
Software Engineers are
People Too:
Applying Human Centered
Approaches to Improve
Software Development

Brad A. Myers
Human-Computer Interaction Institute

School of Computer Science
Carnegie Mellon University
http://www.cs.cmu.edu/~bam

bam@cs.cmu.edu

1 © 2012 – Brad A. Myers

Invited talk, Software Engineering Horizons track of ICSE 2012,
the 34th International Conference on Software Engineering,

Zurich, Switzerland, June 2-9, 2012.

http://www.ifi.uzh.ch/icse2012/
http://www.ifi.uzh.ch/icse2012/

Human Centered Approaches?
• Concerned with everything the user encounters

– Functionality & Usefulness
– Content
– Labels
– Presentation
– Layout
– Navigation
– Speed of response
– Emotional Impact
– Context (social environment in which use happens)
– Documentation & Help

• Measures:
– Learnability, Productivity, Errors, …
 2 © 2012 – Brad A. Myers

What Can Be Addressed?
• Everything the developer encounters
• Tools – IDEs & their user interfaces
• Languages themselves

– Not necessarily just “taste”, “intuition”
– Error-proneness

• APIs
– “Interface” between developer and functionality
– “Languages” by themselves are almost irrelevant these days

• Documentation for all of the above
• Processes & context of development
 Consider the whole “system” together
 New as well as legacy systems

3 © 2012 – Brad A. Myers

Who Are Developers?
• Programming tools are not just used by highly-trained

professional programmers
• End-User Programmers = People whose primary job is not programming
• In 2012 in USA at work: — [Scaffidi, Shaw and Myers 2005]

– 3 million professional programmers
– 6 million scientists & engineers
– 13 million will describe themselves as programmers
– 55 million will use spreadsheets or databases at work
– 90 million computer users at work in US

90,000,000

55,000,000

13,000,000
6,000,000 3,000,000

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

Users Spreadsheets and
DBs

Self-Described
Programmers

Scientists &
Engineers

Professional
Programmers

“Human Centered Approach” ̶̶
More Than Lab User Studies

• Design & aesthetics matter & will affect:
– User’s performance
– Errors
– Adoption of your tool

• Many different methods for answering
many different questions
– Before design time
– During design & implementation
– After implementation

5 © 2012 – Brad A. Myers

Many HCI Methods
• Contextual Inquiry
• Contextual Analysis
• Paper prototypes
• Think-aloud protocols
• Heuristic Evaluation
• Affinity diagrams
• Personas
• Wizard of Oz
• Task analysis
• A vs. B testing
• Cognitive Walkthrough
• Cognitive Dimensions
• KLM and GOMS (CogTool)
• Video prototyping

• Body storming
• Expert interviews
• Questionnaires
• Surveys
• Interaction Relabeling
• Log analysis
• Focus groups
• Card sorting
• Diary studies
• Improvisation
• Use cases
• Scenarios
• “Speed Dating”
• …

6 © 2012 – Brad A. Myers

Dangers of Not Applying Human
Centered Approaches

• Tools may prove to be not useful
– Useful = solves an important problem

• Happens frequently
• Difficult to solve otherwise
• Developers believe academic tools solve unimportant

problems [How do practitioners perceive Software Engineering Research?
http://catenary.wordpress.com/2011/05/19/how-dopractitioners-perceive-software-engineering-research/]

– Tools may not actually solve the problem
• Example: a study suggested that Tarantula tool identifying

potentially faulty statements for debugging was not helpful
– Changed the task, but telling if the identified statement

was actually faulty not easier than finding the bug
– Parnin, C. and Orso, A. 2011. Are Automated Debugging Techniques Actually Helping Developers

International Symposium on Software Testing and Analyisis (2011), 199–209.

} HCI questions

7 © 2012 – Brad A. Myers

http://catenary.wordpress.com/2011/05/19/how-dopractitioners-perceive-software-engineering-research/

Dangers of Not Applying Human
Centered Approaches

• Tools may show no measurable impact
– Desired advantage overwhelmed by problems

with other parts
– Example: Emerson Murphy-Hill found that

refactoring tools are under-utilized and
programmers do not configure them due to
usability issues

• Emerson Murphy-Hill, Chris Parnin, Andrew P. Black. How we refactor, and how we know it. In ICSE '09:
Proceedings of the 2009 IEEE 31st International Conference on Software Engineering (2009), pp. 287-297.

8 © 2012 – Brad A. Myers

Human Centered Approaches are
Not Too Difficult for You
• Getting some user data better than none
• Observing real usage reveals many opportunities

– Insights about new issues to address, not necessarily
what originally planned

• Thomas LaToza’s Reachability Questions from
Architecture study

• Jeff Stylos’s method placement result from study of
class size: from 2.4 to 11.2 times faster

server.send (message) vs.
mail.send (server)

• Collaborating with Graphic Designers for even a
short time can provide significant improvements
in aesthetics

9 © 2012 – Brad A. Myers

Key Decision: What is Your Question?

• What do you need to find out or show?
– What claim to do you want to make?

• Showing that a tool is usable is different
from that it is useful

• Exploring what people are doing, is
different from determining how often an
observed behavior happens
Drives what type of method to use, and

tasks to be done with it
 10 © 2012 – Brad A. Myers

Product Lifecycle

11 © 2012 – Brad A. Myers

Source: http://www.accordtech.co.in/Product%20Development%20Lifecycle.htm

http://www.accordtech.co.in/Product Development Lifecycle.htm

Product Lifecycle
Exploratory Studies

 Contextual Inquiries
 Surveys
 Lab Studies
 Corpus data mining

 Evaluative Studies
 Expert analyses
 Usability Evaluation
 Formal Lab studies

 Design Practices
 “Natural

programming”
 Graphic &

Interaction Design
 Prototyping

 Field Studies
 Logs & error reports

12 © 2012 – Brad A. Myers

Exploratory Studies

• Identify what is really happening
• Discover important problems
• Quantify need

13 © 2012 – Brad A. Myers

Contextual Inquiry
• Beyer, H. and Holtzblatt, K., Contextual Design: Defining Custom-Centered

Systems. 1998, San Francisco, CA: Morgan Kaufmann Publishers, Inc.

• A kind of “ethnographic” or “participatory
design” method

• Watch developers while they are performing
their real tasks

• Objective, concrete data about real activities
• May be followed by a survey, to establish

generality of the issues

14 © 2012 – Brad A. Myers

Why Contextual Inquiry?

• Usually reveals many barriers and problems in
current practice

• Helps develop insights
– Be open to inspiration

• Not for confirming what you already know
• Qualitative data (not quantitative)

– CIs are not for gathering statistics, analytics
• In contrast to surveys & lab studies

• But need to be able to observe real tasks

15 © 2012 – Brad A. Myers

Example of Contextual Inquiry
• “Developers Ask Reachability Questions”

– Thomas D. LaToza and Brad Myers, ICSE'2010, Cape
Town, South Africa, 2-8 May 2010. pp. 185-194.

– “Search across feasible paths through a program for
target statements matching search criteria”

• Watched 17 developers investigating unfamiliar code
• Also survey of 460 developers
• Over 100 other

hard-to-answer
questions

16 © 2012 – Brad A. Myers

Exploratory Lab Studies
• To understand what is happening
• More controlled than field studies

– Can compare multiple people on same tasks
• Example: studying Eclipse for maintenance tasks

– Andrew J. Ko, Htet Htet Aung, and Brad A. Myers. "Eliciting Design Requirements for
Maintenance-Oriented IDEs: A Detailed Study of Corrective and Perfective Maintenance
Tasks". ICSE’2005. pp. 126-135. Winner, Distinguished Paper Award.

– Detailed study of fixing bugs and adding features
– Dataset used for 3 different award-winning papers:

interruptions, navigation, code editing behaviors

=35%

17 © 2012 – Brad A. Myers

Interactive Bottleneck Overall Cost
Navigating to fragment in same file (via scrolling) ~ 11 minutes
Navigating to fragment in different file
(via tabs and explorer) ~ 7 minutes
Recovering working set after returning to a task ~ 1 minute

Total Costs ~19 minutes

Exploratory Lab Studies
• Second Example: Barriers in APIs

– Stylos, Jeff and Clarke, Steve “Usability Implications of Requiring Parameters in
Objects' Constructors,” in ICSE'2007. Minneapolis, MN: pp. 529-539.

– Ellis, B., Stylos, J., and Myers, B. “The Factory Pattern in API Design: A Usability
Evaluation,” in ICSE'2007. Minneapolis, MN: pp. 302-312.

• Different personas of programmers
– Opportunistic, Pragmatic, Systematic

• Required parameters not successful
var foo = new FooClass(barValue);
var foo = new FooClass();
 foo.val = barValue;

• Factory pattern took 2.1 to 5.3 times longer
AbstractFactory f = AbstractFactory.getDefault();
Widget w = f.createWidget();

18 © 2012 – Brad A. Myers

Can Create “Models” from Results

• Explanations of observed
behaviors

• Idealized, but based on real data
• Example: causes of breakdowns

when trying to debug
– Today, users must guess where bug

is or where to look & are often
wrong

– Andrew J. Ko and Brad A. Myers. "Development and
Evaluation of a Model of Programming Errors". 2003. IEEE
Symposium on End-User and Domain-Specific Programming
(EUP'03), part of the IEEE Symposia on Human-Centric
Computing Languages and Environments (HCC'03). October
28-31, 2003. Auckland, New Zealand. pp. 7-14.

19 © 2012 – Brad A. Myers

http://www.cs.dal.ca/HCC03/

Design Methods

• Now know the problem, what is the solution?
• How do I design it so it is attractive and

effective?

20 © 2012 – Brad A. Myers

“Natural Programming”
• Technique developed by my group to elicit

developer’s “natural” expressions
– Mental models of tasks, vocabulary, etc.

• Blank paper tests
• Must prompt for the tasks in a way that doesn’t

bias the answers
• Examples:

– PacMan before and after
• Mostly rule-based (if-then)

– API designs
• No-one used factory patterns

21 © 2012 – Brad A. Myers

Why Natural Programming?

• When want design to be easily learned
by novices

• But biased by what they already know
– Graphic designers will think PhotoShop is

“natural”
– Programmers will think Java is “natural”

22 © 2012 – Brad A. Myers

Graphic Design
• Importance of graphic design and interaction design
• Software Engineers (and researchers) are not

necessarily the best interaction designers
• Design can have a big impact even with same

functionality
• Might involve

designers for
colors, icons,
which controls,
layout, …

23 © 2012 – Brad A. Myers

Prototyping

Try out designs with developers before implementing them
– Paper

• “Low fidelity prototyping”
• Often surprisingly effective
• Experimenter plays the computer
• Drawn on paper drawn on computer

– Implemented Prototype (“Click through”)
• Visio, PowerPoint, Web tools (even for non-web UIs)
• (no database)

– Real system

 Need to test these with users!
 Better if sketchier for early design

• Use paper or “sketchy” tools, not real widgets
• People focus on wrong issues: colors, alignment, labels
• Rather than overall structure and fundamental design

In
creasin

g fidelity

24 © 2012 – Brad A. Myers

Example of Prototyping

• Thomas LaToza designing new visualization tool to try to
help answer Reachability Questions

• Prototypes created with Omnigraffle and printed
• Revealed significant usability problems that were fixed

before implementation
– Graphical presentation
– Controls

25 © 2012 – Brad A. Myers

© 2012 – Brad A. Myers

Evaluation Methods

• Does my tool work?
• Does it solve the developer’s problems?
• “If the user can’t use it, it doesn’t work!”

 ̶̶ Susan Dray
26

Expert Analyses

• Usability experts evaluating designs to look for
problems
– Heuristic Analysis – [Nielsen] set of guidelines
– Cognitive Dimensions – [Green] another set
– Cognitive Walkthroughs – evaluate a task

• Can be inexpensive and quick
• However, experienced evaluators are better

– 22% vs. 41% vs. 60% of errors found [Nielsen]

• Disadvantage: “just” opinions, open to
arguments

27 © 2012 – Brad A. Myers

© 2012 – Brad A. Myers

Our Use of Expert Analyses
• Collaborating with SAP on their APIs and tools
• We studied SAP’s Enterprise Service-Oriented

Architecture (eSOA) APIs & Documentation
– Jack Beaton, Sae Young Jeong, Yingyu Xie, Jeffrey Stylos, Brad A. Myers. "Usability Challenges for

Enterprise Service-Oriented Architecture APIs," 2008 IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC'08. Sept 15-18, 2008, Herrsching am Ammersee, Germany. pp. 193-196.

• Naming problems:
– Too long
– Not understandable

28

Our Use of Expert Analyses
• Andrew Faulring, Brad Myers,Yaad Oren, Keren

Rotenberg. "A Case Study of Using HCI Methods to
Improve Tools for Programmers," Cooperative and
Human Aspects of Software Engineering (CHASE), An
ICSE 2012 Workshop. Zurich, Switzerland, June 2, 2012.

• We evaluated the SAP
NetWeaver Gateway developer
tool for Visual Studio

• Identified many usability issues
– We used Heuristic Analysis &

Cognitive Walkthrough
– Issues were fixed as part of their

agile development process

29 © 2012 – Brad A. Myers

http://www.chaseresearch.org/workshops/chase2012

Usability Evaluations
• Different from formal A vs. B “user studies”

– Understand usability issues
– Should be done early and often

• Doesn’t have to be “finished” to let people try it

• “Think aloud” protocols
– “Single most valuable usability engineering method”

-- [Nielsen]
– Users verbalize what they

are thinking
• Motivations, why doing things,

what confused about

– Don’t need many users

30 © 2012 – Brad A. Myers

Example of Our Use

• Thomas LaToza’s REACHER tool for Reachability
Questions went through multiple iterations
– Revised based on paper prototype (discussed already)
– Revised based on 1st evaluation of full system

• E.g., replaced duplicates of calls to methods with pointers
• Changed to preserve order of outgoing edges
• Redesign of icons, interactions

31 © 2012 – Brad A. Myers

Why Usability Analysis

• Improve the user interface prior to:
– Deployment
– A vs. B testing (as a “pilot” test)

• Demonstrate that users can use the
system
– Show that novel features of the UI are

understandable

32 © 2012 – Brad A. Myers

Formal A vs. B “User Studies”

• Formal A vs. B lab user studies are “gold standard” for
academic papers – to show something is better

• But many issues in the study design
– “Confounding” factors which were not controlled and

are not relevant to study, but affect results
– Tasks or instructions are mis-understood
– Use prototypes & pilot studies to find these

• Statistical significance doesn’t mean real savings
• Be sure to collect qualitative data too

– Strategies people are using
– Why users did it that way
– Especially when unexpected results

33 © 2012 – Brad A. Myers

© 2012 – Brad A. Myers

Example of A vs. B Study: Whyline

• PhD work of Andy Ko
• Allow users to directly ask “Why” and “Why

not”

1:27
34

Whyline User Studies
• Initial study:

– Whyline with novices outperformed experts with Eclipse
– Factor of 2.5 times faster

• Formal study:
– Compared to Whyline with key features removed (rather than

Eclipse)
– Tasks: 2 real bug reports from real open source system (ArgoUML)
– Whyline was over 3 times as successful, in ½ of the time

35 © 2012 – Brad A. Myers

Another Lab Study: Calcite
• Calcite: Construction And Language Completion

Integrated Throughout
http://www.cs.cmu.edu/~calcite

• Augmented code completion in Eclipse
– How to create objects of specific classes:
SSLSocket s = ???

36 © 2012 – Brad A. Myers

http://www.cs.cmu.edu/~calcite

Field Studies of System in Use

• Find out what happens when the tool is really used
• Requires significant effort to make the tool

sufficiently solid

37 © 2012 – Brad A. Myers

Logging Actual Use

• Easier if instrument your tools
• Objective use data better than users’

recollections and opinions
• Many levels of data can be collected

– Privacy issues

• Example: Flourite logger for Eclipse
– Records all edits and events, including

scrolling operations & source code,
– Necessary to identify patterns of backtracking

38 © 2012 – Brad A. Myers

Example of Field Analysis

• Apatite: Associative Perusing of APIs That Identifies Targets
Easily http://www.cs.cmu.edu/~apatite

• Novel documentation tool that
works by association
– E.g., methods often used together

• Can start with verbs (actions) and
find what classes implement them

• Couldn’t figure out a comparison
tool or tasks for a lab study

• Deployed on the web
• Mostly used for fast lookup from

 partial names

http://www.cs.cmu.edu/~apatite

Why Field Studies?

• Understand which features are used and how
– Not necessarily why
– Can sometimes follow up with questionnaires,

interviews of actual users
– Developers often are surprised at how system is used

• Demonstrate that people choose to use the
system when optional

• Easy to instrument web systems, some on-line
tools

40 © 2012 – Brad A. Myers

Summary: Our Group

• We have followed this methodology
– 30 studies; 17 systems in 16 years

• Doing evaluative studies provides new
insights that can inspire significantly
new designs for languages and tools
for software engineers

• Design methods result in better tools
• New designs can be evaluated

41 © 2012 – Brad A. Myers

More on This Topic

• CHASE and USER workshops at ICSE

• Thomas D. LaToza and Brad A. Myers, "Designing Useful Tools for
Developers", PLATEAU 2011: Evaluation and Usability of Programming
Languages and Tools, workshop at the Onward! 2011 and Splash 2011
conferences, Portland, Oregon, October 24, 2011. On-line pdf or local pdf.

• Thomas D. LaToza, Brad A. Myers. "On the Importance of Understanding
the Strategies that Developers Use", Cooperative and Human Aspects of
Software Engineering (CHASE’10), An ICSE 2010 Workshop. May 2, 2010.
Cape Town, South Africa. pp. 72-75. pdf

• Reading list for “Human Aspects of Software Development (HASD)”
by Thomas LaToza and Brad Myers
http://www.cs.cmu.edu/~bam/uicourse/2011hasd/

42 © 2012 – Brad A. Myers

http://ecs.victoria.ac.nz/Events/PLATEAU
http://ecs.victoria.ac.nz/twiki/pub/Events/PLATEAU/Program/plateau2011-latoza.pdf
http://www.cs.cmu.edu/~natprog/papers/plateau2011-latoza.pdf
http://www.cs.cmu.edu/~tlatoza/chase10-final.pdf
http://www.cs.cmu.edu/~bam/uicourse/2011hasd/

© 2012 – Brad A. Myers

Thanks to:
• Funding:

– NSF under IIS-1116724, IIS-0329090, CCF-0811610, IIS-0757511 (Creative-
IT), NSF ITR CCR-0324770 as part of the EUSES Consortium

– SAP
– Adobe
– IBM
– Microsoft Research RISE

• >30 students:
 Htet Htet Aung
 Jack Beaton
 Ruben Carbonell
 John R. Chang
 Kerry S. Chang
 Polo Chau
 Luis J. Cota
 Michael Coblenz
 Dan Eisenberg
 Brian Ellis

 Andrew Faulring
 Aristiwidya B. (Ika) Hardjanto
 Erik Harpstead
 Sae Young (Sophie) Jeong
 Andy Ko
 Thomas LaToza
 Joonhwan Lee
 Leah Miller
 Mathew Mooty
 Gregory Mueller
 Yoko Nakano

 Stephen Oney
 John Pane
 Sunyoung Park
 Chotirat (Ann)

Ratanamahatana
 Christopher Scaffidi
 Jeff Stylos
 David A. Weitzman
 Yingyu (Clare) Xie
 Zizhuang (Zizzy) Yang
 YoungSeok Yoon

43

http://www.nsf.gov/

Software Engineers are
People Too:
Applying Human Centered
Approaches to Improve
Software Development

Brad A. Myers
Human-Computer Interaction Institute

School of Computer Science
Carnegie Mellon University
http://www.cs.cmu.edu/~bam

bam@cs.cmu.edu

44 © 2012 – Brad A. Myers

	Software Engineers are�People Too:�Applying Human Centered�Approaches to Improve�Software Development
	Human Centered Approaches?
	What Can Be Addressed?
	Who Are Developers?
	“Human Centered Approach” ̶̶ More Than Lab User Studies
	Many HCI Methods
	Dangers of Not Applying Human Centered Approaches
	Dangers of Not Applying Human Centered Approaches
	Human Centered Approaches are Not Too Difficult for You
	Key Decision: What is Your Question?
	Product Lifecycle
	Product Lifecycle
	Exploratory Studies
	Contextual Inquiry
	Why Contextual Inquiry?
	Example of Contextual Inquiry
	Exploratory Lab Studies
	Exploratory Lab Studies
	Can Create “Models” from Results
	Design Methods
	“Natural Programming”
	Why Natural Programming?
	Graphic Design
	Prototyping
	Example of Prototyping
	Evaluation Methods
	Expert Analyses
	Our Use of Expert Analyses
	Our Use of Expert Analyses
	Usability Evaluations
	Example of Our Use
	Why Usability Analysis
	Formal A vs. B “User Studies”
	Example of A vs. B Study: Whyline
	Whyline User Studies
	Another Lab Study: Calcite
	Field Studies of System in Use
	Logging Actual Use
	Example of Field Analysis
	Why Field Studies?
	Summary: Our Group
	More on This Topic
	Thanks to:
	Software Engineers are�People Too:�Applying Human Centered�Approaches to Improve�Software Development

