INTRODUCTORY ALGEBRAIC NUMBER THEORY

Algebraic number theory is a subject that came into being through the attempts of mathematicians to try to prove Fermat's last theorem and that now has a wealth of applications to Diophantine equations, cryptography, factoring, primality testing, and public-key cryptosystems.

This book provides an introduction to the subject suitable for senior undergraduate and beginning graduate students in mathematics. The material is presented in a straightforward, clear, and elementary fashion, and the approach is hands on, with an explicit computational flavor. Prerequisites are kept to a minimum, and numerous examples illustrating the material occur throughout the text. References to suggested readings and to the biographies of mathematicians who have contributed to the development of algebraic number theory are given at the end of each chapter. There are more than 320 exercises, an extensive index, and helpful location guides to theorems and lemmas in the text.

Şaban Alaca is Lecturer in Mathematics at Carleton University, where he has been honored by three teaching awards: Faculty of Science Teaching Award, Professional Achievement Award, and Students Choice Award. His main research interest is in algebraic number theory.

Kenneth S. Williams is Professor Emeritus and Distinguished Research Professor of Mathematics at Carleton University. Dr. Williams has published more than 240 research papers in number theory, linear algebra, algebra, and analysis. This is his seventh book.

INTRODUCTORY ALGEBRAIC NUMBER THEORY

ŞABAN ALACA Carleton University, Ottawa

KENNETH S. WILLIAMS Carleton University, Ottawa

CAMBRIDGE UNIVERSITY PRESS

32 Avenue of the Americas, New York NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521832502

© Şaban Alaca and Kenneth S. Williams 2004

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2004

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Alaca, Saban, 1964– Introductory algebraic number theory / Saban Alaca, Kenneth S. Williams. p. cm. Includes bibliographical references and index. ISBN 0-521-83250-0 (hb.) – ISBN 0-521-54011-9 (pbk.) 1. Algebraic number theory. I. Williams, Kenneth S. II. Title. QA247 .A43 2003 512'.74 – dc21 2003051243 ISBN 978-0-521-83250-2 Hardback

ISBN 978-0-521-83250-2 Hardback ISBN 978-0-521-54011-7 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To our wives Ayşe and Carole

Contents

List of Tables		<i>page</i> xi	
Notation			xiii
Introduction			XV
1	Integral Domains		1
	1.1	Integral Domains	1
	1.2	Irreducibles and Primes	5
	1.3	Ideals	8
	1.4	Principal Ideal Domains	10
	1.5	Maximal Ideals and Prime Ideals	16
	1.6	Sums and Products of Ideals	21
		Exercises	23
		Suggested Reading	25
		Biographies	25
2	Eucl	lidean Domains	27
	2.1	Euclidean Domains	27
	2.2	Examples of Euclidean Domains	30
	2.3	Examples of Domains That are Not Euclidean	37
	2.4	Almost Euclidean Domains	46
	2.5	Representing Primes by Binary Quadratic Forms	47
		Exercises	49
		Suggested Reading	51
		Biographies	53
3	Noetherian Domains		54
	3.1	Noetherian Domains	54
	3.2	Factorization Domains	57
	3.3	Unique Factorization Domains	60
	3.4	Modules	64
	3.5	Noetherian Modules	67
		Exercises	71

viii		Contents	
		Suggested Reading	72
		Biographies	73
4	Eler	nents Integral over a Domain	74
	4.1	Elements Integral over a Domain	74
	4.2	Integral Closure	81
		Exercises	86
		Suggested Reading	87
		Biographies	87
5	Alge	ebraic Extensions of a Field	88
	5.1	Minimal Polynomial of an Element Algebraic over a Field	88
	5.2	Conjugates of α over K	90
	5.3	Conjugates of an Algebraic Integer	91
	5.4	Algebraic Integers in a Quadratic Field	94
	5.5	Simple Extensions	98
	5.6	Multiple Extensions	102
		Exercises	106
		Suggested Reading	108
		Biographies	108
6	•	ebraic Number Fields	109
	6.1	Algebraic Number Fields	109
	6.2	<i>, </i>	112
	6.3	The Field Polynomial of an Element of an Algebraic Number	
		Field	116
	6.4	The Discriminant of a Set of Elements in an Algebraic Number	
	< -	Field	123
	6.5	Basis of an Ideal	129
	6.6	Prime Ideals in Rings of Integers	137
		Exercises	138
		Suggested Reading	140
7	Tuta	Biographies	140
7		gral Bases	141
	7.1 7.2	Integral Basis of an Algebraic Number Field Minimal Integers	141 160
	7.2	Some Integral Bases in Cubic Fields	170
	7.4	Index and Minimal Index of an Algebraic Number Field	170
	7.5	Integral Basis of a Cyclotomic Field	186
	1.5	Exercises	189
		Suggested Reading	191
		Biographies	193
8	Ded	ekind Domains	194
č	8.1	Dedekind Domains	194
	8.2	Ideals in a Dedekind Domain	195

Contents		ix	
	8.3	Factorization into Prime Ideals	200
	8.4	Order of an Ideal with Respect to a Prime Ideal	206
	8.5	Generators of Ideals in a Dedekind Domain	215
		Exercises	216
		Suggested Reading	217
9	Nor	ms of Ideals	218
	9.1	Norm of an Integral Ideal	218
	9.2	Norm and Trace of an Element	222
	9.3	Norm of a Product of Ideals	228
	9.4	Norm of a Fractional Ideal	231
		Exercises	233
		Suggested Reading	234
		Biographies	235
10		oring Primes in a Number Field	236
	10.1	Norm of a Prime Ideal	236
	10.2	Factoring Primes in a Quadratic Field	241
	10.3	Factoring Primes in a Monogenic Number Field	249
	10.4	Some Factorizations in Cubic Fields	253
	10.5	Factoring Primes in an Arbitrary Number Field	257
	10.6	Factoring Primes in a Cyclotomic Field	260
		Exercises	261
		Suggested Reading	262
11	Unit	s in Real Quadratic Fields	264
	11.1	The Units of $\mathbb{Z} + \mathbb{Z}\sqrt{2}$	264
		The Equation $x^2 - my^2 = 1$	267
	11.3	Units of Norm 1	271
		Units of Norm -1	275
		The Fundamental Unit	278
		Calculating the Fundamental Unit	286
	11.7	The Equation $x^2 - my^2 = N$	294
		Exercises	297
		Suggested Reading	298
		Biographies	298
12		Ideal Class Group	299
	12.1	Ideal Class Group	299
	12.2	Minkowski's Translate Theorem	300
	12.3	Minkowski's Convex Body Theorem	305
	12.4	Minkowski's Linear Forms Theorem	306
	12.5	Finiteness of the Ideal Class Group	311
	12.6	Algorithm to Determine the Ideal Class Group	314
	12.7	Applications to Binary Quadratic Forms	331
		Exercises	341

x		Contents	
		Suggested Reading	343
		Biographies	343
13	Diric	chlet's Unit Theorem	344
	13.1	Valuations of an Element of a Number Field	344
	13.2	Properties of Valuations	346
	13.3	Proof of Dirichlet's Unit Theorem	359
	13.4	Fundamental System of Units	361
	13.5	Roots of Unity	363
	13.6	Fundamental Units in Cubic Fields	369
	13.7	Regulator	378
		Exercises	382
		Suggested Reading	383
		Biographies	384
14	App	lications to Diophantine Equations	385
	14.1	Insolvability of $y^2 = x^3 + k$ Using Congruence Considerations	385
	14.2	Solving $y^2 = x^3 + k$ Using Algebraic Numbers	389
	14.3	The Diophantine Equation	
		y(y + 1) = x(x + 1)(x + 2)	401
		Exercises	410
		Suggested Reading	411
		Biographies	411
Lis	List of Definitions		413
Lo	Location of Theorems		417
Lo	Location of Lemmas		421
Bil	Bibliography		423
Ind	Index		425

List of Tables

k cubefree.page 1772 Integral bases and discriminants for $\mathbb{Q}(\sqrt[4]{k})$, $x^4 - k$ irreducible in $\mathbb{Q}[x], 2 \le k \le 10$.1773 Integral bases and discriminants for $\mathbb{Q}(\sqrt[4]{k})$, $x^4 + k$ irreducible in $\mathbb{Q}[x], 1 \le k \le 10$.1774 Fundamental units of $O_{\mathbb{Q}(\sqrt{m})}, 2 \le m < 40, m$ squarefree.2805 Nontrivial ideal class groups $H(\mathbb{Q}(\sqrt{k})), -30 < k < 0$, k squarefree.3226 Nontrivial ideal class groups $H(\mathbb{Q}(\sqrt{k})), 2 \le k < 100$, k squarefree.3237 Class numbers of imaginary quadratic fields $K = \mathbb{Q}(\sqrt{k})$, $-195 \le k < 0, k$ squarefree.3258 Class numbers of real quadratic fields $K = \mathbb{Q}(\sqrt{k})$, $0 < k \le 197, k$ squarefree.3269 Class numbers of $\mathbb{Q}(\sqrt[3]{k}), 2 \le k \le 101, k$ cubefree.32910 Class numbers of cyclotomic fields $K_m, 3 \le m \le 45$, $m \ne 2 \pmod{4}$.33111 Fundamental unit (> 1) of $\mathbb{Q}(\sqrt[3]{m})$ for a few values of $m \in \mathbb{N}$.37512 Fundamental unit of cubic fields K with exactly one real embedding and $-268 \le d(K) < 0$.37613 Units of totally real cubic fields K with $0 < d(K) \le 1101$.37714 Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m})$.37815 Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k, 0 < k \le 20$.403	1	Integral bases and discriminants for $\mathbb{Q}(\sqrt[3]{k}), \ 2 \le k \le 20$,	
$x^{\overline{4}} - k$ irreducible in $\mathbb{Q}[x], 2 \le k \le 10.$ 1773Integral bases and discriminants for $\mathbb{Q}(\sqrt[4]{-k})$, $x^4 + k$ irreducible in $\mathbb{Q}[x], 1 \le k \le 10.$ 1784Fundamental units of $O_{\mathbb{Q}(\sqrt{m})}, 2 \le m < 40$, <i>m</i> squarefree.2805Nontrivial ideal class groups $H(\mathbb{Q}(\sqrt{k})), -30 < k < 0$, k squarefree.3226Nontrivial ideal class groups $H(\mathbb{Q}(\sqrt{k})), 2 \le k < 100,$ k squarefree.3237Class numbers of imaginary quadratic fields $K = \mathbb{Q}(\sqrt{k}),$ $-195 \le k < 0, k$ squarefree.3258Class numbers of real quadratic fields $K = \mathbb{Q}(\sqrt{k}),$ $0 < k \le 197, k$ squarefree.3269Class numbers of $\mathbb{Q}(\sqrt[3]{k}), 2 \le k \le 101, k$ cubefree.32910Class numbers of $\mathbb{Q}(\sqrt[3]{k}), 2 \le k \le 101, k$ cubefree.32111Fundamental unit (> 1) of $\mathbb{Q}(\sqrt[3]{m})$ for a few values of $m \in \mathbb{N}$.37512Fundamental unit of cubic fields K with exactly one real embedding and $-268 \le d(K) < 0$.37613Units of totally real cubic fields K with $0 < d(K) \le 1101.$ 37714Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m}).$ 37815Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k, -20 \le k < 0.$ 402	-	-	<i>page</i> 177
3Integral bases and discriminants for Q($\sqrt[4]{-k}$), $x^4 + k$ irreducible in Q[x], 1 ≤ k ≤ 10.1784Fundamental units of $O_{\mathbb{Q}(\sqrt{m})}$, 2 ≤ m < 40, m squarefree.	2	Integral bases and discriminants for $\mathbb{Q}(\sqrt[4]{k})$,	1 0
$x^4 + k$ irreducible in $\mathbb{Q}[x]$, $1 \le k \le 10$.1784Fundamental units of $O_{\mathbb{Q}(\sqrt{m})}$, $2 \le m < 40$, m squarefree.2805Nontrivial ideal class groups $H(\mathbb{Q}(\sqrt{k}))$, $-30 < k < 0$, k squarefree.3226Nontrivial ideal class groups $H(\mathbb{Q}(\sqrt{k}))$, $2 \le k < 100$, k squarefree.3237Class numbers of imaginary quadratic fields $K = \mathbb{Q}(\sqrt{k})$, $-195 \le k < 0$, k squarefree.3258Class numbers of real quadratic fields $K = \mathbb{Q}(\sqrt{k})$, $0 < k \le 197$, k squarefree.3269Class numbers of $\mathbb{Q}(\sqrt[3]{k})$, $2 \le k \le 101$, k cubefree.32910Class numbers of $\mathbb{Q}(\sqrt[3]{k})$, $2 \le k \le 101$, k cubefree.32910Class numbers of cyclotomic fields K_m , $3 \le m \le 45$, $m \ne 2 \pmod{4}$.33111Fundamental unit (> 1) of $\mathbb{Q}(\sqrt[3]{m})$ for a few values of $m \in \mathbb{N}$.37512Fundamental unit of cubic fields K with exactly one real embedding and $-268 \le d(K) < 0$.37613Units of totally real cubic fields K with $0 < d(K) \le 1101$.37714Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m})$.37815Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $-20 \le k < 0$.402		$x^4 - k$ irreducible in $\mathbb{Q}[x], 2 \le k \le 10$.	177
4Fundamental units of $O_{\mathbb{Q}(\sqrt{m})}$, $2 \le m < 40$, m squarefree.2805Nontrivial ideal class groups $H(\mathbb{Q}(\sqrt{k}))$, $-30 < k < 0$, k squarefree.3226Nontrivial ideal class groups $H(\mathbb{Q}(\sqrt{k}))$, $2 \le k < 100$, k squarefree.3237Class numbers of imaginary quadratic fields $K = \mathbb{Q}(\sqrt{k})$, $-195 \le k < 0$, k squarefree.3258Class numbers of real quadratic fields $K = \mathbb{Q}(\sqrt{k})$, $0 < k \le 197$, k squarefree.3269Class numbers of $\mathbb{Q}(\sqrt[3]{k})$, $2 \le k \le 101$, k cubefree.32910Class numbers of $\mathbb{Q}(\sqrt[3]{k})$, $2 \le k \le 101$, k cubefree.32910Class numbers of cyclotomic fields K_m , $3 \le m \le 45$, $m \ne 2 \pmod{4}$.33111Fundamental unit (> 1) of $\mathbb{Q}(\sqrt[3]{m})$ for a few values of $m \in \mathbb{N}$.37512Fundamental unit of cubic fields K with exactly one real embedding and $-268 \le d(K) < 0$.37613Units of totally real cubic fields K with $0 < d(K) \le 1101$.37714Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m})$.37815Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $-20 \le k < 0$.402	3	Integral bases and discriminants for $\mathbb{Q}(\sqrt[4]{-k})$,	
5 Nontrivial ideal class groups $H(\mathbb{Q}(\sqrt{k}))$, $-30 < k < 0$, k squarefree. 322 6 Nontrivial ideal class groups $H(\mathbb{Q}(\sqrt{k}))$, $2 \le k < 100$, k squarefree. 323 7 Class numbers of imaginary quadratic fields $K = \mathbb{Q}(\sqrt{k})$, $-195 \le k < 0$, k squarefree. 325 8 Class numbers of real quadratic fields $K = \mathbb{Q}(\sqrt{k})$, $0 < k \le 197$, k squarefree. 326 9 Class numbers of $\mathbb{Q}(\sqrt[3]{k})$, $2 \le k \le 101$, k cubefree. 329 10 Class numbers of $\mathbb{Q}(\sqrt[3]{k})$, $2 \le k \le 101$, k cubefree. 329 10 Class numbers of cyclotomic fields K_m , $3 \le m \le 45$, $m \ne 2 \pmod{4}$. 331 11 Fundamental unit (> 1) of $\mathbb{Q}(\sqrt[3]{m})$ for a few values of $m \in \mathbb{N}$. 375 12 Fundamental unit of cubic fields K with exactly one real embedding and $-268 \le d(K) < 0$. 376 13 Units of totally real cubic fields K with $0 < d(K) \le 1101$. 377 14 Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m})$. 378 15 Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $-20 \le k < 0$. 402		$x^4 + k$ irreducible in $\mathbb{Q}[x], 1 \le k \le 10$.	178
k squarefree.3226 Nontrivial ideal class groups $H(\mathbb{Q}(\sqrt{k})), 2 \le k < 100,$ k squarefree.3237 Class numbers of imaginary quadratic fields $K = \mathbb{Q}(\sqrt{k}),$ $-195 \le k < 0, k$ squarefree.3258 Class numbers of real quadratic fields $K = \mathbb{Q}(\sqrt{k}),$ $0 < k \le 197, k$ squarefree.3269 Class numbers of $\mathbb{Q}(\sqrt[3]{k}), 2 \le k \le 101, k$ cubefree.32910 Class numbers of $\mathbb{Q}(\sqrt[3]{k}), 2 \le k \le 101, k$ cubefree.32111 Fundamental unit (> 1) of $\mathbb{Q}(\sqrt[3]{m})$ for a few values of $m \in \mathbb{N}$.37512 Fundamental unit of cubic fields K with exactly one real embedding and $-268 \le d(K) < 0$.37613 Units of totally real cubic fields K with $0 < d(K) \le 1101$.37714 Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m})$.37815 Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $-20 \le k < 0$.402	4	Fundamental units of $O_{\mathbb{Q}(\sqrt{m})}$, $2 \le m < 40$, <i>m</i> squarefree.	280
6Nontrivial ideal class groups $H(\mathbb{Q}(\sqrt{k})), 2 \le k < 100,$ k squarefree.3237Class numbers of imaginary quadratic fields $K = \mathbb{Q}(\sqrt{k}),$ $-195 \le k < 0, k$ squarefree.3258Class numbers of real quadratic fields $K = \mathbb{Q}(\sqrt{k}),$ $0 < k \le 197, k$ squarefree.3269Class numbers of $\mathbb{Q}(\sqrt[3]{k}), 2 \le k \le 101, k$ cubefree.32910Class numbers of $\mathbb{Q}(\sqrt[3]{k}), 2 \le k \le 101, k$ cubefree.32910Class numbers of cyclotomic fields $K_m, 3 \le m \le 45,$ $m \ne 2 \pmod{4}.$ 33111Fundamental unit (> 1) of $\mathbb{Q}(\sqrt[3]{m})$ for a few values of $m \in \mathbb{N}$.37512Fundamental unit of cubic fields K with exactly one real embedding and $-268 \le d(K) < 0.$ 37613Units of totally real cubic fields K with $0 < d(K) \le 1101.$ 37714Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m}).$ 37815Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k, -20 \le k < 0.$ 402	5	Nontrivial ideal class groups $H(\mathbb{Q}(\sqrt{k})), -30 < k < 0,$	
k squarefree.3237 Class numbers of imaginary quadratic fields $K = \mathbb{Q}(\sqrt{k})$, $-195 \le k < 0$, k squarefree.3258 Class numbers of real quadratic fields $K = \mathbb{Q}(\sqrt{k})$, $0 < k \le 197$, k squarefree.3269 Class numbers of $\mathbb{Q}(\sqrt[3]{k})$, $2 \le k \le 101$, k cubefree.32910 Class numbers of cyclotomic fields K_m , $3 \le m \le 45$, $m \ne 2 \pmod{4}$.33111 Fundamental unit (> 1) of $\mathbb{Q}(\sqrt[3]{m})$ for a few values of $m \in \mathbb{N}$.37512 Fundamental unit of cubic fields K with exactly one real embedding and $-268 \le d(K) < 0$.37613 Units of totally real cubic fields K with $0 < d(K) \le 1101$.37714 Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m})$.37815 Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $-20 \le k < 0$.402		*	322
7Class numbers of imaginary quadratic fields $K = \mathbb{Q}(\sqrt{k})$, $-195 \le k < 0, k$ squarefree.3258Class numbers of real quadratic fields $K = \mathbb{Q}(\sqrt{k})$, $0 < k \le 197, k$ squarefree.3269Class numbers of $\mathbb{Q}(\sqrt[3]{k}), 2 \le k \le 101, k$ cubefree.32910Class numbers of cyclotomic fields $K_m, 3 \le m \le 45$, $m \ne 2 \pmod{4}$.33111Fundamental unit (> 1) of $\mathbb{Q}(\sqrt[3]{m})$ for a few values of $m \in \mathbb{N}$.37512Fundamental unit of cubic fields K with exactly one real embedding and $-268 \le d(K) < 0$.37613Units of totally real cubic fields K with $0 < d(K) \le 1101$.37714Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m})$.37815Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $-20 \le k < 0$.402	6	Nontrivial ideal class groups $H(\mathbb{Q}(\sqrt{k})), \ 2 \le k < 100,$	
$-195 \le k < 0, k$ squarefree.3258Class numbers of real quadratic fields $K = \mathbb{Q}(\sqrt{k}),$ $0 < k \le 197, k$ squarefree.3269Class numbers of $\mathbb{Q}(\sqrt[3]{k}), 2 \le k \le 101, k$ cubefree.32910Class numbers of cyclotomic fields $K_m, 3 \le m \le 45,$ $m \ne 2 \pmod{4}.$ 33111Fundamental unit (> 1) of $\mathbb{Q}(\sqrt[3]{m})$ for a few values of $m \in \mathbb{N}.$ 37512Fundamental unit of cubic fields K with exactly one real embedding and $-268 \le d(K) < 0.$ 37613Units of totally real cubic fields K with $0 < d(K) \le 1101.$ 37714Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m}).$ 37815Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k, -20 \le k < 0.$ 402		k squarefree.	323
8Class numbers of real quadratic fields $K = \mathbb{Q}(\sqrt{k})$, $0 < k \le 197$, k squarefree.3269Class numbers of $\mathbb{Q}(\sqrt[3]{k})$, $2 \le k \le 101$, k cubefree.32910Class numbers of cyclotomic fields K_m , $3 \le m \le 45$, $m \ne 2 \pmod{4}$.33111Fundamental unit (> 1) of $\mathbb{Q}(\sqrt[3]{m})$ for a few values of $m \in \mathbb{N}$.37512Fundamental unit of cubic fields K with exactly one real embedding and $-268 \le d(K) < 0$.37613Units of totally real cubic fields K with $0 < d(K) \le 1101$.37714Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m})$.37815Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $-20 \le k < 0$.402	7	Class numbers of imaginary quadratic fields $K = \mathbb{Q}(\sqrt{k})$,	
$0 < k \le 197, k$ squarefree.3269Class numbers of $\mathbb{Q}(\sqrt[3]{k}), 2 \le k \le 101, k$ cubefree.32910Class numbers of cyclotomic fields $K_m, 3 \le m \le 45,$ $m \ne 2 \pmod{4}$.33111Fundamental unit (> 1) of $\mathbb{Q}(\sqrt[3]{m})$ for a few values of $m \in \mathbb{N}$.37512Fundamental unit of cubic fields K with exactly one real embedding and $-268 \le d(K) < 0$.37613Units of totally real cubic fields K with $0 < d(K) \le 1101$.37714Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m})$.37815Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k, -20 \le k < 0$.402		$-195 \leq k < 0, k$ squarefree.	325
9Class numbers of $\mathbb{Q}(\sqrt[3]{k}), 2 \le k \le 101, k$ cubefree.32910Class numbers of cyclotomic fields $K_m, 3 \le m \le 45,$ $m \ne 2 \pmod{4}$.33111Fundamental unit (> 1) of $\mathbb{Q}(\sqrt[3]{m})$ for a few values of $m \in \mathbb{N}$.37512Fundamental unit of cubic fields K with exactly one real embedding and $-268 \le d(K) < 0$.37613Units of totally real cubic fields K with $0 < d(K) \le 1101$.37714Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m})$.37815Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $-20 \le k < 0$.402	8		
10Class numbers of cyclotomic fields K_m , $3 \le m \le 45$, $m \ne 2 \pmod{4}$.33111Fundamental unit (> 1) of $\mathbb{Q}(\sqrt[3]{m})$ for a few values of $m \in \mathbb{N}$.37512Fundamental unit of cubic fields K with exactly one real embedding and $-268 \le d(K) < 0$.37613Units of totally real cubic fields K with $0 < d(K) \le 1101$.37714Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m})$.37815Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $-20 \le k < 0$.402			326
$m \not\equiv 2 \pmod{4}$.33111Fundamental unit (> 1) of $\mathbb{Q}(\sqrt[3]{m})$ for a few values of $m \in \mathbb{N}$.37512Fundamental unit of cubic fields K with exactly one real embedding and $-268 \le d(K) < 0$.37613Units of totally real cubic fields K with $0 < d(K) \le 1101$.37714Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m})$.37815Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $-20 \le k < 0$.402	9		329
11Fundamental unit (> 1) of $\mathbb{Q}(\sqrt[3]{m})$ for a few values of $m \in \mathbb{N}$.37512Fundamental unit of cubic fields K with exactly one real embedding and $-268 \le d(K) < 0$.37613Units of totally real cubic fields K with $0 < d(K) \le 1101$.37714Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m})$.37815Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $-20 \le k < 0$.402	10	Class numbers of cyclotomic fields K_m , $3 \le m \le 45$,	
of $m \in \mathbb{N}$.37512Fundamental unit of cubic fields K with exactly one real embedding and $-268 \le d(K) < 0$.37613Units of totally real cubic fields K with $0 < d(K) \le 1101$.37714Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m})$.37815Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $-20 \le k < 0$.402			331
12Fundamental unit of cubic fields K with exactly one real embedding and $-268 \le d(K) < 0.$ 37613Units of totally real cubic fields K with $0 < d(K) \le 1101.$ 37714Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m}).$ 37815Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k, -20 \le k < 0.$ 402	11		
embedding and $-268 \le d(K) < 0.$ 37613 Units of totally real cubic fields K with $0 < d(K) \le 1101.$ 37714 Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m}).$ 37815 Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k, -20 \le k < 0.$ 402			375
13Units of totally real cubic fields K with $0 < d(K) \le 1101$.37714Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m})$.37815Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $-20 \le k < 0$.402	12	-	
14Fundamental unit of some pure quartic fields $\mathbb{Q}(\sqrt[4]{-m})$.37815Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $-20 \le k < 0$.402			
fields $\mathbb{Q}(\sqrt[4]{-m})$. 378 15 Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $-20 \le k < 0$. 402		•	377
15 Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $-20 \le k < 0$. 402	14		
16 Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $0 < k \le 20$. 403			
	16	Solutions $(x, y) \in \mathbb{Z}^2$ of $y^2 = x^3 + k$, $0 < k \le 20$.	403

Notation

 $\mathbb{N} = \{1, 2, 3, \ldots\}$ $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$ $\mathbb{Q} =$ field of rational numbers $\mathbb{R} =$ field of real numbers $\mathbb{C} =$ field of complex numbers $\phi = \text{empty set}$ $\left(\frac{m}{p}\right) = \text{Legendre symbol} = \begin{cases} 1, & \text{if } p \nmid m \text{ and } x^2 \equiv m \pmod{p} \text{ is solvable,} \\ -1, & \text{if } p \nmid m \text{ and } x^2 \equiv m \pmod{p} \text{ is insolvable,} \\ 0, & \text{if } p \mid m, \end{cases}$ where $m \in \mathbb{Z}$ and p is a prime [x] = greatest integer less than or equal to the real number x $\binom{m}{n}$ = binomial coefficient = $\frac{m!}{(m-n)!n!}$, where *m* and *n* are integers such that $0 \le n \le m$ If \vec{A} is a set containing 0 then $\vec{A^*} = A \setminus \{0\}$ \mathbb{Z}_n = cyclic group of order *n* card(S) = cardinality of the set S $O_n = n \times n$ zero matrix $I_n = n \times n$ identity matrix $O_{r,s} = r \times s$ zero matrix

Introduction

This book is intended as an introductory text for senior undergraduate and beginning graduate students wishing to learn the fundamentals of algebraic number theory. It is based upon a course in algebraic number theory given by the second author at Carleton University for more than thirty years. Keeping in mind that this is an introductory text, the authors have strived to present the material in as straightforward, clear, and elementary fashion as possible. Throughout the text many numerical examples are given to illustrate the theory. Each chapter closes with a set of exercises on the material covered in the chapter, as well as some suggested further reading. References cited in each chapter are listed under suggested reading. Biographical references for some of the mathematicians mentioned in the text are also given at the end of each chapter. For the convenience of the reader, the book concludes with page references for the definitions, theorems, and lemmas in the text. In addition an extensive bibliography of books on algebraic number theory is provided.

The main aim of the book is to present to the reader a detailed self-contained development of the classical theory of algebraic numbers. This theory is one of the crowning achievements of nineteenth-century mathematics. It came into being through the attempts of mathematicians of that century to prove Fermat's last theorem, namely, that the equation $x^n + y^n = z^n$ has no solutions in nonzero integers x, y, z, where *n* is an integer ≥ 3 . A wonderful achievement of the twentieth century was the proof of Fermat's last theorem by Andrew Wiles of Princeton University. Although the proof of Fermat's last theorem is beyond the scope of this book, we will show how algebraic number theory can be used to find the solutions in integers (if any) of other equations.

The contents of the book are divided into fourteen chapters. Chapter 1 serves as an introduction to the basic properties of integral domains. Chapters 2 and 3 are devoted to Euclidean domains and Noetherian domains respectively. In Chapter 4 the reader is introduced to algebraic numbers and algebraic integers. Algebraic number fields are introduced in Chapter 6 after a discussion of algebraic extensions of fields in Chapter 5. Chapter 7 is devoted to the study of integral bases. Minimal integers are introduced as a tool for finding integral bases and many numerical

xvi

Introduction

examples are given. Chapter 8 is concerned with Dedekind domains. The ring of integers of an algebraic number field is the prototype of a Dedekind domain. Chapters 9 and 10 discuss the factorization of ideals into prime ideals. The structure of the unit group of a real quadratic field is determined in Chapter 11. In Chapter 12 the classic theorems of Minkowski in the geometry of numbers are proved and are used to show that the ideal class group is finite. Dirichlet's determination of the units in an arbitrary algebraic number field is presented in Chapter 13 using the approach given by van der Waerden. Finally, in Chapter 14, the algebraic numbertheoretic tools developed in earlier chapters are used to discuss the solvability of certain equations in integers.

The prerequisites for this book are a basic course in linear algebra (systems of linear equations, vector spaces over a field), a basic course in modern algebra (groups, rings, and fields including Eisenstein's irreducibility criterion), and a basic course in elementary number theory (the Legendre symbol, quadratic residues, and the law of quadratic reciprocity.) No Galois theory is needed.

A possible outline for a one-semester course (three hours of lectures per week for twelve weeks) together with an approximate breakdown of lecture time is as follows:

Chapter 1 (excluding Theorem 1.2.2) Chapter 2 (excluding Sections 2.3, 2.4)	2 hours 2 hours
Chapter 3	3 hours
Chapter 4	3 hours
Chapter 5	3 hours
Chapter 6	5 hours
Chapter 7 (Section 7.1 only)	3 hours
Chapter 8	3 hours
Chapter 9	3 hours
Chapter 10 (excluding Sections 10.4, 10.5, 10.6)	2 hours
Chapter 11	3 hours
Chapter 12 (excluding Section 12.7)	2 hours
Chapter 14 (Section 14.2 only)	2 hours

It is planned to provide solutions to selected questions, as well as corrections to any errors, on the website

http://mathstat.carleton.ca/~williams/books.html or

http://www.math.carleton.ca/~williams/books.html.

The authors would like to thank their colleagues John D. Dixon, James G. Huard, Pierre Kaplan, Blair K. Spearman, and P. Gary Walsh for helpful suggestions in connection with the writing of this book. The second author would like to thank the many students who have taken the course Mathematics 70.436*/70.536 Algebraic Number Theory with him at Carleton University over the years. Special thanks go

Introduction

xvii

to the class of 2000–1 (Yaroslav Bezverkhnyev, Joanne Charlebois, Colette Haley, Mathieu Lemire, Rima Rahal, Fabien Roche, Tom Wiley, and Benjamin Young) for their suggestions for improvement to the preliminary draft of this book used in class. Finally, the authors would like to thank Austin Behne for his help in translating van der Waerden's paper on Dirichlet's unit theorem from German into English.