
INTRODUCTORY ALGEBRAIC NUMBER THEORY

Algebraic number theory is a subject that came into being through the attempts of mathe-
maticians to try to prove Fermat’s last theorem and that now has a wealth of applications
to Diophantine equations, cryptography, factoring, primality testing, and public-key cryp-
tosystems.

This book provides an introduction to the subject suitable for senior under-
graduate and beginning graduate students in mathematics. The material is presented in
a straightforward, clear, and elementary fashion, and the approach is hands on, with an
explicit computational flavor. Prerequisites are kept to a minimum, and numerous examples
illustrating the material occur throughout the text. References to suggested readings and to
the biographies of mathematicians who have contributed to the development of algebraic
number theory are given at the end of each chapter. There are more than 320 exercises, an
extensive index, and helpful location guides to theorems and lemmas in the text.
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Notation

N = {1, 2, 3, . . .}
Z = {0, ±1, ±2, . . .}
Q = field of rational numbers
R = field of real numbers
C = field of complex numbers
φ = empty set(

m

p

)
= Legendre symbol =

⎧⎨
⎩

1, if p � m and x2 ≡ m (mod p) is solvable,
−1, if p � m and x2 ≡ m (mod p) is insolvable,
0, if p | m,

where m ∈ Z and p is a prime
[x] = greatest integer less than or equal to the real number x(

m

n

)
= binomial coefficient = m!

(m − n)!n!
, where m and n are integers such that 0 ≤ n ≤ m

If A is a set containing 0 then A∗ = A \ {0}
Zn = cyclic group of order n
card(S) = cardinality of the set S
On = n × n zero matrix
In = n × n identity matrix
Or,s = r × s zero matrix
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Introduction

This book is intended as an introductory text for senior undergraduate and beginning
graduate students wishing to learn the fundamentals of algebraic number theory. It
is based upon a course in algebraic number theory given by the second author at
Carleton University for more than thirty years. Keeping in mind that this is an intro-
ductory text, the authors have strived to present the material in as straightforward,
clear, and elementary fashion as possible. Throughout the text many numerical ex-
amples are given to illustrate the theory. Each chapter closes with a set of exercises
on the material covered in the chapter, as well as some suggested further reading.
References cited in each chapter are listed under suggested reading. Biographical
references for some of the mathematicians mentioned in the text are also given at
the end of each chapter. For the convenience of the reader, the book concludes with
page references for the definitions, theorems, and lemmas in the text. In addition
an extensive bibliography of books on algebraic number theory is provided.

The main aim of the book is to present to the reader a detailed self-contained
development of the classical theory of algebraic numbers. This theory is one of
the crowning achievements of nineteenth-century mathematics. It came into being
through the attempts of mathematicians of that century to prove Fermat’s last the-
orem, namely, that the equation xn + yn = zn has no solutions in nonzero integers
x, y, z, where n is an integer ≥ 3. A wonderful achievement of the twentieth century
was the proof of Fermat’s last theorem by Andrew Wiles of Princeton University.
Although the proof of Fermat’s last theorem is beyond the scope of this book, we
will show how algebraic number theory can be used to find the solutions in integers
(if any) of other equations.

The contents of the book are divided into fourteen chapters. Chapter 1 serves as
an introduction to the basic properties of integral domains. Chapters 2 and 3 are
devoted to Euclidean domains and Noetherian domains respectively. In Chapter 4
the reader is introduced to algebraic numbers and algebraic integers. Algebraic
number fields are introduced in Chapter 6 after a discussion of algebraic extensions
of fields in Chapter 5. Chapter 7 is devoted to the study of integral bases. Minimal
integers are introduced as a tool for finding integral bases and many numerical

xv
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xvi Introduction

examples are given. Chapter 8 is concerned with Dedekind domains. The ring
of integers of an algebraic number field is the prototype of a Dedekind domain.
Chapters 9 and 10 discuss the factorization of ideals into prime ideals. The structure
of the unit group of a real quadratic field is determined in Chapter 11. In Chapter
12 the classic theorems of Minkowski in the geometry of numbers are proved and
are used to show that the ideal class group is finite. Dirichlet’s determination of the
units in an arbitrary algebraic number field is presented in Chapter 13 using the
approach given by van der Waerden. Finally, in Chapter 14, the algebraic number-
theoretic tools developed in earlier chapters are used to discuss the solvability of
certain equations in integers.

The prerequisites for this book are a basic course in linear algebra (systems
of linear equations, vector spaces over a field), a basic course in modern algebra
(groups, rings, and fields including Eisenstein’s irreducibility criterion), and a basic
course in elementary number theory (the Legendre symbol, quadratic residues, and
the law of quadratic reciprocity.) No Galois theory is needed.

A possible outline for a one-semester course (three hours of lectures per week
for twelve weeks) together with an approximate breakdown of lecture time is as
follows:

Chapter 1 (excluding Theorem 1.2.2) 2 hours
Chapter 2 (excluding Sections 2.3, 2.4) 2 hours
Chapter 3 3 hours
Chapter 4 3 hours
Chapter 5 3 hours
Chapter 6 5 hours
Chapter 7 (Section 7.1 only) 3 hours
Chapter 8 3 hours
Chapter 9 3 hours
Chapter 10 (excluding Sections 10.4, 10.5, 10.6) 2 hours
Chapter 11 3 hours
Chapter 12 (excluding Section 12.7) 2 hours
Chapter 14 (Section 14.2 only) 2 hours

It is planned to provide solutions to selected questions, as well as corrections to
any errors, on the website

http://mathstat.carleton.ca/̃ williams/books.html
or
http://www.math.carleton.ca/̃ williams/books.html.

The authors would like to thank their colleagues John D. Dixon, James G. Huard,
Pierre Kaplan, Blair K. Spearman, and P. Gary Walsh for helpful suggestions in
connection with the writing of this book. The second author would like to thank the
many students who have taken the course Mathematics 70.436*/70.536 Algebraic
Number Theory with him at Carleton University over the years. Special thanks go
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Introduction xvii

to the class of 2000–1 (Yaroslav Bezverkhnyev, Joanne Charlebois, Colette Haley,
Mathieu Lemire, Rima Rahal, Fabien Roche, Tom Wiley, and Benjamin Young) for
their suggestions for improvement to the preliminary draft of this book used in class.
Finally, the authors would like to thank Austin Behne for his help in translating van
der Waerden’s paper on Dirichlet’s unit theorem from German into English.
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