASSES IN THE JAVA CLASS LIBRARIES

Example 1

Suppose input values to a program are provided in a CSV style. CSV stands
for comma-separated-values and is a format that has been used in comput-
ing systems for moving data from one system to another system. Suppose
the data is available in the following manner: each line has an item name,
a comma, and a quantity, with no embedded spaces. For example:

item,quantity

monitor,45
laptop,55
tablet,50
desktop,40

Using a Scanner object a program could use the Scanner method
nextLine() to get a line having three things: an item name, a comma, and
an integer. The program can find the location of the comma and know that
what follows in the string is a quantity. The quantity can be converted to
an integer using the parseInt() method. The program below is designed
to obtain 4 lines of such information from a user.

4.5. INTEGER 139

Listing 4.9: Using parseInt() to get a decimal value.

1 import java.util.Scanner;

2 /**

3 * Four lines are read where each line contains

4 * an item name , a comma , and a quantity

5 * with no embedded spaces.

6 */

7 public class TotalQuantity

8 {

9 public static void main(String [] args)

10 {

11 Scanner kb = new Scanner(System.in);

12 int totalQty = 0;

13 for (int i = 0; i < 4; i++){

14 System.out.print("Enter next line: ");

15 String line = kb.nextLine ();

16 int commaAt = line.indexOf(",");

17 String qtyAsString =

line.substring(commaAt +1);

18 int qty = Integer.parseInt(qtyAsString);

19 totalQty += qty;

20 }

21 System.out.println("total = "+totalQty);

22 }

23 }

When the program is run with the 4 lines mentioned above we have the
output:

140 CHAPTER 4. CLASSES IN THE JAVA CLASS LIBRARIES

Exercises

18. Modify Example 1 to find the item for which the quantity on hand is
the largest.

19. Write a program that accepts one line that holds an unknown number
of integers in a CSV format. The program must print each value on a
separate line and then display the largest and smallest of the values.

Chapter 5

ArrayLists

There are several techniques for handling collections of data. In this chapter
we introduce the ArrayList. An ArrayList can be visualized as a linear
list of objects at index positions 0, 1,

The ArrayList is a data structure that grows and shrinks gracefully as
objects are added and removed. This is a distinct contrast to the array
structure covered in the next chapter (with an array once you have defined
its size the size cannot be changed).

An ArrayList holds a collection of objects whereas arrays can be collec-
tions of either a primitive data type or objects. If you wanted to use an
ArrayList to hold data of a primitive data type you would need to use a
wrapper class (e.g. Integer, Double, Boolean, Character) where wrap-
per objects contain data of a primitive data type. At this point in your
study of Java you have at least used strings that are instances of String
(objects of type String), and so our examples will deal with ArrayLists of
type String.

We illustrate ArrayLists using these examples:

1. Basic operations on an ArrayList

2. Preventing duplicate entries in an ArrayList

3. Creating an ArrayList from an array

4. A non-typesafe ArrayList.

141

142 CHAPTER 5. ARRAYLISTS

Below we list some important methods that are defined for ArrayList.
Method Description plus examples using:

ArrayList<String> people = new Arraylist()

add(. . .) Can be used to either
a) append a given element to the end of a list, or,
b) if a position is specified insert the given element
at the specified position (following elements are
shifted down).
people.add("Jaime");

people.add(4, "Jaime");

clear() Removes all elements from a list.
people.clear();

contains(. . .) Returns true if this list contains the specified
element.
boolean found = people.add("Jaime");

get(. . .) Returns the element at a specified position in this
list.
String person = people.get(4);

indexOf(. . .) Returns the index of the first occurrence of the
specified element in this list, or -1 if this list does
not contain the element.
int pos = people.indexOf("Jaime");

isEmpty() Returns true if the list has no elements.
boolean empty = people.isEmpty();

remove(. . .) Can be used to remove either
a) the element at a specified position in this list, or
b) the first element matching a given object;
returns the deleted element and shifts other elements
up.
String removed = people.remove(4);

String removed = people.remove("Jaime");

set(. . .) Replaces an element with another element; returns
the previous element.
String previous = people.set(4, "Jaime");

size() Returns the number of elements in this list.
int numElts = people.size();

143

The enhanced for

There is a variation on the for called the enhanced for that can be used
when a program iterates from the first element through to the last element
of an ArrayList and does not change any values. Using collection to
represent the ArrayList and type to represent the type of elements in the
collection, the syntax is

for (type variable : collection)

statement
A for statement to iterate through an ArrayList names of Strings is:

for (String s : names)

System.out.print(s+"");

Example 1

It is considered a good programming practice to specify the data type for
the elements of an ArrayList. The way to express this is to declare the type
inside a pair of angle brackets: <>. By specifying this a program cannot
accidentally add a different type of object to the ArrayList. We say this
makes the ArrayList typesafe. In this example we use the basic add() and
remove() methods to add 4 elements and remove 1 element, and then we
use an enhanced for to display the elements one by one.

Listing 5.1: Basic operations on an ArrayList.

1 import java.util.ArrayList;

2 /**

3 * Create an ArrayList from an array of strings

4 */

5 public class BasicOperationsOnArrayList

6 {

7 public static void main(String [] args){

8 // new , empty ArrayList of people

9 ArrayList <String > people=new ArrayList ();

10 // add some names

11 people.add("Joe");

12 people.add("Jasper");

13 people.add("Dick");

14 people.add("Abigail");

144 CHAPTER 5. ARRAYLISTS

15 // remove a name

16 people.remove("Dick");

17 // display the names in people

18 for (String p: people)

19 System.out.print(p+" ");

20 }

21 }

The output, of course, does not include ”Dick”:

145

Example 2

The contains() method returns true when a given element exists in an
ArrayList. The program below uses contains() and prevents duplicate
elements. The user is prompted for names to add to the list - the process
stops when the user enters the word stop.

Listing 5.2: Prevent duplicate elements.

1 import java.util.Scanner;

2 import java.util.ArrayList;

3 /**

4 * Prevent duplicate elements in ArrayList

5 */

6 public class PreventDuplicatesInArrayList

7 {

8 public static void main(String [] args){

9 ArrayList <String > people=new ArrayList ();

10 // add some names

11 Scanner kb = new Scanner(System.in);

12 System.out.println("enter names followed"

13 +" by the word stop: ");

14 String name = kb.next();

15 while (!name.equals("stop")) {

16 if (! people.contains(name))

17 people.add(name);

18 name = kb.next();

19 }

20 // display the names in people

21 for (String p: people)

22 System.out.print(p+" ");

23 }

24 }

The following shows the prompt to the user, the user’s response:
Joe Joe Jasper Abigail Abigail Jasper stop

and the output generated:

146 CHAPTER 5. ARRAYLISTS

Example 3

This example is included to show how ArrayLists are specified in some
legacy code. When ArrayLists were added to the Java language they were
not typesafe - the declaration of an ArrayList did not include a type spec-
ification, for example:

ArrayList name = new ArrayList();

This declaration has no angle brackets and so no type specification, and
so its possible to add any kind of object to the ArrayList. Currently, the
recommended practice is always to include a type in the declaration so the
program is more robust - certain errors at runtime cannot occur. This ex-
ample is included only for demonstration purposes and is not recommended
practice. The output follows the code listing.

Listing 5.3: Do not declare an ArrayList this way.

1 import java.util.ArrayList;

2 import java.util.Scanner;

3 import java.util.Random;

4 /**

5 * Declaring an ArrayList that is not typesafe.

6 * Not a recommended practice , but something

7 * you might see in legacy code.

8 */

9 public class OldStyleArrayList

10 {

11 public static void main(String [] args){

12 // No type specification for people

13 // Hence , any old object will do

14 ArrayList people=new ArrayList ();

15 // Add some elements

16 people.add("Abigail");

17 people.add("Jim");

18 // these two adds are for demonstration

19 people.add(System.out);

147

20 people.add(new Random ());

21 // display the people

22 for (Object p: people)

23 System.out.println(p);

24 }

25 }

The output below shows two String objects, a System.out object, and a
Scanner object - all of which were added to the ArrayList.

Exercises

1. There is a class called Collections which can be used in a program if
one includes the import statement:

import java.util.Collections;

The ArrayList is part of the Java Collections framework and there
is a method sort(. . .) in Collections that can be used to sort an
ArrayList. For instance, to sort the ArrayList named people you
use the statement:

Collections.sort(people);

Modify Example 2 so that the list of names appears in alphabetical
order.

2. Write a program to analyze text. Each word (token) found is stored in
an ArrayList. Your program must read the file Readme.txt. Dispaly
the list of words.

3. Modify the previous program so that duplicate words are not stored
in the ArrayList.

4. Determine the punctuation used in Readme.txt. Remove all punctua-
tion from the tokens and store the words in lowercase in the ArrayList.

148 CHAPTER 5. ARRAYLISTS

5. Modify Example 3 to make the ArrayList people typesafe. What
happens now when you compile the program?

Chapter 6

One-Dimensional Arrays

There are many situations where we deal with a collection of information.
Some examples are:

1. names of students in a class
2. courses offered by a department
3. temperatures for the last month
4. employees in a company

The above cases all have one thing in common: in each case there can be
more than one value. For instance, there would be several students in a class
and for each student there is a name, for example: ”John”, ”Mary”, ”Lee”,
etc. In Java, one way of handling a collection like this is to use a data struc-
ture called an array. The array is declared similar to other variables and
then an integer (called an index) is used to refer to its elements individually.
So, studentName can be the name of the collection and studentName[0],
studentName[1], studentName[2], etc. is the way we refer to elements of
the collection. As we will eventually see there are other ways of handling
these sorts of things - arrays are just one technique a programmer can draw
upon. To declare an array of names where each element of the array can be
a String value we use:

String[] studentName;

The square braces [] are used to indicate a one-dimensional array. Its called
one-dimensional because one index value is used to refer to an individual el-
ement of the array. In Java index values begin at 0 and go up to the length
of the array -1. We can declare arrays of any type, for example:

149

150 CHAPTER 6. ONE-DIMENSIONAL ARRAYS

declaration sample purpose

String[] studentName; an array of names

int[] mark; an array of marks

double[] temperature; an array of temperatures

boolean[] answer; an array of true/false answers

char[] letter; an array of multiple choice answers

The above are examples of how to declare an array. Before the array can
be used the programmer must also declare its size. Once the programmer
declares the size it cannot be made larger - this is one of the drawbacks
to using arrays and why sometimes another technique will be chosen. To
declare an array that can hold, say, 100 names we use:

String[] studentName;

studentName = new String[100];

or, we can combine the above into one line:

String[] studentName = new String[100];

or, if an int variable holds the length we can write:

int arraylength = 100;

String[] studentName = new String[arraylength];

Every array has an int field named length that is a part of it; the value
stored is the length of the array. So, for studentName above the value stored
in studentName.length is 100. This field is very useful; for instance if we
need to display all the names in studentName we can use the code:

for (int i=0; i<studentName.length; i++)

System.out.println(studentName[i]);

The length field is immutable which means it cannot be altered once it is
set. This means that once you have declared an array to be a certain length
you cannot change its length.

6.1. INITIALIZING ARRAYS 151

6.1 Initializing arrays

Because arrays can have multiple values there is a different syntax used when
its necessary to set initial values. For instance, suppose we need an array to
hold the number of days in each month. We can declare and initialize as:

int[] daysInMonth =

{31 ,28 ,31 ,30 ,31 ,30 ,31 ,31 ,30 ,31 ,30 ,31};

The Java syntax for initializing an array is to enclose a comma-separated
list of values between the pair { }. Initializing arrays this way also sets the
length of the array. The value of daysInMonth.length is 12.

Example 1

Consider the following program where daysInMonth is initialized and dis-
played.

Listing 6.1: Initializing and displaying an array.

1 /**

2 * Display number of days in each month

3 */

4 public class MonthLengths

5 {

6 public static void main(String [] args){

7 int[] daysInMonth =

8 {31 ,28 ,31 ,30 ,31 ,30 ,31 ,31 ,30 ,31 ,30 ,31};

9 System.out.println("Days for each of "

10 +daysInMonth.length+" months ");

11 for (int i = 0; i< daysInMonth.length; i++)

12 System.out.print(daysInMonth[i]+" ");

13 }

14 }

The output:

152 CHAPTER 6. ONE-DIMENSIONAL ARRAYS

6.2 Storage of arrays and copying arrays

Arrays are objects in Java and so the memory location for the array variable
contains a reference to the actual storage locations holding the array’s values.
For instance the memory allocations for an array can be visualized as:

Now suppose we need to make a copy of the array. If we just use:
s = t; //s and t are arrays of same type

what we end up with is two storage locations for s and t that reference
the same 4 elements. We haven’t created a copy, rather we have two array
variables that reference the same 4 elements:

If we need a real copy of the array t then we require a loop to accomplish
this:

// s and t are of the same type

for (int i=0; i<t.length; i++) s[i] = t[i];

You can re-instantiate an array variable. New locations are assigned to the
array (see below) and the old ones are reclaimed for reuse according to an
internal Java garbage collection procedure.

6.3. THE ENHANCED FOR 153

6.3 The enhanced for

There is a variation on the for called the enhanced for that can be used
when a program iterates from the first element through to the last element
of an array and does not change any values. The syntax is

for (type variable : array)

statement
The for statement in the previous example can be rewritten:

for (int days : daysInMonth)

System.out.print(days+" ");

Example 2

Consider the following program where temperature is assigned values ob-
tained from a user and then the average temperature is displayed. The
assignments must be done using a for whereas the calculation of the sum
can be done with a enhanced for.

Listing 6.2: Initializing an array from input.

1 import java.util.Scanner;

2 /**

3 * Display average of 7 values

4 */

5 public class AverageTemperature

6 {

7 public static void main(String [] args){

8 Scanner kb = new Scanner(System.in);

9 double [] temperature = new double [7];

10 System.out.println("Enter 7 temperatures:");

11 for (int i=0; i<7; i++)

12 temperature[i] = kb.nextDouble ();

13 double sum = 0.0;

14 for (double t:temperature) sum +=t;

15 System.out.println("average= "+sum /7.0);

16 }

17 }

154 CHAPTER 6. ONE-DIMENSIONAL ARRAYS

When to use the enhanced for

The enhanced for helps to express a programming idiom succinctly as no
loop counter is required. However, there are many cases where the enhanced
for cannot be used:

1. iterate backwards through the array elements

2. access elements of same-numbered elements of more than one array

3. partially filled arrays (discussed later)

4. assigning new values to array elements.

6.4. PASSING STRING VALUES INTO MAIN() 155

6.4 Passing string values into main()

In all of our main methods we have specified a String array named args:
public static void main(String[] args)

In the above line args is declared to be an array of String. The variable
args is used to pass values (that are strings) into a method. When you have
used BlueJ to execute the main() method you have the opportunity to pass
an array of strings to the program.

Example 3

The following program just lists the strings passed into the program.

Listing 6.3: String values passed into main().

1 /**

2 * Print the values passed into the program

3 */

4 public class Args

5 {

6 public static void main(String [] args){

7 System.out.println("The elements of args:");

8 for (String s: args) System.out.print(" "+s);

9 }

10 }

The following shows a user executing main() and passing in 3 strings with
the resulting output from the program:

156 CHAPTER 6. ONE-DIMENSIONAL ARRAYS

6.5 Parallel arrays

There are times when two or more arrays have exactly the same number of
elements and where array elements at the same index relate to one another
in some meaningful way. For example suppose we have one array of student
names and another of student numbers. If the arrays represent information
for the same set of students then we would want to arrange that the ith

element of the name array and the ith element of the number array are for
the same student, say the ith student.

Example 4

Consider the following example where two arrays hold information for 5
students: one array of names and the other an array of student numbers.
For simplicity we initialize the arrays inline. The program prompts the user
for a student number and displays the student’s name. In order to get the
name of the student the program goes through all the elements of number
and when it finds a number matching the input, it displays the corresponding
name in the other array.

Listing 6.4: Finding information in parallel arrays.

1 import java.util.Scanner;

2 /**

3 * Student information is in two arrays.

4 * Find student number and report name.

5 */

6 public class StudentInfo

7 {

8 public static void main(String [] args){

9 String [] name =

{"Joe","Linda","Mary","Peter","Lee"};

10 int[] number = {123, 222, 345, 567, 890};

11 Scanner kb = new Scanner(System.in);

12 System.out.println("Enter student number:

");

13 int toFind = kb.nextInt ();

14 for (int i=0; i<number.length; i++)

15 if (toFind == number[i])

16 System.out.println(name[i]);

17 }

6.5. PARALLEL ARRAYS 157

18 }

This program performs what is usually called a search operation: scanning
an array looking for a specific element. The program as it was written
always iterates through the whole number array; normally a programmer
would stop the iteration once the element has been found - that is left as an
exercise.

158 CHAPTER 6. ONE-DIMENSIONAL ARRAYS

6.6 Partially filled arrays

In our examples so far the arrays are completely full - every element has a
value. In general we do not expect this to always be the case and so, for
some applications, we keep track of how many locations are actually filled.

Example 5

Suppose we need to calculate the average monthly sales. Since there are 12
months we use an array of length 12. We want a user to use the program at
any time of year and so there may be fewer than 12 values. The program
prompts the user and requests the last value entered to be -1 (a stopper
value). The program keeps track of how many elements are filled. Consider
the following program and the points discussed after the listing:

Listing 6.5: Average sales for up to 12 months.

1 import java.util.Scanner;

2 /**

3 * From monthly sales calculate monthly average.

4 */

5 public class MonthlySales

6 {

7 public static void main(String [] args){

8 double [] sales = new double [12];

9 Scanner kb = new Scanner(System.in);

10 System.out.println("Enter monthly sales"

11 +" enter -1 after last value");

12 int numberMonths =0;

13 double aSale = kb.nextDouble (); //1st month

14 while(aSale != -1) {

15 sales[numberMonths ++] = aSale;

16 aSale = kb.nextDouble ();

17 }

18 double sum = 0;

19 for (int i=0; i<numberMonths; i++)

20 sum+= sales[i];

21 if (numberMonths >0) System.out.println(

22 "average = "+sum/numberMonths);

23 }

24 }

6.6. PARTIALLY FILLED ARRAYS 159

The program exhibits some important features:

1. The sales array is of length 12 and the variable numberMonths keeps
track of how many months of data the user provides.

2. Prior to the while, in line 13, the first sales amount is obtained

3. the while tests the value of the last sales amount obtained.

4. In the body of the while the previously obtained sales amount is
placed into the array, and the next value is obtained.

5. Lines 19 and 20 accumulate the total sales

6. Testing for no months of data in line 21 prevents the program from
crashing if the user entered -1 as the first value (division by zero).

160 CHAPTER 6. ONE-DIMENSIONAL ARRAYS

Arrays and ArrayLists

In some cases you may want to use the functionality of the ArrayList class
but for whatever reason the data you are working with is in an array. It is
easy to create an ArrayList from an array as shown in the program below.

Listing 6.6: Initializing an ArrayList from an array.

1 import java.util.ArrayList;

2 /**

3 * Create an ArrayList from an array of strings

4 */

5 public class ArrayListFromArray

6 {

7 public static void main(String [] args){

8 // An array that will be used to provide

9 // initial data for an ArrayList

10 String [] name={"Joe","Jasper","Abigail"};

11 ArrayList <String > nameAL =

12 new ArrayList(name.length);

13 // The add() method is used to append

14 // an element to the ArrayList

15 for (String n: name) nameAL.add(n);

16 // Printing an ArrayList results in each

17 // of its elements being displayed as

18 // in a comma -separated list.

19 System.out.println(nameAL);

20 }

21 }

Line 15 is an enhanced for where each element of the array is added to the
ArrayList. Line 19 prints the ArrayList. Note the output below and how
the ArrayList is displayed as a comma-separated-values list embedded in
square brackets [] - this is the default display for an ArrayList.

6.7. ARRAY UTILITIES IN JAVA CLASS LIBRARIES 161

6.7 Array utilities in Java class libraries

Arrays are often used in programming and there are many important algo-
rithms that are used. For instance, copying an array was discussed previ-
ously. The System class contains a method arraycopy() that can be used
to copy a portion of one array to another. The method takes 5 arguments
(in this order): name of the source array, starting element position in the
source, the destination array, the starting element position in the destina-
tion, and the total number of elements to copy. For instance to copy all
elements of the array t to the array s we could use:

System.arraycopy(t, 0, s, 0, t.length);

There is a Java library class named java.util.Arrays that has additional
methods which include:

1. equals(): Returns true if two arrays are equal to one another. The
arrays are equal if they have the same number of elements and if
corresponding elements are equal.

2. sort(): Rearranges the elements of an array so they are in ascending
sequence.

3. binarySearch(): Returns the index of an element if it was found in
a sorted array. Binary search is a type of search technique that takes
advantage of the fact that an array is sorted. The general idea is
to continually bisect the array looking for the required element. The
process examines the middle element and determines if the required
element is above or below the middle element; then the process con-
tinues on that subset of the array where the required element may be
present. The process continues until the required value is found or
there is nothing left to examine.

4. fill(): Assigns a specified value to every element of an array.

162 CHAPTER 6. ONE-DIMENSIONAL ARRAYS

Example 6

The interested student is referred to the Java Class Library documentation
for complete information regarding Arrays. Here, we demonstrate how one
can sort an array and then search the array for a specific entry. Consider
that we have an array of names. To simplify we shall initialize the array in
the code. The program prompts the user for a name, performs a search, and
then responds accordingly. Following the listing there are some remarks.

Listing 6.7: Initializing and displaying an array.

1 import java.util.Arrays;

2 import java.util.Scanner;

3 /**

4 * An array of names is sorted and then

5 * searched for a specific name.

6 */

7 public class SortAndSearch

8 {

9 public static void main(String [] args){

10 String [] name =

11 {"Joe","Linda","Mary","Peter","Lee","Patricia"};

12 Arrays.sort(name);

13 Scanner kb = new Scanner(System.in);

14 System.out.println("Enter a name: ");

15 String toFind = kb.next();

16 int foundAt =

17 Arrays.binarySearch(name , toFind);

18 if (foundAt >= 0)

19 System.out.println(

20 "Found in position "+foundAt);

21 else System.out.println("Not Found ");

22 }

23 }

Note the following points regarding SortAndSearch above:

1. The Arrays class is imported in line 1.

2. The sort() method is invoked in line 12. As a result the entries of
name have been rearranged are are now sorted alphabetically.

3. In line 17 binarySearch() is used to search for the name entered by

6.7. ARRAY UTILITIES IN JAVA CLASS LIBRARIES 163

the user. If the value is not negative then that is the index where the
name was found.

164 CHAPTER 6. ONE-DIMENSIONAL ARRAYS

Exercises

1. Modify Example 1 to include a parallel array for the names of months.
On 12 lines, one per month, display each month and its number of
days.

2. Modify Example 2 to determine the minimum and the maximum of the
7 temperatures. Note that this is similar to Exercise 1 in the Section
on the for statement, but in this case the elements are stored in an
array.

3. Modify Example 3 so that it sorts the strings before they are displayed.

4. Modify lines 14-16 in Example 4 so that the loop stops if the number
is found.

5. Modify Example 5 so that it displays the name of the month when
sales were their largest.

6. Write a program to determine someone’s score on a multiple-choice
test having 12 questions. The program has two char arrays:
correctAnswers[] and studentAnswers[]. The array correctAn-
swers holds the correct answers to the test. Use the following for
correct answers:
a b c d a b c d a b c d

The student’s answers will be provided by the user of the program.
These must be stored in the array studentAnswers[]. After the stu-
dent answers have been obtained the program must determine the
student’s score: the number of questions the student answered cor-
rectly.

For example if the student answers are:
a a a b b b c c c d d d
then the score for this student is 4.

7. Write a program to analyze text such that each word (token) found
is stored in an array. Use the file Readme.txt. Sort the array and
display its contents.

Chapter 7

Designing Java Classes

Up to this point our programming has involved the coding of a single class
but often we have demonstrated the use of one or more classes defined in the
Java class libraries. These pre-defined classes include: Character, Integer,
JOptionPane, Math, Random, Scanner, String, and System. In this chapter
we will see how to create programs where we can code several classes our-
selves. A class comprises fields, constructors, and methods which make up
the subject matter of this chapter. But before we get into those, we discuss
a few points regarding our use of these pre-defined classes.

The Math class contains various mathematical constants and utility methods Math class
for common mathematical operations. For instance, the Math class has a has a static field
field named PI. In a program we can have a statement such as

double circumference = 2.0 * Math.PI * r;

where we reference PI using the name of the class, Math. In particular we
did not create an object of type Math. It’s a similar case for the method
max() in the Math class. To find the maximum of two numbers we can use has a static method
the expression Math.max(num1, num2). PI is a static field and max() is a
static method; these types of fields and methods can be accessed without
the need for an object.

So to use the facilities of the Math class we did not need an object, but
there are other times when it was necessary for us to create an object. For
example consider the Scanner class and the instantiation of an object:

Scanner scanner = new Scanner(source);

In order to get the next token from scanner we use expressions like
scanner.next(). The object (also called an instance) named scanner must instance method

165

166 CHAPTER 7. DESIGNING JAVA CLASSES

keep track of its source and its current position on that source. When a scan-
ner object executes the next() method, the method obtains the next token
on the source, advances its position on that source, and returns the token.

With respect to methods we have seen another difference: sometimes we
have used a method that returned a value and other times we invoked a
method knowing that something will happen. When we simulate the toss-value-returning

method ing of a six-sided die we use:
int throw = generator.nextInt(6)+1;

where we understand nextInt(6) returns a value that is used in the arith-
metic expression generator.nextInt(6)+1. The method nextInt() is an
example of a value-returning method.

When we display something in the user’s terminal window we use a state-
ment like:

System.out.println("Enter a number: ");

where we understand that the string ”Enter a number: ” will be displayed,
and where there is no value returned that we make any use of. The methodvoid method
println() is an example of a void method (one that does not return a
value).

In the rest of this chapter we:

• present an example from an educational setting where multiple classes
are useful;

• explore the use of fields, methods, and constructors;

• discuss modifiers named public and private used to control access
to classes, fields, methods, and constructors;

• discuss the concept of overloading ;

• describe the implementation of associations between classes;

• describe the passing of values to parameters;

• describe variable length parameter lists;

• discuss the use of methods to simplify the logic of a program.

The above list is lengthy and indicates this chapter covers several new Java
programming concepts.

7.1. USING MULTIPLE CLASSES 167

7.1 Using Multiple Classes

So far we have always used a single class for our examples and exercises.
However it is very common for Java-based systems to involve several classes
where each class encompasses the requirements (fields, constructors, and
methods) of a significant concept. For example, if you were developing a
system for your educational institution you would need to implement things
having to do with students, subject areas, courses, instructors, etc. What
should happen is that you design separate classes for each of these concepts:
a class for student, a class for subject, a class for course, and so on:

public class Student{

...

public class Subject{

...

public class Course{

...

public class Instructor{

...

Before writing any code we recommend drawing a Class Diagram to illus- Class Diagram
trate the concepts you are thinking about. To simplify we present a diagram
in Figure 7.1 that shows just a subset of the concepts mentioned above: two
classes and a relationship. The relationship is based on a business rule for
the institution: a student declares a major in one subject, and that for a
subject there can be many students majoring in that subject.

Figure 7.1: A simple Class Diagram.

Each class is shown in its own compartment and a relationship is shown as
a named line. The small filled arrow shape gives the viewer an indication
of how to read the diagram. The 1 and the * are called multiplicities that
stand for one and many respectively, and are used to express how many of
one object can be related to another object through the relationship. In this
example the association line represents a two-part business rule:
• a student is majoring in one subject
• a subject has many majors who are students

168 CHAPTER 7. DESIGNING JAVA CLASSES

As we continue we will be developing Student and Subject, and in Section
7.11 you will find complete listings of these two classes.

7.2 Fields

We have learned to define variables when we needed to keep track of in-
formation. Suppose we were developing a class to represent the concept
of student. We would need variables for student identifier, first name, last
name, gender, active, etc. Formally these variables are referred to as fields
and previously we would have defined these similar to:

public class Student () {

int id;

String firstName;

String lastName;

char gender;

boolean active;

However, it generally recommended that one define the above fields includ-
ing another modifier named private. By specifying private we make itprivate fields
impossible for these fields to be referenced from outside the class. We will
say more about this idea later. Now we have:

public class Student () {

private int id;

private String firstName;

private String lastName;

private char gender;

private boolean active;

The above is Java code that defines part of a class named Student. A less
formal way to illustrate the above is to use a class diagram. Now we showClass shown with

2 compartments two compartments, one for the name of the class, and one for the names of
the fields and types, as shown in Figure 7.2.

Student objects can be created where each object would have its own copy of
these fields, and so each student object could have different values stored in
its fields. Figure 7.3 is an Object Diagram where each object is representedObject Diagram
by two compartments. In the upper compartment we show a name for an
object (e.g. jill) and the class of the object (e.g. Student). By convention
this information is underlined. In the lower compartment we show values

7.2. FIELDS 169

Figure 7.2: Class diagram with two compartments

for fields. The diagram makes it clear there are three students and each
student object has its own fields to hold values for id, first name, etc.

Figure 7.3: Object Diagram with 3 student objects.

Instance and class fields

If we define a field in a class and specify it as static that field is referred
to as a class field. Only one copy of a class field exists regardless of the static field

is a class fieldnumber of objects that exist. Suppose we are developing a system where
we generate student identifiers sequentially. Consider a field named lastId

where we store the id used for the last student object created. Consider the
following for our Student class:

public class Student {

// class fields

private static int lastId; // a static field

// instance fields

private int id;

private String firstName;

private String lastName;

private char gender;

private boolean active;

170 CHAPTER 7. DESIGNING JAVA CLASSES

In Figure 7.4 we show the Student class and 3 student objects. Note that
we show the lastId field in the Student class with its current value. Later
we will discuss methods and how the value of lastId is used and updated.

Figure 7.4: Static field in class and instance fields in objects.

7.3. METHODS 171

7.3 Methods

A method is a named collection of Java statements. Optionally a method
can have a parameter list to provide for data to be passed in and can be
designed to return a value back to the point where it is invoked. Methods
are an important tool when we write Java programs. We use methods for
two purposes.

1. To eliminate code redundancy: If we find that we are repeating the
same code as elsewhere in our program we write that code as a method
and call it from wherever it’s needed. Now, if this code ever needs to
change there is only place where the change needs to be performed.

2. To create readable programs: Programs are subject to change. Change
happens if errors are discovered in existing code, or, if the business
rules change. In real systems it has been found that more time and
effort is spent maintaining a program that what was required to create
it in the first place. Whenever code must be maintained the program
must be understood first before changes are made - the more readable
your code is, the easier and more reliably the code can be modified.

When we are designing a program and we decide that certain functionality
must be placed into a method we determine

1. whether or not the method returns a value

2. if the method is a class method

3. if the method is an instance method

4. whether or not the method can be accessed from other classes.

Value-returning methods

A method can be designed to return a value of any primitive type, ar-
ray, or object type. We have seen many examples of these including max()
and min() in the Math class, and the nextInt() and nextBoolean() of the
Random class.

In our educational example that we are developing we have made the fields
of Student private. Instead of giving other classes direct access to fields
the convention is to provide methods for this purpose. One reason to do
things this way is to hide the implementation of fields which then makes it

172 CHAPTER 7. DESIGNING JAVA CLASSES

easier to change an implementation later. So, for each field of the Student
class we can design a group of methods that are called getters (sometimesgetters/accessors
called accessors). For each of these we specify the data type they return
and the last statement in a getter method is a return statement. Considerreturn statement
the following code in the Student class:

public class Student {

private static int lastId;

private int id;

private String firstName;

private String lastName;

private char gender;

public static int getLastId (){

return lastId;

}

public int getId(){

return id;

}

public String getFirstName (){

return firstName;

}

public String getLastName (){

return lastName;

}

public char getGender (){

return gender;

}

public boolean isActive (){

return active;

}

Observe how methods are named above. Because they are getters, each
method name (but one) begins with ”get” prepended to a field name where
the first character of the field name is capitalized. Since active is boolean
its getter begins with is. As for variable names, we use ”camel case” forcamel case
method names.

Consider getLastId() above. It is defined as static since the lastId() field
is static. To invoke this method we use:calling a static method

int lastOne = Student.getLastId ();

7.3. METHODS 173

Calling the other methods above only make sense in the context of some
object, and so these methods are examples of instance methods. If joe calling an

instance methodis the name we are using to reference a student object then we can write
meaningful statements to get, for example, the gender of this student:

Student joe = new Student ();

...

char g = joe.getGender ();

Two other standard value-returning methods normally provided for a class
are the toString() and equals() methods.

When an object is being displayed via println(); it is the toString() toString()
method that determines what will be displayed. The toString() method
returns a string that represents an object. As an example, we will use the
following toString() in our system:

public String toString (){

return id+" "+firstName+" "+lastName;

}

If the statement

System.out.println(jill);

was executed then the output to the terminal window would be:

1 Jill Lee

When objects are compared for equality a programmer normally uses the
equals() method. Previously we have used the equals() method to com- equals()
pare two strings for equality. The idea that two strings are equal is simple:
the two strings are either the same string, or they are of the same length
comprising the same characters. In a program to compare two names, say
name1 and name2, we can use either:

name1.equals(name2)

or
name2.equals(name1)

For more complex objects like student objects it is not always so simple to
decide on the equality test. A student object has several fields that could
enter into consideration. At this time we will take a simple viewpoint on
this and consider two student objects the same if they have the same value
for the student identifier. Consider the method:

174 CHAPTER 7. DESIGNING JAVA CLASSES

public boolean equals(Student s){

return id == s.id;

}

Note how this method has a parameter s of type Student. The equals
method is invoked for a particular student object and that object is being
compared to the object s. If some code were to check two student objects
(say jill and sam) to see if the objects have the same content the program-
mer could code either

if (jill.equals(sam))

or
if (sam.equals(jill))

If instead one uses jill == sam it is memory addresses (and not content)
that are being compared for equality. We use == only to determine if two
object references are to the same object, as in:

Student s1 , s2;

...

// test to see id s1 and s2 refer to the

// same student object

if (s1 == s2) ...

7.3. METHODS 175

void methods

Sometimes we need methods just to complete some task and for which there
is no value that needs to be returned. One of the conventions in java pro-
gramming is to provide setter methods that are used only to set, or change,
the value of a field. Consider this partial listing of Student:

public class Student {

// constructors ...

// field declarations ...

// getters ...

// setters:

// but no setter for the id field

// public void setId(int newId){

// id = newId;

// }

public void setFirstName(String newFirstName){

firstName = newFirstName;

}

public void setLastName(String newLastName){

lastName = newLastName;

}

public void setGender(char newGender){

gender = newGender;

}

public void setActive(boolean newActive){

active = newActive;

}

In the above we have commented out a setter that could have been included
for id. A reason for not having a setter for id is the idea that once a student
is assigned a unique identifier that identifier would never change.

Observe how methods are named above. Because they are setters, each naming setters
method name begins with ”set” prepended to a field name where the first
character of the field name is capitalized. As mentioned before, we use
”camel case” for method names. camel case

176 CHAPTER 7. DESIGNING JAVA CLASSES

7.4 Constructors

Constructors are used to instantiate an object. If you do not explicitly
code a constructor, then the Java compiler creates a no-arg constructor forno-arg
you. A no-arg constructor is a constructor that takes no arguments - the
parameter list is empty. A constructor is invoked any time you use the new

operator, for example:

Scanner keyboard = new Scanner(System.in);

A constructor is similar to a method in that it is a block of code that may
have a parameter list, but there are two major differences:

1. A constructor returns an object but the code for a constructor does
not include any return statements.

2. Although a constructor returns an object created from a specific class,
the constructor does not explicitly declare the type.

Its common for a class to have multiple constructors that will differ from one
another in their parameter lists (see overloading, Section 7.6). To illustrate
we introduce two constructors for the Student class:

1. A no-arg constructor: This constructor has no values passed in to it
and so it creates a student object with a generated value for the student
identifier but has to make up values for the other fields. Presumably
those fields will eventually be filled in with calls to setter methods.

2. A constructor with four parameters. This constructor assigns a gen-
erated value to the student identifier and the other fields are set ac-
cording to the caller’s supplied values.

The first part of our Student class is now (note that the code for nextId()
is shown on page 181):

1 /**

2 * A student.

3 */

4 public class Student {

5 // class fields

6 private static int lastId;

7 // instance fields

8 private int id;

9 private String firstName;

7.4. CONSTRUCTORS 177

10 private String lastName;

11 private char gender;

12 private boolean active;

13 // first constructor , no arguments

14 public Student (){

15 id = nextId ();

16 // default values for a student:

17 firstName = "unknown";

18 lastName = "unknown";

19 gender = ’?’;

20 active = false;

21 }

22 // second constructor , four arguments

23 public Student (String firstName , String

lastName , char gender , boolean active){

24 id = nextId ();

25 //

26 // when parameters and fields have the same

27 // name they are distinquished this way:

28 // A field name alone refers to the

parameter;

29 // A field name prefixed with "this."

30 // refers to an object ’s fields.

31 this.firstName = firstName;

32 this.lastName = lastName;

33 this.gender = gender;

34 this.active = active;

35 }

36 // other methods ...

The second constructor (lines 23-35) illustrates a style of coding that is
quite common for constructors and methods. In the parameter list of the
constructor the parameters have the exact same name as the corresponding
fields. Formally, in the Java language, we say the field is shadowed by the shadowing
parameter. To reference the field within the method you must use the this

keyword. When the name is used alone (e.g. firstName) in a constructor this keyword
it is a reference to the parameter. When a name is prefixed with ”this.”
it is a reference to the object’s field. Consider line 31:

this.firstName = firstName;

The right hand side of the assignment statement is a reference to a param-

178 CHAPTER 7. DESIGNING JAVA CLASSES

eter and the left hand side of the assignment statement is a reference to the
the object’s field. And so this assignment statement assigns a value passed
in via the parameter to an object’s field.

We illustrate the class diagram for the Student class with three compart-
ments, where the third shows constructors and methods. Note that we have
left out some details such as the field types and parameter types. We have
included plus and minus signs to show whether a method or constructor is
public(’+’) or private(’-’).

Figure 7.5: Student class with 3 compartments.

7.4. CONSTRUCTORS 179

Using constructors

A constructor is invoked any time a program executes a new operator. Con-
sider the code below where we invoke each of the above constructors. For the
no-arg constructor we follow up with setters to fill out the student object.

Listing 7.1: Using constructors.

1 /**

2 * Create two student objects

3 * using the two constructors

4 */

5 public class UseConstructors

6 {

7 public static void main(String [] args){

8 // first , with the no -arg constructor

9 Student jill = new Student ();

10 // use setters to complete the student

object

11 jill.setFirstName("Jill");

12 jill.setLastName("Lee");

13 jill.setGender(’F’);

14 jill.setActive(true);

15 // now with the other constructor

16 Student sam = new

Student("Samantha","Jones",’F’,true);

17 // display the students

18 System.out.println(jill);

19 System.out.println(sam);

20 }

21 }

The output from UseConstructors is shown below. We can see from the
output that when a student object is displayed the toString() method was
used.

180 CHAPTER 7. DESIGNING JAVA CLASSES

7.5 Visibility Specifications: Public, Private

In our introduction to Java we are only concerned with the modifiers public
and private which can be used on classes, fields, methods, and constructors.

Classes

When complex systems are developed Java classes will be organized into
packages. We have used several packages (i.e. the Java class libraries) where
each library is a package containing related classes. For example,

1. the package java.lang contains fundamental classes such as Character,java.lang
Double, Integer, Math, and String;

2. the package java.util contains utility classes such as Arrays, ArrayList,java.util
Collections, Random, and Scanner.

The packages we have been using are all designated as public meaning that
any other class can use them. If there is a need to provide different accessi-
bility then other modifiers such as private and protected can be used. Please
see Volume II of these notes for further information.

For introductory programming we will only use public for our classes. With
BlueJ all of our classes will be in one default package. For more information
with respect to BlueJ consult the BlueJ documentation.

Fields

If a field is designated private the field can only be accessed from within theprivate
class where it is defined. This is considered good practice because the class
has control over the implementation of the field and exposes the field only
through methods. This idea of keeping the implementation aspects hidden
is called Information Hiding.Information Hiding

As an example, suppose a three-dimensional point (x,y,z) is represented in
a program with three floating point variables. Suppose the representation
must change to be an array of size three, then that change would only affect
this class and no others. The methods that were in place to provide infor-
mation about x, y, and z can continue to serve (with minor modification)
the needs of other classes. So, information hiding is a way of controlling the

7.5. VISIBILITY SPECIFICATIONS: PUBLIC, PRIVATE 181

scope of changes in a system.

When a field is designated public the field can be accessed from any other public
class. What can happen then is that other classes become dependent on
the data type that is used. However, there are situations where public is
appropriate - consider the utility class Math. Math has two public fields PI

and E for π and e.

Methods

When a method is designated public then any other class can invoke that public
method. For getter and setter methods this is the usual practice.

When a method is designated as private the method can only be called private
from within the class where it is defined. In our Student example we use
a private method that controls the value of the field lastId. Consider the
constructor below and the utility method nextId(). This utility method is
only called from a constructor and nothing outside the class can call it. In
this way the value of lastId can never be changed except when a Student
object is created.

public Student (){

id = nextId ();

}

private int nextId (){

// increment lastId and return the new value

// to be used for the new student.

return ++ lastId;

}

Constructors

When a constructor is designated public then any other class can use that public
constructor to create an object. This is the usual case for constructors.

When a constructor is designated as private the constructor can only be private
called from within the class where it is defined. One class we have used that
has a private constructor is Math. Math is a utility class made up of static
fields and static methods, and so there would be no benefit to ever having

182 CHAPTER 7. DESIGNING JAVA CLASSES

a Math object. The private constructor prevents anyone from instantiating
a Math object.

If you try to instantiate an instance of Math your program will not compile;
the message you receive back from the compiler is ”Math() has private access
in java.lang.Math”.

7.6 Overloading

The Java language allows you to define more than one method with the
same method name as long as the parameter lists are different. If two or
more methods have the same name we say the name is overloaded. Theoverloaded
same is true for constructors - a class can have more than one constructor
as long as their parameters lists are different. We have seen overloading in
practice with the previous example where two constructors were coded for
the Student class.

7.7. ASSOCIATIONS 183

7.7 Associations

Recall the class diagram from Figure 7.1 reproduced below.

Figure 7.6: A simple Class Diagram.

To implement this system of classes we need to define a Subject class. Later
we discuss the implementation of the association. To keep our example
simple Subject is defined to have two fields - see below.

/**

* Subject area in which a student

* may declare a major.

*/

public class Subject

{

// fields

private String code;

private String name;

// constructor

public Subject(String code , String name)

{

this.code = code;

this.name = name;

}

// getters

public String getCode (){

return code;

}

public String getName (){

return name;

}

// setters

public void setCode(String code){

this.code = code;

}

public void setName(String name){

this.name = name;

184 CHAPTER 7. DESIGNING JAVA CLASSES

}

// toString ()

public String toString (){

return code+" ("+name+")";

}

// equals (...)

public boolean equals(Subject other){

return this.code == other.code;

}

}

Implementing the association

When we implement an association we must consider that the association
can be viewed from either side of the association. So in this case we can say2 sides of an

association there is a student side and a subject side. Such an association is sometimes
called a one-to-many association because for each student there is only one
subject area, and for each subject area there can be many related students.

Let us consider the student side, is majoring in, first. We have stated thatstudent side
a student chooses one major and so a simple field could be used for this
purpose. We add a field named major and so the fields in Student now
become:

private static int lastId;

private int id;

private String firstName;

private String lastName;

private char gender;

private boolean active;

private Subject major;

7.7. ASSOCIATIONS 185

Notice that the last field major, of type Subject, is the field that implements ”1” side: field
of type Studentthe association for a student object. For each student object there is field

that can be set to the student’s major subject. Following the convention of
getters and setters we add the following two methods to Student:

// getter

public Subject getMajor (){

return major;

}

// setter

public void setMajor(Subject newMajor){

major = newMajor;

}

To show how we can make use of the above field, consider the code segment
below where a student sam and a subject area math are instantiated, and
then we add math as sam’s major.

public static void main(String [] args{

Subject math = new

Subject("Math","Mathematics");

Student sam = new

Student("Samantha","Jones",’F’,true);

sam.setMajor(math);

Now, we consider the other side of the association . . . the subject side. To subject area
sideimplement the subject side of the association, has majors, we need to add

a field to the Subject class. Since many students could have the same
major a good name for the field is majors and a good choice for type is
ArrayList<Student> as this allows for any number of students. ”many” side: field

of type ArrayList
We show selected lines of the Subject class listed below. In line 5 we declare
an ArrayList of Students, and in the constructor (lines 8-13) an empty
ArrayList<Student> is created. There is a getter for majors in lines 18-20
that returns majors, and a setter in lines 24-26 where there is a parameter
of type ArrayList<Student>. In addition to the getters and setters we
include one more method addMajor(), in lines 28-30, that allows one to
add a student to the existing list of majoring students.

186 CHAPTER 7. DESIGNING JAVA CLASSES

1 public class Subject

2 {

3 // fields

4 ...

5 ArrayList <Student > majors;

6
7 // constructor

8 public Subject(String code , String name)

9 {

10 this.code = code;

11 this.name = name;

12 majors = new ArrayList ();

13 }

14
15 // getters

16 ...

17
18 public ArrayList <Student > getMajors (){

19 return majors;

20 }

21 // setters

22 ...

23
24 public void setMajors(ArrayList <Student >

majors){

25 this.majors = majors;

26 }

27 // add a student to those majoring in this area

28 public void addMajor(Student newMajor){

29 majors.add(newMajor);

30 }

31 ...

7.7. ASSOCIATIONS 187

Now reconsider the case where there is a student sam and a subject area
math, and where sam declares math as the major. There are two actions
we must perform relating to the two sides of an association. Not only do
we add math as the major for sam, but we add sam to the list of majoring
students for math. Consider the following program where lines 13 and 14 transaction has

2 actionsperform the transaction for declaring a major.

Listing 7.2: Sam declares a Math major

1
2 /**

3 * Create a student Sam and a subject area Math

4 * and then code the action of

5 * Sam declaring a major in Math

6 */

7 public class SamDeclaresMathMajor

8 {

9 public static void main(String [] args){

10 Subject math = new

Subject("Math","Mathematics");

11 Student sam = new

Student("Samantha","Jones",’F’,true);

12 // two actions for the "declare major"

transaction

13 sam.setMajor(math);

14 math.addMajor(sam);

15 System.out.println("Math majors = "

16 +math.getMajors ());

17 }

18 }

188 CHAPTER 7. DESIGNING JAVA CLASSES

7.8 Reusing code

Consider a case where we want to declare a major for several students. We
can choose to duplicate lines 13 and 14 in Listing 7.2 several times, or, we caneliminate

duplicate code create a method that contains the equivalent of lines 13 and 14, and invoke
that method as many times as necessary. In this way we can eliminate code
redundancy and can make the overall program easier to comprehend. And
if the code for declaring a major has to change, the change affects the small
method declareMajor(). Consider the following example where we call
declareMajor() several times:

Listing 7.3: Invoking a method several times.

1 /**

2 * Instead of duplicating code , use a method to

3 * perform the same action three times.

4 */

5 public class DeclareSubjectAreaForMultipleStudents

6 {

7 public static void main(String [] args){

8 Subject math = new

Subject("Math","Mathematics");

9 Student jill = new

Student("Jill","Lee",’F’,true);

10 Student sam = new

Student("Samantha","Jones",’F’,true);

11 Student bob = new

Student("Robert","Smith",’M’,true);

12 // Each student is majoring in Math

13 declareMajors(jill , math);

14 declareMajors(sam , math);

15 declareMajors(bob , math);

16 System.out.println("Math majors = "

17 +math.getMajors ());

18 }

19 public static void declareMajors(Student s,

Subject m){

20 // student s declares a major in m

21 s.setMajor(m);

22 m.addMajor(s);

23 }

7.8. REUSING CODE 189

24 }

The output below shows the students who have declared their major to be
Mathematics.

190 CHAPTER 7. DESIGNING JAVA CLASSES

7.9 Parameter lists and arguments

Constructors and methods can be defined with a parameter list that com-
prises one or more variables, and these variables can be primitive types,
classes, arrays, ArrayLists, etc. When one method (the caller) invokes an-
other method (the called method) control transfers from the caller to the
called method, but before this occurs the values of the arguments are copiedcopying of arguments

into parameters to corresponding parameters in the called method. It is required that the
caller’s arguments match in number and type with the called method’s pa-
rameters.

When the called method completes and control returns back to the caller
the opposite does not occur - parameter values are not copied back intono copying on return
the arguments. The caller’s fields are not altered unless an argument is an
object and the called method has modified the object. If the called method
alters the object then the caller’s argument (object) is changed.

Recall that a variable that represents an object holds a reference to (the
memory address of) the object. So when an object is passed it is the refer-passing objects
ence that is copied to the parameter. When the called method accesses the
object through the parameter it is accessing the object and not some copy
of the object.

Consider the program below and the method removeMajors() that has two
parameters: the first is n, an int which is a primitive data type, but the
second one is an object - an ArrayList named x. The method removes n

elements from x decrementing n in the process. From the output you will
see the arguments before and after the call. The ArrayList is changed, but
the int variable is not changed.

7.9. PARAMETER LISTS AND ARGUMENTS 191

Listing 7.4: Objects can be modified through a method call.

1 import java.util.ArrayList;

2 /**

3 *

4 * Arrange for 3 students to major in Math.

5 * The method removeMajors () has 2 parameters.

6 * removeMajors () alters both parameters.

7 * In the caller only the ArrayList changes ,

8 * the "int" is not changed.

9 *

10 */

11 public class ObjectModifiedByCalledMethod

12 {

13 public static void main(String [] args){

14 Subject math = new

Subject("Math","Mathematics");

15 Student jill = new

Student("Jill","Lee",’F’,true);

16 Student sam = new

Student("Samantha","Jones",’F’,true);

17 Student bob = new

Student("Robert","Smith",’M’,true);

18 // Each student is majoring in Math

19 declareMajors(jill , math);

20 declareMajors(sam , math);

21 declareMajors(bob , math);

22 // the majors

23 ArrayList <Student > majors =

math.getMajors ();

24 // n is the number of Math majors

25 int n = majors.size();

26 System.out.println(n+" majors: "+majors);

27 removeMajors(n, majors);

28 // n is not changed

29 // majors has been changed

30 System.out.println(n+" majors: "+majors);

31 }

32
33

192 CHAPTER 7. DESIGNING JAVA CLASSES

34 public static void removeMajors

35 (int n, ArrayList <Student > x)

36 {

37 while (n>0){

38 n--; // decrement n

39 x.remove(n); // remove the nth. element

40 }

41 }

42
43 public static void declareMajors

44 (Student s, Subject m)

45 {

46 // s declares a major in m

47 s.setMajor(m);

48 m.addMajor(s);

49 }

50 }

The output below shows the arguments, an int and an ArrayList, before
and after the call.

7.10. VARARGS: A VARIABLE NUMBER OF ARGUMENTS 193

7.10 Varargs: a variable number of arguments

A method can be defined such that the last parameter can accept multiple
values. Between the parameter type and the parameter name for the last
parameter we include an ellipsis (. . .). In the method the last parameter is varargs: denoted by . . .
then an array.

Recall the last program, Listing 7.4, where each student declares a Math-
ematics major. That program invokes declareMajors() 3 times, once per
student. In the program listing below we have changed the method in such
a way that all students who declare the same major can be handled in a
single call to the method.

In line 13 of the calling method there are three Student variables passed to
declareMajors():

declareMajors(math , jill , sam , bob);

In lines 18-19 we have declared a parameter list as:

public static void declareMajors(

Subject m, Student ... s)

where the last parameter is defined as ”Student ... s”.
In lines 22-25 you can see the elements of s are accessed using an enhanced
for statement.

for (Student student: s){

student.setMajor(m);

m.addMajor(student);

}

194 CHAPTER 7. DESIGNING JAVA CLASSES

Listing 7.5: Multiple argument values for the last parameter.

1 /**

2 * 3 students declare Math - one call

3 */

4 public class VarargParameterForStudentObjects

5 {

6 public static void main(String [] args){

7 Subject math = new

Subject("Math","Mathematics");

8 Student jill = new

Student("Jill","Lee",’F’,true);

9 Student sam = new

Student("Samantha","Jones",’F’,true);

10 Student bob = new

Student("Robert","Smith",’M’,true);

11 // Each student is majoring in Math

12 // A single call to declareMajors

13 declareMajors(math , jill , sam , bob);

14 System.out.println("Math majors = "

15 +math.getMajors ());

16 }

17 // varargs used for last parameter

18 public static void declareMajors(

19 Subject m, Student ... s){

20 // Set each student to have a major in m.

21 // s is an array of Student

22 for (Student student: s){

23 student.setMajor(m);

24 m.addMajor(student);

25 }

26 }

27 }

When the program is run we get the same output as before - showing three
Mathematics majors:

7.11. CODE LISTINGS: STUDENT, SUBJECT 195

7.11 Code listings: Student, Subject

Listing 7.6: The Student class.

1 /**

2 * A student.

3 */

4 public class Student {

5 // class fields

6 private static int lastId;

7 // instance fields

8 private int id;

9 private String firstName;

10 private String lastName;

11 private char gender;

12 private boolean active;

13 private Subject major;

14 // first constructor , no arguments

15 public Student (){

16 id = nextId ();

17 // default values for a student:

18 firstName = "unknown";

19 lastName = "unknown";

20 gender = ’?’;

21 active = false;

22 }

23 // second constructor , four arguments

24 public Student (String firstName , String

lastName , char gender , boolean active){

25 id = nextId ();

26 //

27 // when parameters and fields have the same

28 // name they are distinquished this way:

29 // a field name alone refers to the

parameter

30 // a field name prefixed with "this."

31 // refers to an object ’s fields.

32 this.firstName = firstName;

33 this.lastName = lastName;

34 this.gender = gender;

196 CHAPTER 7. DESIGNING JAVA CLASSES

35 this.active = active;

36 }

37
38 private int nextId (){

39 // increment lastId and return the new value

40 // to be used for the new student.

41 return ++ lastId;

42 }

43
44 public int getId(){

45 return id;

46 }

47
48 public static int getLastId (){

49 return lastId;

50 }

51
52 public String getFirstName (){

53 return firstName;

54 }

55
56 public String getLastName (){

57 return lastName;

58 }

59
60 public char getGender (){

61 return gender;

62 }

63
64 public boolean isActive (){

65 return active;

66 }

67
68 public Subject getMajor (){

69 return major;

70 }

71
72 public void setLastId(int newLastId){

73 lastId = newLastId;

74 }

7.11. CODE LISTINGS: STUDENT, SUBJECT 197

75
76 // no setter for the student ’s id field

77 // public void setId(int newId){

78 // id = newId;

79 // }

80
81 public void setFirstName(String newFirstName){

82 firstName = newFirstName;

83 }

84
85 public void setLastName(String newLastName){

86 lastName = newLastName;

87 }

88
89 public void setGender(char newGender){

90 gender = newGender;

91 }

92
93 public void setActive(boolean newActive){

94 active = newActive;

95 }

96
97 public void setMajor(Subject newMajor){

98 major = newMajor;

99 }

100
101 public String toString (){

102 return id+" "+firstName+" "+lastName;

103 }

104
105 public boolean equals(Student s){

106 return id == s.id;

107 }

108 }

198 CHAPTER 7. DESIGNING JAVA CLASSES

Listing 7.7: The Subject class.

1 import java.util.ArrayList;

2 /**

3 * Subject area in which a

4 * student may declare a major.

5 */

6 public class Subject

7 {

8 // fields

9 private String code;

10 private String name;

11 private ArrayList <Student > majors;

12 // constructor

13 public Subject(String code , String name)

14 {

15 this.code = code;

16 this.name = name;

17 majors = new ArrayList ();

18 }

19 // getters

20 public String getCode (){

21 return code;

22 }

23
24 public String getName (){

25 return name;

26 }

27
28 public ArrayList <Student > getMajors (){

29 return majors;

30 }

31 // setters

32 public void setCode(String code){

33 this.code = code;

34 }

35
36 public void setName(String name){

37 this.name = name;

38 }

7.11. CODE LISTINGS: STUDENT, SUBJECT 199

39
40 public void setMajors(ArrayList <Student >

majors){

41 this.majors = majors;

42 }

43 // add a student to those majoring in this area

44 public void addMajor(Student newMajor){

45 majors.add(newMajor);

46 }

47 // toString ()

48 public String toString (){

49 return code+" ("+name+")";

50 }

51 // equals (...)

52 public boolean equals(Subject other){

53 return this.code == other.code;

54 }

55 }

200 CHAPTER 7. DESIGNING JAVA CLASSES

Exercises

1. Create each of the three students shown in the object diagram of Figure
7.3 and the subject areas Computer Science and Mathematics. Write
the code to implement the transactions:
- Samantha declares a major in Computer Science;
- Robert declares a major in Computer Science;
- Jill declares a major in Mathematics.

2. Suppose we must create a way for a student to change their major.
This can be done by adding another method to Subject that would
remove a student from the list of students majoring in a subject area.
Write this method and then write the code necessary for the following
transactions:
- Samantha declares a major in Computer Science;
- Robert declares a major in Computer Science;
- Jill declares a major in Mathematics.
- Robert re-declares his major to be Mathematics.

3. Add a new method to the Student class that returns a student’s full
name.

4. In Listing 7.5 there are three Student objects passed to
declareMajors(). Because the last argument in declareMajors() is
an array you can pass an array instead of the three Student arguments.
Place jill, sam, and bob in a Student array and call the method using
two arguments: the subject and the Student array.

5. Develop a Course class and then use a program to instantiate the
following objects:

7.11. CODE LISTINGS: STUDENT, SUBJECT 201

6. Implement the following business rule:

• A subject offers several courses;
• A course is offered in one subject.

Write a program that creates two subject areas and four courses as
shown in the following object diagram. Note the lines that connect a
subject to a course - these link lines show which courses are offered by
which subject area.

Then, for each subject area display the courses it offers.

202 CHAPTER 7. DESIGNING JAVA CLASSES

Chapter 8

A Brief Introduction to
Graphical User Interfaces

The way a user interacts with a computing system is termed the user inter-
face (UI). Designing and developing a UI is critical to the acceptance and
success of a computing system. A UI is the user’s view of the system and
its design should not be taken lightly. Many educational institutions have a
course devoted to this very subject.//
When learning to program we tend to keep the UI quite simple. This has
been the case for all of our programs. One could consider our discussion on
JOptionPane to be a small exception as it is the one case where the user
can use a mouse to interact with the program; in all other cases the user’s
interaction required using the keyboard. JOptionPane provides only a lim-
ited amount of non-keyboard interaction.

In this chapter we introduce the graphical user interface (GUI), pronounced
gooey or spelled out as G-U-I, where a user interacts with a Java system via
the keyboard, mouse, or other peripherals, and graphical components such
as buttons, text fields, radio buttons, etc.

It is very likely the student has used many GUIs. Some common examples
where we use GUIs:

1. an automated teller machine

2. a airline check-in system

3. a cell phone or tablet computer

203

204CHAPTER 8. A BRIEF INTRODUCTION TOGRAPHICAL USER INTERFACES

4. an email system

In this chapter we examine some of the elements that go into a GUI and
how those elements are managed in Java. As you will see a GUI involves
a lot of coding, but we will facilitate our coding by using the Simple GUI
Builder (a BlueJ extension). If the Simple GUI Builder extension is not
installed on your computer you should visit the BlueJ web page and follow
the instructions for download and installation of the extension.

The typical GUI is presented as a window on the user’s monitor. A window
is called a container comprising other components. There are many such
components the GUI programmer must master; we will consider a few of the
most common components and give you a sense of basic GUI programming:

1. Labels. These are textual components that provide descriptive infor-
mation for the user. Typically they provide a title for a window or
describe what appears in another component. They are visual compo-
nents the user see but does not interact with.

2. Text Fields. The primary purpose of a text field is to provide an
element in a window where the user can enter data. These components
must have meaningful names as they will be referenced in code through
set and get type methods.

3. Buttons. These components may show a picture or text indicating
what happens when they are clicked with a mouse. These will need
meaningful names as they are reference directly in code. The action
to be performed is a method that executes when the user clicks the
button, and this needs to be coded by the programmer.

There are of course many more components including radio buttons, check
boxes, combo boxes, panels, borders, etc. The interested reader is referred to
other articles and texts such as those found at http://docs.oracle.com/javase/tutorial

8.1. BRIEF INTRODUCTION TO SIMPLE GUI BUILDER 205

8.1 Brief Introduction to Simple GUI Builder

The sample GUI (see Figure 8.1) we will build in this section permits a
user to enter a student identifier, click the Find button, and in response the
system will display the student’s full name.

Figure 8.1: Sample GUI for getting student information.

Our example will utilize two classes, Students and Student, that were pre-
sented in the previous chapter and illustrated in Figure 8.2.

Figure 8.2: Students is a collection of students.

To work through this example you need to start a BlueJ project and include
Students and Student classes. To start building a GUI you must select the
Tools menu and then select the Simple GUI Extension (see Figure 8.3).

When the Simple GUI Extension is selected a window opens where you can

206CHAPTER 8. A BRIEF INTRODUCTION TOGRAPHICAL USER INTERFACES

Figure 8.3: Starting the Simple GUI Builder.

design the GUI, examine generated Java code, and create a menu for your
GUI (menus are ignored in this brief introduction). The window appears
as shown in Figure 8.4 where, of the three tabs, the Design tab is selected
showing a large blank area where you draw the GUI using drag and drop
features of the builder.

Figure 8.4: The opening window.

At this point if you switch to the Code tab you will be able to see generated
code similar to Listing 8.1. In the listing displayed below we have removed
lines referring to a menu in order to focus on specific aspects. Comments

8.1. BRIEF INTRODUCTION TO SIMPLE GUI BUILDER 207

follow the listing.

Listing 8.1: The initial code generated.

1 /**

2 * Several imports for GUI related classes

3 */

4 import javax.swing.UIManager.LookAndFeelInfo;

5 import java.awt .*;

6 import java.awt.event.ActionEvent;

7 import java.awt.event.ActionListener;

8 import java.awt.event.KeyAdapter;

9 import java.awt.event.KeyEvent;

10 import java.awt.event.MouseAdapter;

11 import java.awt.event.MouseEvent;

12 import java.awt.event.MouseWheelEvent;

13 import java.awt.event.MouseWheelListener;

14 import javax.swing.border.Border;

15 import javax.swing .*;

16
17 // The class extends the Java class named JFrame

18 public class initialGUICodeListing extends JFrame {

19
20 // When you GUI has a menu , you need a JMenuBar

21 private JMenuBar menuBar;

22
23 // This constructor builds your GUI

24 public initialGUICodeListing (){

25 // Title and size for the window

26 this.setTitle("GUI_project");

27 this.setSize (500 ,400);

28 //

29 generateMenu ();

30 this.setJMenuBar(menuBar);

31
32 // Your GUI needs a JPanel to hold

the labels , etc

33 JPanel contentPane = new

JPanel(null);

34 contentPane.setPreferredSize(new

Dimension (500 ,400));

208CHAPTER 8. A BRIEF INTRODUCTION TOGRAPHICAL USER INTERFACES

35 contentPane.setBackground(new

Color (192 ,192 ,192));

36
37 // The JFrame is a container to

which the panel is added

38 this.add(contentPane);

39
40 // some lines removed ...

41
42 // The JFrame must be visible to

the user

43 this.setVisible(true);

44 }

45
46 // method for generate menu

47 public void generateMenu (){

48 menuBar = new JMenuBar ();

49 // some lines removed ...

50 }

51
52 // the main() method creates a running GUI

53 public static void main(String [] args){

54 System.setProperty("swing.defaultlaf",

"com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel");

55 javax.swing.SwingUtilities.invokeLater(new

Runnable () {

56 public void run() {

57 new GUI_project ();

58 }

59 });

60 }

61
62 }

• lines 4 to 15 are import statements for Java class libraries and classes
that may be used in the GUI.

• line 18 indicates the class extends JFrame. JFrame is a Java class that
provides the basic container for the window.

8.1. BRIEF INTRODUCTION TO SIMPLE GUI BUILDER 209

• The constructor begins in line 24 and builds the GUI object that will
be displayed to the user.

• lines 26 and 27 set the title and size of the window

• We are ignoring the menu built in line 30

• Several lines (startin at line 33) refer to a JPanel that serves as the
container holding labels, text fields and the button of our interface.

• Line 52 is the start of the main() method that instructs the JVM to
create and run the GUI object created in the constructor.

To briefly summarize the above we can say the GUI is a visible JFrame object
that contains a JPanel object. Now, we want to complete the GUI with the
components that will be in the JPanel. Consider Figure 8.4 again. In the
upper left hand corner contains the controls for buttons, combo boxes, check
boxes, labels, text fields, etc. that can be added to a GUI. These controls
can be dragged and dropped on the panel; once selected they can be resized
and repositioned via the mouse. Below the controls you see properties for
the selected control where you can modify the name, location, size, text,
etc. It is useful to assign a meaningful name so you can find it in the code.
For some controls such as a button you should specify meaningful text to
appear on the control and an event handler (a method to execute when, say,
a user clicks a button control).

The Java code to create the above GUI can be done fairly quickly using the
Simple GUI Builder. This simple GUI has three labels, two text fields, and
a button. We will outline the steps to create the labels, then the text boxes,
and lastly the button.

Step 1. Add three labels

To add a label click the Label control in the upper left of the tool’s window
and hold the mouse button down. Next, drag the cursor to where the label
is to appear on the panel. Later if necessary, you can move the label by
clicking and dragging.
a) Add a label at the top center; you will see the properties for the la-
bel in the lower left. Enter its text property as Students and set its font
size to be 24. You should now see properties and the design as in Figure 8.5.

210CHAPTER 8. A BRIEF INTRODUCTION TOGRAPHICAL USER INTERFACES

Figure 8.5: Property values for the 3 labels.

b) Add a label on the left as per Figure 8.1; set its text property to Id;
c) Add a label on the left as per Figure 8.1; set its text property to Name
The properties for each of the above labels is shown in Figure 8.6

Step 2. Add two text fields

To add a text field click the Text Field control in the upper left of the tool’s
window and hold the mouse button down. Next, drag the cursor to where
the text field is to appear on the panel.

We are adding two text fields that are used to hold values for a student’s
identifier and for their full name. Proceed as follows:
a) Add a text field to the right of the Id label as per Figure 8.1. Delete the
current value of the Text property. Set the Name property to textfieldId.
a) Add a text field to the right of the name label as per Figure 8.1. Delete the
current value of the Text property. Set the Name property to textfieldName
The property values for these text fields should be as follows:

8.1. BRIEF INTRODUCTION TO SIMPLE GUI BUILDER 211

Figure 8.6: Property values for the 2 text fields.

Step 3. Add a button

To add a button to the UI you must click the Button control in the upper
left of the tool’s window and hold the mouse button down. Next drag the
cursor on to the panel where the button is to appear. In the case of our
simple GUI where we want one button as per Figure 8.1:
a) Position the button to the right of textfieldId.
b) Set its Name property to buttonFindStudent.
c) Set the Text property to Find.

Figure 8.7: Property values for the button.

One aspect of a button is that, when clicked, some action must be performed,
and this action must be defined as a Java method. For this button you must:
a) Click on the Events tab (beside ”Properties”)
b) Click the button beside ”actionPerformed” and enter the method name
findStudent in the pop-up window.
You should now see an Events tab as shown in Figure 8.8.

212CHAPTER 8. A BRIEF INTRODUCTION TOGRAPHICAL USER INTERFACES

Figure 8.8: The method to execute when the button is clicked.

Step 4. Create the GUI class

To create the GUI class you can click Save in the GUI Designer’s File menu.
It will be named GUI Project and once compiled you can execute the main()
method. What you should see is a window similar to Figure 8.9. Since we
have not completed the event handler method findStudent() for the Find
button nothing happens when you click Find.

Figure 8.9: The GUI appears to the user.

Step 5. Modify the code (for Students)

Modify the generated code in GUI Project as shown below. Note that when
this is done you cannot go back to the GUI tool - if you do, you will lose
these modifications. The GUI Designer is considered a one-way tool - you
can only generate code; you cannot generate a design from the code.
a) We need a variable that references the collection of students. Locate the
fields and add the declaration

private Students students;

b) We need to create the students object. Locate the constructor and add
the statement

8.1. BRIEF INTRODUCTION TO SIMPLE GUI BUILDER 213

this.students = new Students();

c) Examine the main() method. This method instantiates a GUI Project
and in the above two points we have arranged for the GUI Project to con-
tain a list of students.

Step 6. Modify the code (provide an action)

Modify generated code in GUI Project to perform a meaningful action when
the button is clicked.
a) Locate the findStudent() method
b) The generated code contains a comment // TODO which you can replace
with:

1 int id =

Integer.parseInt(textfieldId.getText ());

2 Student s = students.findStudent(id);

3 if (s == null)

4 textfieldName.setText("NOT FOUND");

5 else

6 textfieldName.setText(s.getFullName ());

In line 1 the value entered by the user in a text field is converted to an int,
and then in line 2 that value is passed to the findStudent() method of the
students object. In line 3 a check is made to determine if a corresponding
student was found. If the student was not found then the message NOT

FOUND is displayed in the GUI; otherwise the student’s full name is obtained
and displayed in the GUI.

Step 7. Run/experiment with your GUI

Note that when you run main() the GUI shows on your monitor, and in the
System tray at the bottom of your monitor you see the Java icon for your
GUI:

Figure 8.10: The GUI appears to the user.

214CHAPTER 8. A BRIEF INTRODUCTION TOGRAPHICAL USER INTERFACES

Summary

When the above actions were performed a class named GUI project was
created; its code, and that of Students and Student are shown in the listings
that follow. To summarize the GUI created here:

• We used a BlueJ extension called the Simple GUI Designer.

• Using drag and drop features we designed a GUI with a labels, text
fields, and a button.

• Controls such as text fields and buttons require meaningful names as
they are always referenced in code.

• A button is different as there is always an action to be coded that is
invoked when the button is pressed or clicked.

• The code involved for GUIs is complex and lengthy. A tool like the
Simple GUI Designer is very useful in practice.

8.1.1 Listings

Listings for the GUI.

The GUI project Class

Listing 8.2: The generated class GUI project with modifications.

1 /**

2 *Text genereted by Simple GUI Extension for BlueJ

3 */

4 import javax.swing.UIManager.LookAndFeelInfo;

5 import java.awt .*;

6 import java.awt.event.ActionEvent;

7 import java.awt.event.ActionListener;

8 import java.awt.event.KeyAdapter;

9 import java.awt.event.KeyEvent;

10 import java.awt.event.MouseAdapter;

11 import java.awt.event.MouseEvent;

12 import java.awt.event.MouseWheelEvent;

13 import java.awt.event.MouseWheelListener;

14 import javax.swing.border.Border;

15 import javax.swing .*;

8.1. BRIEF INTRODUCTION TO SIMPLE GUI BUILDER 215

16
17
18 public class GUI_Project extends JFrame {

19 private Students students;

20 private JMenuBar menuBar;

21 private JButton buttonFindStudent;

22 private JLabel label1;

23 private JLabel label2;

24 private JLabel label3;

25 private JTextField textfieldName;

26 private JTextField textfieldId;

27
28 // Constructor

29 public GUI_Project (){

30
31 this.students = new Students ();

32 this.setTitle("GUI_Project");

33 this.setSize (500 ,400);

34 //menu generate method

35 generateMenu ();

36 this.setJMenuBar(menuBar);

37
38 //pane with null layout

39 JPanel contentPane = new JPanel(null);

40 contentPane.setPreferredSize(new

Dimension (500 ,400));

41 contentPane.setBackground(new

Color (192 ,192 ,192));

42
43
44 buttonFindStudent = new JButton ();

45 buttonFindStudent.setBounds (180 ,94 ,90 ,35);

46 buttonFindStudent.setBackground(new

Color (214 ,217 ,223));

47 buttonFindStudent.setForeground(new

Color (0,0,0));

48 buttonFindStudent.setEnabled(true);

49 buttonFindStudent.setFont(new

Font("sansserif" ,0,12));

50 buttonFindStudent.setText("Find");

216CHAPTER 8. A BRIEF INTRODUCTION TOGRAPHICAL USER INTERFACES

51 buttonFindStudent.setVisible(true);

52 //Set action for button click

53 //Call defined method

54 buttonFindStudent.addActionListener(new

ActionListener () {

55 public void actionPerformed(ActionEvent

evt) {

56 findStudent(evt);

57 }

58 });

59
60
61 label1 = new JLabel ();

62 label1.setBounds (104 ,12 ,300 ,20);

63 label1.setBackground(new

Color (214 ,217 ,223));

64 label1.setForeground(new Color (0,0,0));

65 label1.setEnabled(true);

66 label1.setFont(new Font("SansSerif" ,0,24));

67 label1.setText("Students");

68 label1.setVisible(true);

69
70 label2 = new JLabel ();

71 label2.setBounds (12 ,93 ,90 ,35);

72 label2.setBackground(new

Color (214 ,217 ,223));

73 label2.setForeground(new Color (0,0,0));

74 label2.setEnabled(true);

75 label2.setFont(new Font("sansserif" ,0,12));

76 label2.setText("Id");

77 label2.setVisible(true);

78
79 label3 = new JLabel ();

80 label3.setBounds (15 ,159 ,90 ,35);

81 label3.setBackground(new

Color (214 ,217 ,223));

82 label3.setForeground(new Color (0,0,0));

83 label3.setEnabled(true);

84 label3.setFont(new Font("sansserif" ,0,12));

85 label3.setText("Name");

8.1. BRIEF INTRODUCTION TO SIMPLE GUI BUILDER 217

86 label3.setVisible(true);

87
88 textfieldName = new JTextField ();

89 textfieldName.setBounds (68 ,160 ,90 ,35);

90 textfieldName.setBackground(new

Color (255 ,255 ,255));

91 textfieldName.setForeground(new

Color (0,0,0));

92 textfieldName.setEnabled(true);

93 textfieldName.setFont(new

Font("sansserif" ,0,12));

94 textfieldName.setText("");

95 textfieldName.setVisible(true);

96
97 textfieldId = new JTextField ();

98 textfieldId.setBounds (62 ,93 ,90 ,35);

99 textfieldId.setBackground(new

Color (255 ,255 ,255));

100 textfieldId.setForeground(new Color (0,0,0));

101 textfieldId.setEnabled(true);

102 textfieldId.setFont(new

Font("sansserif" ,0,12));

103 textfieldId.setText("");

104 textfieldId.setVisible(true);

105
106 // adding components to contentPane panel

107 contentPane.add(buttonFindStudent);

108 contentPane.add(label1);

109 contentPane.add(label2);

110 contentPane.add(label3);

111 contentPane.add(textfieldName);

112 contentPane.add(textfieldId);

113
114 // adding panel to JFrame and seting of

window position and close operation

115 this.add(contentPane);

116 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

117 this.setLocationRelativeTo(null);

118 this.pack();

119 this.setVisible(true);

218CHAPTER 8. A BRIEF INTRODUCTION TOGRAPHICAL USER INTERFACES

120 }

121
122 // Method actionPerformed for buttonFindStudent

123 private void findStudent (ActionEvent evt) {

124 int id =

Integer.parseInt(textfieldId.getText ());

125 Student s = students.findStudent(id);

126 if (s == null)

127 textfieldName.setText("NOT FOUND");

128 else

129 textfieldName.setText(s.getFullName ());

130 }

131
132 // method for generate menu

133 public void generateMenu (){

134 menuBar = new JMenuBar ();

135
136 JMenu file = new JMenu("File");

137 JMenu tools = new JMenu("Tools");

138 JMenu help = new JMenu("Help");

139
140 JMenuItem open = new JMenuItem("Open ");

141 JMenuItem save = new JMenuItem("Save ");

142 JMenuItem exit = new JMenuItem("Exit ");

143 JMenuItem preferences = new

JMenuItem("Preferences ");

144 JMenuItem about = new JMenuItem("About ");

145
146
147 file.add(open);

148 file.add(save);

149 file.addSeparator ();

150 file.add(exit);

151 tools.add(preferences);

152 help.add(about);

153
154 menuBar.add(file);

155 menuBar.add(tools);

156 menuBar.add(help);

157 }

8.1. BRIEF INTRODUCTION TO SIMPLE GUI BUILDER 219

158
159
160
161 public static void main(String [] args){

162 System.setProperty("swing.defaultlaf",

"com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel");

163 javax.swing.SwingUtilities.invokeLater(new

Runnable () {

164 public void run() {

165 new GUI_Project ();

166 }

167 });

168 }

169
170 }

The Students Class

Listing 8.3: The Students class - a collection of students.

1 import java.util.ArrayList;

2 public class Students

3 {

4 ArrayList <Student > myList;

5 public Students (){

6 // create a list myList of three students

7 myList = new ArrayList ();

8 myList.add(new

Student("Jill","Lee",’F’,true));

9 myList.add(new

Student("Samantha","Jones",’F’,true));

10 myList.add(new

Student("Robert","Smith",’M’,true));

11 }

12 public Student findStudent(int id){

13 for (Student s: myList)

14 if (s.getId () == id) return s;

15 return null;

16 }

17 }

220CHAPTER 8. A BRIEF INTRODUCTION TOGRAPHICAL USER INTERFACES

The Student Class

Listing 8.4: The Student class.

1 /**

2 * A student.

3 */

4 public class Student {

5 // class fields

6 private static int lastId;

7 // instance fields

8 private int id;

9 private String firstName;

10 private String lastName;

11 private char gender;

12 private boolean active;

13 private Subject major;

14 // first constructor , no arguments

15 public Student (){

16 id = nextId ();

17 // default values for a student:

18 firstName = "unknown";

19 lastName = "unknown";

20 gender = ’?’;

21 active = false;

22 }

23 // second constructor , four arguments

24 public Student (String firstName , String

lastName , char gender , boolean active){

25 id = nextId ();

26 //

27 // when parameters and fields have the same

28 // name they are distinquished this way:

29 // a field name alone refers to the

parameter

30 // a field name prefixed with "this."

31 // refers to an object ’s fields.

32 this.firstName = firstName;

33 this.lastName = lastName;

34 this.gender = gender;

8.1. BRIEF INTRODUCTION TO SIMPLE GUI BUILDER 221

35 this.active = active;

36 }

37
38 private int nextId (){

39 // increment lastId and return the new value

40 // to be used for the new student.

41 return ++ lastId;

42 }

43
44 public int getId(){

45 return id;

46 }

47
48 public static int getLastId (){

49 return lastId;

50 }

51
52 public String getFirstName (){

53 return firstName;

54 }

55
56 public String getLastName (){

57 return lastName;

58 }

59
60 public char getGender (){

61 return gender;

62 }

63
64 public boolean isActive (){

65 return active;

66 }

67
68 public Subject getMajor (){

69 return major;

70 }

71
72 public void setLastId(int newLastId){

73 lastId = newLastId;

74 }

222CHAPTER 8. A BRIEF INTRODUCTION TOGRAPHICAL USER INTERFACES

75
76 // no setter for the student ’s id field

77 // public void setId(int newId){

78 // id = newId;

79 // }

80
81 public void setFirstName(String newFirstName){

82 firstName = newFirstName;

83 }

84
85 public void setLastName(String newLastName){

86 lastName = newLastName;

87 }

88
89 public void setGender(char newGender){

90 gender = newGender;

91 }

92
93 public void setActive(boolean newActive){

94 active = newActive;

95 }

96
97 public void setMajor(Subject newMajor){

98 major = newMajor;

99 }

100
101 public String toString (){

102 return id+" "+firstName+" "+lastName;

103 }

104
105 public boolean equals(Student s){

106 return id == s.id;

107 }

108 }

Bibliography

[1] http://publications.gc.ca/gazette/archives/p1/2007/2007-03-24/pdf/g1-14112.pdf

[2] http://www.acm.org/press-room/news-releases/2013/fellows-2013

[3] http://www.ieee.org/documents/vonneumannrl.pdf

[4] Effective Java; Joshua Bloch; Addison-Wesley; Second edition; 2008;
ISBN-13: 978-0321356680

[5] Java in a Nutshell ; Benjamin J. Evans, David Flanagan; O’Reilly; Sixth
edition; 2015; ISBN-13: 978-1-44937082-4

[6] The Art of Computer Programming, Volume 2 ; Donald Knuth;
Addison-Wesley Professional; 3 edition; 1997; ISBN-13: 978-
0201896848

223

