Chapter 4

Introduction to UNIX Systems Programming
4.1 Introduction

Last chapter covered how to use UNIX from from a shell program using UNIX commands. These
commands are programs that are written in C that interact with the UNIX environment using
functions called Systems Calls. This chapter covers this Systems Calls and how to use them
inside a program.

4.2 What is an Operating System

An Operating System is a program that sits between the hardware and the application programs.
Like any other program it has a main() function and it is built like any other program with a
compiler and a linker. However it is built with some special parameters so the starting address is
the boot address where the CPU will jump to start the operating system when the system boots.

Program1

Program1 I Program1

Operating System

Hardware

Figure 1. The Operating System interfaces
the computer hardware and the user
programs.

An operating system typically offers the following functionality:

e Multitasking
The Operating System will allow multiple programs to run simultaneously in the same
computer. The Operating System will schedule the programs in the multiple processors
of the computer even when the number of running programs exceeds the number of
processors or cores.

e Multiuser
The Operating System will allow multiple users to use simultaneously in the same
computer.

o File system

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

It allows to store files in disk or other media.
e Networking
It gives access to the local network and internet
e Window System
It provides a Graphical User Interface
e Standard Programs
It also includes programs such as file utilities, task manager, editors, compilers, web
browser, etc.
e Common Libraries
It also provides libraries that are common to all programs running in the computer such
as math library, string library, window library, c library etc.

The Operating System has to do all of the above in a secure and reliable manner.

Linux, MacOS, Android, and IOS are implementations of UNIX. Even though we focus in this
book on UNIX, the same concepts learned in this book can be adapted to other Operating
Systems such as Windows.

4.3 A Brief History of UNIX
UNIX was created in AT&T Bell Labs in 1969 by Ken Thompson, Dennis Ritchie, Brian
Kernighan, and others. UNIX was a successor of another OS called MULTICS that was too big
and slow for the computers at the time but it had many good ideas. UNIX was smaller, faster,
and more reliable than MULTICS.

The main use for UNIX initially was the edition of documents and typesetting. It later evolved to be
a general purpose Operating System that could be used to run other applications. The main way

of interacting with UNIX at that time was using dumb terminals that were able to print characters

in a 25 by 80 character display and take input from a keyboard. This started the use of shell

programs to interact with the OS using command lines.

UNIX was initially written in Assembly Language for the Digital Equipment PDP-11 but then it was
rewritten in “C” with some assembly language for some critical pieces of code. This made it
easier to port UNIX to other platforms. Also, UNIX had a C compiler, linker and editors that
allowed the developers to use UNIX to fix its own bugs. This “eat your own food” approach
motivated the developers to create an even more reliable operating system.

One of the main successes of UNIX besides its simplicity was the commands that came with it.

The commands were useful and simple to understand. The commands followed the principle of
orthogonality that implies that no two commands should overlap in functionality. This kept the
commands simple. Also, UNIX introduced the concept of “pipes” that allowed connecting the
output of one command to the input of another one allowing the creation of more complex
commands.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

UNIX was a success in Universities. Students and Faculty used UNIX in PDP-11 machines that

were common at that time. Researchers wanted to experiment with the UNIX internals, but since

UNIX was proprietary it was not possible to change it without permission from AT&T. As a

solution, the University of California at Berkeley wrote their own implementation of UNIX that
provided the same commands and API as AT&T Unix. This version of UNIX was called Berkeley
Software Distribution UNIX or BSD UNIX and was created in 1978.

The most known version of AT&T Unix is called Unix System V. This version was licensed to
hardware manufacturers such as Sun Microsystems (that became Solaris) , Digital (that
became Digital Unix) , HP (that became HP-UX) , and IBM (that became AIX) to run in their
machines. On the other hand, BSD UNIX was used for research and was used to implement the
first TCP/IP stack that was the basis for the Internet.

To prevent divergence among AT&T UNIX System V and BSD UNIX and all the other UNIX
flavors the IEEE (Institute of Electrical and Electronic Engineers) created a standard called
POSIX (Portable Operating System Interface) to define the Interface of the UNIX operating
system. The hardware manufacturers agreed to follow this standard in their UNIX versions and
this allowed the easy migration of software components across the different UNIX flavors by just
recompiling.

It was in this environment that Richard Stallman created the GNU organization that provided
Open Source implementations of many UNIX tools including compilers, editors, linkers, etc.
Richard Stallman not only wrote great software like GCC, the precursor to the C/C++ compiler
that is widely used now, but also was the visionary creator of the GNU General Public License or
GPL. This license make the software source code available free of charge but also it asks the
developers to make their contributions Open Source.

Currently there are many Open Source projects of very high quality that use the GPL Software
license or other similar Open Source licenses. The fact that Open Source projects allow the
access to the source code enables new generations of software developers to learn from the
code of experienced computer programmers. Open Source has contributed in a big way to the
education of software developers.

With the advent of personal computers (PCs) and the increase in their computing capacity at the

beginning of the 1990s it was possible to run UNIX in PCs. Linus Torvalds, wrote his own
implementation of the UNIX kernel and added the GNU tools to form what we know now as
GNU/Linux or Linux for short. Linux has been so successful that now has become the best

known implementation of UNIX. At the time of writing this book there have been 900 million
Android activations and 1.5 million Android devices are activated every day. Since Android is
based on Linux, we can say that GNU/Linux is the most used Operating System of all time.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

4.4 Relation between UNIX and C

At the time UNIX was developed other Operating Systems were implemented in Assembly
Language, making the implementation highly dependent on the CPU where it runs. Porting an
Operating System written in Assembly Language to a different CPU requires rewriting the whole
Operating System from scratch. Assembly Language was needed to write Operating Systems

because by design they need to have access directly to the hardware and the memory of the
computer. Other Computer Languages at the time such as Fortran were too high-level or too
cumbersome to be used for an Operating System. Kernighan, Ritchie, and Thompson solved

this problem by creating their own language called C.

The C language is high-level enough to be portable but low-level enough to allow most of the
code optimizations that until then were only possible in assembly language.

The C programming language was designed from the beginning to be a High-Level Assembly
Language. This means that in one side it contained the high-level programming structures such
as if/for/while, typed variables, and functions but on the other side it had memory pointers and
arrays that allowed manipulating memory locations and their content directly.

The C Programming Language was designed to never get in your way to make your program
faster.

For example, an array access in languages such as Pascal, Java, or C# checks the index

against the boundaries of the array before doing an array access. If the index is out of bounds it
throws an exception. This approach tells the programmer when an index-out-of bounds error
happens. On the other hand, the cost in execution time is extremely high in programs that make
many array operations.

During an array access C programs will not do any check of the index against the boundaries
and the array access. This can result in the program reading erroneously a memory item
beyond the range of the array or make the program crash with a SEGV if the memory access
falls in an invalid memory page.

C allows very fast array access that is great if the program was written correctly. State-of-the-art
libraries for sound and video coding and decoding are written in C and C++. Video games that
need to squeeze every CPU cycle to run fast and keep the edge against their competitors are
written in C and C++.

However, the same strength that makes the code run fast in C can make the program unstable
and unsafe if the program is written incorrectly. C is prefered in pieces of code where the use of
the CPU can become a bottleneck. Other languages such as Python, PHP, Java, C# etc are

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

prefered in software where the the CPU usage is not critical and the execution is spent in
database access or network communication

4.5 Computer Architecture Review

Most modern computers use the Von Neumann Architecture where both program and data
are stored in RAM. A modern computer has an address bus and a data bus that are used to
transfer data from/to the CPU, RAM, ROM, and the devices.

When the CPU (Central Processing Unit) needs to read a word from memory it will put the
memory address in the Address Bus and indicate also in the address bus that it needs to read
an item from memory. The memory, either RAM (Random Access Memory) or ROM (Read Only
Memory) will place the item in the Data Bus and it will be received by the CPU. When the CPU
needs to write a word in memory, it will put the memory address in the address bus and the
word to be written in the data bus. The RAM will store the data word at the address requested.

The communication between the CPU and the devices is very similar to the communication
between the CPU and memory. Using Memory Mapped 10 the devices are mapped to specific
memory addresses. The CPU writes or reads to a device in the same way it writes to or reads
from memory. The interrupt line is used by the devices to request CPU attention. By using
interrupts the CPU does not need to waste CPU cycles waiting until a device is ready. We will
see how interrupts work later in the chapter.

=
- Hard CIDVD
Controler ' A
{ mouse, kbd Dirive
Drata bus
Address bus
nterrupt Line
Pl EAM RO Ethernet
Card

Figure 2. Architecture of a Computer showing the Data, Address Bus, and
Interrupt Line,

4.6 Kernel Mode and User Mode
Modern processors have two modes of execution: Kernel Mode and User Mode.

When running in Kernel Mode the CPU is able to run any type of instruction. Additionally, all
registers are accessible to the program as well as all memory locations. In this mode the
processor can modify any location in memory and may access any device register. In Kernel

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

mode there is full control of the computer. The Operating System services run in kernel
mode.

When running in User Mode the CPU can use only a limited set of instructions

In user mode the CPU can only modify the sections of memory assigned to the program. Also,
only a subset of registers can be accessed by the CPU and it cannot access registers in
devices. In user mode there is a limited access to the resources of the computer. The user
programs run in user mode.

Kernel Mode is also called Protected Mode, and User Mode is also called Real Mode.

When the OS boots, it starts in kernel mode. In kernel mode the OS sets up all the interrupt
vectors and initializes all the devices.Then it starts the first process and switches to user mode.
The first process, often called init, starts all system processes that will run in the background
offering services such as secure login (sshd) and remote file systems (nfsd). These programs
that run in the background offering additional Operating System services are called daemons in
the UNIX world, or services in the windows world. Finally the OS runs the first user shell or
windows manager.

Quick Summary
e User programs run in user mode.
The programs switch to kernel mode to request OS services (system calls)
Also user programs switch to kernel mode when an interrupt arrives.
They switch back to user mode when interrupt returns.
The interrupts are executed in kernel mode.
The interrupt vector can be modified only in kernel mode.
Most of the CPU time is spent in User mode

User Mode

Kernel Mode

Figure 3. Going from Kernel Mode to User Mode and
Viceversa.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

System Calls

The System Calls of an OS is the list of services or functions that the Operating System
provides. You can think of the System Calls as the API (Application Programming Interface) of
the Operating System. We saw previously that System Calls run in a special mode in the CPU
called Kernel Mode that uses an extended set of instructions and can access all the registers of
the CPU. In contrast, application programs such as your web browser or your favorite editor run
in User Mode where a restricted set of instructions can be run and only a portion of the registers
is accessible. The separation of User mode and Kernel Mode give the security, protection, and
reliability of an Operating System.

You can find the list of system calls in the file /lusr/include/sys/syscall.h. Here is an example of
this file from BSD UNIX.

/* /usr/include/sys/syscall.h */
#define SYS syscall 0
#define SYS exit
#define SYS_ fork
#define SYS read
#define SYS write
#define SYS open
#define SYS _close
#define SYS wait4
#define SYS creat
#define SYS link
#define SYS unlink
. and many more.

PR OoooJdoubdWNR

When a new system call is added to the Operating System, it is added to the syscall.h file and a
new syscall number is created. Since system call numbers are added in monotonical order the
syscalls.c file also gives you a history of how the UNIX operating system evolved.

When an application program runs and invokes a system call like open() in user mode it

generates a “software interrupt” to cross the user/kernel mode boundary. Then the System Call

for open starts running in Kernel Mode where it checks the arguments and validates that the
arguments are correct and that the owner of the process can open the file. Then, it performs the

operation and returns the file handler of the open file. If there is an error in any of the arguments,
the system call will return -1 and it will set a global variable called “int errno”.

This global variable “int errno” is defined in the standard C library libc.so and stores the status
of the last system call executed. It is either 0 on success or an error number. The list of all the
errors can be found in /usr/include/sys/errno.h

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

/* /usr/include/sys/errno.h */

#define EPERM 1 /* Not super-user */

#define ENOENT 2 /* No such file or directory */
#define ESRCH 3 /* No such process */

#define EINTR 4 /* interrupted system call */
#define EIO 5 /* I/0 error */

#define ENXIO 6 /* No such device or address */
. and many more

You can print a human readable error message that corresponds to errno to stderr using
perror(s); where s is a string prepended to the message.

The Open File Table

The process table has a list with all the files that are opened. Each open file descriptor entry
contains a pointer to an open file object that contains all the information about the open file. Both
the Open File Table and the Open File Objects are stored in the kernel.

System calls like write/read refer to the open files with a file descriptor that is an index into the
table. The maximum number of file descriptors per process is about 256 by default but but it can
be changed with the shell command ulimit up to 1024. or more.

Open File Table QOpen File Object

4 I-NODE

! Open Mode

2 Offset

j Reference Count

File Table and Open File Table

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

An Open File Object contains the state of an open file with the following entries:

I-Node — It uniquely identifies a file in the computer. An I-nodes is made of two parts:
Major number — Determines the devices

Minor number —It determines what file it refers to inside the device.

Open Mode — How the file was opened: Read Only, Read Write, Append

Offset — The next read or write operation will start at this offset in the file. Each read/write
operation increases the offset by the number of bytes read/written.

Reference Count — It is increased by the number of file descriptors that point to this Open
File Object. When the reference count reaches 0 the Open File Object is removed. The
reference count is initially 1 and it is increased after fork() or calls like dup and dup2. In
UNIX also the reference count is increased when the file is opened. This will prevent a file
to be removed while it is still opened by the Operating System.

When a process is created, there are three files opened by default:

0 — Default Standard Input
1 — Default Standard Output
2 — Default Standard Error

write(1, “Hello”, 5) Sends Hello to stdout
write(2, “Hello”, 5) Sends Hello to stderr

Stdin, stdout, and stderr are inherited from the parent process.

The open() system call

The open system call opens the file in flename using the permissions in mode.

int open(filename, mode, [permissions]),

The values in mode can be:

O_RDONLY - Open the file in read-only mode. write operations are not allowed.
O_WRONLY - Open the file in write-only mode. read operations are not allowed.
O_RDWR - Open the file in read-write mode. Both read and write operations are allowed.
O_CREAT If the file does not exist, the file is created.Use the permissions argument for
the initial permissions. Bits: rwx(user) rwx(group) rwx (others) Example: 0555 — Read
and execute by user, group and others. (101B==50ctal)

O_APPEND. Append at the end of the file.

O_TRUNC. Truncate file to length 0.

See “man open” for more details.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach

(V2014-10-27) (systemsprogrammingbook.com)

The close() System Call

The close system call closes a file.
void close(int fd)

close(fd) decrements the count of the open file object pointed by fd. If the reference count of
the open file object reaches 0, the open file object is reclaimed.

The fork() System Call

The fork() system call creates a new process that is copy of the parent process that is calling
fork().

int fork();
This is the only way to create a new process in UNIX.
The call :

int ret;
ret = fork();

returns:
e ret == 0in the child process
e ret == pid > 0 in the parent process.
e ret <0 if there is an error

The memory in the child process is a copy of the parent process’s memory. This copy is
optimized by using VM copy-on-write, that is, the memory of the parent will be shared with the
child keeping only one copy the memory in physical memory. Only when one page is modified by
either the parent or the child, the OS will make a copy of the modified page. This “lazy” copy
improves the execution of fork() since most of the time only a few pages are modified.

During fork() the Open File table is copied in the child. However, the Open File objects of the
parent are shared with the child. This allows the communication between the parent and the
children. Only the reference counters of the Open File Objects are increased.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

Before: OpenFile Object
Open FileTable
(ﬁarenr)_ itef count=1
1
2
3 Ref count=1
ef count=1

Open File Table and File Objects Before fork()
After: Open File Object

Open FileTable

N {(parent)

Open FileTable
(child)

fad P

Open File Table and File Objects After fork().
As you see in the figure, both parent and child process have different Open File Tables but they
share the same open file objects. By sharing the same open file objects, parent and child or

multiple children can communicate with each other. We will use this property to be able to make
the commands in a pipeline communicate with each other.

The execvp() system call

The execvp system call loads a new program in the current process.

int execvp(progname, argv(])

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

During execvp, the old program is overwritten. progname is the name of the executable to load.
argyv is the array with the argument where argv[0] is the progname itself. The entry after the last
argument in argv should be a NULL so execvp() can determine where the argument list ends. If
successful, execvp() will not return since the current program is overwritten by the new
program.

The following example shows runs “Is -al” from a C program using execvp.

void main() {

// Create a new process

int ret = fork();

if (ret == 0) {
// Child process.
// Execute “1ls -al”
const char *argv[3];
argv[0]="1s";
argv[l]="-al”;
argv[2] = NULL;
execvp (argv|[0], argv);
// There was an error
perror (“execvp”) ;
_exit(1l);

}

else if (ret < 0) {
// There was an error in fork
perror (“fork”) ;
exit(2);

}

else {
// This is the parent process
// ret is the pid of the child
// Wait until the child exits
waitpid(ret, NULL) ;

} // end if

}// end main

The dup2() System Call

The dup2 system call is used to redirect a file descriptor to a different file object.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

int dup2(fd1, fd2)

After calling dup2(fd1, fd2), fd2 will refer to the same open file object that fd1 refers to. The open
file object that fd2 referred to before is closed. The reference counter of the open file object that
fd1 refers to is increased. dup2() will be useful to redirect stdin, stdout, and also stderr when
working on the shell project.

Before: Open File Object
Shell Console
0 Ref count=3
1
2 File “myout”
3
Ref count=1I

After dup2(3,1);
Open File Object
Shell Console

Ref count=2

File “myout”

b b = D

Ref count=2

*Now every printf will go to file “myout”.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

Example program that redirects stdout to a file myoutput.txt

int main(int argc,char**argv)
{
// Create a new file
int £fd = open (“myoutput.txt”,
O_CREAT|O_WRONLY|O_TRUNC,
0664) ;
if (£d < 0) {
perror (“open”) ;
exit(1l);
}
// Redirect stdout to file
dup2 (fd,1) ;

// Now printf that prints
// to stdout, will write to
// myoutput.txt

printf (“Hello world\n”) ;

The dup() System Call

The dup system call is used to create a different file descriptor to an existing file object.
fd2=dup(fd1)

dup(fd1) will return a new file descriptor that will point to the same file object that fd1 is pointing

to. The reference counter of the open file object that fd1 refers to is increased. This will be useful
to “save” the stdin, stdout, stderr, so the shell process can restore it after doing the redirection.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

Before° Open File Object
Shell Console
0 Ref count=3
1
2
3

After fd2 = dup(1)

Open File Object
Shell Console

Ref count=4

fd2 ==

The pipe() system call
The pipe system call creates a pipe that can be used for interprocess communication.
int pipe(fdpipe[2])
fdpipe[2] is an array of int with two elements. After calling pipe, fdpipe will contain two file
descriptors that point to two open file objects that are interconnected. What is written into

fdpipe[1] can be read from fdpipe[0]. In some Unix systems like Solaris pipes are bidirectional but
in Linux they are unidirectional.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

Before:
Open File Objects
Shell Console
0 Ref count=3
1
2
3
After running:
int fdpipel2];
pipe (fdpipe) ;
Open File Objects
Shell Console
0 Ref count=3
fdpipe[0]=— é pipel
fdpipe[1]==4 3 Ref count=1
What is written in 4
fdpipe[1] can be Pipel
read from
fdpipe[0]. Ref count=1

Here is an example of implementing a program that executes “Isgrep” that runs “Is —al | grep
arg1 > arg2”. Example: “Isgrep aa myout” lists all files that contain “aa” and puts output in the file
myout.

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

int main(int argc,char**argv)
{
if (argc < 3) {
fprintf (stderr, "usage:”
“lsgrep argl arg2\n");
exit (1) ;
}

// Strategy: parent does the
// redirection before fork|()
//save stdin/stdout

int tempin = dup(0);

int tempout = dup(l);

//create pipe
int fdpipel[2];
pipe (fdpipe);

//redirect stdout for "1ls“

dup?2 (fdpipell],1);

close (fdpipel[l])

// fork for "ls”

int ret= fork();

if (ret==0) {
// close file descriptors
// as soon as are not
// needed
close (fdpipe[0]) ;
char * args[3];
args[0]="1s";
args[l]="-al";
args[2]=NULL;
execvp (args[0], args);
// error in execvp
perror ("execvp") ;
_exit(1l);

}

//redirection for "grep"“
//redirect stdin

dup2 (fdpipe[0], 0);
close (fdpipe[0]) ;

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach
(V2014-10-27) (systemsprogrammingbook.com)

//create outfile

int fd=open(argv[2], O WRONLY|O CREAT|O TRUNC,

if (fd < 0){
perror ("open") ;
exit (1) ;

}

//redirect stdout
dup2 (fd, 1) ;
close (fd) ;

// fork for “grep”

ret= fork();

if (ret==0) {
char * args[3];
args[0]=“grep";
args[l]=argv[l];
args[2]=NULL;
execvp (args[0], args);
// error in execvp
perror ("execvp") ;
_exit(1l);

}

// Restore stdin/stdout
dup? (tempin, 0) ;

dup? (tempout, 1) ;

// Parent waits for grep
// process
waitpid(ret, NULL) ;
printf (“*All done!!'\n”);

} // main

0600) ;

© 2014 Gustavo Rodriguez-Rivera and Justin Ennen,Introduction to Systems Programming: a Hands-on Approach

(V2014-10-27) (systemsprogrammingbook.com)

In this program the parent performs all the redirection before executing fork(). In this way the
child starts already running with the input and output already redirected to the right files. To be
able to restore the input and the output at the end, the parent process has to save the input and

output before it starts the redirection.

