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Preface

Chair of Econometrics Department of Business Administration and Economics
University of Duisburg-Essen Essen, Germany info@econometrics-with-r.org
Last updated on Tuesday, September 15, 2020

Over the recent years, the statistical programming language R has become an
integral part of the curricula of econometrics classes we teach at the University of
Duisburg-Essen. We regularly found that a large share of the students, especially
in our introductory undergraduate econometrics courses, have not been exposed
to any programming language before and thus have difficulties to engage with
learning R on their own. With little background in statistics and econometrics, it
is natural for beginners to have a hard time understanding the benefits of having
R skills for learning and applying econometrics. These particularly include the
ability to conduct, document and communicate empirical studies and having the
facilities to program simulation studies which is helpful for, e.g., comprehending
and validating theorems which usually are not easily grasped by mere brooding
over formulas. Being applied economists and econometricians, all of the latter
are capabilities we value and wish to share with our students.

Instead of confronting students with pure coding exercises and complementary
classic literature like the book by Venables and Smith (2010), we figured it would
be better to provide interactive learning material that blends R code with the
contents of the well-received textbook Introduction to Econometrics by Stock
and Watson (2015) which serves as a basis for the lecture. This material is
gathered in the present book Introduction to Econometrics with R, an empirical
companion to Stock and Watson (2015). It is an interactive script in the style
of a reproducible research report and enables students not only to learn how
results of case studies can be replicated with R but also strengthens their ability
in using the newly acquired skills in other empirical applications.

Conventions Used in this Book

• Italic text indicates new terms, names, buttons and alike.

• Constant width text is generally used in paragraphs to refer to R code.
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This includes commands, variables, functions, data types, databases and
file names.

• Constant width text on gray background indicates R code that can be
typed literally by you. It may appear in paragraphs for better distin-
guishability among executable and non-executable code statements but
it will mostly be encountered in shape of large blocks of R code. These
blocks are referred to as code chunks.
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Chapter 1

Introduction

The interest in the freely available statistical programming language and soft-
ware environment R (R Core Team, 2020) is soaring. By the time we wrote
first drafts for this project, more than 11000 add-ons (many of them providing
cutting-edge methods) were made available on the Comprehensive R Archive
Network (CRAN), an extensive network of FTP servers around the world that
store identical and up-to-date versions of R code and its documentation. R dom-
inates other (commercial) software for statistical computing in most fields of
research in applied statistics. The benefits of it being freely available, open
source and having a large and constantly growing community of users that con-
tribute to CRAN render R more and more appealing for empirical economists
and econometricians alike.

A striking advantage of using R in econometrics is that it enables students to
explicitly document their analysis step-by-step such that it is easy to update and
to expand. This allows to re-use code for similar applications with different data.
Furthermore, R programs are fully reproducible, which makes it straightforward
for others to comprehend and validate results.

Over the recent years, R has thus become an integral part of the curricula of
econometrics classes we teach at the University of Duisburg-Essen. In some
sense, learning to code is comparable to learning a foreign language and contin-
uous practice is essential for the learning success. Needless to say, presenting
bare R code on slides does not encourage the students to engage with hands-on
experience on their own. This is why R is crucial. As for accompanying liter-
ature, there are some excellent books that deal with R and its applications to
econometrics, e.g., Kleiber and Zeileis (2008). However, such sources may be
somewhat beyond the scope of undergraduate students in economics having little
understanding of econometric methods and barely any experience in program-
ming at all. Consequently, we started to compile a collection of reproducible
reports for use in class. These reports provide guidance on how to implement
selected applications from the textbook Introduction to Econometrics (Stock

11
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12 CHAPTER 1. INTRODUCTION

and Watson, 2015) which serves as a basis for the lecture and the accompany-
ing tutorials. This process was facilitated considerably by knitr (Xie, 2020b)
and R markdown (Allaire et al., 2020). In conjunction, both R packages provide
powerful functionalities for dynamic report generation which allow to seamlessly
combine pure text, LaTeX, R code and its output in a variety of formats, includ-
ing PDF and HTML. Moreover, writing and distributing reproducible reports
for use in academia has been enriched tremendously by the bookdown package
(Xie, 2020a) which has become our main tool for this project. bookdown builds
on top of R markdown and allows to create appealing HTML pages like this one,
among other things. Being inspired by Using R for Introductory Econometrics
(Heiss, 2016)1 and with this powerful toolkit at hand we wrote up our own em-
pirical companion to Stock and Watson (2015). The result, which you started
to look at, is Introduction to Econometrics with R.

Similarly to the book by Heiss (2016), this project is neither a comprehensive
econometrics textbook nor is it intended to be a general introduction to R. We
feel that Stock and Watson do a great job at explaining the intuition and theory
of econometrics, and at any rate better than we could in yet another introduc-
tory textbook! Introduction to Econometrics with R is best described as an
interactive script in the style of a reproducible research report which aims to
provide students with a platform-independent e-learning arrangement by seam-
lessly intertwining theoretical core knowledge and empirical skills in undergrad-
uate econometrics. Of course, the focus is on empirical applications with R. We
leave out derivations and proofs wherever we can. Our goal is to enable students
not only to learn how results of case studies can be replicated with R but we
also intend to strengthen their ability in using the newly acquired skills in other
empirical applications — immediately within Introduction to Econometrics with
R.

To realize this, each chapter contains interactive R programming exercises.
These exercises are used as supplements to code chunks that display how pre-
viously discussed techniques can be implemented within R. They are generated
using the DataCamp light widget and are backed by an R session which is main-
tained on DataCamp’s servers. You may play around with the example exercise
presented below.

As you can see above, the widget consists of two tabs. script.R mimics an .R-
file, a file format that is commonly used for storing R code. Lines starting with
a # are commented out, that is, they are not recognized as code. Furthermore,
script.R works like an exercise sheet where you may write down the solution
you come up with. If you hit the button Run, the code will be executed, submis-
sion correctness tests are run and you will be notified whether your approach is
correct. If it is not correct, you will receive feedback suggesting improvements
or hints. The other tab, R Console, is a fully functional R console that can be
used for trying out solutions to exercises before submitting them. Of course

1Heiss (2016) builds on the popular Introductory Econometrics (Wooldridge, 2016) and
demonstrates how to replicate the applications discussed therein using R.

https://github.com/datacamp/datacamp-light
https://www.datacamp.com/home
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you may submit (almost any) R code and use the console to play around and
explore. Simply type a command and hit the Enter key on your keyboard.

Looking at the widget above, you will notice that there is a > in the right panel
(in the console). This symbol is called “prompt” and indicates that the user
can enter code that will be executed. To avoid confusion, we will not show this
symbol in this book. Output produced by R code is commented out with #>.

Most commonly we display R code together with the generated output in code
chunks. As an example, consider the following line of code presented in chunk
below. It tells R to compute the number of packages available on CRAN. The
code chunk is followed by the output produced.

# check the number of R packages available on CRAN
nrow(available.packages(repos = "http://cran.us.r-project.org"))
#> [1] 16272

Each code chunk is equipped with a button on the outer right hand side which
copies the code to your clipboard. This makes it convenient to work with larger
code segments in your version of R/RStudio or in the widgets presented through-
out the book. In the widget above, you may click on R Console and type
nrow(available.packages(repos = "http://cran.us.r-project.org"))
(the command from the code chunk above) and execute it by hitting Enter on
your keyboard.2

Note that some lines in the widget are out-commented which ask you to assign
a numeric value to a variable and then to print the variable’s content to the
console. You may enter your solution approach to script.R and hit the button
Run in order to get the feedback described further above. In case you do not
know how to solve this sample exercise (don’t panic, that is probably why you
are reading this), a click on Hint will provide you with some advice. If you
still can’t find a solution, a click on Solution will provide you with another tab,
Solution.R which contains sample solution code. It will often be the case that
exercises can be solved in many different ways and Solution.R presents what
we consider as comprehensible and idiomatic.

1.1 Colophon

This book was build with:

#> - Session info ---------------------------------------------------------------
#> setting value
#> version R version 4.0.2 (2020-06-22)

2The R session is initialized by clicking into the widget. This might take a few seconds.
Just wait for the indicator next to the button Run to turn green.
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#> os macOS Catalina 10.15.4
#> system x86_64, darwin19.5.0
#> ui unknown
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz Europe/Berlin
#> date 2020-09-15
#>
#> - Packages -------------------------------------------------------------------
#> package * version date lib source
#> abind 1.4-5 2016-07-21 [1] CRAN (R 4.0.2)
#> AER 1.2-9 2020-02-06 [1] CRAN (R 4.0.0)
#> askpass 1.1 2019-01-13 [1] CRAN (R 4.0.0)
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.0.0)
#> backports 1.1.8 2020-06-17 [1] CRAN (R 4.0.0)
#> base64enc 0.1-3 2015-07-28 [1] CRAN (R 4.0.0)
#> bdsmatrix 1.3-4 2020-01-13 [1] CRAN (R 4.0.0)
#> BH 1.72.0-3 2020-01-08 [1] CRAN (R 4.0.2)
#> bibtex 0.4.2.2 2020-01-02 [1] CRAN (R 4.0.0)
#> bitops 1.0-6 2013-08-17 [1] CRAN (R 4.0.0)
#> blob 1.2.1 2020-01-20 [1] CRAN (R 4.0.0)
#> bookdown 0.20 2020-06-23 [1] CRAN (R 4.0.0)
#> boot 1.3-25 2020-04-26 [2] CRAN (R 4.0.2)
#> broom 0.7.0 2020-07-09 [1] CRAN (R 4.0.2)
#> callr 3.4.3 2020-03-28 [1] CRAN (R 4.0.0)
#> car 3.0-8 2020-05-21 [1] CRAN (R 4.0.0)
#> carData 3.0-4 2020-05-22 [1] CRAN (R 4.0.0)
#> cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.0.0)
#> cli 2.0.2 2020-02-28 [1] CRAN (R 4.0.0)
#> clipr 0.7.0 2019-07-23 [1] CRAN (R 4.0.0)
#> colorspace 1.4-1 2019-03-18 [1] CRAN (R 4.0.0)
#> conquer 1.0.1 2020-05-06 [1] CRAN (R 4.0.2)
#> crayon 1.3.4 2017-09-16 [1] CRAN (R 4.0.0)
#> cubature 2.0.4.1 2020-07-06 [1] CRAN (R 4.0.2)
#> curl 4.3 2019-12-02 [1] CRAN (R 4.0.0)
#> data.table 1.12.8 2019-12-09 [1] CRAN (R 4.0.0)
#> DBI 1.1.0 2019-12-15 [1] CRAN (R 4.0.0)
#> dbplyr 1.4.4 2020-05-27 [1] CRAN (R 4.0.0)
#> desc 1.2.0 2018-05-01 [1] CRAN (R 4.0.0)
#> digest 0.6.25 2020-02-23 [1] CRAN (R 4.0.0)
#> dplyr 1.0.0 2020-05-29 [1] CRAN (R 4.0.0)
#> dynlm 0.3-6 2019-01-06 [1] CRAN (R 4.0.2)
#> ellipsis 0.3.1 2020-05-15 [1] CRAN (R 4.0.0)
#> evaluate 0.14 2019-05-28 [1] CRAN (R 4.0.0)
#> fansi 0.4.1 2020-01-08 [1] CRAN (R 4.0.0)
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#> farver 2.0.3 2020-01-16 [1] CRAN (R 4.0.0)
#> fastICA 1.2-2 2019-07-08 [1] CRAN (R 4.0.2)
#> fBasics 3042.89.1 2020-03-07 [1] CRAN (R 4.0.2)
#> fGarch 3042.83.2 2020-03-07 [1] CRAN (R 4.0.2)
#> forcats 0.5.0 2020-03-01 [1] CRAN (R 4.0.0)
#> foreign 0.8-80 2020-05-24 [2] CRAN (R 4.0.2)
#> Formula 1.2-3 2018-05-03 [1] CRAN (R 4.0.0)
#> fs 1.4.2 2020-06-30 [1] CRAN (R 4.0.2)
#> gbRd 0.4-11 2012-10-01 [1] CRAN (R 4.0.0)
#> generics 0.0.2 2018-11-29 [1] CRAN (R 4.0.0)
#> ggplot2 3.3.2 2020-06-19 [1] CRAN (R 4.0.0)
#> glue 1.4.1 2020-05-13 [1] CRAN (R 4.0.0)
#> gss 2.2-2 2020-05-26 [1] CRAN (R 4.0.2)
#> gtable 0.3.0 2019-03-25 [1] CRAN (R 4.0.0)
#> haven 2.3.1 2020-06-01 [1] CRAN (R 4.0.0)
#> highr 0.8 2019-03-20 [1] CRAN (R 4.0.0)
#> hms 0.5.3 2020-01-08 [1] CRAN (R 4.0.0)
#> htmltools 0.5.0 2020-06-16 [1] CRAN (R 4.0.0)
#> httr 1.4.2 2020-07-20 [1] CRAN (R 4.0.2)
#> isoband 0.2.2 2020-06-20 [1] CRAN (R 4.0.0)
#> itewrpkg 0.0.0.9000 2020-07-28 [1] Github (mca91/itewrpkg@bf5448c)
#> jsonlite 1.7.0 2020-06-25 [1] CRAN (R 4.0.0)
#> KernSmooth 2.23-17 2020-04-26 [2] CRAN (R 4.0.2)
#> knitr 1.29 2020-06-23 [1] CRAN (R 4.0.0)
#> labeling 0.3 2014-08-23 [1] CRAN (R 4.0.0)
#> lattice 0.20-41 2020-04-02 [2] CRAN (R 4.0.2)
#> lifecycle 0.2.0 2020-03-06 [1] CRAN (R 4.0.0)
#> lme4 1.1-23 2020-04-07 [1] CRAN (R 4.0.0)
#> lmtest 0.9-37 2019-04-30 [1] CRAN (R 4.0.2)
#> locpol 0.7-0 2018-05-24 [1] CRAN (R 4.0.0)
#> lubridate 1.7.9 2020-06-08 [1] CRAN (R 4.0.0)
#> magrittr 1.5 2014-11-22 [1] CRAN (R 4.0.0)
#> maptools 1.0-1 2020-05-14 [1] CRAN (R 4.0.0)
#> markdown 1.1 2019-08-07 [1] CRAN (R 4.0.0)
#> MASS 7.3-51.6 2020-04-26 [2] CRAN (R 4.0.2)
#> Matrix 1.2-18 2019-11-27 [2] CRAN (R 4.0.2)
#> MatrixModels 0.4-1 2015-08-22 [1] CRAN (R 4.0.0)
#> matrixStats 0.56.0 2020-03-13 [1] CRAN (R 4.0.2)
#> maxLik 1.3-8 2020-01-10 [1] CRAN (R 4.0.0)
#> mgcv 1.8-31 2019-11-09 [2] CRAN (R 4.0.2)
#> mime 0.9 2020-02-04 [1] CRAN (R 4.0.0)
#> minqa 1.2.4 2014-10-09 [1] CRAN (R 4.0.0)
#> miscTools 0.6-26 2019-12-08 [1] CRAN (R 4.0.0)
#> modelr 0.1.8 2020-05-19 [1] CRAN (R 4.0.0)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 4.0.0)
#> mvtnorm 1.1-1 2020-06-09 [1] CRAN (R 4.0.2)
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#> nlme 3.1-148 2020-05-24 [2] CRAN (R 4.0.2)
#> nloptr 1.2.2.2 2020-07-02 [1] CRAN (R 4.0.2)
#> nnet 7.3-14 2020-04-26 [2] CRAN (R 4.0.2)
#> np 0.60-10 2020-02-06 [1] CRAN (R 4.0.2)
#> openssl 1.4.2 2020-06-27 [1] CRAN (R 4.0.2)
#> openxlsx 4.1.5 2020-05-06 [1] CRAN (R 4.0.0)
#> orcutt 2.3 2018-09-27 [1] CRAN (R 4.0.2)
#> pbkrtest 0.4-8.6 2020-02-20 [1] CRAN (R 4.0.0)
#> pillar 1.4.6 2020-07-10 [1] CRAN (R 4.0.2)
#> pkgbuild 1.1.0 2020-07-13 [1] CRAN (R 4.0.2)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.0.0)
#> pkgload 1.1.0 2020-05-29 [1] CRAN (R 4.0.0)
#> plm 2.2-3 2020-02-28 [1] CRAN (R 4.0.2)
#> praise 1.0.0 2015-08-11 [1] CRAN (R 4.0.0)
#> prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.0.0)
#> processx 3.4.3 2020-07-05 [1] CRAN (R 4.0.2)
#> progress 1.2.2 2019-05-16 [1] CRAN (R 4.0.2)
#> ps 1.3.3 2020-05-08 [1] CRAN (R 4.0.0)
#> purrr 0.3.4 2020-04-17 [1] CRAN (R 4.0.0)
#> quadprog 1.5-8 2019-11-20 [1] CRAN (R 4.0.2)
#> quantmod 0.4.17 2020-03-31 [1] CRAN (R 4.0.2)
#> quantreg 5.61 2020-07-09 [1] CRAN (R 4.0.2)
#> R6 2.4.1 2019-11-12 [1] CRAN (R 4.0.0)
#> RColorBrewer 1.1-2 2014-12-07 [1] CRAN (R 4.0.0)
#> Rcpp 1.0.5 2020-07-06 [1] CRAN (R 4.0.2)
#> RcppArmadillo 0.9.900.3.0 2020-09-03 [1] CRAN (R 4.0.2)
#> RcppEigen 0.3.3.7.0 2019-11-16 [1] CRAN (R 4.0.0)
#> RCurl 1.98-1.2 2020-04-18 [1] CRAN (R 4.0.0)
#> rdd 0.57 2016-03-14 [1] CRAN (R 4.0.0)
#> rddtools 1.2.0 2020-07-22 [1] CRAN (R 4.0.2)
#> Rdpack 1.0.0 2020-07-01 [1] CRAN (R 4.0.2)
#> rdrobust 0.99.8 2020-06-05 [1] CRAN (R 4.0.2)
#> readr 1.3.1 2018-12-21 [1] CRAN (R 4.0.0)
#> readxl 1.3.1 2019-03-13 [1] CRAN (R 4.0.0)
#> rematch 1.0.1 2016-04-21 [1] CRAN (R 4.0.0)
#> reprex 0.3.0 2019-05-16 [1] CRAN (R 4.0.0)
#> rio 0.5.16 2018-11-26 [1] CRAN (R 4.0.0)
#> rlang 0.4.7 2020-07-09 [1] CRAN (R 4.0.2)
#> rmarkdown 2.3 2020-06-18 [1] CRAN (R 4.0.0)
#> rprojroot 1.3-2 2018-01-03 [1] CRAN (R 4.0.0)
#> rstudioapi 0.11 2020-02-07 [1] CRAN (R 4.0.0)
#> rvest 0.3.6 2020-07-25 [1] CRAN (R 4.0.2)
#> sandwich 2.5-1 2019-04-06 [1] CRAN (R 4.0.0)
#> scales 1.1.1 2020-05-11 [1] CRAN (R 4.0.0)
#> selectr 0.4-2 2019-11-20 [1] CRAN (R 4.0.0)
#> sp 1.4-2 2020-05-20 [1] CRAN (R 4.0.0)
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#> SparseM 1.78 2019-12-13 [1] CRAN (R 4.0.2)
#> spatial 7.3-12 2020-04-26 [2] CRAN (R 4.0.2)
#> stabledist 0.7-1 2016-09-12 [1] CRAN (R 4.0.2)
#> stargazer 5.2.2 2018-05-30 [1] CRAN (R 4.0.2)
#> statmod 1.4.34 2020-02-17 [1] CRAN (R 4.0.0)
#> stringi 1.4.6 2020-02-17 [1] CRAN (R 4.0.0)
#> stringr 1.4.0 2019-02-10 [1] CRAN (R 4.0.0)
#> strucchange 1.5-2 2019-10-12 [1] CRAN (R 4.0.2)
#> survival 3.2-3 2020-06-13 [2] CRAN (R 4.0.2)
#> sys 3.4 2020-07-23 [1] CRAN (R 4.0.2)
#> testthat 2.3.2 2020-03-02 [1] CRAN (R 4.0.0)
#> tibble 3.0.3 2020-07-10 [1] CRAN (R 4.0.2)
#> tidyr 1.1.0 2020-05-20 [1] CRAN (R 4.0.0)
#> tidyselect 1.1.0 2020-05-11 [1] CRAN (R 4.0.0)
#> tidyverse 1.3.0 2019-11-21 [1] CRAN (R 4.0.0)
#> timeDate 3043.102 2018-02-21 [1] CRAN (R 4.0.0)
#> timeSeries 3062.100 2020-01-24 [1] CRAN (R 4.0.2)
#> tinytex 0.25 2020-07-24 [1] CRAN (R 4.0.2)
#> TTR 0.23-6 2019-12-15 [1] CRAN (R 4.0.2)
#> urca 1.3-0 2016-09-06 [1] CRAN (R 4.0.2)
#> utf8 1.1.4 2018-05-24 [1] CRAN (R 4.0.0)
#> vars 1.5-3 2018-08-06 [1] CRAN (R 4.0.2)
#> vctrs 0.3.2 2020-07-15 [1] CRAN (R 4.0.2)
#> viridisLite 0.3.0 2018-02-01 [1] CRAN (R 4.0.0)
#> whisker 0.4 2019-08-28 [1] CRAN (R 4.0.0)
#> withr 2.2.0 2020-04-20 [1] CRAN (R 4.0.0)
#> xfun 0.16 2020-07-24 [1] CRAN (R 4.0.2)
#> xml2 1.3.2 2020-04-23 [1] CRAN (R 4.0.0)
#> xts 0.12-0 2020-01-19 [1] CRAN (R 4.0.0)
#> yaml 2.2.1 2020-02-01 [1] CRAN (R 4.0.0)
#> zip 2.0.4 2019-09-01 [1] CRAN (R 4.0.0)
#> zoo 1.8-8 2020-05-02 [1] CRAN (R 4.0.0)
#>
#> [1] /usr/local/lib/R/4.0/site-library
#> [2] /usr/local/Cellar/r/4.0.2_1/lib/R/library

1.2 A Very Short Introduction to R and RStudio

R Basics

As mentioned before, this book is not intended to be an introduction to R but
a guide on how to use its capabilities for applications commonly encountered in
undergraduate econometrics. Those having basic knowledge in R programming
will feel comfortable starting with Chapter 2. This section, however, is meant
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Figure 1.1: RStudio: the four panes

for those who have not worked with R or RStudio before. If you at least know
how to create objects and call functions, you can skip it. If you would like to
refresh your skills or get a feeling for how to work with RStudio, keep reading.

First of all, start RStudio and open a new R script by selecting File, New File,
R Script. In the editor pane, type

1 + 1

and click on the button labeled Run in the top right corner of the editor. By
doing so, your line of code is sent to the console and the result of this operation
should be displayed right underneath it. As you can see, R works just like a
calculator. You can do all arithmetic calculations by using the corresponding
operator (+, -, *, / or ^). If you are not sure what the last operator does, try
it out and check the results.

Vectors

R is of course more sophisticated than that. We can work with variables or,
more generally, objects. Objects are defined by using the assignment operator
<-. To create a variable named x which contains the value 10 type x <- 10
and click the button Run yet again. The new variable should have appeared in
the environment pane on the top right. The console however did not show any
results, because our line of code did not contain any call that creates output.
When you now type x in the console and hit return, you ask R to show you the
value of x and the corresponding value should be printed in the console.

x is a scalar, a vector of length 1. You can easily create longer vectors by using
the function c() (c is for “concatenate” or “combine”). To create a vector y
containing the numbers 1 to 5 and print it, do the following.
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y <- c(1, 2, 3, 4, 5)
y
#> [1] 1 2 3 4 5

You can also create a vector of letters or words. For now just remember that
characters have to be surrounded by quotes, else they will be parsed as object
names.

hello <- c("Hello", "World")

Here we have created a vector of length 2 containing the words Hello and World.

Do not forget to save your script! To do so, select File, Save.

Functions

You have seen the function c() that can be used to combine objects. In general,
all function calls look the same: a function name is always followed by round
parentheses. Sometimes, the parentheses include arguments.

Here are two simple examples.

# generate the vector `z`
z <- seq(from = 1, to = 5, by = 1)

# compute the mean of the enries in `z`
mean(z)
#> [1] 3

In the first line we use a function called seq() to create the exact same vector
as we did in the previous section, calling it z. The function takes on the argu-
ments from, to and by which should be self-explanatory. The function mean()
computes the arithmetic mean of its argument x. Since we pass the vector z as
the argument x, the result is 3!

If you are not sure which arguments a function expects, you may consult the
function’s documentation. Let’s say we are not sure how the arguments required
for seq() work. We then type ?seq in the console. By hitting return the
documentation page for that function pops up in the lower right pane of RStudio.
In there, the section Arguments holds the information we seek. On the bottom
of almost every help page you find examples on how to use the corresponding
functions. This is very helpful for beginners and we recommend to look out for
those.

Of course, all of the commands presented above also work in interactive widgets
throughout the book. You may try them below.
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Chapter 2

Probability Theory

This chapter reviews some basic concepts of probability theory and demonstrates
how they can be applied in R.

Most of the statistical functionalities in base R are collected in the stats pack-
age. It provides simple functions which compute descriptive measures and fa-
cilitate computations involving a variety of probability distributions. It also
contains more sophisticated routines that, e.g., enable the user to estimate a
large number of models based on the same data or help to conduct extensive
simulation studies. stats is part of the base distribution of R, meaning that it
is installed by default so there is no need to run install.packages("stats")
or library("stats"). Simply execute library(help = "stats") in the con-
sole to view the documentation and a complete list of all functions gathered in
stats. For most packages a documentation that can be viewed within RStudio
is available. Documentations can be invoked using the ? operator, e.g., upon
execution of ?stats the documentation of the stats package is shown in the
help tab of the bottom-right pane.

In what follows, our focus is on (some of) the probability distributions that
are handled by R and show how to use the relevant functions to solve simple
problems. Thereby, we refresh some core concepts of probability theory. Among
other things, you will learn how to draw random numbers, how to compute
densities, probabilities, quantiles and alike. As we shall see, it is very convenient
to rely on these routines.

2.1 Random Variables and Probability Distri-
butions

Let us briefly review some basic concepts of probability theory.

21
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• The mutually exclusive results of a random process are called the out-
comes. ‘Mutually exclusive’ means that only one of the possible outcomes
can be observed.

• We refer to the probability of an outcome as the proportion that the out-
come occurs in the long run, that is, if the experiment is repeated many
times.

• The set of all possible outcomes of a random variable is called the sample
space.

• An event is a subset of the sample space and consists of one or more
outcomes.

These ideas are unified in the concept of a random variable which is a numerical
summary of random outcomes. Random variables can be discrete or continuous.

• Discrete random variables have discrete outcomes, e.g., 0 and 1.
• A continuous random variable may take on a continuum of possible values.

Probability Distributions of Discrete Random Variables

A typical example for a discrete random variable D is the result of a dice roll: in
terms of a random experiment this is nothing but randomly selecting a sample
of size 1 from a set of numbers which are mutually exclusive outcomes. Here,
the sample space is {1, 2, 3, 4, 5, 6} and we can think of many different events,
e.g., ‘the observed outcome lies between 2 and 5’.

A basic function to draw random samples from a specified set of elements is the
function sample(), see ?sample. We can use it to simulate the random outcome
of a dice roll. Let’s roll the dice!

sample(1:6, 1)
#> [1] 4

The probability distribution of a discrete random variable is the list of all possi-
ble values of the variable and their probabilities which sum to 1. The cumulative
probability distribution function gives the probability that the random variable
is less than or equal to a particular value.

For the dice roll, the probability distribution and the cumulative probability
distribution are summarized in Table 2.1.

We can easily plot both functions using R. Since the probability equals 1/6 for
each outcome, we set up the vector probability by using the function rep()
which replicates a given value a specified number of times.
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Table 2.1: PDF and CDF of a Dice Roll

Outcome 1 2 3 4 5 6
Probability 1/6 1/6 1/6 1/6 1/6 1/6
Cumulative Probability 1/6 2/6 3/6 4/6 5/6 1

# generate the vector of probabilities
probability <- rep(1/6, 6)

# plot the probabilities
plot(probability,

xlab = "outcomes",
main = "Probability Distribution")
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For the cumulative probability distribution we need the cumulative probabilities,
i.e., we need the cumulative sums of the vector probability. These sums can
be computed using cumsum().

# generate the vector of cumulative probabilities
cum_probability <- cumsum(probability)

# plot the probabilites
plot(cum_probability,

xlab = "outcomes",
main = "Cumulative Probability Distribution")
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Bernoulli Trials

The set of elements from which sample() draws outcomes does not have to
consist of numbers only. We might as well simulate coin tossing with outcomes
H (heads) and T (tails).

sample(c("H", "T"), 1)
#> [1] "T"

The result of a single coin toss is a Bernoulli distributed random variable, i.e.,
a variable with two possible distinct outcomes.

Imagine you are about to toss a coin 10 times in a row and wonder how likely
it is to end up with a 5 times heads. This is a typical example of what we
call a Bernoulli experiment as it consists of n = 10 Bernoulli trials that are
independent of each other and we are interested in the likelihood of observing
k = 5 successes H that occur with probability p = 0.5 (assuming a fair coin) in
each trial. Note that the order of the outcomes does not matter here.

It is a well known result that the number of successes k in a Bernoulli experiment
follows a binomial distribution. We denote this as

k ∼ B(n, p).

The probability of observing k successes in the experiment B(n, p) is given by

f(k) = P (k) =
(
n
k

)
· pk · (1− p)n−k = n!

k!(n− k)! · p
k · (1− p)n−k

with
(
n
k

)
the binomial coefficient.

https://en.wikipedia.org/wiki/Binomial_distribution
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In R, we can solve problems like the one stated above by means of the function
dbinom() which calculates P (k|n, p) the probability of the binomial distribution
given the parameters x (k), size (n), and prob (p), see ?dbinom. Let us compute
P (k = 5|n = 10, p = 0.5) (we write this short as P (k = 5).)

dbinom(x = 5,
size = 10,
prob = 0.5)

#> [1] 0.2460938

We conclude that P (k = 5), the probability of observing Head k = 5 times when
tossing a fair coin n = 10 times is about 24.6%.

Now assume we are interested in P (4 ≤ k ≤ 7), i.e., the probability of observing
4, 5, 6 or 7 successes for B(10, 0.5). This may be computed by providing a
vector as the argument x in our call of dbinom() and summing up using sum().

# compute P(4 <= k <= 7) using 'dbinom()'
sum(dbinom(x = 4:7, size = 10, prob = 0.5))
#> [1] 0.7734375

An alternative approach is to use pbinom(), the distribution function of the
binomial distribution to compute

P (4 ≤ k ≤ 7) = P (k ≤ 7)− P (k ≤ 3).

# compute P(4 <= k <= 7) using 'pbinom()'
pbinom(size = 10, prob = 0.5, q = 7) - pbinom(size = 10, prob = 0.5, q = 3)
#> [1] 0.7734375

The probability distribution of a discrete random variable is nothing but a list
of all possible outcomes that can occur and their respective probabilities. In the
coin tossing example we have 11 possible outcomes for k.

# set up vector of possible outcomes
k <- 0:10
k
#> [1] 0 1 2 3 4 5 6 7 8 9 10

To visualize the probability distribution function of k we may therefore do the
following:
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# assign the probabilities
probability <- dbinom(x = k,

size = 10,
prob = 0.5)

# plot the outcomes against their probabilities
plot(x = k,

y = probability,
main = "Probability Distribution Function")
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In a similar fashion we may plot the cumulative distribution function of k by
executing the following code chunk:

# compute cumulative probabilities
prob <- pbinom(q = k,

size = 10,
prob = 0.5)

# plot the cumulative probabilities
plot(x = k,

y = prob,
main = "Cumulative Distribution Function")
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Expected Value, Mean and Variance

The expected value of a random variable is, loosely, the long-run average value of
its outcomes when the number of repeated trials is large. For a discrete random
variable, the expected value is computed as a weighted average of its possible
outcomes whereby the weights are the related probabilities. This is formalized
in Key Concept 2.1.

Key Concept 2.1
Expected Value and the Mean

Suppose the random variable Y takes on k possible values, y1, . . . , yk,
where y1 denotes the first value, y2 denotes the second value, and so
forth, and that the probability that Y takes on y1 is p1, the probability
that Y takes on y2 is p2 and so forth. The expected value of Y , E(Y ) is
defined as

E(Y ) = y1p1 + y2p2 + · · ·+ ykpk =
k∑
i=1

yipi

where the notation
∑k
i=1 yipi means ẗhe sum of yi pi for i running from

1 to k̈. The expected value of Y is also called the mean of Y or the
expectation of Y and is denoted by µY .

In the dice example, the random variable, D say, takes on 6 possible values
d1 = 1, d2 = 2, . . . , d6 = 6. Assuming a fair dice, each of the 6 outcomes occurs
with a probability of 1/6. It is therefore easy to calculate the exact value of
E(D) by hand:
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E(D) = 1/6
6∑
i=1

di = 3.5

E(D) is simply the average of the natural numbers from 1 to 6 since all weights
pi are 1/6. This can be easily calculated using the function mean() which
computes the arithmetic mean of a numeric vector.

# compute mean of natural numbers from 1 to 6
mean(1:6)
#> [1] 3.5

An example of sampling with replacement is rolling a dice three times in a row.

# set seed for reproducibility
set.seed(1)

# rolling a dice three times in a row
sample(1:6, 3, replace = T)
#> [1] 1 4 1

Note that every call of sample(1:6, 3, replace = T) gives a different out-
come since we draw with replacement at random. To allow you to reproduce the
results of computations that involve random numbers, we will used set.seed()
to set R’s random number generator to a specific state. You should check that
it actually works: set the seed in your R session to 1 and verify that you obtain
the same three random numbers!
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Sequences of random numbers generated by R are pseudo-random num-
bers, i.e., they are not “truly” random but approximate the properties
of sequences of random numbers. Since this approximation is good
enough for our purposes we refer to pseudo-random numbers as random
numbers throughout this book.
In general, sequences of random numbers are generated by functions
called “pseudo-random number generators” (PRNGs). The PRNG in R
works by performing some operation on a deterministic value. Generally,
this value is the previous number generated by the PRNG. However, the
first time the PRNG is used, there is no previous value. A “seed” is the
first value of a sequence of numbers — it initializes the sequence. Each
seed value will correspond to a different sequence of values. In R a seed
can be set using set.seed().
This is convenient for us:
If we provide the same seed twice, we get the same sequence of numbers
twice. Thus, setting a seed before executing R code which involves
random numbers makes the outcome reproducible!

Of course we could also consider a much bigger number of trials, 10000 say.
Doing so, it would be pointless to simply print the results to the console: by
default R displays up to 1000 entries of large vectors and omits the remainder
(give it a try). Eyeballing the numbers does not reveal much. Instead, let us
calculate the sample average of the outcomes using mean() and see if the result
comes close to the expected value E(D) = 3.5.

# set seed for reproducibility
set.seed(1)

# compute the sample mean of 10000 dice rolls
mean(sample(1:6,

10000,
replace = T))

#> [1] 3.5138

We find the sample mean to be fairly close to the expected value. This result
will be discussed in Chapter 2.2 in more detail.

Other frequently encountered measures are the variance and the standard devi-
ation. Both are measures of the dispersion of a random variable.
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Key Concept 2.2
Variance and Standard Deviation

The variance of the discrete random variable Y , denoted σ2
Y , is

σ2
Y = Var(Y ) = E

[
(Y − µY )2] =

k∑
i=1

(yi − µY )2pi

The standard deviation of Y is σY , the square root of the variance. The
units of the standard deviation are the same as the units of Y .

The variance as defined in Key Concept 2.2, being a population quantity, is
not implemented as a function in R. Instead we have the function var() which
computes the sample variance

s2
Y = 1

n− 1

n∑
i=1

(yi − y)2.

Remember that s2
Y is different from the so called population variance of a dis-

crete random variable Y ,

Var(Y ) = 1
N

N∑
i=1

(yi − µY )2

since it measures how the n observations in the sample are dispersed around the
sample average y. Instead, Var(Y ) measures the dispersion of the whole popu-
lation (N members) around the population mean µY . The difference becomes
clear when we look at our dice rolling example. For D we have

Var(D) = 1/6
6∑
i=1

(di − 3.5)2 = 2.92

which is obviously different from the result of s2 as computed by var().

var(1:6)
#> [1] 3.5

The sample variance as computed by var() is an estimator of the population
variance. You may check this using the widget below.
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Probability Distributions of Continuous Random Variables

Since a continuous random variable takes on a continuum of possible values, we
cannot use the concept of a probability distribution as used for discrete random
variables. Instead, the probability distribution of a continuous random variable
is summarized by its probability density function (PDF).

The cumulative probability distribution function (CDF) for a continuous ran-
dom variable is defined just as in the discrete case. Hence, the CDF of a con-
tinuous random variables states the probability that the random variable is less
than or equal to a particular value.

For completeness, we present revisions of Key Concepts 2.1 and 2.2 for the
continuous case.

Key Concept 2.3
Probabilities, Expected Value and Variance of a Continuous
Random Variable

Let fY (y) denote the probability density function of Y . The Probability
that Y falls between a and b where a < b is

P (a ≤ Y ≤ b) =
∫ b

a

fY (y)dy.

We further have that P (−∞ ≤ Y ≤ ∞) = 1 and therefore∫∞
−∞ fY (y)dy = 1.
As for the discrete case, the expected value of Y is the probability
weighted average of its values. Due to continuity, we use integrals instead
of sums. The expected value of Y is defined as

E(Y ) = µY =
∫
yfY (y)dy.

The variance is the expected value of (Y − µY )2. We thus have

Var(Y ) = σ2
Y =

∫
(y − µY )2fY (y)dy.

Let us discuss an example:

Consider the continuous random variable X with PDF

fX(x) = 3
x4 , x > 1.

• We can show analytically that the integral of fX(x) over the real line
equals 1.
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∫
fX(x)dx =

∫ ∞
1

3
x4 dx (2.1)

= lim
t→∞

∫ t

1

3
x4 dx (2.2)

= lim
t→∞

−x−3|tx=1 (2.3)

=−
(

lim
t→∞

1
t3
− 1
)

(2.4)

=1 (2.5)

• The expectation of X can be computed as follows:

E(X) =
∫
x · fX(x)dx =

∫ ∞
1

x · 3
x4 dx (2.6)

=− 3
2x
−2|∞x=1 (2.7)

=− 3
2

(
lim
t→∞

1
t2
− 1
)

(2.8)

=3
2 (2.9)

• Note that the variance ofX can be expressed as Var(X) = E(X2)−E(X)2.
Since E(X) has been computed in the previous step, we seek E(X2):

E(X2) =
∫
x2 · fX(x)dx =

∫ ∞
1

x2 · 3
x4 dx (2.10)

=− 3x−1|∞x=1 (2.11)

=− 3
(

lim
t→∞

1
t
− 1
)

(2.12)

=3 (2.13)

So we have shown that the area under the curve equals one, that the expectation
is E(X) = 3

2 and we found the variance to be Var(X) = 3
4 . However, this was

tedious and, as we shall see, an analytic approach is not applicable for some
PDFs, e.g., if integrals have no closed form solutions.

Luckily, R also enables us to easily find the results derived above. The tool we
use for this is the function integrate(). First, we have to define the functions
we want to calculate integrals for as R functions, i.e., the PDF fX(x) as well as
the expressions x · fX(x) and x2 · fX(x).
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# define functions
f <- function(x) 3 / xˆ4
g <- function(x) x * f(x)
h <- function(x) xˆ2 * f(x)

Next, we use integrate() and set lower and upper limits of integration to 1 and
∞ using arguments lower and upper. By default, integrate() prints the result
along with an estimate of the approximation error to the console. However, the
outcome is not a numeric value one can readily do further calculation with. In
order to get only a numeric value of the integral, we need to use the \$ operator
in conjunction with value. The \$ operator is used to extract elements by name
from an object of type list.

# compute area under the density curve
area <- integrate(f,

lower = 1,
upper = Inf)$value

area
#> [1] 1

# compute E(X)
EX <- integrate(g,

lower = 1,
upper = Inf)$value

EX
#> [1] 1.5

# compute Var(X)
VarX <- integrate(h,

lower = 1,
upper = Inf)$value - EXˆ2

VarX
#> [1] 0.75

Although there is a wide variety of distributions, the ones most often encoun-
tered in econometrics are the normal, chi-squared, Student t and F distributions.
Therefore we will discuss some core R functions that allow to do calculations
involving densities, probabilities and quantiles of these distributions.

Every probability distribution that R handles has four basic functions whose
names consist of a prefix followed by a root name. As an example, take the
normal distribution. The root name of all four functions associated with the
normal distribution is norm. The four prefixes are

• d for “density” - probability function / probability density function
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• p for “probability” - cumulative distribution function
• q for “quantile” - quantile function (inverse cumulative distribution func-

tion)
• r for “random” - random number generator

Thus, for the normal distribution we have the R functions dnorm(), pnorm(),
qnorm() and rnorm().

The Normal Distribution

The probably most important probability distribution considered here is the
normal distribution. This is not least due to the special role of the standard nor-
mal distribution and the Central Limit Theorem which is to be treated shortly.
Normal distributions are symmetric and bell-shaped. A normal distribution is
characterized by its mean µ and its standard deviation σ, concisely expressed
by N (µ, σ2). The normal distribution has the PDF

f(x) = 1√
2πσ

exp−(x− µ)2/(2σ2). (2.14)

For the standard normal distribution we have µ = 0 and σ = 1. Standard
normal variates are often denoted by Z. Usually, the standard normal PDF is
denoted by φ and the standard normal CDF is denoted by Φ. Hence,

φ(c) = Φ′(c) , Φ(c) = P (Z ≤ c) , Z ∼ N (0, 1).

Note that the notation X ∼ Y reads as “X is distributed as Y”. In R, we can con-
veniently obtain densities of normal distributions using the function dnorm().
Let us draw a plot of the standard normal density function using curve() to-
gether with dnorm().

# draw a plot of the N(0,1) PDF
curve(dnorm(x),

xlim = c(-3.5, 3.5),
ylab = "Density",
main = "Standard Normal Density Function")
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We can obtain the density at different positions by passing a vector to dnorm().

# compute density at x=-1.96, x=0 and x=1.96
dnorm(x = c(-1.96, 0, 1.96))
#> [1] 0.05844094 0.39894228 0.05844094

Similar to the PDF, we can plot the standard normal CDF using curve(). We
could use dnorm() for this but it is much more convenient to rely on pnorm().

# plot the standard normal CDF
curve(pnorm(x),

xlim = c(-3.5, 3.5),
ylab = "Probability",
main = "Standard Normal Cumulative Distribution Function")
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We can also use R to calculate the probability of events associated with a stan-
dard normal variate.

Let us say we are interested in P (Z ≤ 1.337). For some continuous random
variable Z on [−∞,∞] with density g(x) we would have to determine G(x), the
anti-derivative of g(x) so that

P (Z ≤ 1.337) = G(1.337) =
∫ 1.337

−∞
g(x)dx.

If Z ∼ N (0, 1), we have g(x) = φ(x). There is no analytic solution to the
integral above. Fortunately, R offers good approximations. The first approach
makes use of the function integrate() which allows to solve one-dimensional
integration problems using a numerical method. For this, we first define the
function we want to compute the integral of as an R function f. In our example,
f is the standard normal density function and hence takes a single argument x.
Following the definition of φ(x) we define f as

# define the standard normal PDF as an R function
f <- function(x) {
1/(sqrt(2 * pi)) * exp(-0.5 * xˆ2)

}

Let us check if this function computes standard normal densities by passing a
vector.

# define a vector of reals
quants <- c(-1.96, 0, 1.96)

# compute densities
f(quants)
#> [1] 0.05844094 0.39894228 0.05844094

# compare to the results produced by 'dnorm()'
f(quants) == dnorm(quants)
#> [1] TRUE TRUE TRUE

The results produced by f() are indeed equivalent to those given by dnorm().

Next, we call integrate() on f() and specify the arguments lower and upper,
the lower and upper limits of integration.

# integrate f()
integrate(f,

lower = -Inf,
upper = 1.337)

#> 0.9093887 with absolute error < 1.7e-07
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We find that the probability of observing Z ≤ 1.337 is about 90.94%.
A second and much more convenient way is to use the function pnorm(), the
standard normal cumulative distribution function.

# compute the probability using pnorm()
pnorm(1.337)
#> [1] 0.9093887

The result matches the outcome of the approach using integrate().
Let us discuss some further examples:
A commonly known result is that 95% probability mass of a standard normal lies
in the interval [−1.96, 1.96], that is, in a distance of about 2 standard deviations
to the mean. We can easily confirm this by calculating

P (−1.96 ≤ Z ≤ 1.96) = 1− 2× P (Z ≤ −1.96)
due to symmetry of the standard normal PDF. Thanks to R, we can abandon the
table of the standard normal CDF found in many other textbooks and instead
solve this fast by using pnorm().

# compute the probability
1 - 2 * (pnorm(-1.96))
#> [1] 0.9500042

To make statements about the probability of observing outcomes of Y in some
specific range it is more convenient when we standardize first as shown in Key
Concept 2.4.

Key Concept 2.4
Computing Probabilities Involving Normal Random Variables

Suppose Y is normally distributed with mean µ and variance σ2:

Y ∼ N (µ, σ2)

Then Y is standardized by subtracting its mean and dividing by its
standard deviation:

Z = Y − µ
σ

Let c1 and c2 denote two numbers whereby c1 < c2 and further d1 =
(c1 − µ)/σ and d2 = (c2 − µ)/σ. Then

P (Y ≤ c2) =P (Z ≤ d2) = Φ(d2),
P (Y ≥ c1) =P (Z ≥ d1) = 1− Φ(d1),

P (c1 ≤ Y ≤ c2) =P (d1 ≤ Z ≤ d2) = Φ(d2)− Φ(d1).
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Now consider a random variable Y with Y ∼ N (5, 25). R functions that handle
the normal distribution can perform the standardization. If we are interested
in P (3 ≤ Y ≤ 4) we can use pnorm() and adjust for a mean and/or a standard
deviation that deviate from µ = 0 and σ = 1 by specifying the arguments
mean and sd accordingly. Attention: the argument sd requires the standard
deviation, not the variance!

pnorm(4, mean = 5, sd = 5) - pnorm(3, mean = 5, sd = 5)
#> [1] 0.07616203

An extension of the normal distribution in a univariate setting is the multivariate
normal distribution. The joint PDF of two random normal variables X and Y
is given by

gX,Y (x, y) = 1
2πσXσY

√
1− ρ2

XY

· exp
{

1
−2(1− ρ2

XY )

[(
x− µx
σX

)2
− 2ρXY

(
x− µX
σX

)(
y − µY
σY

)
+
(
y − µY
σY

)2
]}

.

(2.15)

Equation (2.15) contains the bivariate normal PDF. It is somewhat hard to gain
insights from this complicated expression. Instead, let us consider the special
case where X and Y are uncorrelated standard normal random variables with
densities fX(x) and fY (y) with joint normal distribution. We then have the
parameters σX = σY = 1, µX = µY = 0 (due to marginal standard normality)
and ρXY = 0 (due to independence). The joint density ofX and Y then becomes

gX,Y (x, y) = fX(x)fY (y) = 1
2π · exp

{
−1

2
[
x2 + y2]} , (2.2)

the PDF of the bivariate standard normal distribution. The widget below pro-
vides an interactive three-dimensional plot of (2.2).

By moving the cursor over the plot you can see that the density is rotationally
invariant, i.e., the density at (a, b) solely depends on the distance of (a, b) to the
origin: geometrically, regions of equal density are edges of concentric circles in
the XY-plane, centered at (µX = 0, µY = 0).

The normal distribution has some remarkable characteristics. For example, for
two jointly normally distribued variables X and Y , the conditional expectation
function is linear: one can show that

E(Y |X) = E(Y ) + ρ
σY
σX

(X − E(X)).
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The interactive widget below shows standard bivariate normally distributed
sample data along with the conditional expectation function E(Y |X) and the
marginal densities of X and Y . All elements adjust accordingly as you vary the
parameters.

This interactive part of the book is only available in the HTML version.

The Chi-Squared Distribution

The chi-squared distribution is another distribution relevant in econometrics. It
is often needed when testing special types of hypotheses frequently encountered
when dealing with regression models.

The sum of M squared independent standard normal distributed random vari-
ables follows a chi-squared distribution with M degrees of freedom:

Z2
1 + · · ·+ Z2

M =
M∑
m=1

Z2
m ∼ χ2

M with Zm
i.i.d.∼ N (0, 1)

A χ2 distributed random variable with M degrees of freedom has expectation
M , mode at M − 2 for M ≥ 2 and variance 2 ·M . For example, for

Z1, Z2, Z3
i.i.d.∼ N (0, 1)

it holds that

Z2
1 + Z2

2 + Z3
3 ∼ χ2

3. (2.3)

Using the code below, we can display the PDF and the CDF of a χ2
3 random

variable in a single plot. This is achieved by setting the argument add = TRUE in
the second call of curve(). Further we adjust limits of both axes using xlim and
ylim and choose different colors to make both functions better distinguishable.
The plot is completed by adding a legend with help of legend().

# plot the PDF
curve(dchisq(x, df = 3),

xlim = c(0, 10),
ylim = c(0, 1),
col = "blue",
ylab = "",
main = "p.d.f. and c.d.f of Chi-Squared Distribution, M = 3")
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# add the CDF to the plot
curve(pchisq(x, df = 3),

xlim = c(0, 10),
add = TRUE,
col = "red")

# add a legend to the plot
legend("topleft",

c("PDF", "CDF"),
col = c("blue", "red"),
lty = c(1, 1))
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Since the outcomes of a χ2
M distributed random variable are always positive,

the support of the related PDF and CDF is R≥0.

As expectation and variance depend (solely!) on the degrees of freedom, the
distribution’s shape changes drastically if we vary the number of squared stan-
dard normals that are summed up. This relation is often depicted by overlaying
densities for different M , see the Wikipedia Article.

We reproduce this here by plotting the density of the χ2
1 distribution on the

interval [0, 15] with curve(). In the next step, we loop over degrees of freedom
M = 2, ..., 7 and add a density curve for each M to the plot. We also adjust
the line color for each iteration of the loop by setting col = M. At last, we add
a legend that displays degrees of freedom and the associated colors.

# plot the density for M=1
curve(dchisq(x, df = 1),

xlim = c(0, 15),
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xlab = "x",
ylab = "Density",
main = "Chi-Square Distributed Random Variables")

# add densities for M=2,...,7 to the plot using a 'for()' loop
for (M in 2:7) {
curve(dchisq(x, df = M),

xlim = c(0, 15),
add = T,
col = M)

}

# add a legend
legend("topright",

as.character(1:7),
col = 1:7 ,
lty = 1,
title = "D.F.")
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Increasing the degrees of freedom shifts the distribution to the right (the mode
becomes larger) and increases the dispersion (the distribution’s variance grows).

The Student t Distribution

Let Z be a standard normal variate, W a χ2
M random variable and further

assume that Z and W are independent. Then it holds that

Z√
W/M

=: X ∼ tM
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and X follows a Student t distribution (or simply t distribution) withM degrees
of freedom.

Similar to the χ2
M distribution, the shape of a tM distribution depends on M .

t distributions are symmetric, bell-shaped and look similar to a normal distri-
bution, especially when M is large. This is not a coincidence: for a sufficiently
large M , the tM distribution can be approximated by the standard normal dis-
tribution. This approximation works reasonably well for M ≥ 30. As we will
illustrate later by means of a small simulation study, the t∞ distribution is the
standard normal distribution.

A tM distributed random variable X has an expectation if M > 1 and it has a
variance if M > 2.

E(X) =0, M > 1 (2.16)

Var(X) = M

M − 2 , M > 2 (2.17)

Let us plot some t distributions with different M and compare them to the
standard normal distribution.

# plot the standard normal density
curve(dnorm(x),

xlim = c(-4, 4),
xlab = "x",
lty = 2,
ylab = "Density",
main = "Densities of t Distributions")

# plot the t density for M=2
curve(dt(x, df = 2),

xlim = c(-4, 4),
col = 2,
add = T)

# plot the t density for M=4
curve(dt(x, df = 4),

xlim = c(-4, 4),
col = 3,
add = T)

# plot the t density for M=25
curve(dt(x, df = 25),

xlim = c(-4, 4),
col = 4,
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add = T)

# add a legend
legend("topright",

c("N(0, 1)", "M=2", "M=4", "M=25"),
col = 1:4,
lty = c(2, 1, 1, 1))
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The plot illustrates what has been said in the previous paragraph: as the degrees
of freedom increase, the shape of the t distribution comes closer to that of a
standard normal bell curve. Already for M = 25 we find little difference to the
standard normal density. If M is small, we find the distribution to have heavier
tails than a standard normal, i.e., it has a “fatter” bell shape.

The F Distribution

Another ratio of random variables important to econometricians is the ratio
of two independent χ2 distributed random variables that are divided by their
degrees of freedom M and n. The quantity

W/M

V/n
∼ FM,n with W ∼ χ2

M , V ∼ χ2
n

follows an F distribution with numerator degrees of freedomM and denominator
degrees of freedom n, denoted FM,n. The distribution was first derived by
George Snedecor but was named in honor of Sir Ronald Fisher.

By definition, the support of both PDF and CDF of an FM,n distributed random
variable is R≥0.

https://en.wikipedia.org/wiki/Ronald_Fisher
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Say we have an F distributed random variable Y with numerator degrees of
freedom 3 and denominator degrees of freedom 14 and are interested in P (Y ≥
2). This can be computed with help of the function pf(). By setting the
argument lower.tail to FALSE we ensure that R computes 1 − P (Y ≤ 2),
i.e,the probability mass in the tail right of 2.

pf(2, df1 = 3, df2 = 14, lower.tail = F)
#> [1] 0.1603538

We can visualize this probability by drawing a line plot of the related density
and adding a color shading with polygon().

# define coordinate vectors for vertices of the polygon
x <- c(2, seq(2, 10, 0.01), 10)
y <- c(0, df(seq(2, 10, 0.01), 3, 14), 0)

# draw density of F_{3, 14}
curve(df(x ,3 ,14),

ylim = c(0, 0.8),
xlim = c(0, 10),
ylab = "Density",
main = "Density Function")

# draw the polygon
polygon(x, y, col = "orange")

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

Density Function

x

D
en

si
ty

The F distribution is related to many other distributions. An important special
case encountered in econometrics arises if the denominator degrees of freedom
are large such that the FM,n distribution can be approximated by the FM,∞
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distribution which turns out to be simply the distribution of a χ2
M random

variable divided by its degrees of freedom M ,

W/M ∼ FM,∞ , W ∼ χ2
M .

2.2 Random Sampling and the Distribution of
Sample Averages

To clarify the basic idea of random sampling, let us jump back to the dice rolling
example:

Suppose we are rolling the dice n times. This means we are interested in the
outcomes of random Yi, i = 1, ..., n which are characterized by the same distri-
bution. Since these outcomes are selected randomly, they are random variables
themselves and their realizations will differ each time we draw a sample, i.e.,
each time we roll the dice n times. Furthermore, each observation is randomly
drawn from the same population, that is, the numbers from 1 to 6, and their
individual distribution is the same. Hence Y1, . . . , Yn are identically distributed.

Moreover, we know that the value of any of the Yi does not provide any infor-
mation on the remainder of the outcomes In our example, rolling a six as the
first observation in our sample does not alter the distributions of Y2, . . . , Yn:
all numbers are equally likely to occur. This means that all Yi are also inde-
pendently distributed. Thus Y1, . . . , Yn are independently and identically dis-
tributed (i.i.d.). The dice example uses this most simple sampling scheme. That
is why it is called simple random sampling. This concept is summarized in Key
Concept 2.5.

Key Concept 2.5
Simple Random Sampling and i.i.d. Random Variables

In simple random sampling, n objects are drawn at random from a pop-
ulation. Each object is equally likely to end up in the sample. We denote
the value of the random variable Y for the ith randomly drawn object as
Yi. Since all objects are equally likely to be drawn and the distribution of
Yi is the same for all i, the Yi, . . . , Yn are independently and identically
distributed (i.i.d.). This means the distribution of Yi is the same for all
i = 1, . . . , n and Y1 is distributed independently of Y2, . . . , Yn and Y2 is
distributed independently of Y1, Y3, . . . , Yn and so forth.

What happens if we consider functions of the sample data? Consider the ex-
ample of rolling a dice two times in a row once again. A sample now consists
of two independent random draws from the set {1, 2, 3, 4, 5, 6}. It is apparent
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that any function of these two random variables, e.g. their sum, is also random.
Convince yourself by executing the code below several times.

sum(sample(1:6, 2, replace = T))
#> [1] 7

Clearly, this sum, let us call it S, is a random variable as it depends on randomly
drawn summands. For this example, we can completely enumerate all outcomes
and hence write down the theoretical probability distribution of our function of
the sample data S:

We face 62 = 36 possible pairs. Those pairs are

(1, 1)(1, 2)(1, 3)(1, 4)(1, 5)(1, 6)
(2, 1)(2, 2)(2, 3)(2, 4)(2, 5)(2, 6)
(3, 1)(3, 2)(3, 3)(3, 4)(3, 5)(3, 6)
(4, 1)(4, 2)(4, 3)(4, 4)(4, 5)(4, 6)
(5, 1)(5, 2)(5, 3)(5, 4)(5, 5)(5, 6)
(6, 1)(6, 2)(6, 3)(6, 4)(6, 5)(6, 6)

Thus, possible outcomes for S are

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} .

Enumeration of outcomes yields

P (S) =



1/36, S = 2
2/36, S = 3
3/36, S = 4
4/36, S = 5
5/36, S = 6
6/36, S = 7
5/36, S = 8
4/36, S = 9
3/36, S = 10
2/36, S = 11
1/36, S = 12

(2.18)

We can also compute E(S) and Var(S) as stated in Key Concept 2.1 and Key
Concept 2.2.
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# Vector of outcomes
S <- 2:12

# Vector of probabilities
PS <- c(1:6, 5:1) / 36

# Expectation of S
ES <- sum(S * PS)
ES
#> [1] 7

# Variance of S
VarS <- sum((S - c(ES))ˆ2 * PS)
VarS
#> [1] 5.833333

So the distribution of S is known. It is also evident that its distribution differs
considerably from the marginal distribution, i.e,the distribution of a single dice
roll’s outcome, D . Let us visualize this using bar plots.

# divide the plotting area into one row with two columns
par(mfrow = c(1, 2))

# plot the distribution of S
barplot(PS,

ylim = c(0, 0.2),
xlab = "S",
ylab = "Probability",
col = "steelblue",
space = 0,
main = "Sum of Two Dice Rolls")

# plot the distribution of D
probability <- rep(1/6, 6)
names(probability) <- 1:6

barplot(probability,
ylim = c(0, 0.2),
xlab = "D",
col = "steelblue",
space = 0,
main = "Outcome of a Single Dice Roll")
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Many econometric procedures deal with averages of sampled data. It is typi-
cally assumed that observations are drawn randomly from a larger, unknown
population. As demonstrated for the sample function S, computing an average
of a random sample has the effect that the average is a random variable itself.
This random variable in turn has a probability distribution, called the sam-
pling distribution. Knowledge about the sampling distribution of the average is
therefore crucial for understanding the performance of econometric procedures.

The sample average of a sample of n observations Y1, . . . , Yn is

Y = 1
n

n∑
i=1

Yi = 1
n

(Y1 + Y2 + · · ·+ Yn).

Y is also called the sample mean.

Mean and Variance of the Sample Mean

suppose that Y1, . . . , Yn are i.i.d. and denote µY and σ2
Y as the mean and the

variance of the Yi. Then we have that

E(Y ) = E

(
1
n

n∑
i=1

Yi

)
= 1
n
E

(
n∑
i=1

Yi

)
= 1
n

n∑
i=1

E (Yi) = 1
n
· n · µY = µY

and
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Var(Y ) =Var
(

1
n

n∑
i=1

Yi

)

= 1
n2

n∑
i=1

Var(Yi) + 1
n2

n∑
i=1

n∑
j=1,j 6=i

cov(Yi, Yj)

=σ2
Y

n

=σ2
Y
.

The second summand vanishes since cov(Yi, Yj) = 0 for i 6= j due to inde-
pendence. Consequently, the standard deviation of the sample mean is given
by

σY = σY√
n
.

It is worthwhile to mention that these results hold irrespective of the underlying
distribution of the Yi.

The Sampling Distribution of Y when Y Is Normally Distributed

If the Y1, . . . , Yn are i.i.d. draws from a normal distribution with mean µY and
variance σ2

Y , the following holds for their sample average Y :

Y ∼ N (µY , σ2
Y /n) (2.4)

For example, if a sample Yi with i = 1, . . . , 10 is drawn from a standard normal
distribution with mean µY = 0 and variance σ2

Y = 1 we have

Y ∼ N (0, 0.1).

We can use R’s random number generation facilities to verify this result. The
basic idea is to simulate outcomes of the true distribution of Y by repeatedly
drawing random samples of 10 observation from the N (0, 1) distribution and
computing their respective averages. If we do this for a large number of rep-
etitions, the simulated data set of averages should quite accurately reflect the
theoretical distribution of Y if the theoretical result holds.

The approach sketched above is an example of what is commonly known as
Monte Carlo Simulation or Monte Carlo Experiment. To perform this simula-
tion in R, we proceed as follows:

1. Choose a sample size n and the number of samples to be drawn, reps.
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2. Use the function replicate() in conjunction with rnorm() to draw n
observations from the standard normal distribution rep times.
Note: the outcome of replicate() is a matrix with dimensions n × rep.
It contains the drawn samples as columns.

3. Compute sample means using colMeans(). This function computes the
mean of each column, i.e., of each sample and returns a vector.

# set sample size and number of samples
n <- 10
reps <- 10000

# perform random sampling
samples <- replicate(reps, rnorm(n)) # 10 x 10000 sample matrix

# compute sample means
sample.avgs <- colMeans(samples)

We then end up with a vector of sample averages. You can check the vector
property of sample.avgs:

# check that 'sample.avgs' is a vector
is.vector(sample.avgs)
#> [1] TRUE

# print the first few entries to the console
head(sample.avgs)
#> [1] -0.1045919 0.2264301 0.5308715 -0.2243476 0.2186909 0.2564663

A straightforward approach to examine the distribution of univariate numerical
data is to plot it as a histogram and compare it to some known or assumed
distribution. By default, hist() will give us a frequency histogram, i.e., a bar
chart where observations are grouped into ranges, also called bins. The ordinate
reports the number of observations falling into each of the bins. Instead, we
want it to report density estimates for comparison purposes. This is achieved
by setting the argument freq = FALSE. The number of bins is adjusted by the
argument breaks.

Using curve(), we overlay the histogram with a red line, the theoretical density
of a N (0, 0.1) random variable. Remember to use the argument add = TRUE to
add the curve to the current plot. Otherwise R will open a new graphic device
and discard the previous plot!1

1Hint: T and F are alternatives for TRUE and FALSE.
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# Plot the density histogram
hist(sample.avgs,

ylim = c(0, 1.4),
col = "steelblue" ,
freq = F,
breaks = 20)

# overlay the theoretical distribution of sample averages on top of the histogram
curve(dnorm(x, sd = 1/sqrt(n)),

col = "red",
lwd = "2",
add = T)
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The sampling distribution of Y is indeed very close to that of a N (0, 0.1) dis-
tribution so the Monte Carlo simulation supports the theoretical claim.

Let us discuss another example where using simple random sampling in a sim-
ulation setup helps to verify a well known result. As discussed before, the Chi-
squared distribution with M degrees of freedom arises as the distribution of the
sum of M independent squared standard normal distributed random variables.

To visualize the claim stated in equation (2.3), we proceed similarly as in the
example before:

1. Choose the degrees of freedom, DF, and the number of samples to be drawn
reps.

2. Draw reps random samples of size DF from the standard normal distribu-
tion using replicate().

3. For each sample, square the outcomes and sum them up column-wise.
Store the results.
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Again, we produce a density estimate for the distribution underlying our sim-
ulated data using a density histogram and overlay it with a line graph of the
theoretical density function of the χ2

3 distribution.

# number of repetitions
reps <- 10000

# set degrees of freedom of a chi-Square Distribution
DF <- 3

# sample 10000 column vectors à 3 N(0,1) R.V.S
Z <- replicate(reps, rnorm(DF))

# column sums of squares
X <- colSums(Zˆ2)

# histogram of column sums of squares
hist(X,

freq = F,
col = "steelblue",
breaks = 40,
ylab = "Density",
main = "")

# add theoretical density
curve(dchisq(x, df = DF),

type = 'l',
lwd = 2,
col = "red",
add = T)
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Large Sample Approximations to Sampling Distributions

Sampling distributions as considered in the last section play an important role
in the development of econometric methods. There are two main approaches
in characterizing sampling distributions: an “exact” approach and an “approx-
imate” approach.

The exact approach aims to find a general formula for the sampling distribution
that holds for any sample size n. We call this the exact distribution or finite-
sample distribution. In the previous examples of dice rolling and normal variates,
we have dealt with functions of random variables whose sample distributions are
exactly known in the sense that we can write them down as analytic expressions.
However, this is not always possible. For Y , result (2.4) tells us that normality of
the Yi implies normality of Y (we demonstrated this for the special case of Yi

i.i.d.∼
N (0, 1) with n = 10 using a simulation study that involves simple random
sampling). Unfortunately, the exact distribution of Y is generally unknown and
often hard to derive (or even untraceable) if we drop the assumption that the
Yi have a normal distribution.

Therefore, as can be guessed from its name, the “approximate” approach aims
to find an approximation to the sampling distribution where it is required that
the sample size n is large. A distribution that is used as a large-sample approx-
imation to the sampling distribution is also called the asymptotic distribution.
This is due to the fact that the asymptotic distribution is the sampling distri-
bution for n→∞, i.e., the approximation becomes exact if the sample size goes
to infinity. However, the difference between the sampling distribution and the
asymptotic distribution is negligible for moderate or even small samples sizes
so that approximations using the asymptotic distribution are useful.

In this section we will discuss two well known results that are used to approxi-
mate sampling distributions and thus constitute key tools in econometric theory:
the law of large numbers and the central limit theorem. The law of large num-
bers states that in large samples, Y is close to µY with high probability. The
central limit theorem says that the sampling distribution of the standardized
sample average, that is, (Y −µY )/σY is asymptotically normally distributed. It
is particularly interesting that both results do not depend on the distribution
of Y . In other words, being unable to describe the complicated sampling distri-
bution of Y if Y is not normal, approximations of the latter using the central
limit theorem simplify the development and applicability of econometric proce-
dures enormously. This is a key component underlying the theory of statistical
inference for regression models. Both results are summarized in Key Concept
2.6 and Key Concept 2.7.
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Key Concept 2.6
Convergence in Probability, Consistency and the Law of Large
Numbers

The sample average Y converges in probability to µY : Y is consistent for
µY if the probability that Y is in the range (µY − ε) to (µY + ε) becomes
arbitrary close to 1 as n increases for any constant ε > 0. We write this
as

P (µY − ε ≤ Y ≤ µY + ε)→ 1, ε > 0 as n→∞.

Consider the independently and identically distributed random variables
Yi, i = 1, . . . , n with expectation E(Yi) = µY and variance Var(Yi) = σ2

Y .
Under the condition that σ2

Y < ∞, that is, large outliers are unlikely,
the law of large numbers states

Y
p−→ µY .

The following application simulates a large number of coin tosses (you
may set the number of trials using the slider) with a fair coin and
computes the fraction of heads observed for each additional toss. The
result is a random path that, as stated by the law of large numbers,
shows a tendency to approach the value of 0.5 as n grows.

This interactive application is only available in the HTML version.

The core statement of the law of large numbers is that under quite general
conditions, the probability of obtaining a sample average Y that is close to µY
is high if we have a large sample size.

Consider the example of repeatedly tossing a coin where Yi is the result of the
ith coin toss. Yi is a Bernoulli distributed random variable with p the probability
of observing head

P (Yi) =
{
p, Yi = 1
1− p, Yi = 0

where p = 0.5 as we assume a fair coin. It is straightforward to show that

µY = p = 0.5.

Let Rn denote the proportion of heads in the first n tosses,

Rn = 1
n

n∑
i=1

Yi. (2.5)
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According to the law of large numbers, the observed proportion of heads con-
verges in probability to µY = 0.5, the probability of tossing head in a single
coin toss,

Rn
p−→ µY = 0.5 as n→∞.

This result is illustrated by the interactive application in Key Concept 2.6. We
now show how to replicate this using R.

The procedure is as follows:

1. Sample N observations from the Bernoulli distribution, e.g., using
sample().

2. Calculate the proportion of heads Rn as in (2.5). A way to achieve this is
to call cumsum() on the vector of observations Y to obtain its cumulative
sum and then divide by the respective number of observations.

We continue by plotting the path and also add a dashed line for the benchmark
probability p = 0.5.

# set seed
set.seed(1)

# set number of coin tosses and simulate
N <- 30000
Y <- sample(0:1, N, replace = T)

# Calculate R_n for 1:N
S <- cumsum(Y)
R <- S/(1:N)

# Plot the path.
plot(R,

ylim = c(0.3, 0.7),
type = "l",
col = "steelblue",
lwd = 2,
xlab = "n",
ylab = "R_n",
main = "Converging Share of Heads in Repeated Coin Tossing")

# Add a dashed line for R_n = 0.5
lines(c(0, N),

c(0.5, 0.5),
col = "darkred",
lty = 2,
lwd = 1)



56 CHAPTER 2. PROBABILITY THEORY

0 5000 10000 15000 20000 25000 30000

0.
3

0.
4

0.
5

0.
6

0.
7

Converging Share of Heads in Repeated Coin Tossing

n

R
_n

There are several things to be said about this plot.

• The blue graph shows the observed proportion of heads when tossing a
coin n times.

• Since the Yi are random variables, Rn is a random variate, too. The path
depicted is only one of many possible realizations of Rn as it is determined
by the 30000 observations sampled from the Bernoulli distribution.

• If the number of coin tosses n is small, the proportion of heads may be
anything but close to its theoretical value, µY = 0.5. However, as more
and more observation are included in the sample we find that the path
stabilizes in the neighborhood of 0.5. The average of multiple trials shows
a clear tendency to converge to its expected value as the sample size
increases, just as claimed by the law of large numbers.
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Key Concept 2.7
The Central Limit Theorem

Suppose that Y1, . . . , Yn are independently and identically distributed
random variables with expectation E(Yi) = µY and variance Var(Yi) =
σ2
Y where 0 < σ2

Y <∞. The Central Limit Theorem (CLT) states that,
if the sample size n goes to infinity, the distribution of the standardized
sample average

Y − µY
σY

= Y − µY
σY /
√
n

becomes arbitrarily well approximated by the standard normal distribu-
tion.
The application below demonstrates the CLT for the sample average of
normally distributed random variables with mean 5 and variance 252.
You may check the following properties:

• The distribution of the sample average is normal.

• As the sample size increases, the distribution of Y tightens around
the true mean of 5.

• The distribution of the standardized sample average is close to the
standard normal distribution for large n.

This interactive application is only available in the HTML version.

According to the CLT, the distribution of the sample mean Y of the Bernoulli
distributed random variables Yi, i = 1, ..., n, is well approximated by the normal
distribution with parameters µY = p = 0.5 and σ2

Y = p(1 − p)/n = 0.25/n for
large n. Consequently, for the standardized sample mean we conclude that

Y − 0.5
0.5/
√
n

(2.6)

should be well approximated by the standard normal distribution N (0, 1). We
employ another simulation study to demonstrate this graphically. The idea is
as follows.

Draw a large number of random samples, 10000 say, of size n from the Bernoulli
distribution and compute the sample averages. Standardize the averages as
shown in (2.6). Next, visualize the distribution of the generated standardized
sample averages by means of a histogram and compare to the standard normal
distribution. Repeat this for different sample sizes n to see how increasing the
sample size n impacts the simulated distribution of the averages.
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In R, realize this as follows:

1. We start by defining that the next four subsequently generated figures shall
be drawn in a 2× 2 array such that they can be easily compared. This is
done by calling par(mfrow = c(2, 2)) before generating the figures.

2. We define the number of repetitions reps as 10000 and create a vector of
sample sizes named sample.sizes. We consider samples of sizes 5, 20,
75, and 100.

3. Next, we combine two for() loops to simulate the data and plot the distri-
butions. The inner loop generates 10000 random samples, each consisting
of n observations that are drawn from the Bernoulli distribution, and com-
putes the standardized averages. The outer loop executes the inner loop
for the different sample sizes n and produces a plot for each iteration.

# subdivide the plot panel into a 2-by-2 array
par(mfrow = c(2, 2))

# set the number of repetitions and the sample sizes
reps <- 10000
sample.sizes <- c(5, 20, 75, 100)

# set seed for reproducibility
set.seed(123)

# outer loop (loop over the sample sizes)
for (n in sample.sizes) {

samplemean <- rep(0, reps) #initialize the vector of sample means
stdsamplemean <- rep(0, reps) #initialize the vector of standardized sample means

# inner loop (loop over repetitions)
for (i in 1:reps) {
x <- rbinom(n, 1, 0.5)
samplemean[i] <- mean(x)
stdsamplemean[i] <- sqrt(n)*(mean(x) - 0.5)/0.5

}

# plot histogram and overlay the N(0,1) density in every iteration
hist(stdsamplemean,

col = "steelblue",
freq = FALSE,
breaks = 40,
xlim = c(-3, 3),
ylim = c(0, 0.8),
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xlab = paste("n =", n),
main = "")

curve(dnorm(x),
lwd = 2,
col = "darkred",
add = TRUE)

}
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We see that the simulated sampling distribution of the standardized average
tends to deviate strongly from the standard normal distribution if the sample
size is small, e.g., for n = 5 and n = 10. However as n grows, the histograms
approach the standard normal distribution. The approximation works quite
well, see n = 100.

2.3 Exercises

This interactive part of the book is only available in the HTML version.
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Chapter 3

A Review of Statistics using
R

This section reviews important statistical concepts:

• Estimation of unknown population parameters

• Hypothesis testing

• Confidence intervals

These methods are heavily used in econometrics. We will discuss them in the
simple context of inference about an unknown population mean and discuss
several applications in R. These R applications rely on the following packages
which are not part of the base version of R:

• readxl - allows to import data from Excel to R.

• dplyr - provides a flexible grammar for data manipulation.

• MASS - a collection of functions for applied statistics.

Make sure these are installed before you go ahead and try to replicate the
examples. The safest way to do so is by checking whether the following code
chunk executes without any errors.

library(dplyr)
library(MASS)
library(readxl)

61
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3.1 Estimation of the Population Mean

Key Concept 3.1
Estimators and Estimates

Estimators are functions of sample data that are drawn randomly from
an unknown population. Estimates are numeric values computed by
estimators based on the sample data. Estimators are random variables
because they are functions of random data. Estimates are nonrandom
numbers.

Think of some economic variable, for example hourly earnings of college gradu-
ates, denoted by Y . Suppose we are interested in µY the mean of Y . In order to
exactly calculate µY we would have to interview every working graduate in the
economy. We simply cannot do this due to time and cost constraints. However,
we can draw a random sample of n i.i.d. observations Y1, . . . , Yn and estimate
µY using one of the simplest estimators in the sense of Key Concept 3.1 one can
think of, that is,

Y = 1
n

n∑
i=1

Yi,

the sample mean of Y . Then again, we could use an even simpler estimator for
µY : the very first observation in the sample, Y1. Is Y1 a good estimator? For
now, assume that

Y ∼ χ2
12

which is not too unreasonable as hourly income is non-negative and we expect
many hourly earnings to be in a range of 5£ to 15£. Moreover, it is common
for income distributions to be skewed to the right — a property of the χ2

12
distribution.

# plot the chi_12ˆ2 distribution
curve(dchisq(x, df=12),

from = 0,
to = 40,
ylab = "density",
xlab = "hourly earnings in Euro")
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We now draw a sample of n = 100 observations and take the first observation
Y1 as an estimate for µY

# set seed for reproducibility
set.seed(1)

# sample from the chi_12ˆ2 distribution, use only the first observation
rsamp <- rchisq(n = 100, df = 12)
rsamp[1]
#> [1] 8.257893

The estimate 8.26 is not too far away from µY = 12 but it is somewhat intuitive
that we could do better: the estimator Y1 discards a lot of information and its
variance is the population variance:

Var(Y1) = Var(Y ) = 2 · 12 = 24

This brings us to the following question: What is a good estimator of an unknown
parameter in the first place? This question is tackled in Key Concepts 3.2 and
3.3.
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Key Concept 3.2
Bias, Consistency and Efficiency

Desirable characteristics of an estimator include unbiasedness, consis-
tency and efficiency.

Unbiasedness:
If the mean of the sampling distribution of some estimator µ̂Y for the
population mean µY equals µY ,

E(µ̂Y ) = µYm,

the estimator is unbiased for µY . The bias of µ̂Y then is 0:

E(µ̂Y )− µY = 0

Consistency:
We want the uncertainty of the estimator µY to decrease as the number
of observations in the sample grows. More precisely, we want the proba-
bility that the estimate µ̂Y falls within a small interval around the true
value µY to get increasingly closer to 1 as n grows. We write this as

µ̂Y
p−→ µY .

Variance and efficiency:
We want the estimator to be efficient. Suppose we have two estimators,
µ̂Y and ∼µY and for some given sample size n it holds that

E(µ̂Y ) = E(∼µY ) = µY

but
Var(µ̂Y ) < Var(∼µY ).

We then prefer to use µ̂Y as it has a lower variance than ∼µY , meaning that
µ̂Y is more efficient in using the information provided by the observations
in the sample.
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3.2 Properties of the Sample Mean

A more precise way to express consistency of an estimator µ̂ for a pa-
rameter µ is

P (|µ̂− µ| < ε) p−−−−→
n→∞

1 for any ε > 0.

This expression says that the probability of observing a deviation from
the true value µ that is smaller than some arbitrary ε > 0 converges to
1 as n grows. Consistency does not require unbiasedness.

To examine properties of the sample mean as an estimator for the corresponding
population mean, consider the following R example.

We generate a population pop consisting of observations Yi, i = 1, . . . , 10000
that origin from a normal distribution with mean µ = 10 and variance σ2 = 1.

To investigate the behavior of the estimator µ̂ = Ȳ we can draw random samples
from this population and calculate Ȳ for each of them. This is easily done by
making use of the function replicate(). The argument expr is evaluated n
times. In this case we draw samples of sizes n = 5 and n = 25, compute the
sample means and repeat this exactly N = 25000 times.

For comparison purposes we store results for the estimator Y1, the first obser-
vation in a sample for a sample of size 5, separately.

# generate a fictious population
pop <- rnorm(10000, 10, 1)

# sample from the population and estimate the mean
est1 <- replicate(expr = mean(sample(x = pop, size = 5)), n = 25000)

est2 <- replicate(expr = mean(sample(x = pop, size = 25)), n = 25000)

fo <- replicate(expr = sample(x = pop, size = 5)[1], n = 25000)

Check that est1 and est2 are vectors of length 25000:

# check if object type is vector
is.vector(est1)
#> [1] TRUE
is.vector(est2)
#> [1] TRUE
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# check length
length(est1)
#> [1] 25000
length(est2)
#> [1] 25000

The code chunk below produces a plot of the sampling distributions of the
estimators Ȳ and Y1 on the basis of the 25000 samples in each case. We also
plot the density function of the N (10, 1) distribution.

# plot density estimate Y_1
plot(density(fo),

col = "green",
lwd = 2,
ylim = c(0, 2),
xlab = "estimates",
main = "Sampling Distributions of Unbiased Estimators")

# add density estimate for the distribution of the sample mean with n=5 to the plot
lines(density(est1),

col = "steelblue",
lwd = 2,
bty = "l")

# add density estimate for the distribution of the sample mean with n=25 to the plot
lines(density(est2),

col = "red2",
lwd = 2)

# add a vertical line at the true parameter
abline(v = 10, lty = 2)

# add N(10,1) density to the plot
curve(dnorm(x, mean = 10),

lwd = 2,
lty = 2,
add = T)

# add a legend
legend("topleft",

legend = c("N(10,1)",
expression(Y[1]),
expression(bar(Y) ~ n == 5),
expression(bar(Y) ~ n == 25)
),



3.2. PROPERTIES OF THE SAMPLE MEAN 67

lty = c(2, 1, 1, 1),
col = c("black","green", "steelblue", "red2"),
lwd = 2)
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First, all sampling distributions (represented by the solid lines) are centered
around µ = 10. This is evidence for the unbiasedness of Y1, Y 5 and Y 25. Of
course, the theoretical density N (10, 1) is centered at 10, too.

Next, have a look at the spread of the sampling distributions. Several things
are noteworthy:

• The sampling distribution of Y1 (green curve) tracks the density of the
N (10, 1) distribution (black dashed line) pretty closely. In fact, the sam-
pling distribution of Y1 is the N (10, 1) distribution. This is less surprising
if you keep in mind that the Y1 estimator does nothing but reporting an
observation that is randomly selected from a population with N (10, 1)
distribution. Hence, Y1 ∼ N (10, 1). Note that this result does not depend
on the sample size n: the sampling distribution of Y1 is always the pop-
ulation distribution, no matter how large the sample is. Y1 is a good a
estimate of µY , but we can do better.

• Both sampling distributions of Y show less dispersion than the sampling
distribution of Y1. This means that Y has a lower variance than Y1. In
view of Key Concepts 3.2 and 3.3, we find that Y is a more efficient
estimator than Y1. In fact, this holds for all n > 1.

• Y shows a behavior illustrating consistency (see Key Concept 3.2). The
blue and the red densities are much more concentrated around µ = 10 than
the green one. As the number of observations is increased from 1 to 5,
the sampling distribution tightens around the true parameter. Increasing
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the sample size to 25, this effect becomes more apparent. This implies
that the probability of obtaining estimates that are close to the true value
increases with n. This is also reflected by the estimated values of the
density function close to 10: the larger the sample size, the larger the
value of the density.

We encourage you to go ahead and modify the code. Try out different values
for the sample size and see how the sampling distribution of Y changes!

Y is the Least Squares Estimator of µY

Assume you have some observations Y1, . . . , Yn on Y ∼ N (10, 1) (which is un-
known) and would like to find an estimator m that predicts the observations
as well as possible. By good we mean to choose m such that the total squared
deviation between the predicted value and the observed values is small. Math-
ematically, this means we want to find an m that minimizes

n∑
i=1

(Yi −m)2. (3.1)

Think of Yi − m as the mistake made when predicting Yi by m. We could
also minimize the sum of absolute deviations from m but minimizing the sum
of squared deviations is mathematically more convenient (and will lead to a
different result). That is why the estimator we are looking for is called the least
squares estimator. m = Y , the sample mean, is this estimator.

We can show this by generating a random sample and plotting (3.1) as a function
of m.

# define the function and vectorize it
sqm <- function(m) {
sum((y-m)ˆ2)

}
sqm <- Vectorize(sqm)

# draw random sample and compute the mean
y <- rnorm(100, 10, 1)
mean(y)
#> [1] 10.1364

# plot the objective function
curve(sqm(x),

from = -50,
to = 70,
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xlab = "m",
ylab = "sqm(m)")

# add vertical line at mean(y)
abline(v = mean(y),

lty = 2,
col = "darkred")

# add annotation at mean(y)
text(x = mean(y),

y = 0,
labels = paste(round(mean(y), 2)))
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Notice that (3.1) is a quadratic function so that there is only one minimum. The
plot shows that this minimum lies exactly at the sample mean of the sample
data.
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Some R functions can only interact with functions that take a vector as
an input and evaluate the function body on every entry of the vector,
for example curve(). We call such functions vectorized functions and
it is often a good idea to write vectorized functions yourself, although
this is cumbersome in some cases. Having a vectorized function in R is
never a drawback since these functions work on both single values and
vectors.
Let us look at the function sqm(), which is non-vectorized:
sqm <- function(m) {

sum((y-m)ˆ2) #body of the function
}
Providing, e.g., c(1,2,3) as the argument m would cause an error since
then the operation y-m is invalid: the vectors y and m are of incompat-
ible dimensions. This is why we cannot use sqm() in conjunction with
curve().
Here Vectorize() comes into play. It generates a vectorized version of a
non-vectorized function.

Why Random Sampling is Important

So far, we assumed (sometimes implicitly) that the observed data Y1, . . . , Yn are
the result of a sampling process that satisfies the assumption of simple random
sampling. This assumption often is fulfilled when estimating a population mean
using Y . If this is not the case, estimates may be biased.

Let us fall back to pop, the fictive population of 10000 observations and compute
the population mean µpop:

# compute the population mean of pop
mean(pop)
#> [1] 9.992604

Next we sample 10 observations from pop with sample() and estimate µpop
using Y repeatedly. However, now we use a sampling scheme that deviates
from simple random sampling: instead of ensuring that each member of the
population has the same chance to end up in a sample, we assign a higher
probability of being sampled to the 2500 smallest observations of the population
by setting the argument prob to a suitable vector of probability weights:

# simulate outcomes for the sample mean when the i.i.d. assumption fails
est3 <- replicate(n = 25000,

expr = mean(sample(x = sort(pop),
size = 10,
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prob = c(rep(4, 2500), rep(1, 7500)))))

# compute the sample mean of the outcomes
mean(est3)
#> [1] 9.444113

Next we plot the sampling distribution of Y for this non-i.i.d. case and compare
it to the sampling distribution when the i.i.d. assumption holds.

# sampling distribution of sample mean, i.i.d. holds, n=25
plot(density(est2),

col = "steelblue",
lwd = 2,
xlim = c(8, 11),
xlab = "Estimates",
main = "When the i.i.d. Assumption Fails")

# sampling distribution of sample mean, i.i.d. fails, n=25
lines(density(est3),

col = "red2",
lwd = 2)

# add a legend
legend("topleft",

legend = c(expression(bar(Y)[n == 25]~", i.i.d. fails"),
expression(bar(Y)[n == 25]~", i.i.d. holds")
),

lty = c(1, 1),
col = c("red2", "steelblue"),
lwd = 2)
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Here, the failure of the i.i.d. assumption implies that, on average, we underes-
timate µY using Y : the corresponding distribution of Y is shifted to the left.
In other words, Y is a biased estimator for µY if the i.i.d. assumption does not
hold.

3.3 Hypothesis Tests Concerning the Popula-
tion Mean

In this section we briefly review concepts in hypothesis testing and discuss how
to conduct hypothesis tests in R. We focus on drawing inferences about an
unknown population mean.

About Hypotheses and Hypothesis Testing

In a significance test we want to exploit the information contained in a sample
as evidence in favor or against a hypothesis. Essentially, hypotheses are simple
questions that can be answered by ‘yes’ or ‘no’. In a hypothesis test we typically
deal with two different hypotheses:

• The null hypothesis, denoted H0, is the hypothesis we are interested in
testing.

• There must be an alternative hypothesis, denoted H1, the hypothesis that
is thought to hold if the null hypothesis is rejected.

The null hypothesis that the population mean of Y equals the value µY,0 is
written as

H0 : E(Y ) = µY,0.

Often the alternative hypothesis chosen is the most general one,

H1 : E(Y ) 6= µY,0,

meaning that E(Y ) may be anything but the value under the null hypothesis.
This is called a two-sided alternative.

For the sake of brevity, we only consider two-sided alternatives in the subsequent
sections of this chapter.
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The p-Value

Assume that the null hypothesis is true. The p-value is the probability of draw-
ing data and observing a corresponding test statistic that is at least as adverse to
what is stated under the null hypothesis as the test statistic actually computed
using the sample data.

In the context of the population mean and the sample mean, this definition can
be stated mathematically in the following way:

p-value = PH0

[
|Y − µY,0| > |Y

act − µY,0|
]

(3.2)

In (3.2), Y act is the sample mean for the data at hand (a value). In order to
compute the p-value as in (3.2), knowledge about the sampling distribution of
Y (a random variable) when the null hypothesis is true (the null distribution)
is required. However, in most cases the sampling distribution and thus the null
distribution of Y are unknown. Fortunately, the CLT (see Key Concept 2.7)
allows for the large-sample approximation

Y ≈ N (µY,0, σ2
Y

) , σ2
Y

= σ2
Y

n
,

assuming the null hypothesis H0 : E(Y ) = µY,0 is true. With some algebra it
follows for lage n that

Y − µY,0
σY /
√
n
∼ N (0, 1).

So in large samples, the p-value can be computed without knowledge of the exact
sampling distribution of Y using the above normal approximation.

Calculating the p-Value when the Standard Deviation is
Known

For now, let us assume that σY is known. Then, we can rewrite (3.2) as

p-value =PH0

[∣∣∣∣Y − µY,0σY

∣∣∣∣ >
∣∣∣∣∣Y

act − µY,0
σY

∣∣∣∣∣
]

(3.3)

= 2 · Φ
[
−

∣∣∣∣∣Y
act − µY,0
σY

∣∣∣∣∣
]
. (3.4)

The p-value is the area in the tails of the N (0, 1) distribution that lies beyond
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±

∣∣∣∣∣Y
act − µY,0
σY

∣∣∣∣∣ (3.5)

We now use R to visualize what is stated in (3.4) and (3.5). The next code
chunk replicates Figure 3.1 of the book.

# plot the standard normal density on the interval [-4,4]
curve(dnorm(x),

xlim = c(-4, 4),
main = "Calculating a p-Value",
yaxs = "i",
xlab = "z",
ylab = "",
lwd = 2,
axes = "F")

# add x-axis
axis(1,

at = c(-1.5, 0, 1.5),
padj = 0.75,
labels = c(expression(-frac(bar(Y)ˆ"act"~-~bar(mu)[Y,0], sigma[bar(Y)])),

0,
expression(frac(bar(Y)ˆ"act"~-~bar(mu)[Y,0], sigma[bar(Y)]))))

# shade p-value/2 region in left tail
polygon(x = c(-6, seq(-6, -1.5, 0.01), -1.5),

y = c(0, dnorm(seq(-6, -1.5, 0.01)),0),
col = "steelblue")

# shade p-value/2 region in right tail
polygon(x = c(1.5, seq(1.5, 6, 0.01), 6),

y = c(0, dnorm(seq(1.5, 6, 0.01)), 0),
col = "steelblue")
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Calculating a p−Value

z
−

Yact −  µY

σY

0 Yact −  µY

σY

Sample Variance, Sample Standard Deviation and Stan-
dard Error

If σ2
Y is unknown, it must be estimated. This can be done using the sample

variance

s2
Y = 1

n− 1

n∑
i=1

(Yi − Y )2. (3.6)

Furthermore

sY =

√√√√ 1
n− 1

n∑
i=1

(Yi − Y )2 (3.7)

is a suitable estimator for the standard deviation of Y . In R, sY is implemented
in the function sd(), see ?sd.

Using R we can illustrate that sY is a consistent estimator for σY , that is

sY
p−→ σY .

The idea here is to generate a large number of samples Y1, . . . , Yn where, Y ∼
N (10, 9) say, estimate σY using sY and investigate how the distribution of sY
changes as n gets larger.
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# vector of sample sizes
n <- c(10000, 5000, 2000, 1000, 500)

# sample observations, estimate using 'sd()' and plot the estimated distributions
sq_y <- replicate(n = 10000, expr = sd(rnorm(n[1], 10, 3)))
plot(density(sq_y),

main = expression("Sampling Distributions o" ~ s[Y]),
xlab = expression(s[y]),
lwd = 2)

for (i in 2:length(n)) {
sq_y <- replicate(n = 10000, expr = sd(rnorm(n[i], 10, 3)))
lines(density(sq_y),

col = i,
lwd = 2)

}

# add a legend
legend("topleft",

legend = c(expression(n == 10000),
expression(n == 5000),
expression(n == 2000),
expression(n == 1000),
expression(n == 500)),

col = 1:5,
lwd = 2)
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The plot shows that the distribution of sY tightens around the true value σY = 3
as n increases.

The function that estimates the standard deviation of an estimator is called the
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standard error of the estimator. Key Concept 3.4 summarizes the terminology
in the context of the sample mean.

Key Concept 3.4
The Standard Error of Y

Take an i.i.d. sample Y1, . . . , Yn. The mean of Y is consistently estimated
by Y , the sample mean of the Yi. Since Y is a random variable, it has a
sampling distribution with variance σ2

Y

n .
The standard error of Y , denoted SE(Y ) is an estimator of the standard
deviation of Y :

SE(Y ) = σ̂Y = sY√
n

The caret (^) over σ indicates that σ̂Y is an estimator for σY .

As an example to underpin Key Concept 3.4, consider a sample of n = 100 i.i.d.
observations of the Bernoulli distributed variable Y with success probability
p = 0.1. Thus E(Y ) = p = 0.1 and Var(Y ) = p(1− p). E(Y ) can be estimated
by Y , which then has variance

σ2
Y

= p(1− p)/n = 0.0009

and standard deviation

σY =
√
p(1− p)/n = 0.03.

In this case the standard error of Y can be estimated by

SE(Y ) =
√
Y (1− Y )/n.

Let us check whether Y and SE(Y ) estimate the respective true values, on
average.

# draw 10000 samples of size 100 and estimate the mean of Y and
# estimate the standard error of the sample mean

mean_estimates <- numeric(10000)
se_estimates <- numeric(10000)

for (i in 1:10000) {
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s <- sample(0:1,
size = 100,
prob = c(0.9, 0.1),
replace = T)

mean_estimates[i] <- mean(s)
se_estimates[i] <- sqrt(mean(s) * (1 - mean(s)) / 100)

}

mean(mean_estimates)
#> [1] 0.10047
mean(se_estimates)
#> [1] 0.02961587

Both estimators seem to be unbiased for the true parameters. In fact, this is
true for the sample mean, but not for SE(Y ). However, both estimators are
consistent for the true parameters.

Calculating the p-value When the Standard Deviation is
Unknown

When σY is unknown, the p-value for a hypothesis test concerning µY using Y
can be computed by replacing σY in (3.4) by the standard error SE(Y ) = σ̂Y .
Then,

p-value = 2 · Φ
(
−

∣∣∣∣∣Y
act − µY,0
SE(Y )

∣∣∣∣∣
)
.

This is easily done in R:

# sample and estimate, compute standard error
samplemean_act <- mean(

sample(0:1,
prob = c(0.9, 0.1),
replace = T,
size = 100))

SE_samplemean <- sqrt(samplemean_act * (1 - samplemean_act) / 100)

# null hypothesis
mean_h0 <- 0.1
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# compute the p-value
pvalue <- 2 * pnorm(- abs(samplemean_act - mean_h0) / SE_samplemean)
pvalue
#> [1] 0.7492705

Later in the book, we will encounter more convenient approaches to obtain
t-statistics and p-values using R.

The t-statistic

In hypothesis testing, the standardized sample average

t = Y − µY,0
SE(Y )

(3.8)

is called a t-statistic. This t-statistic plays an important role in testing hypothe-
ses about µY . It is a prominent example of a test statistic.

Implicitly, we already have computed a t-statistic for Y in the previous code
chunk.

# compute a t-statistic for the sample mean
tstatistic <- (samplemean_act - mean_h0) / SE_samplemean
tstatistic
#> [1] 0.3196014

Using R we can illustrate that if µY,0 equals the true value, that is, if the null
hypothesis is true, (3.8) is approximately N (0, 1) distributed when n is large.

# prepare empty vector for t-statistics
tstatistics <- numeric(10000)

# set sample size
n <- 300

# simulate 10000 t-statistics
for (i in 1:10000) {

s <- sample(0:1,
size = n,
prob = c(0.9, 0.1),
replace = T)

tstatistics[i] <- (mean(s)-0.1)/sqrt(var(s)/n)
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}

In the simulation above we estimate the variance of the Yi using var(s). This
is more general then mean(s)*(1-mean(s)) since the latter requires that the
data are Bernoulli distributed and that we know this.

# plot density and compare to N(0,1) density
plot(density(tstatistics),

xlab = "t-statistic",
main = "Estimated Distribution of the t-statistic when n=300",
lwd = 2,
xlim = c(-4, 4),
col = "steelblue")

# N(0,1) density (dashed)
curve(dnorm(x),

add = T,
lty = 2,
lwd = 2)
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Judging from the plot, the normal approximation works reasonably well for the
chosen sample size. This normal approximation has already been used in the
definition of the p-value, see (3.8).



3.3. HYPOTHESIS TESTS CONCERNING THE POPULATION MEAN 81

Hypothesis Testing with a Prespecified Significance Level

Key Concept 3.5
The Terminology of Hypothesis Testing

In hypothesis testing, two types of mistakes are possible:

1. The null hypothesis is rejected although it is true (type-I-error)

2. The null hypothesis is not rejected although it is false (type-II-
error)

The significance level of the test is the probability to commit a type-
I-error we are willing to accept in advance. E.g., using a prespecified
significance level of 0.05, we reject the null hypothesis if and only if the
p-value is less than 0.05. The significance level is chosen before the test
is conducted.

An equivalent procedure is to reject the null hypothesis if the observed
test statistic is, in absolute value terms, larger than the critical value
of the test statistic. The critical value is determined by the significance
level chosen and defines two disjoint sets of values which are called
acceptance region and rejection region. The acceptance region contains
all values of the test statistic for which the test does not reject while the
rejection region contains all the values for which the test does reject.

The p-value is the probability that, in repeated sampling under the
same conditions, a test statistic is observed that provides just as
much evidence against the null hypothesis as the test statistic actually
observed.

The actual probability that the test rejects the true null hypothesis
is called the size of the test. In an ideal setting, the size equals the
significance level.

The probability that the test correctly rejects a false null hypothesis is
called power.

Reconsider the pvalue computed further above:

# check whether p-value < 0.05
pvalue < 0.05
#> [1] FALSE
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The condition is not fulfilled so we do not reject the null hypothesis correctly.

When working with a t-statistic instead, it is equivalent to apply the following
rule:

Reject H0 if |tact| > 1.96

We reject the null hypothesis at the significance level of 5% if the computed
t-statistic lies beyond the critical value of 1.96 in absolute value terms. 1.96 is
the 0.975-quantile of the standard normal distribution.

# check the critical value
qnorm(p = 0.975)
#> [1] 1.959964

# check whether the null is rejected using the t-statistic computed further above
abs(tstatistic) > 1.96
#> [1] FALSE

Just like using the p-value, we cannot reject the null hypothesis using the corre-
sponding t-statistic. Key Concept 3.6 summarizes the procedure of performing
a two-sided hypothesis test about the population mean E(Y ).

Key Concept 3.6
Testing the Hypothesis E(Y ) = µY,0 Against the Alternative
E(Y ) 6= µY,0

1. Estimate µY using Y and compute SE(Y ), the standard error of
SE(Y ).

2. Compute the t-statistic.

3. Compute the p-value and reject the null hypothesis at the 5% level
of significance if the p-value is smaller than 0.05 or, equivalently, if∣∣tact∣∣ > 1.96.

One-sided Alternatives

Sometimes we are interested in testing if the mean is bigger or smaller than some
value hypothesized under the null. To stick to the book, take the presumed wage
gap between well and less educated working individuals. Since we anticipate that
such a differential exists, a relevant alternative (to the null hypothesis that there
is no wage differential) is that well educated individuals earn more, i.e., that the
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average hourly wage for this group, µY is bigger than µY,0, the average wage of
less educated workers which we assume to be known here for simplicity (Section
@ref{cmfdp} discusses how to test the equivalence of to unknown population
means).

This is an example of a right-sided test and the hypotheses pair is chosen to be

H0 : µY = µY,0 vs H1 : µY > µY,0.

We reject the null hypothesis if the computed test-statistic is larger than the
critical value 1.64, the 0.95-quantile of the N (0, 1) distribution. This ensures
that 1−0.95 = 5% probability mass remains in the area to the right of the critical
value. As before, we can visualize this in R using the function polygon().

# plot the standard normal density on the domain [-4,4]
curve(dnorm(x),

xlim = c(-4, 4),
main = "Rejection Region of a Right-Sided Test",
yaxs = "i",
xlab = "t-statistic",
ylab = "",
lwd = 2,
axes = "F")

# add the x-axis
axis(1,

at = c(-4, 0, 1.64, 4),
padj = 0.5,
labels = c("", 0, expression(Phiˆ-1~(.95)==1.64), ""))

# shade the rejection region in the left tail
polygon(x = c(1.64, seq(1.64, 4, 0.01), 4),

y = c(0, dnorm(seq(1.64, 4, 0.01)), 0),
col = "darkred")
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Rejection Region of a Right−Sided Test

t−statistic

0 Φ−1 (0.95) = 1.64

Analogously, for the left-sided test we have

H0 : µY = µY,0 vs. H1 : µY < µY,0.

The null is rejected if the observed test statistic falls short of the critical value
which, for a test at the 0.05 level of significance, is given by −1.64, the 0.05-
quantile of the N (0, 1) distribution. 5% probability mass lies to the left of the
critical value.

It is straightforward to adapt the code chunk above to the case of a left-sided
test. We only have to adjust the color shading and the tick marks.

# plot the the standard normal density on the domain [-4,4]
curve(dnorm(x),

xlim = c(-4, 4),
main = "Rejection Region of a Left-Sided Test",
yaxs = "i",
xlab = "t-statistic",
ylab = "",
lwd = 2,
axes = "F")

# add x-axis
axis(1,

at = c(-4, 0, -1.64, 4),
padj = 0.5,
labels = c("", 0, expression(Phiˆ-1~(.05)==-1.64), ""))
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# shade rejection region in right tail
polygon(x = c(-4, seq(-4, -1.64, 0.01), -1.64),

y = c(0, dnorm(seq(-4, -1.64, 0.01)), 0),
col = "darkred")

Rejection Region of a Left−Sided Test

t−statistic

Φ−1 (0.05) = − 1.64 0

3.4 Confidence Intervals for the Population
Mean

As stressed before, we will never estimate the exact value of the population mean
of Y using a random sample. However, we can compute confidence intervals
for the population mean. In general, a confidence interval for an unknown
parameter is a recipe that, in repeated samples, yields intervals that contain the
true parameter with a prespecified probability, the confidence level. Confidence
intervals are computed using the information available in the sample. Since this
information is the result of a random process, confidence intervals are random
variables themselves.

Key Concept 3.7 shows how to compute confidence intervals for the unknown
population mean E(Y ).
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Key Concept 3.7
Confidence Intervals for the Population Mean

A 95% confidence interval for µY is a random variable that contains
the true µY in 95% of all possible random samples. When n is large we
can use the normal approximation. Then, 99%, 95%, 90% confidence
intervals are

99% confidence interval for µY =
[
Y ± 2.58× SE(Y )

]
, (3.9)

95% confidence interval for µY =
[
Y ± 1.96× SE(Y )

]
, (3.10)

90% confidence interval for µY =
[
Y ± 1.64× SE(Y )

]
. (3.11)

These confidence intervals are sets of null hypotheses we cannot reject
in a two-sided hypothesis test at the given level of confidence.

Now consider the following statements.

1. In repeated sampling, the interval[
Y ± 1.96× SE(Y )

]
covers the true value of µY with a probability of 95%.

2. We have computed Y = 5.1 and SE(Y ) = 2.5 so the interval

[5.1± 1.96× 2.5] = [0.2, 10]

covers the true value of µY with a probability of 95%.

While 1. is right (this is in line with the definition above), 2. is wrong
and none of your lecturers wants to read such a sentence in a term paper,
written exam or similar, believe us. The difference is that, while 1. is the
definition of a random variable, 2. is one possible outcome of this random
variable so there is no meaning in making any probabilistic statement
about it. Either the computed interval does cover µY or it does not!

In R, testing of hypotheses about the mean of a population on the basis of a
random sample is very easy due to functions like t.test() from the stats
package. It produces an object of type list. Luckily, one of the most simple
ways to use t.test() is when you want to obtain a 95% confidence interval
for some population mean. We start by generating some random data and
calling t.test() in conjunction with ls() to obtain a breakdown of the output
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components.

# set seed
set.seed(1)

# generate some sample data
sampledata <- rnorm(100, 10, 10)

# check the type of the outcome produced by t.test
typeof(t.test(sampledata))
#> [1] "list"

# display the list elements produced by t.test
ls(t.test(sampledata))
#> [1] "alternative" "conf.int" "data.name" "estimate" "method"
#> [6] "null.value" "p.value" "parameter" "statistic" "stderr"

Though we find that many items are reported, at the moment we are only
interested in computing a 95% confidence set for the mean.

t.test(sampledata)$"conf.int"
#> [1] 9.306651 12.871096
#> attr(,"conf.level")
#> [1] 0.95

This tells us that the 95% confidence interval is

[9.31, 12.87] .

In this example, the computed interval obviously does cover the true µY which
we know to be 10.

Let us have a look at the whole standard output produced by t.test().

t.test(sampledata)
#>
#> One Sample t-test
#>
#> data: sampledata
#> t = 12.346, df = 99, p-value < 2.2e-16
#> alternative hypothesis: true mean is not equal to 0
#> 95 percent confidence interval:
#> 9.306651 12.871096
#> sample estimates:
#> mean of x
#> 11.08887
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We see that t.test() does not only compute a 95% confidence interval but au-
tomatically conducts a two-sided significance test of the hypothesis H0 : µY = 0
at the level of 5% and reports relevant parameters thereof: the alternative hy-
pothesis, the estimated mean, the resulting t-statistic, the degrees of freedom of
the underlying t distribution (t.test() does use perform the normal approxi-
mation) and the corresponding p-value. This is very convenient!

In this example, we come to the conclusion that the population mean is signifi-
cantly different from 0 (which is correct) at the level of 5%, since µY = 0 is not
an element of the 95% confidence interval

0 6∈ [9.31, 12.87] .
We come to an equivalent result when using the p-value rejection rule since

p-value = 2.2 · 10−16 � 0.05.

3.5 Comparing Means from Different Popula-
tions

Suppose you are interested in the means of two different populations, denote
them µ1 and µ2. More specifically, you are interested whether these population
means are different from each other and plan to use a hypothesis test to verify
this on the basis of independent sample data from both populations. A suitable
pair of hypotheses is

H0 : µ1 − µ2 = d0 vs. H1 : µ1 − µ2 6= d0 (3.12)

where d0 denotes the hypothesized difference in means (so d0 = 0 when the
means are equal, under the null hypothesis). The book teaches us that H0 can
be tested with the t-statistic

t = (Y 1 − Y 2)− d0

SE(Y 1 − Y 2)
(3.13)

where

SE(Y 1 − Y 2) =

√
s2

1
n1

+ s2
2
n2
. (3.14)

This is called a two sample t-test. For large n1 and n2, (3.13) is standard
normal under the null hypothesis. Analogously to the simple t-test we can
compute confidence intervals for the true difference in population means:
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(Y 1 − Y 2)± 1.96× SE(Y 1 − Y 2)

is a 95% confidence interval for d. In R, hypotheses as in (3.12) can be tested
with t.test(), too. Note that t.test() chooses d0 = 0 by default. This can
be changed by setting the argument mu accordingly.

The subsequent code chunk demonstrates how to perform a two sample t-test
in R using simulated data.

# set random seed
set.seed(1)

# draw data from two different populations with equal mean
sample_pop1 <- rnorm(100, 10, 10)
sample_pop2 <- rnorm(100, 10, 20)

# perform a two sample t-test
t.test(sample_pop1, sample_pop2)
#>
#> Welch Two Sample t-test
#>
#> data: sample_pop1 and sample_pop2
#> t = 0.872, df = 140.52, p-value = 0.3847
#> alternative hypothesis: true difference in means is not equal to 0
#> 95 percent confidence interval:
#> -2.338012 6.028083
#> sample estimates:
#> mean of x mean of y
#> 11.088874 9.243838

We find that the two sample t-test does not reject the (true) null hypothesis
that d0 = 0.

3.6 An Application to the Gender Gap of Earn-
ings

This section discusses how to reproduce the results presented in the box The
Gender Gap of Earnings of College Graduates in the United States of the book.

In order to reproduce Table 3.1 of the book you need to download the replication
data which are hosted by Pearson and can be downloaded here. This file contains
data that range from 1992 to 2008 and earnings are reported in prices of 2008.

https://wps.pearsoned.com/wps/media/objects/11422/11696965/datasets3e/datasets/cps_ch3.xlsx
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There are several ways to import the .xlsx-files into R. Our suggestion is the
function read_excel() from the readxl package (Wickham and Bryan, 2019).
The package is not part of R’s base version and has to be installed manually.

# load the 'readxl' package
library(readxl)

You are now ready to import the dataset. Make sure you use the correct path
to import the downloaded file! In our example, the file is saved in a subfolder
of the working directory named data. If you are not sure what your current
working directory is, use getwd(), see also ?getwd. This will give you the path
that points to the place R is currently looking for files to work with.

# import the data into R
cps <- read_excel(path = "data/cps_ch3.xlsx")

Next, install and load the package dyplr (Wickham et al., 2020). This package
provides some handy functions that simplify data wrangling a lot. It makes use
of the %>% operator.

# load the 'dplyr' package
library(dplyr)

First, get an overview over the dataset. Next, use %>% and some functions from
the dplyr package to group the observations by gender and year and compute
descriptive statistics for both groups.

# get an overview of the data structure
head(cps)
#> # A tibble: 6 x 3
#> a_sex year ahe08
#> <dbl> <dbl> <dbl>
#> 1 1 1992 17.2
#> 2 1 1992 15.3
#> 3 1 1992 22.9
#> 4 2 1992 13.3
#> 5 1 1992 22.1
#> 6 2 1992 12.2

# group data by gender and year and compute the mean, standard deviation
# and number of observations for each group
avgs <- cps %>%

group_by(a_sex, year) %>%
summarise(mean(ahe08),
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sd(ahe08),
n())

# print the results to the console
print(avgs)
#> # A tibble: 10 x 5
#> # Groups: a_sex [2]
#> a_sex year `mean(ahe08)` `sd(ahe08)` `n()`
#> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 1 1992 23.3 10.2 1594
#> 2 1 1996 22.5 10.1 1379
#> 3 1 2000 24.9 11.6 1303
#> 4 1 2004 25.1 12.0 1894
#> 5 1 2008 25.0 11.8 1838
#> 6 2 1992 20.0 7.87 1368
#> 7 2 1996 19.0 7.95 1230
#> 8 2 2000 20.7 9.36 1181
#> 9 2 2004 21.0 9.36 1735
#> 10 2 2008 20.9 9.66 1871

With the pipe operator %>% we simply chain different R functions that produce
compatible input and output. In the code above, we take the dataset cps and
use it as an input for the function group_by(). The output of group_by is
subsequently used as an input for summarise() and so forth.

Now that we have computed the statistics of interest for both genders, we can
investigate how the gap in earnings between both groups evolves over time.

# split the dataset by gender
male <- avgs %>% dplyr::filter(a_sex == 1)

female <- avgs %>% dplyr::filter(a_sex == 2)

# rename columns of both splits
colnames(male) <- c("Sex", "Year", "Y_bar_m", "s_m", "n_m")
colnames(female) <- c("Sex", "Year", "Y_bar_f", "s_f", "n_f")

# estimate gender gaps, compute standard errors and confidence intervals for all dates
gap <- male$Y_bar_m - female$Y_bar_f

gap_se <- sqrt(male$s_mˆ2 / male$n_m + female$s_fˆ2 / female$n_f)

gap_ci_l <- gap - 1.96 * gap_se

gap_ci_u <- gap + 1.96 * gap_se
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result <- cbind(male[,-1], female[,-(1:2)], gap, gap_se, gap_ci_l, gap_ci_u)

# print the results to the console
print(result, digits = 3)
#> Year Y_bar_m s_m n_m Y_bar_f s_f n_f gap gap_se gap_ci_l gap_ci_u
#> 1 1992 23.3 10.2 1594 20.0 7.87 1368 3.23 0.332 2.58 3.88
#> 2 1996 22.5 10.1 1379 19.0 7.95 1230 3.49 0.354 2.80 4.19
#> 3 2000 24.9 11.6 1303 20.7 9.36 1181 4.14 0.421 3.32 4.97
#> 4 2004 25.1 12.0 1894 21.0 9.36 1735 4.10 0.356 3.40 4.80
#> 5 2008 25.0 11.8 1838 20.9 9.66 1871 4.10 0.354 3.41 4.80

We observe virtually the same results as the ones presented in the book. The
computed statistics suggest that there is a gender gap in earnings. Note that
we can reject the null hypothesis that the gap is zero for all periods. Further,
estimates of the gap and bounds of the 95% confidence intervals indicate that
the gap has been quite stable in the recent past.

3.7 Scatterplots, Sample Covariance and Sam-
ple Correlation

A scatter plot represents two dimensional data, for example n observation on
Xi and Yi, by points in a coordinate system. It is very easy to generate scatter
plots using the plot() function in R. Let us generate some artificial data on age
and earnings of workers and plot it.

# set random seed
set.seed(123)

# generate dataset
X <- runif(n = 100,

min = 18,
max = 70)

Y <- X + rnorm(n=100, 50, 15)

# plot observations
plot(X,

Y,
type = "p",
main = "A Scatterplot of X and Y",
xlab = "Age",
ylab = "Earnings",
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col = "steelblue",
pch = 19)
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The plot shows positive correlation between age and earnings. This is in line
with the notion that older workers earn more than those who joined the working
population recently.

Sample Covariance and Correlation

By now you should be familiar with the concepts of variance and covariance. If
not, we recommend you to work your way through Chapter 2 of the book.

Just like the variance, covariance and correlation of two variables are properties
that relate to the (unknown) joint probability distribution of these variables.
We can estimate covariance and correlation by means of suitable estimators
using a sample (Xi, Yi), i = 1, . . . , n.

The sample covariance

sXY = 1
n− 1

n∑
i=1

(Xi −X)(Yi − Y )

is an estimator for the population variance of X and Y whereas the sample
correlation

rXY = sXY
sXsY

can be used to estimate the population correlation, a standardized measure for
the strength of the linear relationship between X and Y . See Chapter 3.7 in
the book for a more detailed treatment of these estimators.
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As for variance and standard deviation, these estimators are implemented as
R functions in the stats package. We can use them to estimate population
covariance and population correlation of the artificial data on age and earnings.

# compute sample covariance of X and Y
cov(X, Y)
#> [1] 213.934

# compute sample correlation between X and Y
cor(X, Y)
#> [1] 0.706372

# an equivalent way to compute the sample correlation
cov(X, Y) / (sd(X) * sd(Y))
#> [1] 0.706372

The estimates indicate that X and Y are moderately correlated.

The next code chunk uses the function mvnorm() from package MASS (Ripley,
2020) to generate bivariate sample data with different degrees of correlation.

library(MASS)

# set random seed
set.seed(1)

# positive correlation (0.81)
example1 <- mvrnorm(100,

mu = c(0, 0),
Sigma = matrix(c(2, 2, 2, 3), ncol = 2),
empirical = TRUE)

# negative correlation (-0.81)
example2 <- mvrnorm(100,

mu = c(0, 0),
Sigma = matrix(c(2, -2, -2, 3), ncol = 2),
empirical = TRUE)

# no correlation
example3 <- mvrnorm(100,

mu = c(0, 0),
Sigma = matrix(c(1, 0, 0, 1), ncol = 2),
empirical = TRUE)

# no correlation (quadratic relationship)
X <- seq(-3, 3, 0.01)
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Y <- - Xˆ2 + rnorm(length(X))

example4 <- cbind(X, Y)

# divide plot area as 2-by-2 array
par(mfrow = c(2, 2))

# plot datasets
plot(example1, col = "steelblue", pch = 20, xlab = "X", ylab = "Y",

main = "Correlation = 0.81")

plot(example2, col = "steelblue", pch = 20, xlab = "X", ylab = "Y",
main = "Correlation = -0.81")

plot(example3, col = "steelblue", pch = 20, xlab = "X", ylab = "Y",
main = "Correlation = 0")

plot(example4, col = "steelblue", pch = 20, xlab = "X", ylab = "Y",
main = "Correlation = 0")
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3.8 Exercises

This interactive part of the book is only available in the HTML version.
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Chapter 4

Linear Regression with One
Regressor

This chapter introduces the basics in linear regression and shows how to perform
regression analysis in R. In linear regression, the aim is to model the relationship
between a dependent variable Y and one or more explanatory variables denoted
by X1, X2, . . . , Xk. Following the book we will focus on the concept of simple
linear regression throughout the whole chapter. In simple linear regression,
there is just one explanatory variable X1. If, for example, a school cuts its class
sizes by hiring new teachers, that is, the school lowers X1, the student-teacher
ratios of its classes, how would this affect Y , the performance of the students
involved in a standardized test? With linear regression we can not only examine
whether the student-teacher ratio does have an impact on the test results but
we can also learn about the direction and the strength of this effect.

The following packages are needed for reproducing the code presented in this
chapter:

• AER - accompanies the Book Applied Econometrics with R Kleiber and
Zeileis (2008) and provides useful functions and data sets.

• MASS - a collection of functions for applied statistics.

Make sure these are installed before you go ahead and try to replicate the
examples. The safest way to do so is by checking whether the following code
chunk executes without any errors.

library(AER)
library(MASS)

97
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4.1 Simple Linear Regression

To start with an easy example, consider the following combinations of average
test score and the average student-teacher ratio in some fictional school districts.

1 2 3 4 5 6 7
TestScore 680 640 670 660 630 660.0 635
STR 15 17 19 20 22 23.5 25

To work with these data in R we begin by generating two vectors: one for the
student-teacher ratios (STR) and one for test scores (TestScore), both contain-
ing the data from the table above.

# Create sample data
STR <- c(15, 17, 19, 20, 22, 23.5, 25)
TestScore <- c(680, 640, 670, 660, 630, 660, 635)

# Print out sample data
STR
#> [1] 15.0 17.0 19.0 20.0 22.0 23.5 25.0
TestScore
#> [1] 680 640 670 660 630 660 635

To build simple linear regression model, we hypothesize that the relationship
between dependent and independent variable is linear, formally:

Y = b ·X + a.

For now, let us suppose that the function which relates test score and student-
teacher ratio to each other is

TestScore = 713− 3× STR.

It is always a good idea to visualize the data you work with. Here, it is suitable to
use plot() to produce a scatterplot with STR on the x-axis and TestScore on
the y-axis. Just call plot(y_variable ~ x_variable) whereby y_variable
and x_variable are placeholders for the vectors of observations we want to
plot. Furthermore, we might want to add a systematic relationship to the plot.
To draw a straight line, R provides the function abline(). We just have to call
this function with arguments a (representing the intercept) and b (representing
the slope) after executing plot() in order to add the line to our plot.

The following code reproduces Figure 4.1 from the textbook.
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# create a scatterplot of the data
plot(TestScore ~ STR)

# add the systematic relationship to the plot
abline(a = 713, b = -3)
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We find that the line does not touch any of the points although we claimed that
it represents the systematic relationship. The reason for this is randomness.
Most of the time there are additional influences which imply that there is no
bivariate relationship between the two variables.

In order to account for these differences between observed data and the system-
atic relationship, we extend our model from above by an error term u which
captures additional random effects. Put differently, u accounts for all the dif-
ferences between the regression line and the actual observed data. Beside pure
randomness, these deviations could also arise from measurement errors or, as
will be discussed later, could be the consequence of leaving out other factors
that are relevant in explaining the dependent variable.

Which other factors are plausible in our example? For one thing, the test scores
might be driven by the teachers’ quality and the background of the students. It
is also possible that in some classes, the students were lucky on the test days
and thus achieved higher scores. For now, we will summarize such influences by
an additive component:

TestScore = β0 + β1 × STR+ other factors

Of course this idea is very general as it can be easily extended to other situations
that can be described with a linear model. The basic linear regression model
we will work with hence is

Yi = β0 + β1Xi + ui.
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Key Concept 4.1 summarizes the terminology of the simple linear regression
model.

Key Concept 4.1
Terminology for the Linear Regression Model with a Single
Regressor

The linear regression model is

Yi = β0 + β1X1 + ui

where

• the index i runs over the observations, i = 1, . . . , n

• Yi is the dependent variable, the regressand, or simply the left-hand
variable

• Xi is the independent variable, the regressor, or simply the right-
hand variable

• Y = β0 + β1X is the population regression line also called the
population regression function

• β0 is the intercept of the population regression line

• β1 is the slope of the population regression line

• ui is the error term.

4.2 Estimating the Coefficients of the Linear
Regression Model

In practice, the intercept β0 and slope β1 of the population regression line are
unknown. Therefore, we must employ data to estimate both unknown parame-
ters. In the following, a real world example will be used to demonstrate how this
is achieved. We want to relate test scores to student-teacher ratios measured in
Californian schools. The test score is the district-wide average of reading and
math scores for fifth graders. Again, the class size is measured as the number of
students divided by the number of teachers (the student-teacher ratio). As for
the data, the California School data set (CASchools) comes with an R package
called AER, an acronym for Applied Econometrics with R (Kleiber and Zeileis,
2020). After installing the package with install.packages("AER") and at-
taching it with library(AER) the data set can be loaded using the function
data().

https://cran.r-project.org/web/packages/AER/AER.pdf
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## # install the AER package (once)
## install.packages("AER")
##
## # load the AER package
library(AER)

# load the the data set in the workspace
data(CASchools)

Once a package has been installed it is available for use at further occasions
when invoked with library() — there is no need to run install.packages()
again!

It is interesting to know what kind of object we are dealing with. class()
returns the class of an object. Depending on the class of an object some functions
(for example plot() and summary()) behave differently.

Let us check the class of the object CASchools.

class(CASchools)
#> [1] "data.frame"

It turns out that CASchools is of class data.frame which is a convenient format
to work with, especially for performing regression analysis.

With help of head() we get a first overview of our data. This function shows
only the first 6 rows of the data set which prevents an overcrowded console
output.

Press ctrl + L to clear the console. This command deletes any code
that has been typed in and executed by you or printed to the console
by R functions. The good news is that anything else is left untouched.
You neither loose defined variables etc. nor the code history. It is still
possible to recall previously executed R commands using the up and
down keys. If you are working in RStudio, press ctrl + Up on your
keyboard (CMD + Up on a Mac) to review a list of previously entered
commands.

head(CASchools)
#> district school county grades students teachers
#> 1 75119 Sunol Glen Unified Alameda KK-08 195 10.90
#> 2 61499 Manzanita Elementary Butte KK-08 240 11.15
#> 3 61549 Thermalito Union Elementary Butte KK-08 1550 82.90
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#> 4 61457 Golden Feather Union Elementary Butte KK-08 243 14.00
#> 5 61523 Palermo Union Elementary Butte KK-08 1335 71.50
#> 6 62042 Burrel Union Elementary Fresno KK-08 137 6.40
#> calworks lunch computer expenditure income english read math
#> 1 0.5102 2.0408 67 6384.911 22.690001 0.000000 691.6 690.0
#> 2 15.4167 47.9167 101 5099.381 9.824000 4.583333 660.5 661.9
#> 3 55.0323 76.3226 169 5501.955 8.978000 30.000002 636.3 650.9
#> 4 36.4754 77.0492 85 7101.831 8.978000 0.000000 651.9 643.5
#> 5 33.1086 78.4270 171 5235.988 9.080333 13.857677 641.8 639.9
#> 6 12.3188 86.9565 25 5580.147 10.415000 12.408759 605.7 605.4

We find that the data set consists of plenty of variables and that most of them
are numeric.

By the way: an alternative to class() and head() is str() which is deduced
from ‘structure’ and gives a comprehensive overview of the object. Try!

Turning back to CASchools, the two variables we are interested in (i.e., average
test score and the student-teacher ratio) are not included. However, it is possible
to calculate both from the provided data. To obtain the student-teacher ratios,
we simply divide the number of students by the number of teachers. The average
test score is the arithmetic mean of the test score for reading and the score of the
math test. The next code chunk shows how the two variables can be constructed
as vectors and how they are appended to CASchools.

# compute STR and append it to CASchools
CASchools$STR <- CASchools$students/CASchools$teachers

# compute TestScore and append it to CASchools
CASchools$score <- (CASchools$read + CASchools$math)/2

If we ran head(CASchools) again we would find the two variables of interest as
additional columns named STR and score (check this!).

Table 4.1 from the textbook summarizes the distribution of test scores and
student-teacher ratios. There are several functions which can be used to produce
similar results, e.g.,

• mean() (computes the arithmetic mean of the provided numbers),

• sd() (computes the sample standard deviation),

• quantile() (returns a vector of the specified sample quantiles for the
data).

The next code chunk shows how to achieve this. First, we compute summary
statistics on the columns STR and score of CASchools. In order to get nice
output we gather the measures in a data.frame named DistributionSummary.
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# compute sample averages of STR and score
avg_STR <- mean(CASchools$STR)
avg_score <- mean(CASchools$score)

# compute sample standard deviations of STR and score
sd_STR <- sd(CASchools$STR)
sd_score <- sd(CASchools$score)

# set up a vector of percentiles and compute the quantiles
quantiles <- c(0.10, 0.25, 0.4, 0.5, 0.6, 0.75, 0.9)
quant_STR <- quantile(CASchools$STR, quantiles)
quant_score <- quantile(CASchools$score, quantiles)

# gather everything in a data.frame
DistributionSummary <- data.frame(Average = c(avg_STR, avg_score),

StandardDeviation = c(sd_STR, sd_score),
quantile = rbind(quant_STR, quant_score))

# print the summary to the console
DistributionSummary
#> Average StandardDeviation quantile.10. quantile.25. quantile.40.
#> quant_STR 19.64043 1.891812 17.3486 18.58236 19.26618
#> quant_score 654.15655 19.053347 630.3950 640.05000 649.06999
#> quantile.50. quantile.60. quantile.75. quantile.90.
#> quant_STR 19.72321 20.0783 20.87181 21.86741
#> quant_score 654.45000 659.4000 666.66249 678.85999

As for the sample data, we use plot(). This allows us to detect characteristics
of our data, such as outliers which are harder to discover by looking at mere
numbers. This time we add some additional arguments to the call of plot().

The first argument in our call of plot(), score ~ STR, is again a formula that
states variables on the y- and the x-axis. However, this time the two variables
are not saved in separate vectors but are columns of CASchools. Therefore, R
would not find them without the argument data being correctly specified. data
must be in accordance with the name of the data.frame to which the variables
belong to, in this case CASchools. Further arguments are used to change the
appearance of the plot: while main adds a title, xlab and ylab add custom
labels to both axes.

plot(score ~ STR,
data = CASchools,
main = "Scatterplot of TestScore and STR",
xlab = "STR (X)",
ylab = "Test Score (Y)")
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The plot (Figure 4.2 in the book) shows the scatterplot of all observations on
the student-teacher ratio and test score. We see that the points are strongly
scattered, and that the variables are negatively correlated. That is, we expect
to observe lower test scores in bigger classes.

The function cor() (see ?cor for further info) can be used to compute the
correlation between two numeric vectors.

cor(CASchools$STR, CASchools$score)
#> [1] -0.2263627

As the scatterplot already suggests, the correlation is negative but rather weak.

The task we are now facing is to find a line which best fits the data. Of course
we could simply stick with graphical inspection and correlation analysis and
then select the best fitting line by eyeballing. However, this would be rather
subjective: different observers would draw different regression lines. On this
account, we are interested in techniques that are less arbitrary. Such a technique
is given by ordinary least squares (OLS) estimation.

The Ordinary Least Squares Estimator

The OLS estimator chooses the regression coefficients such that the estimated
regression line is as “close” as possible to the observed data points. Here, close-
ness is measured by the sum of the squared mistakes made in predicting Y given
X. Let b0 and b1 be some estimators of β0 and β1. Then the sum of squared
estimation mistakes can be expressed as

n∑
i=1

(Yi − b0 − b1Xi)2.
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The OLS estimator in the simple regression model is the pair of estimators for
intercept and slope which minimizes the expression above. The derivation of
the OLS estimators for both parameters are presented in Appendix 4.1 of the
book. The results are summarized in Key Concept 4.2.

Key Concept 4.2
The OLS Estimator, Predicted Values, and Residuals

The OLS estimators of the slope β1 and the intercept β0 in the simple
linear regression model are

β̂1 =
∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2
,

β̂0 = Y − β̂1X.

The OLS predicted values Ŷi and residuals ûi are

Ŷi = β̂0 + β̂1Xi,

ûi = Yi − Ŷi.

The estimated intercept β̂0, the slope parameter β̂1 and the residuals
(ûi) are computed from a sample of n observations of Xi and Yi, i, ...,
n. These are estimates of the unknown true population intercept (β0),
slope (β1), and error term (ui).

There are many possible ways to compute β̂0 and β̂1 in R. For example, we could
implement the formulas presented in Key Concept 4.2 with two of R’s most basic
functions: mean() and sum(). Before doing so we attach the CASchools dataset.

attach(CASchools) # allows to use the variables contained in CASchools directly

# compute beta_1_hat
beta_1 <- sum((STR - mean(STR)) * (score - mean(score))) / sum((STR - mean(STR))ˆ2)

# compute beta_0_hat
beta_0 <- mean(score) - beta_1 * mean(STR)

# print the results to the console
beta_1
#> [1] -2.279808
beta_0
#> [1] 698.9329
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Calling attach(CASchools) enables us to adress a variable contained in
CASchools by its name: it is no longer necessary to use the $ operator
in conjunction with the dataset: R may evaluate the variable name
directly.
R uses the object in the user environment if this object shares the name
of variable contained in an attached database. However, it is a better
practice to always use distinctive names in order to avoid such (seem-
ingly) ambivalences!

Notice that we adress variables contained in the attached dataset
CASchools directly for the rest of this chapter!

Of course, there are even more manual ways to perform these tasks. With OLS
being one of the most widely-used estimation techniques, R of course already
contains a built-in function named lm() (linear model) which can be used to
carry out regression analysis.

The first argument of the function to be specified is, similar to plot(), the
regression formula with the basic syntax y ~ x where y is the dependent variable
and x the explanatory variable. The argument data determines the data set
to be used in the regression. We now revisit the example from the book where
the relationship between the test scores and the class sizes is analyzed. The
following code uses lm() to replicate the results presented in figure 4.3 of the
book.

# estimate the model and assign the result to linear_model
linear_model <- lm(score ~ STR, data = CASchools)

# print the standard output of the estimated lm object to the console
linear_model
#>
#> Call:
#> lm(formula = score ~ STR, data = CASchools)
#>
#> Coefficients:
#> (Intercept) STR
#> 698.93 -2.28

Let us add the estimated regression line to the plot. This time we also enlarge
the ranges of both axes by setting the arguments xlim and ylim.

# plot the data
plot(score ~ STR,

data = CASchools,
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main = "Scatterplot of TestScore and STR",
xlab = "STR (X)",
ylab = "Test Score (Y)",
xlim = c(10, 30),
ylim = c(600, 720))

# add the regression line
abline(linear_model)
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Did you notice that this time, we did not pass the intercept and slope parameters
to abline? If you call abline() on an object of class lm which only contains a
single regressor, R draws the regression line automatically!

4.3 Measures of Fit

After fitting a linear regression model, a natural question is how well the model
describes the data. Visually, this amounts to assessing whether the observations
are tightly clustered around the regression line. Both the coefficient of deter-
mination and the standard error of the regression measure how well the OLS
Regression line fits the data.

The Coefficient of Determination

R2, the coefficient of determination, is the fraction of the sample variance of Yi
that is explained by Xi. Mathematically, the R2 can be written as the ratio of
the explained sum of squares to the total sum of squares. The explained sum of
squares (ESS) is the sum of squared deviations of the predicted values Ŷi, from
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the average of the Yi. The total sum of squares (TSS) is the sum of squared
deviations of the Yi from their average. Thus we have

ESS =
n∑
i=1

(
Ŷi − Y

)2
, (4.1)

TSS =
n∑
i=1

(
Yi − Y

)2
, (4.2)

R2 = ESS

TSS
. (4.3)

Since TSS = ESS + SSR we can also write

R2 = 1− SSR

TSS

where SSR is the sum of squared residuals, a measure for the errors made when
predicting the Y by X. The SSR is defined as

SSR =
n∑
i=1

û2
i .

R2 lies between 0 and 1. It is easy to see that a perfect fit, i.e., no errors made
when fitting the regression line, implies R2 = 1 since then we have SSR = 0.
On the contrary, if our estimated regression line does not explain any variation
in the Yi, we have ESS = 0 and consequently R2 = 0.

The Standard Error of the Regression

The Standard Error of the Regression (SER) is an estimator of the standard
deviation of the residuals ûi. As such it measures the magnitude of a typical
deviation from the regression line, i.e., the magnitude of a typical residual.

SER = sû =
√
s2
û where s2

û = 1
n− 2

n∑
i=1

û2
i = SSR

n− 2

Remember that the ui are unobserved. This is why we use their estimated
counterparts, the residuals ûi, instead. See Chapter 4.3 of the book for a more
detailed comment on the SER.
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Application to the Test Score Data

Both measures of fit can be obtained by using the function summary() with an
lm object provided as the only argument. While the function lm() only prints
out the estimated coefficients to the console, summary() provides additional
predefined information such as the regression’s R2 and the SER.

mod_summary <- summary(linear_model)
mod_summary
#>
#> Call:
#> lm(formula = score ~ STR, data = CASchools)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -47.727 -14.251 0.483 12.822 48.540
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 698.9329 9.4675 73.825 < 2e-16 ***
#> STR -2.2798 0.4798 -4.751 2.78e-06 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 18.58 on 418 degrees of freedom
#> Multiple R-squared: 0.05124, Adjusted R-squared: 0.04897
#> F-statistic: 22.58 on 1 and 418 DF, p-value: 2.783e-06

The R2 in the output is called Multiple R-squared and has a value of 0.051.
Hence, 5.1% of the variance of the dependent variable score is explained by the
explanatory variable STR. That is, the regression explains little of the variance
in score, and much of the variation in test scores remains unexplained (cf. Figure
4.3 of the book).

The SER is called Residual standard error and equals 18.58. The unit of the
SER is the same as the unit of the dependent variable. That is, on average
the deviation of the actual achieved test score and the regression line is 18.58
points.

Now, let us check whether summary() uses the same definitions for R2 and SER
as we do when computing them manually.

# compute Rˆ2 manually
SSR <- sum(mod_summary$residualsˆ2)
TSS <- sum((score - mean(score))ˆ2)
R2 <- 1 - SSR/TSS
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# print the value to the console
R2
#> [1] 0.05124009

# compute SER manually
n <- nrow(CASchools)
SER <- sqrt(SSR / (n-2))

# print the value to the console
SER
#> [1] 18.58097

We find that the results coincide. Note that the values provided by summary()
are rounded to two decimal places.

4.4 The Least Squares Assumptions

OLS performs well under a quite broad variety of different circumstances. How-
ever, there are some assumptions which need to be satisfied in order to ensure
that the estimates are normally distributed in large samples (we discuss this in
Chapter 4.5.

Key Concept 4.3
The Least Squares Assumptions

Yi = β0 + β1Xi + ui, i = 1, . . . , n

where

1. The error term ui has conditional mean zero given Xi: E(ui|Xi) =
0.

2. (Xi, Yi), i = 1, . . . , n are independent and identically distributed
(i.i.d.) draws from their joint distribution.

3. Large outliers are unlikely: Xi and Yi have nonzero finite fourth
moments.

Assumption 1: The Error Term has Conditional Mean of
Zero

This means that no matter which value we choose for X, the error term u must
not show any systematic pattern and must have a mean of 0. Consider the case
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that, unconditionally, E(u) = 0, but for low and high values of X, the error
term tends to be positive and for midrange values of X the error tends to be
negative. We can use R to construct such an example. To do so we generate
our own data using R’s built-in random number generators.

We will use the following functions:

• runif() - generates uniformly distributed random numbers
• rnorm() - generates normally distributed random numbers
• predict() - does predictions based on the results of model fitting func-

tions like lm()
• lines() - adds line segments to an existing plot

We start by creating a vector containing values that are uniformly distributed on
the interval [−5, 5]. This can be done with the function runif(). We also need
to simulate the error term. For this we generate normally distributed random
numbers with a mean equal to 0 and a variance of 1 using rnorm(). The Y
values are obtained as a quadratic function of the X values and the error.

After generating the data we estimate both a simple regression model and a
quadratic model that also includes the regressor X2 (this is a multiple regres-
sion model, see Chapter 6). Finally, we plot the simulated data and add the
estimated regression line of a simple regression model as well as the predictions
made with a quadratic model to compare the fit graphically.

# set a seed to make the results reproducible
set.seed(321)

# simulate the data
X <- runif(50, min = -5, max = 5)
u <- rnorm(50, sd = 1)

# the true relation
Y <- Xˆ2 + 2 * X + u

# estimate a simple regression model
mod_simple <- lm(Y ~ X)

# predict using a quadratic model
prediction <- predict(lm(Y ~ X + I(Xˆ2)), data.frame(X = sort(X)))

# plot the results
plot(Y ~ X)
abline(mod_simple, col = "red")
lines(sort(X), prediction)
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The plot shows what is meant by E(ui|Xi) = 0 and why it does not hold for
the linear model:

Using the quadratic model (represented by the black curve) we see that there
are no systematic deviations of the observation from the predicted relation. It
is credible that the assumption is not violated when such a model is employed.
However, using a simple linear regression model we see that the assumption is
probably violated as E(ui|Xi) varies with the Xi.

Assumption 2: Independently and Identically Distributed
Data

Most sampling schemes used when collecting data from populations produce
i.i.d.-samples. For example, we could use R’s random number generator to ran-
domly select student IDs from a university’s enrollment list and record age X
and earnings Y of the corresponding students. This is a typical example of
simple random sampling and ensures that all the (Xi, Yi) are drawn randomly
from the same population.

A prominent example where the i.i.d. assumption is not fulfilled is time series
data where we have observations on the same unit over time. For example,
take X as the number of workers in a production company over time. Due to
business transformations, the company cuts jobs periodically by a specific share
but there are also some non-deterministic influences that relate to economics,
politics etc. Using R we can easily simulate such a process and plot it.

We start the series with a total of 5000 workers and simulate the reduction of
employment with an autoregressive process that exhibits a downward movement
in the long-run and has normally distributed errors:1

employmentt = −5 + 0.98 · employmentt−1 + ut

1See Chapter 14 for more on autoregressive processes and time series analysis in general.
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# set seed
set.seed(123)

# generate a date vector
Date <- seq(as.Date("1951/1/1"), as.Date("2000/1/1"), "years")

# initialize the employment vector
X <- c(5000, rep(NA, length(Date)-1))

# generate time series observations with random influences
for (i in 2:length(Date)) {

X[i] <- -50 + 0.98 * X[i-1] + rnorm(n = 1, sd = 200)

}

#plot the results
plot(x = Date,

y = X,
type = "l",
col = "steelblue",
ylab = "Workers",
xlab = "Time")
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It is evident that the observations on the number of employees cannot be in-
dependent in this example: the level of today’s employment is correlated with
tomorrows employment level. Thus, the i.i.d. assumption is violated.
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Assumption 3: Large Outliers are Unlikely

It is easy to come up with situations where extreme observations, i.e., obser-
vations that deviate considerably from the usual range of the data, may occur.
Such observations are called outliers. Technically speaking, assumption 3 re-
quires that X and Y have a finite kurtosis.2

Common cases where we want to exclude or (if possible) correct such outliers is
when they are apparently typos, conversion errors or measurement errors. Even
if it seems like extreme observations have been recorded correctly, it is advisable
to exclude them before estimating a model since OLS suffers from sensitivity to
outliers.

What does this mean? One can show that extreme observations receive heavy
weighting in the estimation of the unknown regression coefficients when using
OLS. Therefore, outliers can lead to strongly distorted estimates of regression
coefficients. To get a better impression of this issue, consider the following
application where we have placed some sample data on X and Y which are
highly correlated. The relation between X and Y seems to be explained pretty
well by the plotted regression line: all of the white data points lie close to the
red regression line and we have R2 = 0.92.

Now go ahead and add a further observation at, say, (18, 2). This observations
clearly is an outlier. The result is quite striking: the estimated regression line
differs greatly from the one we adjudged to fit the data well. The slope is
heavily downward biased and R2 decreased to a mere 29%! Double-click inside
the coordinate system to reset the app. Feel free to experiment. Choose different
coordinates for the outlier or add additional ones.

The following code roughly reproduces what is shown in figure 4.5 in the book.
As done above we use sample data generated using R’s random number functions
rnorm() and runif(). We estimate two simple regression models, one based
on the original data set and another using a modified set where one observation
is change to be an outlier and then plot the results. In order to understand the
complete code you should be familiar with the function sort() which sorts the
entries of a numeric vector in ascending order.

# set seed
set.seed(123)

# generate the data
X <- sort(runif(10, min = 30, max = 70))
Y <- rnorm(10 , mean = 200, sd = 50)
Y[9] <- 2000

# fit model with outlier

2See Chapter 4.4 of the book.
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fit <- lm(Y ~ X)

# fit model without outlier
fitWithoutOutlier <- lm(Y[-9] ~ X[-9])

# plot the results
plot(Y ~ X)
abline(fit)
abline(fitWithoutOutlier, col = "red")
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4.5 The Sampling Distribution of the OLS Esti-
mator

Because β̂0 and β̂1 are computed from a sample, the estimators themselves
are random variables with a probability distribution — the so-called sampling
distribution of the estimators — which describes the values they could take on
over different samples. Although the sampling distribution of β̂0 and β̂1 can
be complicated when the sample size is small and generally changes with the
number of observations, n, it is possible, provided the assumptions discussed in
the book are valid, to make certain statements about it that hold for all n. In
particular

E(β̂0) = β0 and E(β̂1) = β1,

that is, β̂0 and β̂1 are unbiased estimators of β0 and β1, the true parameters. If
the sample is sufficiently large, by the central limit theorem the joint sampling
distribution of the estimators is well approximated by the bivariate normal
distribution (2.1). This implies that the marginal distributions are also normal
in large samples. Core facts on the large-sample distributions of β̂0 and β̂1 are
presented in Key Concept 4.4.
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Key Concept 4.4
Large Sample Distribution of β̂0 and β̂1

If the least squares assumptions in Key Concept 4.3 hold, then in large
samples β̂0 and β̂1 have a joint normal sampling distribution. The large
sample normal distribution of β̂1 is N (β1, σ

2
β̂1

), where the variance of the
distribution, σ2

β̂1
, is

σ2
β̂1

= 1
n

V ar [(Xi − µX)ui]
[V ar (Xi)]2

. (4.4)

The large sample normal distribution of β̂0 is N (β0, σ
2
β̂0

) with

σ2
β̂0

= 1
n

V ar (Hiui)
[E (H2

i )]2
, where Hi = 1−

[
µX

E (X2
i )

]
Xi. (4.5)

The interactive simulation below continuously generates random sam-
ples (Xi, Yi) of 200 observations where E(Y |X) = 100 + 3X, estimates
a simple regression model, stores the estimate of the slope β1 and vi-
sualizes the distribution of the β̂1s observed so far using a histogram.
The idea here is that for a large number of β̂1s, the histogram gives a
good approximation of the sampling distribution of the estimator. By
decreasing the time between two sampling iterations, it becomes clear
that the shape of the histogram approaches the characteristic bell shape
of a normal distribution centered at the true slope of 3.

This interactive part of the book is only available in the HTML version.

Simulation Study 1

Whether the statements of Key Concept 4.4 really hold can also be verified
using R. For this we first we build our own population of 100000 observations
in total. To do this we need values for the independent variable X, for the
error term u, and for the parameters β0 and β1. With these combined in a
simple regression model, we compute the dependent variable Y . In our example
we generate the numbers Xi, i = 1, . . . ,100000 by drawing a random sample
from a uniform distribution on the interval [0, 20]. The realizations of the error
terms ui are drawn from a standard normal distribution with parameters µ = 0
and σ2 = 100 (note that rnorm() requires σ as input for the argument sd, see
?rnorm). Furthermore we chose β0 = −2 and β1 = 3.5 so the true model is

Yi = −2 + 3.5 ·Xi.

Finally, we store the results in a data.frame.
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# simulate data
N <- 100000
X <- runif(N, min = 0, max = 20)
u <- rnorm(N, sd = 10)

# population regression
Y <- -2 + 3.5 * X + u
population <- data.frame(X, Y)

From now on we will consider the previously generated data as the true popula-
tion (which of course would be unknown in a real world application, otherwise
there would be no reason to draw a random sample in the first place). The
knowledge about the true population and the true relationship between Y and
X can be used to verify the statements made in Key Concept 4.4.

First, let us calculate the true variances σ2
β̂0

and σ2
β̂1

for a randomly drawn
sample of size n = 100.

# set sample size
n <- 100

# compute the variance of beta_hat_0
H_i <- 1 - mean(X) / mean(Xˆ2) * X
var_b0 <- var(H_i * u) / (n * mean(H_iˆ2)ˆ2 )

# compute the variance of hat_beta_1
var_b1 <- var( ( X - mean(X) ) * u ) / (100 * var(X)ˆ2)

# print variances to the console
var_b0
#> [1] 4.045066
var_b1
#> [1] 0.03018694

Now let us assume that we do not know the true values of β0 and β1 and that
it is not possible to observe the whole population. However, we can observe a
random sample of n observations. Then, it would not be possible to compute
the true parameters but we could obtain estimates of β0 and β1 from the sample
data using OLS. However, we know that these estimates are outcomes of ran-
dom variables themselves since the observations are randomly sampled from the
population. Key Concept 4.4 describes their distributions for large n. When
drawing a single sample of size n it is not possible to make any statement about
these distributions. Things change if we repeat the sampling scheme many times
and compute the estimates for each sample: using this procedure we simulate
outcomes of the respective distributions.
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To achieve this in R, we employ the following approach:

• We assign the number of repetitions, say 10000, to reps and then initialize
a matrix fit were the estimates obtained in each sampling iteration shall
be stored row-wise. Thus fit has to be a matrix of dimensions reps×2.

• In the next step we draw reps random samples of size n from the popula-
tion and obtain the OLS estimates for each sample. The results are stored
as row entries in the outcome matrix fit. This is done using a for()
loop.

• At last, we estimate variances of both estimators using the sampled out-
comes and plot histograms of the latter. We also add a plot of the density
functions belonging to the distributions that follow from Key Concept 4.4.
The function bquote() is used to obtain math expressions in the titles and
labels of both plots. See ?bquote.

# set repetitions and sample size
n <- 100
reps <- 10000

# initialize the matrix of outcomes
fit <- matrix(ncol = 2, nrow = reps)

# loop sampling and estimation of the coefficients
for (i in 1:reps){

sample <- population[sample(1:N, n), ]
fit[i, ] <- lm(Y ~ X, data = sample)$coefficients

}

# compute variance estimates using outcomes
var(fit[, 1])
#> [1] 4.186832
var(fit[, 2])
#> [1] 0.03096199

# divide plotting area as 1-by-2 array
par(mfrow = c(1, 2))

# plot histograms of beta_0 estimates
hist(fit[, 1],

cex.main = 1,
main = bquote(The ~ Distribution ~ of ~ 10000 ~ beta[0] ~ Estimates),
xlab = bquote(hat(beta)[0]),
freq = F)
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# add true distribution to plot
curve(dnorm(x,

-2,
sqrt(var_b0)),

add = T,
col = "darkred")

# plot histograms of beta_hat_1
hist(fit[, 2],

cex.main = 1,
main = bquote(The ~ Distribution ~ of ~ 10000 ~ beta[1] ~ Estimates),
xlab = bquote(hat(beta)[1]),
freq = F)

# add true distribution to plot
curve(dnorm(x,

3.5,
sqrt(var_b1)),

add = T,
col = "darkred")
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Our variance estimates support the statements made in Key Concept 4.4, com-
ing close to the theoretical values. The histograms suggest that the distributions
of the estimators can be well approximated by the respective theoretical normal
distributions stated in Key Concept 4.4.

Simulation Study 2

A further result implied by Key Concept 4.4 is that both estimators are consis-
tent, i.e., they converge in probability to the true parameters we are interested
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in. This is because they are asymptotically unbiased and their variances con-
verge to 0 as n increases. We can check this by repeating the simulation above
for a sequence of increasing sample sizes. This means we no longer assign the
sample size but a vector of sample sizes: n <- c(...). Let us look at the
distributions of β1. The idea here is to add an additional call of for() to the
code. This is done in order to loop over the vector of sample sizes n. For each
of the sample sizes we carry out the same simulation as before but plot a den-
sity estimate for the outcomes of each iteration over n. Notice that we have to
change n to n[j] in the inner loop to ensure that the jth element of n is used.
In the simulation, we use sample sizes of 100, 250, 1000 and 3000. Consequently
we have a total of four distinct simulations using different sample sizes.

# set seed for reproducibility
set.seed(1)

# set repetitions and the vector of sample sizes
reps <- 1000
n <- c(100, 250, 1000, 3000)

# initialize the matrix of outcomes
fit <- matrix(ncol = 2, nrow = reps)

# divide the plot panel in a 2-by-2 array
par(mfrow = c(2, 2))

# loop sampling and plotting

# outer loop over n
for (j in 1:length(n)) {

# inner loop: sampling and estimating of the coefficients
for (i in 1:reps){

sample <- population[sample(1:N, n[j]), ]
fit[i, ] <- lm(Y ~ X, data = sample)$coefficients

}

# draw density estimates
plot(density(fit[ ,2]), xlim=c(2.5, 4.5),

col = j,
main = paste("n=", n[j]),
xlab = bquote(hat(beta)[1]))

}
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We find that, as n increases, the distribution of β̂1 concentrates around its mean,
i.e., its variance decreases. Put differently, the likelihood of observing estimates
close to the true value of β1 = 3.5 grows as we increase the sample size. The
same behavior can be observed if we analyze the distribution of β̂0 instead.

Simulation Study 3

Furthermore, (4.1) reveals that the variance of the OLS estimator for β1 de-
creases as the variance of the Xi increases. In other words, as we increase the
amount of information provided by the regressor, that is, increasing V ar(X),
which is used to estimate β1, we become more confident that the estimate is
close to the true value (i.e., V ar(β̂1) decreases). We can visualize this by repro-
ducing Figure 4.6 from the book. To do this, we sample observations (Xi, Yi),
i = 1, . . . , 100 from a bivariate normal distribution with

E(X) = E(Y ) = 5,

V ar(X) = V ar(Y ) = 5

and
Cov(X,Y ) = 4.

Formally, this is written down as

(
X
Y

)
i.i.d.∼ N

[(
5
5

)
,

(
5 4
4 5

)]
. (4.3)

To carry out the random sampling, we make use of the function mvrnorm()
from the package MASS (Ripley, 2020) which allows to draw random samples
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from multivariate normal distributions, see ?mvtnorm. Next, we use subset()
to split the sample into two subsets such that the first set, set1, consists of
observations that fulfill the condition |X − X| > 1 and the second set, set2,
includes the remainder of the sample. We then plot both sets and use different
colors to distinguish the observations.

# load the MASS package
library(MASS)

# set seed for reproducibility
set.seed(4)

# simulate bivarite normal data
bvndata <- mvrnorm(100,

mu = c(5, 5),
Sigma = cbind(c(5, 4), c(4, 5)))

# assign column names / convert to data.frame
colnames(bvndata) <- c("X", "Y")
bvndata <- as.data.frame(bvndata)

# subset the data
set1 <- subset(bvndata, abs(mean(X) - X) > 1)
set2 <- subset(bvndata, abs(mean(X) - X) <= 1)

# plot both data sets
plot(set1,

xlab = "X",
ylab = "Y",
pch = 19)

points(set2,
col = "steelblue",
pch = 19)
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It is clear that observations that are close to the sample average of the Xi have
less variance than those that are farther away. Now, if we were to draw a line as
accurately as possible through either of the two sets it is intuitive that choosing
the observations indicated by the black dots, i.e., using the set of observations
which has larger variance than the blue ones, would result in a more precise
line. Now, let us use OLS to estimate slope and intercept for both sets of
observations. We then plot the observations along with both regression lines.

# estimate both regression lines
lm.set1 <- lm(Y ~ X, data = set1)
lm.set2 <- lm(Y ~ X, data = set2)

# plot observations
plot(set1, xlab = "X", ylab = "Y", pch = 19)
points(set2, col = "steelblue", pch = 19)

# add both lines to the plot
abline(lm.set1, col = "green")
abline(lm.set2, col = "red")
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Evidently, the green regression line does far better in describing data sampled
from the bivariate normal distribution stated in (4.3) than the red line. This is
a nice example for demonstrating why we are interested in a high variance of
the regressor X: more variance in the Xi means more information from which
the precision of the estimation benefits.

4.6 Exercises

This interactive part of the book is only available in the HTML version.



Chapter 5

Hypothesis Tests and
Confidence Intervals in the
Simple Linear Regression
Model

This chapter, continues our treatment of the simple linear regression model. The
following subsections discuss how we may use our knowledge about the sampling
distribution of the OLS estimator in order to make statements regarding its
uncertainty.

These subsections cover the following topics:

• Testing Hypotheses regarding regression coefficients.

• Confidence intervals for regression coefficients.

• Regression when X is a dummy variable.

• Heteroskedasticity and Homoskedasticity.

The packages AER (Kleiber and Zeileis, 2020) and scales (Wickham and Seidel,
2020) are required for reproduction of the code chunks presented throughout this
chapter. The package scales provides additional generic plot scaling methods.
Make sure both packages are installed before you proceed. The safest way to do
so is by checking whether the following code chunk executes without any errors.

125
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library(AER)
library(scales)

5.1 Testing Two-Sided Hypotheses Concerning
the Slope Coefficient

Using the fact that β̂1 is approximately normally distributed in large samples
(see Key Concept 4.4), testing hypotheses about the true value β1 can be done
as in Chapter 3.2.

Key Concept 5.1
General Form of the t-Statistic

Remember from Chapter 3 that a general t-statistic has the form

t = estimated value− hypothesized value
standard error of the estimator .
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Key Concept 5.2
Testing Hypotheses regarding β1

For testing the hypothesis H0 : β1 = β1,0, we need to perform the
following steps:

1. Compute the standard error of β̂1, SE(β̂1)

SE(β̂1) =
√
σ̂2
β̂1

, σ̂2
β̂1

= 1
n
×

1
n−2

∑n
i=1(Xi −X)2ûi

2[ 1
n

∑n
i=1(Xi −X)2

]2 .

2. Compute the t-statistic

t = β̂1 − β1,0

SE(β̂1)
.

3. Given a two sided alternative (H1 : β1 6= β1,0) we reject at the 5%
level if |tact| > 1.96 or, equivalently, if the p-value is less than 0.05.
Recall the definition of the p-value:

p-value =PrH0

[∣∣∣∣∣ β̂1 − β1,0

SE(β̂1)

∣∣∣∣∣ >
∣∣∣∣∣ β̂act1 − β1,0

SE(β̂1)

∣∣∣∣∣
]

=PrH0(|t| > |tact|)
= 2 · Φ(−|tact|)

The last transformation is due to the normal approximation for
large samples.

Consider again the OLS regression stored in linear_model from Chapter 4 that
gave us the regression line

̂TestScore = 698.9
(9.47)

− 2.28
(0.49)

× STR , R2 = 0.051 , SER = 18.6.

Copy and execute the following code chunk if the above model object is not
available in your working environment.

# load the `CASchools` dataset
data(CASchools)

# add student-teacher ratio
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CASchools$STR <- CASchools$students/CASchools$teachers

# add average test-score
CASchools$score <- (CASchools$read + CASchools$math)/2

# estimate the model
linear_model <- lm(score ~ STR, data = CASchools)

For testing a hypothesis concerning the slope parameter (the coefficient on
STR), we need SE(β̂1), the standard error of the respective point estimator.
As is common in the literature, standard errors are presented in parentheses
below the point estimates.

Key Concept 5.1 reveals that it is rather cumbersome to compute the standard
error and thereby the t-statistic by hand. The question you should be asking
yourself right now is: can we obtain these values with minimum effort using R?
Yes, we can. Let us first use summary() to get a summary on the estimated
coefficients in linear_model.

Note: Throughout the textbook, robust standard errors are reported. We con-
sider it instructive keep things simple at the beginning and thus start out with
simple examples that do not allow for robust inference. Standard errors that are
robust to heteroskedasticity are introduced in Chapter 5.4 where we also demon-
strate how they can be computed using R. A discussion of heteroskedasticity-
autocorrelation robust standard errors takes place in Chapter 15.

# print the summary of the coefficients to the console
summary(linear_model)$coefficients
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 698.932949 9.4674911 73.824516 6.569846e-242
#> STR -2.279808 0.4798255 -4.751327 2.783308e-06

The second column of the coefficients’ summary, reports SE(β̂0) and SE(β̂1).
Also, in the third column t value, we find t-statistics tact suitable for tests
of the separate hypotheses H0 : β0 = 0 and H0 : β1 = 0. Furthermore, the
output provides us with p-values corresponding to both tests against the two-
sided alternatives H1 : β0 6= 0 respectively H1 : β1 6= 0 in the fourth column of
the table.

Let us have a closer look at the test of

H0 : β1 = 0 vs. H1 : β1 6= 0.

We have
tact = −2.279808− 0

0.4798255 ≈ −4.75.
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What does this tell us about the significance of the estimated coefficient? We
reject the null hypothesis at the 5% level of significance since |tact| > 1.96.
That is, the observed test statistic falls into the rejection region as p-value =
2.78 · 10−6 < 0.05. We conclude that the coefficient is significantly different
from zero. In other words, we reject the hypothesis that the class size has no
influence on the students test scores at the 5% level.

Note that although the difference is negligible in the present case as we will
see later, summary() does not perform the normal approximation but calculates
p-values using the t-distribution instead. Generally, the degrees of freedom of
the assumed t-distribution are determined in the following manner:

DF = n− k − 1

where n is the number of observations used to estimate the model and k is the
number of regressors, excluding the intercept. In our case, we have n = 420
observations and the only regressor is STR so k = 1. The simplest way to
determine the model degrees of freedom is

# determine residual degrees of freedom
linear_model$df.residual
#> [1] 418

Hence, for the assumed sampling distribution of β̂1 we have

β̂1 ∼ t418

such that the p-value for a two-sided significance test can be obtained by exe-
cuting the following code:

2 * pt(-4.751327, df = 418)
#> [1] 2.78331e-06

The result is very close to the value provided by summary(). However since n
is sufficiently large one could just as well use the standard normal density to
compute the p-value:

2 * pnorm(-4.751327)
#> [1] 2.02086e-06

The difference is indeed negligible. These findings tell us that, if H0 : β1 = 0
is true and we were to repeat the whole process of gathering observations and
estimating the model, observing a β̂1 ≥ | − 2.28| is very unlikely!

Using R we may visualize how such a statement is made when using the normal
approximation. This reflects the principles depicted in figure 5.1 in the book.
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Do not let the following code chunk deter you: the code is somewhat longer
than the usual examples and looks unappealing but there is a lot of repetition
since color shadings and annotations are added on both tails of the normal
distribution. We recommend to execute the code step by step in order to see
how the graph is augmented with the annotations.

# Plot the standard normal on the support [-6,6]
t <- seq(-6, 6, 0.01)

plot(x = t,
y = dnorm(t, 0, 1),
type = "l",
col = "steelblue",
lwd = 2,
yaxs = "i",
axes = F,
ylab = "",
main = expression("Calculating the p-value of a Two-sided Test when" ~ tˆact ~ "=-4.75"),
cex.lab = 0.7,
cex.main = 1)

tact <- -4.75

axis(1, at = c(0, -1.96, 1.96, -tact, tact), cex.axis = 0.7)

# Shade the critical regions using polygon():

# critical region in left tail
polygon(x = c(-6, seq(-6, -1.96, 0.01), -1.96),

y = c(0, dnorm(seq(-6, -1.96, 0.01)), 0),
col = 'orange')

# critical region in right tail

polygon(x = c(1.96, seq(1.96, 6, 0.01), 6),
y = c(0, dnorm(seq(1.96, 6, 0.01)), 0),
col = 'orange')

# Add arrows and texts indicating critical regions and the p-value
arrows(-3.5, 0.2, -2.5, 0.02, length = 0.1)
arrows(3.5, 0.2, 2.5, 0.02, length = 0.1)

arrows(-5, 0.16, -4.75, 0, length = 0.1)
arrows(5, 0.16, 4.75, 0, length = 0.1)
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text(-3.5, 0.22,
labels = expression("0.025"~"="~over(alpha, 2)),
cex = 0.7)

text(3.5, 0.22,
labels = expression("0.025"~"="~over(alpha, 2)),
cex = 0.7)

text(-5, 0.18,
labels = expression(paste("-|",t[act],"|")),
cex = 0.7)

text(5, 0.18,
labels = expression(paste("|",t[act],"|")),
cex = 0.7)

# Add ticks indicating critical values at the 0.05-level, tˆact and -tˆact
rug(c(-1.96, 1.96), ticksize = 0.145, lwd = 2, col = "darkred")
rug(c(-tact, tact), ticksize = -0.0451, lwd = 2, col = "darkgreen")

Calculating the p−value of a Two−sided Test when tact =−4.75

t

−4.75 −1.96 0.00 1.96 4.75

0.025 = 
α

2
0.025 = 

α

2
−|tact| |tact|

The p-Value is the area under the curve to left of −4.75 plus the area under the
curve to the right of 4.75. As we already know from the calculations above, this
value is very small.
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5.2 Confidence Intervals for Regression Coeffi-
cients

As we already know, estimates of the regression coefficients β0 and β1 are sub-
ject to sampling uncertainty, see Chapter 4. Therefore, we will never exactly
estimate the true value of these parameters from sample data in an empirical
application. However, we may construct confidence intervals for the intercept
and the slope parameter.

A 95% confidence interval for βi has two equivalent definitions:

• The interval is the set of values for which a hypothesis test to the level of
5% cannot be rejected.

• The interval has a probability of 95% to contain the true value of βi. So in
95% of all samples that could be drawn, the confidence interval will cover
the true value of βi.

We also say that the interval has a confidence level of 95%. The idea of the
confidence interval is summarized in Key Concept 5.3.

Key Concept 5.3
A Confidence Interval for βi

Imagine you could draw all possible random samples of given size. The
interval that contains the true value βi in 95% of all samples is given by
the expression

CIβi

0.95 =
[
β̂i − 1.96× SE(β̂i) , β̂i + 1.96× SE(β̂i)

]
.

Equivalently, this interval can be seen as the set of null hypotheses for
which a 5% two-sided hypothesis test does not reject.

Simulation Study: Confidence Intervals

To get a better understanding of confidence intervals we conduct another sim-
ulation study. For now, assume that we have the following sample of n = 100
observations on a single variable Y where

Yi
i.i.d∼ N (5, 25), i = 1, . . . , 100.

# set seed for reproducibility
set.seed(4)
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# generate and plot the sample data
Y <- rnorm(n = 100,

mean = 5,
sd = 5)

plot(Y,
pch = 19,
col = "steelblue")
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We assume that the data is generated by the model

Yi = µ+ εi

where µ is an unknown constant and we know that εi
i.i.d.∼ N (0, 25). In this

model, the OLS estimator for µ is given by

µ̂ = Y = 1
n

n∑
i=1

Yi,

i.e., the sample average of the Yi. It further holds that

SE(µ̂) = σε√
n

= 5√
100

(see Chapter 2) A large-sample 95% confidence interval for µ is then given by

CIµ0.95 =
[
µ̂− 1.96× 5√

100
, µ̂+ 1.96× 5√

100

]
. (5.1)

It is fairly easy to compute this interval in R by hand. The following code chunk
generates a named vector containing the interval bounds:
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cbind(CIlower = mean(Y) - 1.96 * 5 / 10, CIupper = mean(Y) + 1.96 * 5 / 10)
#> CIlower CIupper
#> [1,] 4.502625 6.462625

Knowing that µ = 5 we see that, for our example data, the confidence interval
covers true value.

As opposed to real world examples, we can use R to get a better understanding of
confidence intervals by repeatedly sampling data, estimating µ and computing
the confidence interval for µ as in (5.1).

The procedure is as follows:

• We initialize the vectors lower and upper in which the simulated interval
limits are to be saved. We want to simulate 10000 intervals so both vectors
are set to have this length.

• We use a for() loop to sample 100 observations from the N (5, 25) distri-
bution and compute µ̂ as well as the boundaries of the confidence interval
in every iteration of the loop.

• At last we join lower and upper in a matrix.

# set seed
set.seed(1)

# initialize vectors of lower and upper interval boundaries
lower <- numeric(10000)
upper <- numeric(10000)

# loop sampling / estimation / CI
for(i in 1:10000) {

Y <- rnorm(100, mean = 5, sd = 5)
lower[i] <- mean(Y) - 1.96 * 5 / 10
upper[i] <- mean(Y) + 1.96 * 5 / 10

}

# join vectors of interval bounds in a matrix
CIs <- cbind(lower, upper)

According to Key Concept 5.3 we expect that the fraction of the 10000 simulated
intervals saved in the matrix CIs that contain the true value µ = 5 should be
roughly 95%. We can easily check this using logical operators.
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mean(CIs[, 1] <= 5 & 5 <= CIs[, 2])
#> [1] 0.9487

The simulation shows that the fraction of intervals covering µ = 5, i.e., those
intervals for which H0 : µ = 5 cannot be rejected is close to the theoretical value
of 95%.

Let us draw a plot of the first 100 simulated confidence intervals and indicate
those which do not cover the true value of µ. We do this via horizontal lines
representing the confidence intervals on top of each other.

# identify intervals not covering mu
# (4 intervals out of 100)
ID <- which(!(CIs[1:100, 1] <= 5 & 5 <= CIs[1:100, 2]))

# initialize the plot
plot(0,

xlim = c(3, 7),
ylim = c(1, 100),
ylab = "Sample",
xlab = expression(mu),
main = "Confidence Intervals")

# set up color vector
colors <- rep(gray(0.6), 100)
colors[ID] <- "red"

# draw reference line at mu=5
abline(v = 5, lty = 2)

# add horizontal bars representing the CIs
for(j in 1:100) {

lines(c(CIs[j, 1], CIs[j, 2]),
c(j, j),
col = colors[j],
lwd = 2)

}
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For the first 100 samples, the true null hypothesis is rejected in four cases so
these intervals do not cover µ = 5. We have indicated the intervals which lead
to a rejection of the null red.

Let us now come back to the example of test scores and class sizes. The regres-
sion model from Chapter 4 is stored in linear_model. An easy way to get 95%
confidence intervals for β0 and β1, the coefficients on (intercept) and STR, is
to use the function confint(). We only have to provide a fitted model object
as an input to this function. The confidence level is set to 95% by default but
can be modified by setting the argument level, see ?confint.

# compute 95% confidence interval for coefficients in 'linear_model'
confint(linear_model)
#> 2.5 % 97.5 %
#> (Intercept) 680.32312 717.542775
#> STR -3.22298 -1.336636

Let us check if the calculation is done as we expect it to be for β1, the coefficient
on STR.
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# compute 95% confidence interval for coefficients in 'linear_model' by hand
lm_summ <- summary(linear_model)

c("lower" = lm_summ$coef[2,1] - qt(0.975, df = lm_summ$df[2]) * lm_summ$coef[2, 2],
"upper" = lm_summ$coef[2,1] + qt(0.975, df = lm_summ$df[2]) * lm_summ$coef[2, 2])

#> lower upper
#> -3.222980 -1.336636

The upper and the lower bounds coincide. We have used the 0.975-quantile of
the t418 distribution to get the exact result reported by confint. Obviously,
this interval does not contain the value zero which, as we have already seen in
the previous section, leads to the rejection of the null hypothesis β1,0 = 0.

5.3 Regression when X is a Binary Variable

Instead of using a continuous regressor X, we might be interested in running
the regression

Yi = β0 + β1Di + ui (5.2)

where Di is a binary variable, a so-called dummy variable. For example, we may
define Di as follows:

Di =
{

1 if STR in ith school district < 20
0 if STR in ith school district ≥ 20

(5.3)

The regression model now is

TestScorei = β0 + β1Di + ui. (5.4)

Let us see how these data look like in a scatter plot:

# Create the dummy variable as defined above
CASchools$D <- CASchools$STR < 20

# Plot the data
plot(CASchools$D, CASchools$score, # provide the data to be plotted

pch = 20, # use filled circles as plot symbols
cex = 0.5, # set size of plot symbols to 0.5
col = "Steelblue", # set the symbols' color to "Steelblue"
xlab = expression(D[i]), # Set title and axis names
ylab = "Test Score",
main = "Dummy Regression")
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With D as the regressor, it is not useful to think of β1 as a slope parameter
since Di ∈ {0, 1}, i.e., we only observe two discrete values instead of a contin-
uum of regressor values. There is no continuous line depicting the conditional
expectation function E(TestScorei|Di) since this function is solely defined for
x-positions 0 and 1.

Therefore, the interpretation of the coefficients in this regression model is as
follows:

• E(Yi|Di = 0) = β0, so β0 is the expected test score in districts where
Di = 0 where STR is above 20.

• E(Yi|Di = 1) = β0 + β1 or, using the result above, β1 = E(Yi|Di =
1)−E(Yi|Di = 0). Thus, β1 is the difference in group-specific expectations,
i.e., the difference in expected test score between districts with STR < 20
and those with STR ≥ 20.

We will now use R to estimate the dummy regression model as defined by the
equations (5.2) and (5.3) .

# estimate the dummy regression model
dummy_model <- lm(score ~ D, data = CASchools)
summary(dummy_model)
#>
#> Call:
#> lm(formula = score ~ D, data = CASchools)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -50.496 -14.029 -0.346 12.884 49.504
#>
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#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 650.077 1.393 466.666 < 2e-16 ***
#> DTRUE 7.169 1.847 3.882 0.00012 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 18.74 on 418 degrees of freedom
#> Multiple R-squared: 0.0348, Adjusted R-squared: 0.0325
#> F-statistic: 15.07 on 1 and 418 DF, p-value: 0.0001202

summary() reports the p-value of the test that the coefficient on (Inter-
cept) is zero to to be < 2e-16. This scientific notation states that the
p-value is smaller than 2

1016 , so a very small number. The reason for
this is that computers cannot handle arbitrary small numbers. In fact,

2
1016 is the smallest possble number R can work with.

The vector CASchools\$D has the type logical (to see this, use typeof(CASchools$D))
which is shown in the output of summary(dummy_model): the label DTRUE
states that all entries TRUE are coded as 1 and all entries FALSE are coded as 0.
Thus, the interpretation of the coefficient DTRUE is as stated above for β1.

One can see that the expected test score in districts with STR < 20 (Di = 1) is
predicted to be 650.1 + 7.17 = 657.27 while districts with STR ≥ 20 (Di = 0)
are expected to have an average test score of only 650.1.

Group specific predictions can be added to the plot by execution of the following
code chunk.

# add group specific predictions to the plot
points(x = CASchools$D,

y = predict(dummy_model),
col = "red",
pch = 20)

Here we use the function predict() to obtain estimates of the group specific
means. The red dots represent these sample group averages. Accordingly, β̂1 =
7.17 can be seen as the difference in group averages.

summary(dummy_model) also answers the question whether there is a statisti-
cally significant difference in group means. This in turn would support the hy-
pothesis that students perform differently when they are taught in small classes.
We can assess this by a two-tailed test of the hypothesis H0 : β1 = 0. Conve-
niently, the t-statistic and the corresponding p-value for this test are computed
by summary().
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Since t value = 3.88 > 1.96 we reject the null hypothesis at the 5% level of
significance. The same conclusion results when using the p-value, which reports
significance up to the 0.00012% level.

As done with linear_model, we may alternatively use the function confint()
to compute a 95% confidence interval for the true difference in means and see
if the hypothesized value is an element of this confidence set.

# confidence intervals for coefficients in the dummy regression model
confint(dummy_model)
#> 2.5 % 97.5 %
#> (Intercept) 647.338594 652.81500
#> DTRUE 3.539562 10.79931

We reject the hypothesis that there is no difference between group means at the
5% significance level since β1,0 = 0 lies outside of [3.54, 10.8], the 95% confidence
interval for the coefficient on D.

5.4 Heteroskedasticity and Homoskedasticity

All inference made in the previous chapters relies on the assumption that the
error variance does not vary as regressor values change. But this will often not
be the case in empirical applications.

Key Concept 5.4
Heteroskedasticity and Homoskedasticity

• The error term of our regression model is homoskedastic if the
variance of the conditional distribution of ui givenXi, V ar(ui|Xi =
x), is constant for all observations in our sample:

Var(ui|Xi = x) = σ2 ∀ i = 1, . . . , n.

• If instead there is dependence of the conditional variance of ui on
Xi, the error term is said to be heteroskedastic. We then write

Var(ui|Xi = x) = σ2
i ∀ i = 1, . . . , n.

• Homoskedasticity is a special case of heteroskedasticity.

For a better understanding of heteroskedasticity, we generate some bivariate
heteroskedastic data, estimate a linear regression model and then use box plots
to depict the conditional distributions of the residuals.
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# load scales package for adjusting color opacities
library(scales)

# generate some heteroskedastic data:

# set seed for reproducibility
set.seed(123)

# set up vector of x coordinates
x <- rep(c(10, 15, 20, 25), each = 25)

# initialize vector of errors
e <- c()

# sample 100 errors such that the variance increases with x
e[1:25] <- rnorm(25, sd = 10)
e[26:50] <- rnorm(25, sd = 15)
e[51:75] <- rnorm(25, sd = 20)
e[76:100] <- rnorm(25, sd = 25)

# set up y
y <- 720 - 3.3 * x + e

# Estimate the model
mod <- lm(y ~ x)

# Plot the data
plot(x = x,

y = y,
main = "An Example of Heteroskedasticity",
xlab = "Student-Teacher Ratio",
ylab = "Test Score",
cex = 0.5,
pch = 19,
xlim = c(8, 27),
ylim = c(600, 710))

# Add the regression line to the plot
abline(mod, col = "darkred")

# Add boxplots to the plot
boxplot(formula = y ~ x,

add = TRUE,
at = c(10, 15, 20, 25),
col = alpha("gray", 0.4),
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border = "black")
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We have used the formula argument y ~ x in boxplot() to specify that we
want to split up the vector y into groups according to x. boxplot(y ~ x)
generates a boxplot for each of the groups in y defined by x.

For this artificial data it is clear that the conditional error variances differ.
Specifically, we observe that the variance in test scores (and therefore the vari-
ance of the errors committed) increases with the student teacher ratio.

A Real-World Example for Heteroskedasticity

Think about the economic value of education: if there were no expected eco-
nomic value-added to receiving university education, you probably would not
be reading this script right now. A starting point to empirically verify such a
relation is to have data on working individuals. More precisely, we need data
on wages and education of workers in order to estimate a model like

wagei = β0 + β1 · educationi + ui.

What can be presumed about this relation? It is likely that, on average, higher
educated workers earn more than workers with less education, so we expect
to estimate an upward sloping regression line. Also, it seems plausible that
earnings of better educated workers have a higher dispersion than those of low-
skilled workers: solid education is not a guarantee for a high salary so even
highly qualified workers take on low-income jobs. However, they are more likely
to meet the requirements for the well-paid jobs than workers with less education
for whom opportunities in the labor market are much more limited.
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To verify this empirically we may use real data on hourly earnings and the
number of years of education of employees. Such data can be found in
CPSSWEducation. This data set is part of the package AER and comes from
the Current Population Survey (CPS) which is conducted periodically by the
Bureau of Labor Statistics in the United States.

The subsequent code chunks demonstrate how to import the data into R and
how to produce a plot in the fashion of Figure 5.3 in the book.

# load package and attach data
library(AER)
data("CPSSWEducation")
attach(CPSSWEducation)

# get an overview
summary(CPSSWEducation)
#> age gender earnings education
#> Min. :29.0 female:1202 Min. : 2.137 Min. : 6.00
#> 1st Qu.:29.0 male :1748 1st Qu.:10.577 1st Qu.:12.00
#> Median :29.0 Median :14.615 Median :13.00
#> Mean :29.5 Mean :16.743 Mean :13.55
#> 3rd Qu.:30.0 3rd Qu.:20.192 3rd Qu.:16.00
#> Max. :30.0 Max. :97.500 Max. :18.00

# estimate a simple regression model
labor_model <- lm(earnings ~ education)

# plot observations and add the regression line
plot(education,

earnings,
ylim = c(0, 150))

abline(labor_model,
col = "steelblue",
lwd = 2)

http://www.bls.gov/
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The plot reveals that the mean of the distribution of earnings increases with the
level of education. This is also supported by a formal analysis: the estimated
regression model stored in labor_mod shows that there is a positive relation
between years of education and earnings.

# print the contents of labor_model to the console
labor_model
#>
#> Call:
#> lm(formula = earnings ~ education)
#>
#> Coefficients:
#> (Intercept) education
#> -3.134 1.467

The estimated regression equation states that, on average, an additional year
of education increases a worker’s hourly earnings by about $1.47. Once more
we use confint() to obtain a 95% confidence interval for both regression coef-
ficients.

# compute a 95% confidence interval for the coefficients in the model
confint(labor_model)
#> 2.5 % 97.5 %
#> (Intercept) -5.015248 -1.253495
#> education 1.330098 1.603753

Since the interval is [1.33, 1.60] we can reject the hypothesis that the coefficient
on education is zero at the 5% level.

Furthermore, the plot indicates that there is heteroskedasticity: if we assume the
regression line to be a reasonably good representation of the conditional mean
function E(earningsi|educationi), the dispersion of hourly earnings around that
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function clearly increases with the level of education, i.e., the variance of the
distribution of earnings increases. In other words: the variance of the errors
(the errors made in explaining earnings by education) increases with education
so that the regression errors are heteroskedastic.

This example makes a case that the assumption of homoskedasticity is doubtful
in economic applications. Should we care about heteroskedasticity? Yes, we
should. As explained in the next section, heteroskedasticity can have serious
negative consequences in hypothesis testing, if we ignore it.

Should We Care About Heteroskedasticity?

To answer the question whether we should worry about heteroskedasticity being
present, consider the variance of β̂1 under the assumption of homoskedasticity.
In this case we have

σ2
β̂1

= σ2
u

n · σ2
X

(5.5)

which is a simplified version of the general equation (4.1) presented in Key Con-
cept 4.4. See Appendix 5.1 of the book for details on the derivation. summary()
estimates (5.5) by

∼
σ

2
β̂1

= SER2∑n
i=1(Xi −X)2

where SER = 1
n− 2

n∑
i=1

û2
i .

Thus summary() estimates the homoskedasticity-only standard error

√
∼
σ

2
β̂1

=

√
SER2∑n

i=1(Xi −X)2
.

This is in fact an estimator for the standard deviation of the estimator β̂1 that
is inconsistent for the true value σ2

β̂1
when there is heteroskedasticity. The

implication is that t-statistics computed in the manner of Key Concept 5.1 do
not follow a standard normal distribution, even in large samples. This issue
may invalidate inference when using the previously treated tools for hypothesis
testing: we should be cautious when making statements about the significance
of regression coefficients on the basis of t-statistics as computed by summary() or
confidence intervals produced by confint() if it is doubtful for the assumption
of homoskedasticity to hold!

We will now use R to compute the homoskedasticity-only standard error for β̂1
in the test score regression model labor_model by hand and see that it matches
the value produced by summary().
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# Store model summary in 'model'
model <- summary(labor_model)

# Extract the standard error of the regression from model summary
SER <- model$sigma

# Compute the variation in 'education'
V <- (nrow(CPSSWEducation)-1) * var(education)

# Compute the standard error of the slope parameter's estimator and print it
SE.beta_1.hat <- sqrt(SERˆ2/V)
SE.beta_1.hat
#> [1] 0.06978281

# Use logical operators to see if the value computed by hand matches the one provided
# in mod$coefficients. Round estimates to four decimal places
round(model$coefficients[2, 2], 4) == round(SE.beta_1.hat, 4)
#> [1] TRUE

Indeed, the estimated values are equal.

Computation of Heteroskedasticity-Robust Standard Er-
rors

Consistent estimation of σβ̂1
under heteroskedasticity is granted when the fol-

lowing robust estimator is used.

SE(β̂1) =

√√√√ 1
n
·

1
n

∑n
i=1(Xi −X)2û2

i[ 1
n

∑n
i=1(Xi −X)2

]2 (5.6)

Standard error estimates computed this way are also referred to as Eicker-Huber-
White standard errors, the most frequently cited paper on this is White (1980).

It can be quite cumbersome to do this calculation by hand. Luckily certain
R functions exist, serving that purpose. A convenient one named vcovHC() is
part of the package sandwich.1 This function can compute a variety of standard
errors. The one brought forward in (5.6) is computed when the argument type
is set to "HC0". Most of the examples presented in the book rely on a slightly
different formula which is the default in the statistics package STATA:

1The package sandwich is a dependency of the package AER, meaning that it is attached
automatically if you load AER.

https://en.wikipedia.org/wiki/Heteroscedasticity-consistent_standard_errors
https://en.wikipedia.org/wiki/Heteroscedasticity-consistent_standard_errors
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SE(β̂1)HC1 =

√√√√ 1
n
·

1
n−2

∑n
i=1(Xi −X)2û2

i[ 1
n

∑n
i=1(Xi −X)2

]2 (5.2)

The difference is that we multiply by 1
n−2 in the numerator of (5.2). This is

a degrees of freedom correction and was considered by MacKinnon and White
(1985). To get vcovHC() to use (5.2), we have to set type = "HC1".

Let us now compute robust standard error estimates for the coefficients in
linear_model.

# compute heteroskedasticity-robust standard errors
vcov <- vcovHC(linear_model, type = "HC1")
vcov
#> (Intercept) STR
#> (Intercept) 107.419993 -5.3639114
#> STR -5.363911 0.2698692

The output of vcovHC() is the variance-covariance matrix of coefficient esti-
mates. We are interested in the square root of the diagonal elements of this
matrix, i.e., the standard error estimates.

When we have k > 1 regressors, writing down the equations for a regres-
sion model becomes very messy. A more convinient way to denote and
estimate so-called multiple regression models (see Chapter 6) is by using
matrix algebra. This is why functions like vcovHC() produce matrices.
In the simple linear regression model, the variances and covariances of
the estimators can be gathered in the symmetric variance-covariance
matrix

Var
(
β̂0
β̂1

)
=
(

Var(β̂0) Cov(β̂0, β̂1)
Cov(β̂0, β̂1) Var(β̂1)

)
, (5.3)

so vcovHC() gives us V̂ar(β̂0), V̂ar(β̂1) and Ĉov(β̂0, β̂1), but most of the
time we are interested in the diagonal elements of the estimated matrix.

# compute the square root of the diagonal elements in vcov
robust_se <- sqrt(diag(vcov))
robust_se
#> (Intercept) STR
#> 10.3643617 0.5194893
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Now assume we want to generate a coefficient summary as provided by
summary() but with robust standard errors of the coefficient estimators, robust
t-statistics and corresponding p-values for the regression model linear_model.
This can be done using coeftest() from the package lmtest, see ?coeftest.
Further we specify in the argument vcov. that vcov, the Eicker-Huber-White
estimate of the variance matrix we have computed before, should be used.

# we invoke the function `coeftest()` on our model
coeftest(linear_model, vcov. = vcov)
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 698.93295 10.36436 67.4362 < 2.2e-16 ***
#> STR -2.27981 0.51949 -4.3886 1.447e-05 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We see that the values reported in the column Std. Error are equal those
from sqrt(diag(vcov)).

How severe are the implications of using homoskedasticity-only standard errors
in the presence of heteroskedasticity? The answer is: it depends. As men-
tioned above we face the risk of drawing wrong conclusions when conducting
significance tests. Let us illustrate this by generating another example of a het-
eroskedastic data set and using it to estimate a simple regression model. We
take

Yi = β1 ·Xi + ui , ui
i.i.d.∼ N (0, 0.36 ·X2

i )

with β1 = 1 as the data generating process. Clearly, the assumption of ho-
moskedasticity is violated here since the variance of the errors is a nonlinear,
increasing function of Xi but the errors have zero mean and are i.i.d. such that
the assumptions made in Key Concept 4.3 are not violated. As before, we are
interested in estimating β1.

set.seed(905)

# generate heteroskedastic data
X <- 1:500
Y <- rnorm(n = 500, mean = X, sd = 0.6 * X)

# estimate a simple regression model
reg <- lm(Y ~ X)
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We plot the data and add the regression line.

# plot the data
plot(x = X, y = Y,

pch = 19,
col = "steelblue",
cex = 0.8)

# add the regression line to the plot
abline(reg,

col = "darkred",
lwd = 1.5)
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The plot shows that the data are heteroskedastic as the variance of Y grows with
X. We next conduct a significance test of the (true) null hypothesis H0 : β1 = 1
twice, once using the homoskedasticity-only standard error formula and once
with the robust version (5.6). An easy way to do this in R is the function
linearHypothesis() from the package car, see ?linearHypothesis. It allows
to test linear hypotheses about parameters in linear models in a similar way as
done with a t-statistic and offers various robust covariance matrix estimators.
We test by comparing the tests’ p-values to the significance level of 5%.
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linearHypothesis() computes a test statistic that follows an F -
distribution under the null hypothesis. We will not focus on the de-
tails of the underlying theory. In general, the idea of the F -test is to
compare the fit of different models. When testing a hypothesis about a
single coefficient using an F -test, one can show that the test statistic is
simply the square of the corresponding t-statistic:

F = t2 =
(
β̂i − βi,0
SE(β̂i)

)2

∼ F1,n−k−1

In linearHypothesis(), there are different ways to specify the hypothesis
to be tested, e.g., using a vector of the type character (as done in the
next code chunk), see ?linearHypothesis for alternatives. The function
returns an object of class anova which contains further information on
the test that can be accessed using the $ operator.

# test hypthesis using the default standard error formula
linearHypothesis(reg, hypothesis.matrix = "X = 1")$'Pr(>F)'[2] < 0.05
#> [1] TRUE

# test hypothesis using the robust standard error formula
linearHypothesis(reg, hypothesis.matrix = "X = 1", white.adjust = "hc1")$'Pr(>F)'[2] < 0.05
#> [1] FALSE

This is a good example of what can go wrong if we ignore heteroskedasticity:
for the data set at hand the default method rejects the null hypothesis β1 = 1
although it is true. When using the robust standard error formula the test does
not reject the null. Of course, we could think this might just be a coincidence
and both tests do equally well in maintaining the type I error rate of 5%. This
can be further investigated by computing Monte Carlo estimates of the rejection
frequencies of both tests on the basis of a large number of random samples. We
proceed as follows:

• initialize vectors t and t.rob.
• Using a for() loop, we generate 10000 heteroskedastic random samples

of size 1000, estimate the regression model and check whether the tests
falsely reject the null at the level of 5% using comparison operators. The
results are stored in the respective vectors t and t.rob.

• After the simulation, we compute the fraction of false rejections for both
tests.



5.5. THE GAUSS-MARKOV THEOREM 151

# initialize vectors t and t.rob
t <- c()
t.rob <- c()

# loop sampling and estimation
for (i in 1:10000) {

# sample data
X <- 1:1000
Y <- rnorm(n = 1000, mean = X, sd = 0.6 * X)

# estimate regression model
reg <- lm(Y ~ X)

# homoskedasdicity-only significance test
t[i] <- linearHypothesis(reg, "X = 1")$'Pr(>F)'[2] < 0.05

# robust significance test
t.rob[i] <- linearHypothesis(reg, "X = 1", white.adjust = "hc1")$'Pr(>F)'[2] < 0.05

}

# compute the fraction of false rejections
round(cbind(t = mean(t), t.rob = mean(t.rob)), 3)
#> t t.rob
#> [1,] 0.073 0.05

These results reveal the increased risk of falsely rejecting the null using the
homoskedasticity-only standard error for the testing problem at hand: with the
common standard error, 7.28% of all tests falsely reject the null hypothesis. In
contrast, with the robust test statistic we are closer to the nominal level of 5%.

5.5 The Gauss-Markov Theorem

When estimating regression models, we know that the results of the estima-
tion procedure are random. However, when using unbiased estimators, at least
on average, we estimate the true parameter. When comparing different unbi-
ased estimators, it is therefore interesting to know which one has the highest
precision: being aware that the likelihood of estimating the exact value of the
parameter of interest is 0 in an empirical application, we want to make sure
that the likelihood of obtaining an estimate very close to the true value is as
high as possible. This means we want to use the estimator with the lowest
variance of all unbiased estimators, provided we care about unbiasedness. The
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Gauss-Markov theorem states that, in the class of conditionally unbiased linear
estimators, the OLS estimator has this property under certain conditions.

Key Concept 5.5
The Gauss-Markov Theorem for β̂1

Suppose that the assumptions made in Key Concept 4.3 hold and
that the errors are homoskedastic. The OLS estimator is the best (in
the sense of smallest variance) linear conditionally unbiased estimator
(BLUE) in this setting.

Let us have a closer look at what this means:

• Estimators of β1 that are linear functions of the Y1, . . . , Yn and
that are unbiased conditionally on the regressor X1, . . . , Xn can be
written as

∼
β1 =

n∑
i=1

aiYi

where the ai are weights that are allowed to depend on the Xi but
not on the Yi.

• We already know that
∼
β1 has a sampling distribution:

∼
β1 is a linear

function of the Yi which are random variables. If now

E(
∼
β1|X1, . . . , Xn) = β1,

∼
β1 is a linear unbiased estimator of β1, conditionally on the
X1, . . . , Xn.

• We may ask if
∼
β1 is also the best estimator in this class, i.e., the

most efficient one of all linear conditionally unbiased estimators
where most efficient means smallest variance. The weights ai play
an important role here and it turns out that OLS uses just the
right weights to have the BLUE property.

Simulation Study: BLUE Estimator

Consider the case of a regression of Yi, . . . , Yn only on a constant. Here, the
Yi are assumed to be a random sample from a population with mean µ and
variance σ2. The OLS estimator in this model is simply the sample mean, see
Chapter 3.2.
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β̂1 =
n∑
i=1

1
n︸︷︷︸

=ai

Yi (5.4)

Clearly, each observation is weighted by

ai = 1
n
.

and we also know that Var(β̂1) = σ2

n .

We now use R to conduct a simulation study that demonstrates what happens
to the variance of (5.4) if different weights

wi = 1± ε
n

are assigned to either half of the sample Y1, . . . , Yn instead of using 1
n , the OLS

weights.

# set sample size and number of repetitions
n <- 100
reps <- 1e5

# choose epsilon and create a vector of weights as defined above
epsilon <- 0.8
w <- c(rep((1 + epsilon) / n, n / 2),

rep((1 - epsilon) / n, n / 2) )

# draw a random sample y_1,...,y_n from the standard normal distribution,
# use both estimators 1e5 times and store the result in the vectors 'ols' and
# 'weightedestimator'

ols <- rep(NA, reps)
weightedestimator <- rep(NA, reps)

for (i in 1:reps) {

y <- rnorm(n)
ols[i] <- mean(y)
weightedestimator[i] <- crossprod(w, y)

}

# plot kernel density estimates of the estimators' distributions:
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# OLS
plot(density(ols),

col = "purple",
lwd = 3,
main = "Density of OLS and Weighted Estimator",
xlab = "Estimates")

# weighted
lines(density(weightedestimator),

col = "steelblue",
lwd = 3)

# add a dashed line at 0 and add a legend to the plot
abline(v = 0, lty = 2)

legend('topright',
c("OLS", "Weighted"),
col = c("purple", "steelblue"),
lwd = 3)
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What conclusion can we draw from the result?

• Both estimators seem to be unbiased: the means of their estimated distri-
butions are zero.

• The estimator using weights that deviate from those implied by OLS is less
efficient than the OLS estimator: there is higher dispersion when weights
are wi = 1±0.8

100 instead of wi = 1
100 as required by the OLS solution.

Hence, the simulation results support the Gauss-Markov Theorem.



5.6. USING THE T-STATISTIC IN REGRESSIONWHEN THE SAMPLE SIZE IS SMALL155

5.6 Using the t-Statistic in Regression When
the Sample Size Is Small

The three OLS assumptions discussed in Chapter 4 (see Key Concept 4.3) are the
foundation for the results on the large sample distribution of the OLS estimators
in the simple regression model. What can be said about the distribution of the
estimators and their t-statistics when the sample size is small and the population
distribution of the data is unknown? Provided that the three least squares
assumptions hold and the errors are normally distributed and homoskedastic (we
refer to these conditions as the homoskedastic normal regression assumptions),
we have normally distributed estimators and t-distributed test statistics in small
samples.

Recall the definition of a t-distributed variable

Z√
W/M

∼ tM

where Z is a standard normal random variable, W is χ2 distributed with M
degrees of freedom and Z and W are independent. See section 5.6 in the book
for a more detailed discussion of the small sample distribution of t-statistics in
regression methods.

Let us simulate the distribution of regression t-statistics based on a large number
of small random samples, say n = 20, and compare the simulated distributions
to the theoretical distributions which should be t18, the t-distribution with 18
degrees of freedom (recall that DF = n− k − 1).

# initialize two vectors
beta_0 <- c()
beta_1 <- c()

# loop sampling / estimation / t statistics
for (i in 1:10000) {

X <- runif(20, 0, 20)
Y <- rnorm(n = 20, mean = X)
reg <- summary(lm(Y ~ X))
beta_0[i] <- (reg$coefficients[1, 1] - 0)/(reg$coefficients[1, 2])
beta_1[i] <- (reg$coefficients[2, 1] - 1)/(reg$coefficients[2, 2])

}

# plot the distributions and compare with t_18 density:
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# divide plotting area
par(mfrow = c(1, 2))

# plot the simulated density of beta_0
plot(density(beta_0),

lwd = 2 ,
main = expression(widehat(beta)[0]),
xlim = c(-4, 4))

# add the t_18 density to the plot
curve(dt(x, df = 18),

add = T,
col = "red",
lwd = 2,
lty = 2)

# plot the simulated density of beta_1
plot(density(beta_1),

lwd = 2,
main = expression(widehat(beta)[1]), xlim = c(-4, 4)
)

# add the t_18 density to the plot
curve(dt(x, df = 18),

add = T,
col = "red",
lwd = 2,
lty = 2)
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The outcomes are consistent with our expectations: the empirical distributions
of both estimators seem to track the theoretical t18 distribution quite closely.
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5.7 Exercises

This interactive part of the book is only available in the HTML version.
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Chapter 6

Regression Models with
Multiple Regressors

In what follows we introduce linear regression models that use more than just one
explanatory variable and discuss important key concepts in multiple regression.
As we broaden our scope beyond the relationship of only two variables (the
dependent variable and a single regressor) some potential new issues arise such
as multicollinearity and omitted variable bias (OVB). In particular, this chapter
deals with omitted variables and its implication for causal interpretation of
OLS-estimated coefficients.

Naturally, we will discuss estimation of multiple regression models using R. We
will also illustrate the importance of thoughtful usage of multiple regression
models via simulation studies that demonstrate the consequences of using highly
correlated regressors or misspecified models.

The packages AER (Kleiber and Zeileis, 2020) and MASS (Ripley, 2020) are needed
for reproducing the code presented in this chapter. Make sure that the following
code chunk executes without any errors.

library(AER)
library(MASS)

6.1 Omitted Variable Bias

The previous analysis of the relationship between test score and class size dis-
cussed in Chapters 4 and 5 has a major flaw: we ignored other determinants
of the dependent variable (test score) that correlate with the regressor (class

159
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size). Remember that influences on the dependent variable which are not cap-
tured by the model are collected in the error term, which we so far assumed to
be uncorrelated with the regressor. However, this assumption is violated if we
exclude determinants of the dependent variable which vary with the regressor.
This might induce an estimation bias, i.e., the mean of the OLS estimator’s
sampling distribution is no longer equals the true mean. In our example we
therefore wrongly estimate the causal effect on test scores of a unit change in
the student-teacher ratio, on average. This issue is called omitted variable bias
(OVB) and is summarized by Key Concept 6.1.

Key Concept 6.1
Omitted Variable Bias in Regression with a Single Regressor

Omitted variable bias is the bias in the OLS estimator that arises when
the regressor, X, is correlated with an omitted variable. For omitted
variable bias to occur, two conditions must be fulfilled:

1. X is correlated with the omitted variable.

2. The omitted variable is a determinant of the dependent variable
Y .

Together, 1. and 2. result in a violation of the first OLS assumption
E(ui|Xi) = 0. Formally, the resulting bias can be expressed as

β̂1
p−→ β1 + ρXu

σu
σX

. (6.1)

See Appendix 6.1 of the book for a detailed derivation. (6.1) states that
OVB is a problem that cannot be solved by increasing the number of
observations used to estimate β1, as β̂1 is inconsistent: OVB prevents
the estimator from converging in probability to the true parameter value.
Strength and direction of the bias are determined by ρXu, the correlation
between the error term and the regressor.

In the example of test score and class size, it is easy to come up with variables
that may cause such a bias, if omitted from the model. As mentioned in the
book, a highly relevant variable could be the percentage of English learners in the
school district: it is plausible that the ability to speak, read and write English
is an important factor for successful learning. Therefore, students that are still
learning English are likely to perform worse in tests than native speakers. Also,
it is conceivable that the share of English learning students is bigger in school
districts where class sizes are relatively large: think of poor urban districts
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where a lot of immigrants live.

Let us think about a possible bias induced by omitting the share of English
learning students (PctEL) in view of (6.1). When the estimated regression
model does not include PctEL as a regressor although the true data generating
process (DGP) is

TestScore = β0 + β1 × STR+ β2 × PctEL (6.2)

where STR and PctEL are correlated, we have

ρSTR,PctEL 6= 0.

Let us investigate this using R. After defining our variables we may compute the
correlation between STR and PctEL as well as the correlation between STR
and TestScore.

# load the AER package
library(AER)

# load the data set
data(CASchools)

# define variables
CASchools$STR <- CASchools$students/CASchools$teachers
CASchools$score <- (CASchools$read + CASchools$math)/2

# compute correlations
cor(CASchools$STR, CASchools$score)
#> [1] -0.2263627
cor(CASchools$STR, CASchools$english)
#> [1] 0.1876424

The fact that ρ̂STR,Testscore = −0.2264 is cause for concern that omitting
PctEL leads to a negatively biased estimate β̂1 since this indicates that ρXu < 0.
As a consequence we expect β̂1, the coefficient on STR, to be too large in ab-
solute value. Put differently, the OLS estimate of β̂1 suggests that small classes
improve test scores, but that the effect of small classes is overestimated as it
captures the effect of having fewer English learners, too.

What happens to the magnitude of β̂1 if we add the variable PctEL to the
regression, that is, if we estimate the model

TestScore = β0 + β1 × STR+ β2 × PctEL+ u
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instead? And what do we expect about the sign of β̂2, the estimated coefficient
on PctEL? Following the reasoning above we should still end up with a negative
but larger coefficient estimate β̂1 than before and a negative estimate β̂2.

Let us estimate both regression models and compare. Performing a multiple
regression in R is straightforward. One can simply add additional variables to
the right hand side of the formula argument of the function lm() by using their
names and the + operator.

# estimate both regression models
mod <- lm(score ~ STR, data = CASchools)
mult.mod <- lm(score ~ STR + english, data = CASchools)

# print the results to the console
mod
#>
#> Call:
#> lm(formula = score ~ STR, data = CASchools)
#>
#> Coefficients:
#> (Intercept) STR
#> 698.93 -2.28
mult.mod
#>
#> Call:
#> lm(formula = score ~ STR + english, data = CASchools)
#>
#> Coefficients:
#> (Intercept) STR english
#> 686.0322 -1.1013 -0.6498

We find the outcomes to be consistent with our expectations.

The following section discusses some theory on multiple regression models.

6.2 The Multiple Regression Model

The multiple regression model extends the basic concept of the simple regression
model discussed in Chapters 4 and 5. A multiple regression model enables us to
estimate the effect on Yi of changing a regressor X1i if the remaining regressors
X2i, X3i . . . , Xki do not vary. In fact we already have performed estimation
of the multiple regression model (6.2) using R in the previous section. The
interpretation of the coefficient on student-teacher ratio is the effect on test
scores of a one unit change student-teacher ratio if the percentage of English
learners is kept constant.
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Just like in the simple regression model, we assume the true relationship between
Y and X1i, X2i . . . . . . , Xki to be linear. On average, this relation is given by
the population regression function

E(Yi|X1i = x1, X2i = x2, X3i = x3, . . . , Xki = xk) = β0+β1x1+β2x2+β3x3+· · ·+βkxk.
(6.3)

As in the simple regression model, the relation

Yi = β0 + β1X1i + β2X2i + β3X3i + · · ·+ βkXki

does not hold exactly since there are disturbing influences to the dependent
variable Y we cannot observe as explanatory variables. Therefore we add an
error term u which represents deviations of the observations from the population
regression line to (6.3). This yields the population multiple regression model

Yi = β0 + β1X1i + β2X2i + β3X3i + · · ·+ βkXki + ui, i = 1, . . . , n. (6.4)

Key Concept 6.2 summarizes the core concepts of the multiple regression model.

Key Concept 6.2
The Multiple Regression Model

• Yi is the ith observation in the dependent variable. Observations
on the k regressors are denoted by X1i, X2i, . . . , Xki and ui is the
error term.

• The average relationship between Y and the regressors is given by
the population regression line

E(Yi|X1i = x1, X2i = x2, X3i = x3, . . . , Xki = xk) = β0+β1x1+β2x2+β3x3+· · ·+βkxk.

• β0 is the intercept; it is the expected value of Y when all Xs equal
0. βj , j = 1, . . . , k are the coefficients on Xj , j = 1, . . . , k. β1
measures the expected change in Yi that results from a one unit
change in X1i while holding all other regressors constant.

How can we estimate the coefficients of the multiple regression model (6.4)?
We will not go too much into detail on this issue as our focus is on using R.
However, it should be pointed out that, similarly to the simple regression model,
the coefficients of the multiple regression model can be estimated using OLS.
As in the simple model, we seek to minimize the sum of squared mistakes by
choosing estimates b0, b1, . . . , bk for the coefficients β0, β1, . . . , βk such that

n∑
i=1

(Yi − b0 − b1X1i − b2X2i − · · · − bkXki)2 (6.5)
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is minimized. Note that (6.5) is simply an extension of SSR in the case with
just one regressor and a constant. The estimators that minimize (6.5) are hence
denoted β̂0, β̂1, . . . , β̂k and, as in the simple regression model, we call them the
ordinary least squares estimators of β0, β1, . . . , βk. For the predicted value of Yi
given the regressors and the estimates β̂0, β̂1, . . . , β̂k we have

Ŷi = β̂0 + β̂1X1i + · · ·+ β̂kXki.

The difference between Yi and its predicted value Ŷi is called the OLS residual
of observation i: û = Yi − Ŷi.

For further information regarding the theory behind multiple regression, see
Chapter 18.1 of the book which inter alia presents a derivation of the OLS
estimator in the multiple regression model using matrix notation.

Now let us jump back to the example of test scores and class sizes. The esti-
mated model object is mult.mod. As for simple regression models we can use
summary() to obtain information on estimated coefficients and model statistics.

summary(mult.mod)$coef
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 686.0322445 7.41131160 92.565565 3.871327e-280
#> STR -1.1012956 0.38027827 -2.896026 3.978059e-03
#> english -0.6497768 0.03934254 -16.515882 1.657448e-47

So the estimated multiple regression model is

̂TestScore = 686.03− 1.10× STR− 0.65× PctEL. (6.6)

Unlike in the simple regression model where the data can be represented by
points in the two-dimensional coordinate system, we now have three dimensions.
Hence observations can be represented by points in three-dimensional space.
Therefore (6.6) is now longer a regression line but a regression plane. This idea
extends to higher dimensions when we further expand the number of regressors
k. We then say that the regression model can be represented by a hyperplane in
the k+ 1 dimensional space. It is already hard to imagine such a space if k = 3
and we best stick with the general idea that, in the multiple regression model,
the dependent variable is explained by a linear combination of the regressors.
However, in the present case we are able to visualize the situation. The following
figure is an interactive 3D visualization of the data and the estimated regression
plane (6.6).

This interactive part of the book is only available in the HTML version.

We observe that the estimated regression plane fits the data reasonably well — at
least with regard to the shape and spatial position of the points. The color of the
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markers is an indicator for the absolute deviation from the predicted regression
plane. Observations that are colored more reddish lie close to the regression
plane while the color shifts to blue with growing distance. An anomaly that
can be seen from the plot is that there might be heteroskedasticity: we see that
the dispersion of regression errors made, i.e., the distance of observations to
the regression plane tends to decrease as the share of English learning students
increases.

6.3 Measures of Fit in Multiple Regression

In multiple regression, common summary statistics are SER, R2 and the ad-
justed R2.

Taking the code from Section 6.2, simply use summary(mult.mod) to obtain
the SER, R2 and adjusted-R2. For multiple regression models the SER is
computed as

SER = sû =
√
s2
û

where modify the denominator of the premultiplied factor in s2
û in order to

accommodate for additional regressors. Thus,

s2
û = 1

n− k − 1 SSR

with k denoting the number of regressors excluding the intercept.

While summary() computes the R2 just as in the case of a single regressor, it is
no reliable measure for multiple regression models. This is due to R2 increasing
whenever an additional regressor is added to the model. Adding a regressor de-
creases the SSR — at least unless the respective estimated coefficient is exactly
zero what practically never happens (see Chapter 6.4 of the book for a detailed
argument). The adjusted R2 takes this into consideration by “punishing” the
addition of regressors using a correction factor. So the adjusted R2, or simply
R̄2, is a modified version of R2. It is defined as

R̄2 = 1− n− 1
n− k − 1

SSR

TSS
.

As you may have already suspected, summary() adjusts the formula for SER
and it computes R̄2 and of course R2 by default, thereby leaving the decision
which measure to rely on to the user.

You can find both measures at the bottom of the output produced by calling
summary(mult.mod).
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summary(mult.mod)
#>
#> Call:
#> lm(formula = score ~ STR + english, data = CASchools)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 686.03224 7.41131 92.566 < 2e-16 ***
#> STR -1.10130 0.38028 -2.896 0.00398 **
#> english -0.64978 0.03934 -16.516 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16

We can also compute the measures by hand using the formulas above. Let us
check that the results coincide with the values provided by summary().

# define the components
n <- nrow(CASchools) # number of observations (rows)
k <- 2 # number of regressors

y_mean <- mean(CASchools$score) # mean of avg. test-scores

SSR <- sum(residuals(mult.mod)ˆ2) # sum of squared residuals
TSS <- sum((CASchools$score - y_mean )ˆ2) # total sum of squares
ESS <- sum((fitted(mult.mod) - y_mean)ˆ2) # explained sum of squares

# compute the measures

SER <- sqrt(1/(n-k-1) * SSR) # standard error of the regression
Rsq <- 1 - (SSR / TSS) # Rˆ2
adj_Rsq <- 1 - (n-1)/(n-k-1) * SSR/TSS # adj. Rˆ2

# print the measures to the console
c("SER" = SER, "R2" = Rsq, "Adj.R2" = adj_Rsq)
#> SER R2 Adj.R2
#> 14.4644831 0.4264315 0.4236805
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Now, what can we say about the fit of our multiple regression model for test
scores with the percentage of English learners as an additional regressor? Does
it improve on the simple model including only an intercept and a measure of
class size? The answer is yes: compare R̄2 with that obtained for the simple
regression model mod.

Including PctEL as a regressor improves the R̄2, which we deem to be more
reliable in view of the above discussion. Notice that the difference between R2

and R̄2 is small since k = 2 and n is large. In short, the fit of (6.6) improves
vastly on the fit of the simple regression model with STR as the only regressor.
Comparing regression errors we find that the precision of the multiple regression
model (6.6) improves upon the simple model as adding PctEL lowers the SER
from 18.6 to 14.5 units of test score.

As already mentioned, R̄2 may be used to quantify how good a model fits the
data. However, it is rarely a good idea to maximize these measures by stuffing
the model with regressors. You will not find any serious study that does so.
Instead, it is more useful to include regressors that improve the estimation of
the causal effect of interest which is not assessed by means the R2 of the model.
The issue of variable selection is covered in Chapter 8.

6.4 OLS Assumptions in Multiple Regression

In the multiple regression model we extend the three least squares assumptions
of the simple regression model (see Chapter 4) and add a fourth assumption.
These assumptions are presented in Key Concept 6.4. We will not go into the
details of assumptions 1-3 since their ideas generalize easy to the case of multiple
regressors. We will focus on the fourth assumption. This assumption rules out
perfect correlation between regressors.
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Key Concept 6.4
The Least Squares Assumptions in the Multiple Regression
Model

The multiple regression model is given by

Yi = β0 + β1X1i + β1X2i + · · ·+ βkXki + ui , i = 1, . . . , n.

The OLS assumptions in the multiple regression model are an extension
of the ones made for the simple regression model:

1. Regressors (X1i, X2i, . . . , Xki, Yi) , i = 1, . . . , n, are drawn such
that the i.i.d. assumption holds.

2. ui is an error term with conditional mean zero given the regressors,
i.e.,

E(ui|X1i, X2i, . . . , Xki) = 0.

3. Large outliers are unlikely, formally X1i, . . . , Xki and Yi have finite
fourth moments.

4. No perfect multicollinearity.

Multicollinearity

Multicollinearity means that two or more regressors in a multiple regression
model are strongly correlated. If the correlation between two or more regres-
sors is perfect, that is, one regressor can be written as a linear combination of
the other(s), we have perfect multicollinearity. While strong multicollinearity in
general is unpleasant as it causes the variance of the OLS estimator to be large
(we will discuss this in more detail later), the presence of perfect multicollinear-
ity makes it impossible to solve for the OLS estimator, i.e., the model cannot
be estimated in the first place.

The next section presents some examples of perfect multicollinearity and demon-
strates how lm() deals with them.

Examples of Perfect Multicollinearity

How does R react if we try to estimate a model with perfectly correlated regres-
sors?

lm will produce a warning in the first line of the coefficient section of the out-
put (1 not defined because of singularities) and ignore the regressor(s)
which is (are) assumed to be a linear combination of the other(s). Consider
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the following example where we add another variable FracEL, the fraction of
English learners, to CASchools where observations are scaled values of the ob-
servations for english and use it as a regressor together with STR and english
in a multiple regression model. In this example english and FracEL are per-
fectly collinear. The R code is as follows.

# define the fraction of English learners
CASchools$FracEL <- CASchools$english / 100

# estimate the model
mult.mod <- lm(score ~ STR + english + FracEL, data = CASchools)

# obtain a summary of the model
summary(mult.mod)
#>
#> Call:
#> lm(formula = score ~ STR + english + FracEL, data = CASchools)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients: (1 not defined because of singularities)
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 686.03224 7.41131 92.566 < 2e-16 ***
#> STR -1.10130 0.38028 -2.896 0.00398 **
#> english -0.64978 0.03934 -16.516 < 2e-16 ***
#> FracEL NA NA NA NA
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16

The row FracEL in the coefficients section of the output consists of NA entries
since FracEL was excluded from the model.

If we were to compute OLS by hand, we would run into the same problem but
no one would be helping us out! The computation simply fails. Why is this?
Take the following example:

Assume you want to estimate a simple linear regression model with a constant
and a single regressor X. As mentioned above, for perfect multicollinearity to
be present X has to be a linear combination of the other regressors. Since the
only other regressor is a constant (think of the right hand side of the model
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equation as β0 × 1 + β1Xi + ui so that β1 is always multiplied by 1 for every
observation), X has to be constant as well. For β̂1 we have

β̂1 =
∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2
= Ĉov(X,Y )

V̂ ar(X)
. (6.7)

The variance of the regressor X is in the denominator. Since the variance of a
constant is zero, we are not able to compute this fraction and β̂1 is undefined.

Note: In this special case the denominator in (6.7) equals zero, too. Can you
show that?

Let us consider two further examples where our selection of regressors induces
perfect multicollinearity. First, assume that we intend to analyze the effect of
class size on test score by using a dummy variable that identifies classes which
are not small (NS). We define that a school has the NS attribute when the
school’s average student-teacher ratio is at least 12,

NS =
{

0, if STR < 12
1 otherwise.

We add the corresponding column to CASchools and estimate a multiple regres-
sion model with covariates computer and english.

# if STR smaller 12, NS = 0, else NS = 1
CASchools$NS <- ifelse(CASchools$STR < 12, 0, 1)

# estimate the model
mult.mod <- lm(score ~ computer + english + NS, data = CASchools)

# obtain a model summary
summary(mult.mod)
#>
#> Call:
#> lm(formula = score ~ computer + english + NS, data = CASchools)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -49.492 -9.976 -0.778 8.761 43.798
#>
#> Coefficients: (1 not defined because of singularities)
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 663.704837 0.984259 674.319 < 2e-16 ***
#> computer 0.005374 0.001670 3.218 0.00139 **
#> english -0.708947 0.040303 -17.591 < 2e-16 ***
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#> NS NA NA NA NA
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.43 on 417 degrees of freedom
#> Multiple R-squared: 0.4291, Adjusted R-squared: 0.4263
#> F-statistic: 156.7 on 2 and 417 DF, p-value: < 2.2e-16

Again, the output of summary(mult.mod) tells us that inclusion of NS in the
regression would render the estimation infeasible. What happened here? This
is an example where we made a logical mistake when defining the regressor
NS: taking a closer look at NS, the redefined measure for class size, reveals
that there is not a single school with STR < 12 hence NS equals one for all
observations. We can check this by printing the contents of CASchools\$NS or
by using the function table(), see ?table.

table(CASchools$NS)
#>
#> 1
#> 420

CASchools$NS is a vector of 420 ones and our data set includes 420 observations.
This obviously violates assumption 4 of Key Concept 6.4: the observations for
the intercept are always 1,

intercept =λ ·NS

1
...
1

 =λ ·

1
...
1


⇔λ = 1.

Since the regressors can be written as a linear combination of each other, we face
perfect multicollinearity and R excludes NS from the model. Thus the take-away
message is: think carefully about how the regressors in your models relate!

Another example of perfect multicollinearity is known as the dummy variable
trap. This may occur when multiple dummy variables are used as regressors. A
common case for this is when dummies are used to sort the data into mutually
exclusive categories. For example, suppose we have spatial information that
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indicates whether a school is located in the North, West, South or East of the
U.S. This allows us to create the dummy variables

Northi =
{

1 if located in the north
0 otherwise

Westi =
{

1 if located in the west
0 otherwise

Southi =
{

1 if located in the south
0 otherwise

Easti =
{

1 if located in the east
0 otherwise.

Since the regions are mutually exclusive, for every school i = 1, . . . , n we have

Northi +Westi + Southi + Easti = 1.

We run into problems when trying to estimate a model that includes a constant
and all four direction dummies in the model, e.g.,

TestScore = β0+β1×STR+β2×english+β3×Northi+β4×Westi+β5×Southi+β6×Easti+ui
(6.8)

since then for all observations i = 1, . . . , n the constant term is a linear combi-
nation of the dummies:

intercept =λ1 · (North+West+ South+ East) (6.2)1
...
1

 =λ1 ·

1
...
1

 (6.3)

⇔λ1 = 1 (6.4)

and we have perfect multicollinearity. Thus the “dummy variable trap” means
not paying attention and falsely including exhaustive dummies and a constant
in a regression model.

How does lm() handle a regression like (6.8)? Let us first generate some artificial
categorical data and append a new column named directions to CASchools
and see how lm() behaves when asked to estimate the model.
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# set seed for reproducibility
set.seed(1)

# generate artificial data on location
CASchools$direction <- sample(c("West", "North", "South", "East"),

420,
replace = T)

# estimate the model
mult.mod <- lm(score ~ STR + english + direction, data = CASchools)

# obtain a model summary
summary(mult.mod)
#>
#> Call:
#> lm(formula = score ~ STR + english + direction, data = CASchools)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -49.603 -10.175 -0.484 9.524 42.830
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 684.80477 7.54130 90.807 < 2e-16 ***
#> STR -1.08873 0.38153 -2.854 0.00454 **
#> english -0.65597 0.04018 -16.325 < 2e-16 ***
#> directionNorth 1.66314 2.05870 0.808 0.41964
#> directionSouth 0.71619 2.06321 0.347 0.72867
#> directionWest 1.79351 1.98174 0.905 0.36598
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.5 on 414 degrees of freedom
#> Multiple R-squared: 0.4279, Adjusted R-squared: 0.421
#> F-statistic: 61.92 on 5 and 414 DF, p-value: < 2.2e-16

Notice that R solves the problem on its own by generating and including the
dummies directionNorth, directionSouth and directionWest but omitting
directionEast. Of course, the omission of every other dummy instead would
achieve the same. Another solution would be to exclude the constant and to
include all dummies instead.

Does this mean that the information on schools located in the East is lost?
Fortunately, this is not the case: exclusion of directEast just alters the inter-
pretation of coefficient estimates on the remaining dummies from absolute to
relative. For example, the coefficient estimate on directionNorth states that,
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on average, test scores in the North are about 1.61 points higher than in the
East.

A last example considers the case where a perfect linear relationship arises from
redundant regressors. Suppose we have a regressor PctES, the percentage of
English speakers in the school where

PctES = 100− PctEL

and both PctES and PctEL are included in a regression model. One regressor
is redundant since the other one conveys the same information. Since this
obviously is a case where the regressors can be written as linear combination,
we end up with perfect multicollinearity, again.

Let us do this in R.

# Percentage of english speakers
CASchools$PctES <- 100 - CASchools$english

# estimate the model
mult.mod <- lm(score ~ STR + english + PctES, data = CASchools)

# obtain a model summary
summary(mult.mod)
#>
#> Call:
#> lm(formula = score ~ STR + english + PctES, data = CASchools)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -48.845 -10.240 -0.308 9.815 43.461
#>
#> Coefficients: (1 not defined because of singularities)
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 686.03224 7.41131 92.566 < 2e-16 ***
#> STR -1.10130 0.38028 -2.896 0.00398 **
#> english -0.64978 0.03934 -16.516 < 2e-16 ***
#> PctES NA NA NA NA
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 14.46 on 417 degrees of freedom
#> Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
#> F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16

Once more, lm() refuses to estimate the full model using OLS and excludes
PctES.



6.4. OLS ASSUMPTIONS IN MULTIPLE REGRESSION 175

See Chapter 18.1 of the book for an explanation of perfect multicollinearity and
its consequences to the OLS estimator in general multiple regression models
using matrix notation.

Imperfect Multicollinearity

As opposed to perfect multicollinearity, imperfect multicollinearity is — to a
certain extent — less of a problem. In fact, imperfect multicollinearity is the
reason why we are interested in estimating multiple regression models in the first
place: the OLS estimator allows us to isolate influences of correlated regressors
on the dependent variable. If it was not for these dependencies, there would not
be a reason to resort to a multiple regression approach and we could simply work
with a single-regressor model. However, this is rarely the case in applications.
We already know that ignoring dependencies among regressors which influence
the outcome variable has an adverse effect on estimation results.

So when and why is imperfect multicollinearity a problem? Suppose you have
the regression model

Yi = β0 + β1X1i + β2X2i + ui (6.9)

and you are interested in estimating β1, the effect on Yi of a one unit change in
X1i, while holding X2i constant. You do not know that the true model indeed
includes X2. You follow some reasoning and add X2 as a covariate to the
model in order to address a potential omitted variable bias. You are confident
that E(ui|X1i, X2i) = 0 and that there is no reason to suspect a violation of
the assumptions 2 and 3 made in Key Concept 6.4. If X1 and X2 are highly
correlated, OLS struggles to precisely estimate β1. That means that although
β̂1 is a consistent and unbiased estimator for β1, it has a large variance due to
X2 being included in the model. If the errors are homoskedastic, this issue can
be better understood from the formula for the variance of β̂1 in the model (6.9)
(see Appendix 6.2 of the book):

σ2
β̂1

= 1
n

(
1

1− ρ2
X1,X2

)
σ2
u

σ2
X1

. (6.10)

First, if ρX1,X2 = 0, i.e., if there is no correlation between both regressors,
including X2 in the model has no influence on the variance of β̂1. Secondly,
if X1 and X2 are correlated, σ2

β̂1
is inversely proportional to 1 − ρ2

X1,X2
so the

stronger the correlation between X1 and X2, the smaller is 1 − ρ2
X1,X2

and
thus the bigger is the variance of β̂1. Thirdly, increasing the sample size helps
to reduce the variance of β̂1. Of course, this is not limited to the case with
two regressors: in multiple regressions, imperfect multicollinearity inflates the
variance of one or more coefficient estimators. It is an empirical question which
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coefficient estimates are severely affected by this and which are not. When
the sample size is small, one often faces the decision whether to accept the
consequence of adding a large number of covariates (higher variance) or to use
a model with only few regressors (possible omitted variable bias). This is called
bias-variance trade-off.

In sum, undesirable consequences of imperfect multicollinearity are generally
not the result of a logical error made by the researcher (as is often the case for
perfect multicollinearity) but are rather a problem that is linked to the data
used, the model to be estimated and the research question at hand.

Simulation Study: Imperfect Multicollinearity

Let us conduct a simulation study to illustrate the issues sketched above.

1. We use (6.9) as the data generating process and choose β0 = 5, β1 = 2.5
and β2 = 3 and ui is an error term distributed as N (0, 5). In a first step,
we sample the regressor data from a bivariate normal distribution:

Xi = (X1i, X2i)
i.i.d.∼ N

[(
0
0

)
,

(
10 2.5
2.5 10

)]
It is straightforward to see that the correlation between X1 and X2 in the
population is rather low:

ρX1,X2 = Cov(X1, X2)√
V ar(X1)

√
V ar(X2)

= 2.5
10 = 0.25

2. Next, we estimate the model (6.9) and save the estimates for β1 and β2.
This is repeated 10000 times with a for loop so we end up with a large
number of estimates that allow us to describe the distributions of β̂1 and
β̂2.

3. We repeat steps 1 and 2 but increase the covariance between X1 and X2
from 2.5 to 8.5 such that the correlation between the regressors is high:

ρX1,X2 = Cov(X1, X2)√
V ar(X1)

√
V ar(X2)

= 8.5
10 = 0.85

4. In order to assess the effect on the precision of the estimators of increasing
the collinearity between X1 and X2 we estimate the variances of β̂1 and
β̂2 and compare.
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# load packages
library(MASS)
library(mvtnorm)

# set number of observations
n <- 50

# initialize vectors of coefficients
coefs1 <- cbind("hat_beta_1" = numeric(10000), "hat_beta_2" = numeric(10000))
coefs2 <- coefs1

# set seed
set.seed(1)

# loop sampling and estimation
for (i in 1:10000) {

# for cov(X_1,X_2) = 0.25
X <- rmvnorm(n, c(50, 100), sigma = cbind(c(10, 2.5), c(2.5, 10)))
u <- rnorm(n, sd = 5)
Y <- 5 + 2.5 * X[, 1] + 3 * X[, 2] + u
coefs1[i, ] <- lm(Y ~ X[, 1] + X[, 2])$coefficients[-1]

# for cov(X_1,X_2) = 0.85
X <- rmvnorm(n, c(50, 100), sigma = cbind(c(10, 8.5), c(8.5, 10)))
Y <- 5 + 2.5 * X[, 1] + 3 * X[, 2] + u
coefs2[i, ] <- lm(Y ~ X[, 1] + X[, 2])$coefficients[-1]

}

# obtain variance estimates
diag(var(coefs1))
#> hat_beta_1 hat_beta_2
#> 0.05674375 0.05712459
diag(var(coefs2))
#> hat_beta_1 hat_beta_2
#> 0.1904949 0.1909056

We are interested in the variances which are the diagonal elements. We see that
due to the high collinearity, the variances of β̂1 and β̂2 have more than tripled,
meaning it is more difficult to precisely estimate the true coefficients.
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6.5 The Distribution of the OLS Estimators in
Multiple Regression

As in simple linear regression, different samples will produce different values
of the OLS estimators in the multiple regression model. Again, this variation
leads to uncertainty of those estimators which we seek to describe using their
sampling distribution(s). In short, if the assumption made in Key Concept 6.4
hold, the large sample distribution of β̂0, β̂1, . . . , β̂k is multivariate normal such
that the individual estimators themselves are also normally distributed. Key
Concept 6.5 summarizes the corresponding statements made in Chapter 6.6 of
the book. A more technical derivation of these results can be found in Chapter
18 of the book.

Key Concept 6.5
Large-sample distribution of β̂0, β̂1, . . . , β̂k

If the least squares assumptions in the multiple regression model (see
Key Concept 6.4) hold, then, in large samples, the OLS estimators
β̂0, β̂1, . . . , β̂k are jointly normally distributed. We also say that their
joint distribution is multivariate normal. Further, each β̂j is distributed
as N (βj , σ2

βj
).

Essentially, Key Concept 6.5 states that, if the sample size is large, we can ap-
proximate the individual sampling distributions of the coefficient estimators by
specific normal distributions and their joint sampling distribution by a multi-
variate normal distribution.

How can we use R to get an idea of what the joint PDF of the coefficient
estimators in multiple regression model looks like? When estimating a model
on some data, we end up with a set of point estimates that do not reveal
much information on the joint density of the estimators. However, with a large
number of estimations using repeatedly randomly sampled data from the same
population we can generate a large set of point estimates that allows us to plot
an estimate of the joint density function.

The approach we will use to do this in R is a follows:

• Generate 10000 random samples of size 50 using the DGP

Yi = 5 + 2.5 ·X1i + 3 ·X2i + ui

where the regressors X1i and X2i are sampled for each observation as

Xi = (X1i, X2i) ∼ N
[(

0
0

)
,

(
10 2.5
2.5 10

)]
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and
ui ∼ N (0, 5)

is an error term.

• For each of the 10000 simulated sets of sample data, we estimate the model

Yi = β0 + β1X1i + β2X2i + ui

and save the coefficient estimates β̂1 and β̂2.

• We compute a density estimate of the joint distribution of β̂1 and β̂2 in
the model above using the function kde2d() from the package MASS, see
?MASS. This estimate is then plotted using the function persp().

# load packages
library(MASS)
library(mvtnorm)

# set sample size
n <- 50

# initialize vector of coefficients
coefs <- cbind("hat_beta_1" = numeric(10000), "hat_beta_2" = numeric(10000))

# set seed for reproducibility
set.seed(1)

# loop sampling and estimation
for (i in 1:10000) {

X <- rmvnorm(n, c(50, 100), sigma = cbind(c(10, 2.5), c(2.5, 10)))
u <- rnorm(n, sd = 5)
Y <- 5 + 2.5 * X[, 1] + 3 * X[, 2] + u
coefs[i,] <- lm(Y ~ X[, 1] + X[, 2])$coefficients[-1]

}

# compute density estimate
kde <- kde2d(coefs[, 1], coefs[, 2])

# plot density estimate
persp(kde,

theta = 310,
phi = 30,
xlab = "beta_1",
ylab = "beta_2",
zlab = "Est. Density")
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From the plot above we can see that the density estimate has some similarity
to a bivariate normal distribution (see Chapter 2) though it is not very pretty
and probably a little rough. Furthermore, there is a correlation between the
estimates such that ρ 6= 0 in (2.1). Also, the distribution’s shape deviates from
the symmetric bell shape of the bivariate standard normal distribution and has
an elliptical surface area instead.

# estimate the correlation between estimators
cor(coefs[, 1], coefs[, 2])
#> [1] -0.2503028

Where does this correlation come from? Notice that, due to the way we gener-
ated the data, there is correlation between the regressors X1 and X2. Correla-
tion between the regressors in a multiple regression model always translates into
correlation between the estimators (see Appendix 6.2 of the book). In our case,
the positive correlation between X1 and X2 translates to negative correlation
between β̂1 and β̂2. To get a better idea of the distribution you can vary the
point of view in the subsequent smooth interactive 3D plot of the same density
estimate used for plotting with persp(). Here you can see that the shape of
the distribution is somewhat stretched due to ρ = −0.20 and it is also apparent
that both estimators are unbiased since their joint density seems to be centered
close to the true parameter vector (β1, β2) = (2.5, 3).

This interactive part of the book is only available in the HTML version.

6.6 Exercises

This interactive part of the book is only available in the HTML version.



Chapter 7

Hypothesis Tests and
Confidence Intervals in
Multiple Regression

This chapter discusses methods that allow to quantify the sampling uncertainty
in the OLS estimator of the coefficients in multiple regression models. The basis
for this are hypothesis tests and confidence intervals which, just as for the simple
linear regression model, can be computed using basic R functions. We will also
tackle the issue of testing joint hypotheses on these coefficients.

Make sure the packages AER (Kleiber and Zeileis, 2020) and stargazer (Hlavac,
2018) are installed before you go ahead and replicate the examples. The safest
way to do so is by checking whether the following code chunk executes without
any issues.

library(AER)
library(stargazer)

7.1 Hypothesis Tests and Confidence Intervals
for a Single Coefficient

We first discuss how to compute standard errors, how to test hypotheses and
how to construct confidence intervals for a single regression coefficient βj in a
multiple regression model. The basic idea is summarized in Key Concept 7.1.

181
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Key Concept 7.1
Testing the Hypothesis βj = βj,0 Against the Alternative βj 6=
βj,0

1. Compute the standard error of β̂j

2. Compute the t-statistic,

tact = β̂j − βj,0
SE(β̂j)

3. Compute the p-value,

p-value = 2Φ(−|tact|)

where tact is the value of the t-statistic actually computed. Reject
the hypothesis at the 5% significance level if the p-value is less than
0.05 or, equivalently, if |tact| > 1.96.

The standard error and (typically) the t-statistic and the corresponding
p-value for testing βj = 0 are computed automatically by suitable R
functions, e.g., by summary().

Testing a single hypothesis about the significance of a coefficient in the multiple
regression model proceeds as in in the simple regression model.
You can easily see this by inspecting the coefficient summary of the regression
model

TestScore = β0 + β1 × sizeβ2 × english+ u

already discussed in Chapter 6. Let us review this:

model <- lm(score ~ size + english, data = CASchools)
coeftest(model, vcov. = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 686.032245 8.728225 78.5993 < 2e-16 ***
#> size -1.101296 0.432847 -2.5443 0.01131 *
#> english -0.649777 0.031032 -20.9391 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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You may check that these quantities are computed as in the simple regression
model by computing the t-statistics or p-values by hand using the output above
and R as a calculator.

For example, using the definition of the p-value for a two-sided test as given in
Key Concept 7.1, we can confirm the p-value for a test of the hypothesis that
the coefficient β1, the coefficient on size, to be approximately zero.

# compute two-sided p-value
2 * (1 - pt(abs(coeftest(model, vcov. = vcovHC, type = "HC1")[2, 3]),

df = model$df.residual))
#> [1] 0.01130921

Key Concept 7.2
Confidence Intervals for a Single Coefficient in Multiple Re-
gression

A 95% two-sided confidence interval for the coefficient βj is an interval
that contains the true value of βj with a 95% probability; that is, it
contains the true value of βj in 95% of repeated samples. Equivalently,
it is the set of values of βj that cannot be rejected by a 5% two-sided hy-
pothesis test. When the sample size is large, the 95% confidence interval
for βj is [

β̂j − 1.96× SE(β̂j), β̂j + 1.96× SE(β̂j)
]
.

7.2 An Application to Test Scores and the
Student-Teacher Ratio

Let us take a look at the regression from Section 6.3 again.

Computing confidence intervals for individual coefficients in the multiple re-
gression model proceeds as in the simple regression model using the function
confint().

model <- lm(score ~ size + english, data = CASchools)
confint(model)
#> 2.5 % 97.5 %
#> (Intercept) 671.4640580 700.6004311
#> size -1.8487969 -0.3537944
#> english -0.7271113 -0.5724424
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To obtain confidence intervals at another level, say 90%, just set the argument
level in our call of confint() accordingly.

confint(model, level = 0.9)
#> 5 % 95 %
#> (Intercept) 673.8145793 698.2499098
#> size -1.7281904 -0.4744009
#> english -0.7146336 -0.5849200

The output now reports the desired 90% confidence intervals for all coefficients.

A disadvantage of confint() is that is does not use robust standard errors to
compute the confidence interval. For large-sample confidence intervals, this is
quickly done manually as follows.

# compute robust standard errors
rob_se <- diag(vcovHC(model, type = "HC1"))ˆ0.5

# compute robust 95% confidence intervals
rbind("lower" = coef(model) - qnorm(0.975) * rob_se,

"upper" = coef(model) + qnorm(0.975) * rob_se)
#> (Intercept) size english
#> lower 668.9252 -1.9496606 -0.7105980
#> upper 703.1393 -0.2529307 -0.5889557

# compute robust 90% confidence intervals

rbind("lower" = coef(model) - qnorm(0.95) * rob_se,
"upper" = coef(model) + qnorm(0.95) * rob_se)

#> (Intercept) size english
#> lower 671.6756 -1.8132659 -0.7008195
#> upper 700.3889 -0.3893254 -0.5987341

Knowing how to use R to make inference about the coefficients in multiple
regression models, you can now answer the following question:

Can the null hypothesis that a change in the student-teacher ratio, size, has no
significant influence on test scores, scores, — if we control for the percentage
of students learning English in the district, english, — be rejected at the 10%
and the 5% level of significance?

The output above shows that zero is not an element of the confidence interval for
the coefficient on size such that we can reject the null hypothesis at significance
levels of 5% and 10%. The same conclusion can be made via the p-value for
size: 0.00398 < 0.05 = α.

Note that rejection at the 5%-level implies rejection at the 10% level (why?).
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Recall from Chapter 5.2 the 95% confidence interval computed above does not
tell us that a one-unit decrease in the student-teacher ratio has an effect on
test scores that lies in the interval with a lower bound of −1.9497 and an upper
bound of−0.2529. Once a confidence interval has been computed, a probabilistic
statement like this is wrong: either the interval contains the true parameter or
it does not. We do not know which is true.

Another Augmentation of the Model

What is the average effect on test scores of reducing the student-teacher ratio
when the expenditures per pupil and the percentage of english learning pupils
are held constant?

Let us augment our model by an additional regressor that is a measure for
expenditure per pupil. Using ?CASchools we find that CASchools contains the
variable expenditure, which provides expenditure per student.

Our model now is

TestScore = β0 + β1 × size+ β2 × english+ β3 × expenditure+ u

with expenditure the total amount of expenditure per pupil in the district
(thousands of dollars).

Let us now estimate the model:

# scale expenditure to thousands of dollars
CASchools$expenditure <- CASchools$expenditure/1000

# estimate the model
model <- lm(score ~ size + english + expenditure, data = CASchools)
coeftest(model, vcov. = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 649.577947 15.458344 42.0212 < 2e-16 ***
#> size -0.286399 0.482073 -0.5941 0.55277
#> english -0.656023 0.031784 -20.6398 < 2e-16 ***
#> expenditure 3.867901 1.580722 2.4469 0.01482 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated effect of a one unit change in the student-teacher ratio on test
scores with expenditure and the share of english learning pupils held constant is
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−0.29, which is rather small. What is more, the coefficient on size is not signif-
icantly different from zero anymore even at 10% since p-value = 0.55. Can you
come up with an interpretation for these findings (see Chapter 7.1 of the book)?
The insignificance of β̂1 could be due to a larger standard error of β̂1 resulting
from adding expenditure to the model so that we estimate the coefficient on
size less precisely. This illustrates the issue of strongly correlated regressors
(imperfect multicollinearity). The correlation between size and expenditure
can be computed using cor().

# compute the sample correlation between 'size' and 'expenditure'
cor(CASchools$size, CASchools$expenditure)
#> [1] -0.6199822

Altogether, we conclude that the new model provides no evidence that changing
the student-teacher ratio, e.g., by hiring new teachers, has any effect on the test
scores while keeping expenditures per student and the share of English learners
constant.

7.3 Joint Hypothesis Testing Using the F-
Statistic

The estimated model is

̂TestScore = 649.58
(15.21)

− 0.29
(0.48)

× size− 0.66
(0.04)

× english+ 3.87
(1.41)

× expenditure.

Now, can we reject the hypothesis that the coefficient on size and the coefficient
on expenditure are zero? To answer this, we have to resort to joint hypothesis
tests. A joint hypothesis imposes restrictions on multiple regression coefficients.
This is different from conducting individual t-tests where a restriction is imposed
on a single coefficient. Chapter 7.2 of the book explains why testing hypotheses
about the model coefficients one at a time is different from testing them jointly.

The homoskedasticity-only F -Statistic is given by

F = (SSRrestricted − SSRunrestricted)/q
SSRunrestricted/(n− k − 1)

with SSRrestricted being the sum of squared residuals from the restricted re-
gression, i.e., the regression where we impose the restriction. SSRunrestricted is
the sum of squared residuals from the full model, q is the number of restrictions
under the null and k is the number of regressors in the unrestricted regression.
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It is fairly easy to conduct F -tests in R. We can use the function
linearHypothesis()contained in the package car.

# estimate the multiple regression model
model <- lm(score ~ size + english + expenditure, data = CASchools)

# execute the function on the model object and provide both linear restrictions
# to be tested as strings
linearHypothesis(model, c("size=0", "expenditure=0"))
#> Linear hypothesis test
#>
#> Hypothesis:
#> size = 0
#> expenditure = 0
#>
#> Model 1: restricted model
#> Model 2: score ~ size + english + expenditure
#>
#> Res.Df RSS Df Sum of Sq F Pr(>F)
#> 1 418 89000
#> 2 416 85700 2 3300.3 8.0101 0.000386 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output reveals that the F -statistic for this joint hypothesis test is about
8.01 and the corresponding p-value is 0.0004. Thus, we can reject the null
hypothesis that both coefficients are zero at any level of significance commonly
used in practice.

A heteroskedasticity-robust version of this F -test (which leads to the same con-
clusion) can be conducted as follows.

# heteroskedasticity-robust F-test
linearHypothesis(model, c("size=0", "expenditure=0"), white.adjust = "hc1")
#> Linear hypothesis test
#>
#> Hypothesis:
#> size = 0
#> expenditure = 0
#>
#> Model 1: restricted model
#> Model 2: score ~ size + english + expenditure
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
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#> 1 418
#> 2 416 2 5.4337 0.004682 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The standard output of a model summary also reports an F -statistic and the
corresponding p-value. The null hypothesis belonging to this F -test is that all
of the population coefficients in the model except for the intercept are zero, so
the hypotheses are

H0 : β1 = 0, β2 = 0, β3 = 0 vs. H1 : βj 6= 0 for at least one j = 1, 2, 3.

This is also called the overall regression F -statistic and the null hypothesis is
obviously different from testing if only β1 and β3 are zero.

We now check whether the F -statistic belonging to the p-value listed in the
model’s summary coincides with the result reported by linearHypothesis().

# execute the function on the model object and provide the restrictions
# to be tested as a character vector
linearHypothesis(model, c("size=0", "english=0", "expenditure=0"))
#> Linear hypothesis test
#>
#> Hypothesis:
#> size = 0
#> english = 0
#> expenditure = 0
#>
#> Model 1: restricted model
#> Model 2: score ~ size + english + expenditure
#>
#> Res.Df RSS Df Sum of Sq F Pr(>F)
#> 1 419 152110
#> 2 416 85700 3 66410 107.45 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Access the overall F-statistic from the model's summary
summary(model)$fstatistic
#> value numdf dendf
#> 107.4547 3.0000 416.0000

The entry value is the overall F -statistics and it equals the result of
linearHypothesis(). The F -test rejects the null hypothesis that the model
has no power in explaining test scores. It is important to know that the
F -statistic reported by summary is not robust to heteroskedasticity!
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7.4 Confidence Sets for Multiple Coefficients

Based on the F -statistic that we have previously encountered, we can specify
confidence sets. Confidence sets are analogous to confidence intervals for single
coefficients. As such, confidence sets consist of combinations of coefficients that
contain the true combination of coefficients in, say, 95% of all cases if we could
repeatedly draw random samples, just like in the univariate case. Put differently,
a confidence set is the set of all coefficient combinations for which we cannot
reject the corresponding joint null hypothesis tested using an F -test.

The confidence set for two coefficients an ellipse which is centered around the
point defined by both coefficient estimates. Again, there is a very convenient
way to plot the confidence set for two coefficients of model objects, namely the
function confidenceEllipse() from the car package.

We now plot the 95% confidence ellipse for the coefficients on size and
expenditure from the regression conducted above. By specifying the
additional argument fill, the confidence set is colored.

# draw the 95% confidence set for coefficients on size and expenditure
confidenceEllipse(model,

fill = T,
lwd = 0,
which.coef = c("size", "expenditure"),
main = "95% Confidence Set")
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We see that the ellipse is centered around (−0.29, 3.87), the pair of coefficients
estimates on size and expenditure. What is more, (0, 0) is not element of the
95% confidence set so that we can reject H0 : β1 = 0, β3 = 0.
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By default, confidenceEllipse() uses homoskedasticity-only standard errors.
The following code chunk shows how compute a robust confidence ellipse and
how to overlay it with the previous plot.

# draw the robust 95% confidence set for coefficients on size and expenditure
confidenceEllipse(model,

fill = T,
lwd = 0,
which.coef = c("size", "expenditure"),
main = "95% Confidence Sets",
vcov. = vcovHC(model, type = "HC1"),
col = "red")

# draw the 95% confidence set for coefficients on size and expenditure
confidenceEllipse(model,

fill = T,
lwd = 0,
which.coef = c("size", "expenditure"),
add = T)
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As the robust standard errors are slightly larger than those valid under ho-
moskedasticity only in this case, the robust confidence set is slightly larger.
This is analogous to the confidence intervals for the individual coefficients.

7.5 Model Specification for Multiple Regression

Choosing a regression specification, i.e., selecting the variables to be included
in a regression model, is a difficult task. However, there are some guidelines on
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how to proceed. The goal is clear: obtaining an unbiased and precise estimate of
the causal effect of interest. As a starting point, think about omitted variables,
that is, to avoid possible bias by using suitable control variables. Omitted
variables bias in the context of multiple regression is explained in Key Concept
7.3. A second step could be to compare different specifications by measures of
fit. However, as we shall see one should not rely solely on R̄2.

Key Concept 7.3
Omitted Variable Bias in Multiple Regression

Omitted variable bias is the bias in the OLS estimator that arises when
regressors correlate with an omitted variable. For omitted variable bias
to arise, two things must be true:

1. At least one of the included regressors must be correlated with the
omitted variable.

2. The omitted variable must be a determinant of the dependent vari-
able, Y .

We now discuss an example were we face a potential omitted variable bias in a
multiple regression model:

Consider again the estimated regression equation

̂TestScore = 686.0
(8.7)

− 1.10
(0.43)

× size− 0.650
(0.031)

× english.

We are interested in estimating the causal effect of class size on test score.
There might be a bias due to omitting “outside learning opportunities” from
our regression since such a measure could be a determinant of the students’
test scores and could also be correlated with both regressors already included in
the model (so that both conditions of Key Concept 7.3 are fulfilled). “Outside
learning opportunities” are a complicated concept that is difficult to quantify. A
surrogate we can consider instead is the students’ economic background which
likely are strongly related to outside learning opportunities: think of wealthy
parents that are able to provide time and/or money for private tuition of their
children. We thus augment the model with the variable lunch, the percentage
of students that qualify for a free or subsidized lunch in school due to family
incomes below a certain threshold, and reestimate the model.

# estimate the model and print the summary to console
model <- lm(score ~ size + english + lunch, data = CASchools)
coeftest(model, vcov. = vcovHC, type = "HC1")
#>
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#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 700.149957 5.568453 125.7351 < 2.2e-16 ***
#> size -0.998309 0.270080 -3.6963 0.0002480 ***
#> english -0.121573 0.032832 -3.7029 0.0002418 ***
#> lunch -0.547345 0.024107 -22.7046 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Thus, the estimated regression line is

̂TestScore = 700.15
(5.56)

− 1.00
(0.27)

× size− 0.12
(0.03)

× english− 0.55
(0.02)

× lunch.

We observe no substantial changes in the conclusion about the effect of size on
TestScore: the coefficient on size changes by only 0.1 and retains its signifi-
cance.

Although the difference in estimated coefficients is not big in this case, it is
useful to keep lunch to make the assumption of conditional mean independence
more credible (see Chapter 7.5 of the book).

Model Specification in Theory and in Practice

Key Concept 7.4 lists some common pitfalls when using R2 and R̄2 to evaluate
the predictive ability of regression models.
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Key Concept 7.4
R2 and R̄2: What They Tell You — and What They Do not

The R2 and R̄2 tell you whether the regressors are good at explaining
the variation of the independent variable in the sample. If the R2 (or
R̄2) is nearly 1, then the regressors produce a good prediction of the
dependent variable in that sample, in the sense that the variance of OLS
residuals is small compared to the variance of the dependent variable.
If the R2 (or R̄2) is nearly 0, the opposite is true.

The R2 and R̄2 do not tell you whether:

1. An included variable is statistically significant.

2. The regressors are the true cause of the movements in the depen-
dent variable.

3. There is omitted variable bias.

4. You have chosen the most appropriate set of regressors.

For example, think of regressing TestScore on PLS which measures the avail-
able parking lot space in thousand square feet. You are likely to observe a
significant coefficient of reasonable magnitude and moderate to high values for
R2 and R̄2. The reason for this is that parking lot space is correlated with many
determinants of the test score like location, class size, financial endowment and
so on. Although we do not have observations on PLS, we can use R to generate
some relatively realistic data.

# set seed for reproducibility
set.seed(1)

# generate observations for parking lot space
CASchools$PLS <- c(22 * CASchools$income

- 15 * CASchools$size
+ 0.2 * CASchools$expenditure
+ rnorm(nrow(CASchools), sd = 80) + 3000)

# plot parking lot space against test score
plot(CASchools$PLS,

CASchools$score,
xlab = "Parking Lot Space",
ylab = "Test Score",
pch = 20,
col = "steelblue")
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# regress test score on PLS
summary(lm(score ~ PLS, data = CASchools))
#>
#> Call:
#> lm(formula = score ~ PLS, data = CASchools)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -42.608 -11.049 0.342 12.558 37.105
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 4.897e+02 1.227e+01 39.90 <2e-16 ***
#> PLS 4.002e-02 2.981e-03 13.43 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 15.95 on 418 degrees of freedom
#> Multiple R-squared: 0.3013, Adjusted R-squared: 0.2996
#> F-statistic: 180.2 on 1 and 418 DF, p-value: < 2.2e-16

PLS is generated as a linear function of expenditure, income, size and a ran-
dom disturbance. Therefore the data suggest that there is some positive rela-
tionship between parking lot space and test score. In fact, when estimating the
model

TestScore = β0 + β1 × PLS + u (7.1)

using lm() we find that the coefficient on PLS is positive and significantly
different from zero. Also R2 and R̄2 are about 0.3 which is a lot more than
the roughly 0.05 observed when regressing the test scores on the class sizes
only. This suggests that increasing the parking lot space boosts a school’s test
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scores and that model (7.1) does even better in explaining heterogeneity in the
dependent variable than a model with size as the only regressor. Keeping in
mind how PLS is constructed this comes as no surprise. It is evident that the
high R2 cannot be used to the conclude that the estimated relation between
parking lot space and test scores is causal: the (relatively) high R2 is due
to correlation between PLS and other determinants and/or control variables.
Increasing parking lot space is not an appropriate measure to generate more
learning success!

7.6 Analysis of the Test Score Data Set

Chapter 6 and some of the previous sections have stressed that it is important
to include control variables in regression models if it is plausible that there are
omitted factors. In our example of test scores we want to estimate the causal
effect of a change in the student-teacher ratio on test scores. We now provide
an example how to use multiple regression in order to alleviate omitted variable
bias and demonstrate how to report results using R.

So far we have considered two variables that control for unobservable student
characteristics which correlate with the student-teacher ratio and are assumed
to have an impact on test scores:

• English, the percentage of English learning students

• lunch, the share of students that qualify for a subsidized or even a free
lunch at school

Another new variable provided with CASchools is calworks, the percentage of
students that qualify for the CalWorks income assistance program. Students
eligible for CalWorks live in families with a total income below the threshold
for the subsidized lunch program so both variables are indicators for the share
of economically disadvantaged children. Both indicators are highly correlated:

# estimate the correlation between 'calworks' and 'lunch'
cor(CASchools$calworks, CASchools$lunch)
#> [1] 0.7394218

There is no unambiguous way to proceed when deciding which variable to use.
In any case it may not a good idea to use both variables as regressors in view
of collinearity. Therefore, we also consider alternative model specifications.

For a start, we plot student characteristics against test scores.
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# set up arrangement of plots
m <- rbind(c(1, 2), c(3, 0))
graphics::layout(mat = m)

# scatterplots
plot(score ~ english,

data = CASchools,
col = "steelblue",
pch = 20,
xlim = c(0, 100),
cex.main = 0.9,
main = "Percentage of English language learners")

plot(score ~ lunch,
data = CASchools,
col = "steelblue",
pch = 20,
cex.main = 0.9,
main = "Percentage qualifying for reduced price lunch")

plot(score ~ calworks,
data = CASchools,
col = "steelblue",
pch = 20,
xlim = c(0, 100),
cex.main = 0.9,
main = "Percentage qualifying for income assistance")
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We divide the plotting area up using layout(). The matrix m specifies the
location of the plots, see ?layout.
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We see that all relationships are negative. Here are the correlation coefficients.

# estimate correlation between student characteristics and test scores
cor(CASchools$score, CASchools$english)
#> [1] -0.6441238
cor(CASchools$score, CASchools$lunch)
#> [1] -0.868772
cor(CASchools$score, CASchools$calworks)
#> [1] -0.6268533

We shall consider five different model equations:

(I) TestScore =β0 + β1 × size+ u,

(II) TestScore =β0 + β1 × size+ β2 × english+ u,

(III) TestScore =β0 + β1 × size+ β2 × english+ β3 × lunch+ u,

(IV ) TestScore =β0 + β1 × size+ β2 × english+ β4 × calworks+ u,

(V ) TestScore =β0 + β1 × size+ β2 × english+ β3 × lunch+ β4 × calworks+ u

The best way to communicate regression results is in a table. The stargazer
package is very convenient for this purpose. It provides a function that generates
professionally looking HTML and LaTeX tables that satisfy scientific standards.
One simply has to provide one or multiple object(s) of class lm. The rest is done
by the function stargazer().

# load the stargazer library
library(stargazer)

# estimate different model specifications
spec1 <- lm(score ~ size, data = CASchools)
spec2 <- lm(score ~ size + english, data = CASchools)
spec3 <- lm(score ~ size + english + lunch, data = CASchools)
spec4 <- lm(score ~ size + english + calworks, data = CASchools)
spec5 <- lm(score ~ size + english + lunch + calworks, data = CASchools)

# gather robust standard errors in a list
rob_se <- list(sqrt(diag(vcovHC(spec1, type = "HC1"))),

sqrt(diag(vcovHC(spec2, type = "HC1"))),
sqrt(diag(vcovHC(spec3, type = "HC1"))),
sqrt(diag(vcovHC(spec4, type = "HC1"))),
sqrt(diag(vcovHC(spec5, type = "HC1"))))

# generate a LaTeX table using stargazer
stargazer(spec1, spec2, spec3, spec4, spec5,
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se = rob_se,
digits = 3,
header = F,
column.labels = c("(I)", "(II)", "(III)", "(IV)", "(V)"))

Table 7.1 states that score is the dependent variable and that we consider five
models. We see that the columns of Table 7.1 contain most of the informa-
tion provided by coeftest() and summary() for the regression models under
consideration: the coefficients estimates equipped with significance codes (the
asterisks) and standard errors in parentheses below. Although there are no
t-statistics, it is straightforward for the reader to compute them simply by di-
viding a coefficient estimate by the corresponding standard error. The bottom
of the table reports summary statistics for each model and a legend. For an in-
depth discussion of the tabular presentation of regression results, see Chapter
7.6 of the book.

What can we conclude from the model comparison?

1. We see that adding control variables roughly halves the coefficient on size.
Also, the estimate is not sensitive to the set of control variables used. The
conclusion is that decreasing the student-teacher ratio ceteris paribus by
one unit leads to an estimated average increase in test scores of about 1
point.

2. Adding student characteristics as controls increases R2 and R̄2 from 0.049
(spec1) up to 0.773 (spec3 and spec5), so we can consider these variables
as suitable predictors for test scores. Moreover, the estimated coefficients
on all control variables are consistent with the impressions gained from
Figure 7.2 of the book.

3. We see that the control variables are not statistically significant in all
models. For example in spec5, the coefficient on calworks is not signifi-
cantly different from zero at 5% since |−0.048/0.059| = 0.81 < 1.64. We
also observe that the effect on the estimate (and its standard error) of the
coefficient on size of adding calworks to the base specification spec3 is
negligible. We can therefore consider calworks as a superfluous control
variable, given the inclusion of lunch in this model.

7.7 Exercises

This interactive part of the book is only available in the HTML version.
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Chapter 8

Nonlinear Regression
Functions

Until now we assumed the regression function to be linear, i.e., we have treated
the slope parameter of the regression function as a constant. This implies that
the effect on Y of a one unit change in X does not depend on the level of X.
If, however, the effect of a change in X on Y does depend on the value of X,
we should use a nonlinear regression function.

Just like for the previous chapter, the packages AER (Kleiber and Zeileis, 2020)
and stargazer (Hlavac, 2018) are required for reproduction of the code pre-
sented in this chapter. Check whether the code chunk below executes without
any error messages.

library(AER)
library(stargazer)

8.1 A General Strategy for Modelling Nonlinear
Regression Functions

Let us have a look at an example where using a nonlinear regression function is
better suited for estimating the population relationship between the regressor,
X, and the regressand, Y : the relationship between the income of schooling
districts and their test scores.

# prepare the data
library(AER)
data(CASchools)

201
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CASchools$size <- CASchools$students/CASchools$teachers
CASchools$score <- (CASchools$read + CASchools$math) / 2

We start our analysis by computing the correlation between both variables.

cor(CASchools$income, CASchools$score)
#> [1] 0.7124308

Here, income and test scores are positively related: school districts with above
average income tend to achieve above average test scores. Does a linear regres-
sion function model the data adequately? Let us plot the data and add a linear
regression line.

# fit a simple linear model
linear_model<- lm(score ~ income, data = CASchools)

# plot the observations
plot(CASchools$income, CASchools$score,

col = "steelblue",
pch = 20,
xlab = "District Income (thousands of dollars)",
ylab = "Test Score",
cex.main = 0.9,
main = "Test Score vs. District Income and a Linear OLS Regression Function")

# add the regression line to the plot
abline(linear_model,

col = "red",
lwd = 2)
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As pointed out in the book, the linear regression line seems to overestimate the
true relationship when income is very high or very low and underestimates it
for the middle income group.

Fortunately, OLS does not only handle linear functions of the regressors. We
can for example model test scores as a function of income and the square of
income. The corresponding regression model is

TestScorei = β0 + β1 × incomei + β2 × income2
i + ui,

called a quadratic regression model. That is, income2 is treated as an addi-
tional explanatory variable. Hence, the quadratic model is a special case of a
multivariate regression model. When fitting the model with lm() we have to
use the ^ operator in conjunction with the function I() to add the quadratic
term as an additional regressor to the argument formula. This is because the
regression formula we pass to formula is converted to an object of the class
formula. For objects of this class, the operators +, -, * and ^ have a nonarith-
metic interpretation. I() ensures that they are used as arithmetical operators,
see ?I,

# fit the quadratic Model
quadratic_model <- lm(score ~ income + I(incomeˆ2), data = CASchools)

# obtain the model summary
coeftest(quadratic_model, vcov. = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 607.3017435 2.9017544 209.2878 < 2.2e-16 ***
#> income 3.8509939 0.2680942 14.3643 < 2.2e-16 ***
#> I(incomeˆ2) -0.0423084 0.0047803 -8.8505 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output tells us that the estimated regression function is

̂TestScorei = 607.3
(2.90)

+ 3.85
(0.27)

× incomei − 0.0423
(0.0048)

× income2
i .

This model allows us to test the hypothesis that the relationship between test
scores and district income is linear against the alternative that it is quadratic.
This corresponds to testing

H0 : β2 = 0 vs. H1 : β2 6= 0,
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since β2 = 0 corresponds to a simple linear equation and β2 6= 0 implies a
quadratic relationship. We find that t = (β̂2 − 0)/SE(β̂2) = −0.0423/0.0048 =
−8.81 so the null is rejected at any common level of significance and we conclude
that the relationship is nonlinear. This is consistent with the impression gained
from the plot.

We now draw the same scatter plot as for the linear model and add the regres-
sion line for the quadratic model. Because abline() can only draw straight
lines, it cannot be used here. lines() is a function which allows to draw non-
straight lines, see ?lines. The most basic call of lines() is lines(x_values,
y_values) where x_values and y_values are vectors of the same length that
provide coordinates of the points to be sequentially connected by a line. This
makes it necessary to sort the coordinate pairs according to the X-values. Here
we use the function order() to sort the fitted values of score according to the
observations of income.

# draw a scatterplot of the observations for income and test score
plot(CASchools$income, CASchools$score,

col = "steelblue",
pch = 20,
xlab = "District Income (thousands of dollars)",
ylab = "Test Score",
main = "Estimated Linear and Quadratic Regression Functions")

# add a linear function to the plot
abline(linear_model, col = "black", lwd = 2)

# add quatratic function to the plot
order_id <- order(CASchools$income)

lines(x = CASchools$income[order_id],
y = fitted(quadratic_model)[order_id],
col = "red",
lwd = 2)
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We see that the quadratic function does fit the data much better than the linear
function.

8.2 Nonlinear Functions of a Single Independent
Variable

Polynomials

The approach used to obtain a quadratic model can be generalized to polynomial
models of arbitrary degree r,

Yi = β0 + β1Xi + β2X
2
i + · · ·+ βrX

r
i + ui.

A cubic model for instance can be estimated in the same way as the quadratic
model; we just have to use a polynomial of degree r = 3 in income. This is
conveniently done using the function poly().

# estimate a cubic model
cubic_model <- lm(score ~ poly(income, degree = 3, raw = TRUE), data = CASchools)

poly() generates orthogonal polynomials which are orthogonal to the constant
by default. Here, we set raw = TRUE such that raw polynomials are evaluated,
see ?poly.

In practice the question will arise which polynomial order should be chosen.
First, similarly as for r = 2, we can test the null hypothesis that the true
relation is linear against the alternative hypothesis that the relationship is a
polynomial of degree r:
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H0 : β2 = 0, β3 = 0, . . . , βr = 0 vs. H1 : at least one βj 6= 0, j = 2, . . . , r

This is a joint null hypothesis with r−1 restrictions so it can be tested using the
F -test presented in Chapter 7. linearHypothesis() can be used to conduct
such tests. For example, we may test the null of a linear model against the
alternative of a polynomial of a maximal degree r = 3 as follows.

# test the hypothesis of a linear model against quadratic or polynomial
# alternatives

# set up hypothesis matrix
R <- rbind(c(0, 0, 1, 0),

c(0, 0, 0, 1))

# do the test
linearHypothesis(cubic_model,

hypothesis.matrix = R,
white.adj = "hc1")

#> Linear hypothesis test
#>
#> Hypothesis:
#> poly(income, degree = 3, raw = TRUE)2 = 0
#> poly(income, degree = 3, raw = TRUE)3 = 0
#>
#> Model 1: restricted model
#> Model 2: score ~ poly(income, degree = 3, raw = TRUE)
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 418
#> 2 416 2 37.691 9.043e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We provide a hypothesis matrix as the argument hypothesis.matrix. This is
useful when the coefficients have long names, as is the case here due to using
poly(), or when the restrictions include multiple coefficients. How the hypoth-
esis matrix R is interpreted by linearHypothesis() is best seen using matrix
algebra:
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For the two linear constrains above, we have

Rβ =s

(
0 0 1 0
0 0 0 1

)
β0
β1
β2
β3

 =
(

0
0

)
(
β2
β3

)
=
(

0
0

)
.

linearHypothesis() uses the zero vector for s by default, see ?linearHypothesis.

The p-value for is very small so that we reject the null hypothesis. However,
this does not tell us which r to choose. In practice, one approach to determine
the degree of the polynomial is to use sequential testing:

1. Estimate a polynomial model for some maximum value r.
2. Use a t-test to test βr = 0. Rejection of the null means that Xr belongs

in the regression equation.
3. Acceptance of the null in step 2 means that Xr can be eliminated from the

model. Continue by repeating step 1 with order r − 1 and test whether
βr−1 = 0. If the test rejects, use a polynomial model of order r − 1.

4. If the tests from step 3 rejects, continue with the procedure until the
coefficient on the highest power is statistically significant.

There is no unambiguous guideline how to choose r in step one. However, as
pointed out in Stock and Watson (2015), economic data is often smooth such
that it is appropriate to choose small orders like 2, 3, or 4.

We will demonstrate how to apply sequential testing by the example of the cubic
model.

summary(cubic_model)
#>
#> Call:
#> lm(formula = score ~ poly(income, degree = 3, raw = TRUE), data = CASchools)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -44.28 -9.21 0.20 8.32 31.16
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 6.001e+02 5.830e+00 102.937 < 2e-16
#> poly(income, degree = 3, raw = TRUE)1 5.019e+00 8.595e-01 5.839 1.06e-08
#> poly(income, degree = 3, raw = TRUE)2 -9.581e-02 3.736e-02 -2.564 0.0107
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#> poly(income, degree = 3, raw = TRUE)3 6.855e-04 4.720e-04 1.452 0.1471
#>
#> (Intercept) ***
#> poly(income, degree = 3, raw = TRUE)1 ***
#> poly(income, degree = 3, raw = TRUE)2 *
#> poly(income, degree = 3, raw = TRUE)3
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 12.71 on 416 degrees of freedom
#> Multiple R-squared: 0.5584, Adjusted R-squared: 0.5552
#> F-statistic: 175.4 on 3 and 416 DF, p-value: < 2.2e-16

The estimated cubic model stored in cubic_model is

̂TestScorei = 600.1
(5.83)

+ 5.02
(0.86)

× income− 0.96
(0.03)

× income2 − 0.00069
(0.00047)

× income3.

The t-statistic on income3 is 1.42 so the null that the relationship is quadratic
cannot be rejected, even at the 10% level. This is contrary to the result presented
book which reports robust standard errors throughout so we will also use robust
variance-covariance estimation to reproduce these results.

# test the hypothesis using robust standard errors
coeftest(cubic_model, vcov. = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value
#> (Intercept) 6.0008e+02 5.1021e+00 117.6150
#> poly(income, degree = 3, raw = TRUE)1 5.0187e+00 7.0735e-01 7.0950
#> poly(income, degree = 3, raw = TRUE)2 -9.5805e-02 2.8954e-02 -3.3089
#> poly(income, degree = 3, raw = TRUE)3 6.8549e-04 3.4706e-04 1.9751
#> Pr(>|t|)
#> (Intercept) < 2.2e-16 ***
#> poly(income, degree = 3, raw = TRUE)1 5.606e-12 ***
#> poly(income, degree = 3, raw = TRUE)2 0.001018 **
#> poly(income, degree = 3, raw = TRUE)3 0.048918 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The reported standard errors have changed. Furthermore, the coefficient for
incomeˆ3 is now significant at the 5% level. This means we reject the hypothesis
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that the regression function is quadratic against the alternative that it is cubic.
Furthermore, we can also test if the coefficients for income^2 and income^3 are
jointly significant using a robust version of the F -test.

# perform robust F-test
linearHypothesis(cubic_model,

hypothesis.matrix = R,
vcov. = vcovHC, type = "HC1")

#> Linear hypothesis test
#>
#> Hypothesis:
#> poly(income, degree = 3, raw = TRUE)2 = 0
#> poly(income, degree = 3, raw = TRUE)3 = 0
#>
#> Model 1: restricted model
#> Model 2: score ~ poly(income, degree = 3, raw = TRUE)
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 418
#> 2 416 2 29.678 8.945e-13 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

With a p-value of 9.043e−16, i.e., much less than 0.05, the null hypothesis of
linearity is rejected in favor of the alternative that the relationship is quadratic
or cubic.

Interpretation of Coefficients in Nonlinear Regression Models

The coefficients in polynomial regression do not have a simple interpretation.
Why? Think of a quadratic model: it is not helpful to think of the coefficient
on X as the expected change in Y associated with a change in X holding the
other regressors constant because X2 changes as X varies. This is also the
case for other deviations from linearity, for example in models where regressors
and/or the dependent variable are log-transformed. A way to approach this is
to calculate the estimated effect on Y associated with a change in X for one or
more values of X. This idea is summarized in Key Concept 8.1.
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Key Concept 8.1
The Expected Effect on Y of a Change in X1 in a Nonlinear
Regression Model

Consider the nonlinear population regression model

Yi = f(X1i, X2i, . . . , Xki) + ui , i = 1, . . . , n,

where f(X1i, X2i, . . . , Xki) is the population regression function and ui
is the error term.
Denote by ∆Y the expected change in Y associated with ∆X1, the
change in X1 while holding X2, · · · , Xk constant. That is, the expected
change in Y is the difference

∆Y = f(X1 + ∆X1, X2, · · · , Xk)− f(X1, X2, · · · , Xk).

The estimator of this unknown population difference is the difference
between the predicted values for these two cases. Let f̂(X1, X2, · · · , Xk)
be the predicted value of of Y based on the estimator f̂ of the population
regression function. Then the predicted change in Y is

∆Ŷ = f̂(X1 + ∆X1, X2, · · · , Xk)− f̂(X1, X2, · · · , Xk).

For example, we may ask the following: what is the predicted change in test
scores associated with a one unit change (i.e., $1000) in income, based on the
estimated quadratic regression function

̂TestScore = 607.3 + 3.85× income− 0.0423× income2 ?

Because the regression function is quadratic, this effect depends on the initial
district income. We therefore consider two cases:

1. An increase in district income form 10 to 11 (from $10000 per capita to
$11000).

2. An increase in district income from 40 to 41 (that is from $40000 to
$41000).

In order to obtain the ∆Ŷ associated with a change in income form 10 to 11,
we use the following formula:

∆Ŷ =
(
β̂0 + β̂1 × 11 + β̂2 × 112

)
−
(
β̂0 + β̂1 × 10 + β̂2 × 102

)
To compute Ŷ using R we may use predict().
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# compute and assign the quadratic model
quadriatic_model <- lm(score ~ income + I(incomeˆ2), data = CASchools)

# set up data for prediction
new_data <- data.frame(income = c(10, 11))

# do the prediction
Y_hat <- predict(quadriatic_model, newdata = new_data)

# compute the difference
diff(Y_hat)
#> 2
#> 2.962517

Analogously we can compute the effect of a change in district income from 40
to 41:

# set up data for prediction
new_data <- data.frame(income = c(40, 41))

# do the prediction
Y_hat <- predict(quadriatic_model, newdata = new_data)

# compute the difference
diff(Y_hat)
#> 2
#> 0.4240097

So for the quadratic model, the expected change in TestScore induced by an
increase in income from 10 to 11 is about 2.96 points but an increase in income
from 40 to 41 increases the predicted score by only 0.42. Hence, the slope of the
estimated quadratic regression function is steeper at low levels of income than
at higher levels.

Logarithms

Another way to specify a nonlinear regression function is to use the natural log-
arithm of Y and/or X. Logarithms convert changes in variables into percentage
changes. This is convenient as many relationships are naturally expressed in
terms of percentages.

There are three different cases in which logarithms might be used.

1. Transform X with its logarithm, but not Y .



212 CHAPTER 8. NONLINEAR REGRESSION FUNCTIONS

2. Analogously we could transform Y to its logarithm but leave X at level.

3. Both Y and X are transformed to their logarithms.

The interpretation of the regression coefficients is different in each case.

Case I: X is in Logarithm, Y is not.

The regression model then is

Yi = β0 + β1 × ln(Xi) + ui, i = 1, ..., n.

Similar as for polynomial regression we do not have to create a new variable
before using lm(). We can simply adjust the formula argument of lm() to tell
R that the log-transformation of a variable should be used.

# estimate a level-log model
LinearLog_model <- lm(score ~ log(income), data = CASchools)

# compute robust summary
coeftest(LinearLog_model,

vcov = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 557.8323 3.8399 145.271 < 2.2e-16 ***
#> log(income) 36.4197 1.3969 26.071 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Hence, the estimated regression function is

̂TestScore = 557.8 + 36.42× ln(income).

Let us draw a plot of this function.

# draw a scatterplot
plot(score ~ income,

col = "steelblue",
pch = 20,
data = CASchools,
main = "Linear-Log Regression Line")
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# add the linear-log regression line
order_id <- order(CASchools$income)

lines(CASchools$income[order_id],
fitted(LinearLog_model)[order_id],
col = "red",
lwd = 2)
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We can interpret β̂1 as follows: a 1% increase in income is associated with an
increase in test scores of 0.01×36.42 = 0.36 points. In order to get the estimated
effect of a one unit change in income (that is, a change in the original units,
thousands of dollars) on test scores, the method presented in Key Concept 8.1
can be used.

# set up new data
new_data <- data.frame(income = c(10, 11, 40, 41))

# predict the outcomes
Y_hat <- predict(LinearLog_model, newdata = new_data)

# compute the expected difference
Y_hat_matrix <- matrix(Y_hat, nrow = 2, byrow = TRUE)
Y_hat_matrix[, 2] - Y_hat_matrix[, 1]
#> [1] 3.471166 0.899297

By setting nrow = 2 and byrow = TRUE in matrix() we ensure that
Y_hat_matrix is a 2× 2 matrix filled row-wise with the entries of Y_hat.

The estimated model states that for an income increase from $10000 to $11000,
test scores increase by an expected amount of 3.47 points. When income in-
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creases from $40000 to $41000, the expected increase in test scores is only about
0.90 points.

Case II: Y is in Logarithm, X is not

There are cases where it is useful to regress ln(Y ).

The corresponding regression model then is

ln(Yi) = β0 + β1 ×Xi + ui, i = 1, ..., n.

# estimate a log-linear model
LogLinear_model <- lm(log(score) ~ income, data = CASchools)

# obtain a robust coefficient summary
coeftest(LogLinear_model,

vcov = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 6.43936234 0.00289382 2225.210 < 2.2e-16 ***
#> income 0.00284407 0.00017509 16.244 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression function is

̂ln(TestScore) = 6.439 + 0.00284× income.

An increase in district income by $1000 is expected to increase test scores by
100× 0.00284% = 0.284%.

When the dependent variable in logarithm, one cannot simply use elog(·) to
transform predictions back to the original scale, see page of the book.

Case III: X and Y are in Logarithms

The log-log regression model is

ln(Yi) = β0 + β1 × ln(Xi) + ui, i = 1, ..., n.
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# estimate the log-log model
LogLog_model <- lm(log(score) ~ log(income), data = CASchools)

# print robust coefficient summary to the console
coeftest(LogLog_model,

vcov = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 6.3363494 0.0059246 1069.501 < 2.2e-16 ***
#> log(income) 0.0554190 0.0021446 25.841 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression function hence is

̂ln(TestScore) = 6.336 + 0.0554× ln(income).

In a log-log model, a 1% change in X is associated with an estimated β̂1%
change in Y .

We now reproduce Figure 8.5 of the book.

# generate a scatterplot
plot(log(score) ~ income,

col = "steelblue",
pch = 20,
data = CASchools,
main = "Log-Linear Regression Function")

# add the log-linear regression line
order_id <- order(CASchools$income)

lines(CASchools$income[order_id],
fitted(LogLinear_model)[order_id],
col = "red",
lwd = 2)

# add the log-log regression line
lines(sort(CASchools$income),

fitted(LogLog_model)[order(CASchools$income)],
col = "green",
lwd = 2)

# add a legend
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legend("bottomright",
legend = c("log-linear model", "log-log model"),
lwd = 2,
col = c("red", "green"))
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Key Concept 8.2 summarizes the three logarithmic regression models.

Key Concept 8.2
Logarithms in Regression: Three Cases

Case Model Specification Interpretation of β1
(I) Yi = β0 + β1 ln(Xi) + ui A 1% change in X is associ-

ated with a change in Y of
0.01× β1.

(II) ln(Yi) = β0 + β1Xi + ui A change in X by one unit
(∆X = 1) is associated with
a
100× β1% change in Y .

(III) ln(Yi) = β0 + β1 ln(Xi) + ui A 1% change in X is associ-
ated with a β1% change in Y ,
so
β1 is the elasticity of Y with
respect to X.

Of course we can also estimate a polylog model like

TestScorei = β0 +β1× ln(incomei)+β2× ln(incomei)2 +β3× ln(incomei)3 +ui
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which models the dependent variable TestScore by a third-degree polynomial
of the log-transformed regressor income.

# estimate the polylog model
polyLog_model <- lm(score ~ log(income) + I(log(income)ˆ2) + I(log(income)ˆ3),

data = CASchools)

# print robust summary to the console
coeftest(polyLog_model,

vcov = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 486.1341 79.3825 6.1239 2.115e-09 ***
#> log(income) 113.3820 87.8837 1.2901 0.1977
#> I(log(income)ˆ2) -26.9111 31.7457 -0.8477 0.3971
#> I(log(income)ˆ3) 3.0632 3.7369 0.8197 0.4128
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Comparing by R̄2 we find that, leaving out the log-linear model, all models have
a similar adjusted fit. In the class of polynomial models, the cubic specification
has the highest R̄2 whereas the linear-log specification is the best of the log-
models.

# compute the adj. Rˆ2 for the nonlinear models
adj_R2 <-rbind("quadratic" = summary(quadratic_model)$adj.r.squared,

"cubic" = summary(cubic_model)$adj.r.squared,
"LinearLog" = summary(LinearLog_model)$adj.r.squared,
"LogLinear" = summary(LogLinear_model)$adj.r.squared,
"LogLog" = summary(LogLog_model)$adj.r.squared,
"polyLog" = summary(polyLog_model)$adj.r.squared)

# assign column names
colnames(adj_R2) <- "adj_R2"

adj_R2
#> adj_R2
#> quadratic 0.5540444
#> cubic 0.5552279
#> LinearLog 0.5614605
#> LogLinear 0.4970106
#> LogLog 0.5567251
#> polyLog 0.5599944
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Let us now compare the cubic and the linear-log model by plotting the corre-
sponding estimated regression functions.

# generate a scatterplot
plot(score ~ income,

data = CASchools,
col = "steelblue",
pch = 20,
main = "Linear-Log and Cubic Regression Functions")

# add the linear-log regression line
order_id <- order(CASchools$income)

lines(CASchools$income[order_id],
fitted(LinearLog_model)[order_id],
col = "darkgreen",
lwd = 2)

# add the cubic regression line
lines(x = CASchools$income[order_id],

y = fitted(cubic_model)[order_id],
col = "darkred",
lwd = 2)
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Both regression lines look nearly identical. Altogether the linear-log model may
be preferable since it is more parsimonious in terms of regressors: it does not
include higher-degree polynomials.



8.3. INTERACTIONS BETWEEN INDEPENDENT VARIABLES 219

8.3 Interactions Between Independent Vari-
ables

There are research questions where it is interesting to learn how the effect on
Y of a change in an independent variable depends on the value of another
independent variable. For example, we may ask if districts with many English
learners benefit differentially from a decrease in class sizes to those with few
English learning students. To assess this using a multiple regression model, we
include an interaction term. We consider three cases:

1. Interactions between two binary variables.

2. Interactions between a binary and a continuous variable.

3. Interactions between two continuous variables.

The following subsections discuss these cases briefly and demonstrate how to
perform such regressions in R.

Interactions Between Two Binary Variables

Take two binary variables D1 and D2 and the population regression model

Yi = β0 + β1 ×D1i + β2 ×D2i + ui.

Now assume that

Yi = ln(Earningsi),

D1i =
{

1 if ith person has a college degree,
0 else.

D2i =
{

1 if ith person is female,
0 if ith person is male.

We know that β1 measures the average difference in ln(Earnings) between
individuals with and without a college degree and β2 is the gender differential
in ln(Earnings), ceteris paribus. This model does not allow us to determine if
there is a gender specific effect of having a college degree and, if so, how strong
this effect is. It is easy to come up with a model specification that allows to
investigate this:

Yi = β0 + β1 ×D1i + β2 ×D2i + β3 × (D1i ×D2i) + ui
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(D1i ×D2i) is called an interaction term and β3 measures the difference in the
effect of having a college degree for women versus men.

Key Concept 8.3
A Method for Interpreting Coefficients in Regression with Bi-
nary Variables

Compute expected values of Y for each possible set described by the set
of binary variables. Compare the expected values. The coefficients can
be expressed either as expected values or as the difference between at
least two expected values.

Following Key Concept 8.3 we have

E(Yi|D1i = 0, D2i = d2) =β0 + β1 × 0 + β2 × d2 + β3 × (0× d2)
=β0 + β2 × d2.

If D1i switches from 0 to 1 we obtain

E(Yi|D1i = 1, D2i = d2) =β0 + β1 × 1 + β2 × d2 + β3 × (1× d2)
=β0 + β1 + β2 × d2 + β3 × d2.

Hence, the overall effect is

E(Yi|D1i = 1, D2i = d2)− E(Yi|D1i = 0, D2i = d2) = β1 + β3 × d2

so the effect is a difference of expected values.

Application to the Student-Teacher Ratio and the Percentage of En-
glish Learners

Now let

HiSTR =
{

1, if STR ≥ 20
0, else,

HiEL =
{

1, if PctEL ≥ 10
0, else.
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We may use R to construct the variables above as follows.

# append HiSTR to CASchools
CASchools$HiSTR <- as.numeric(CASchools$size >= 20)

# append HiEL to CASchools
CASchools$HiEL <- as.numeric(CASchools$english >= 10)

We proceed by estimating the model

TestScore = β0 + β1 ×HiSTR+ β2 ×HiEL+ β3 × (HiSTR×HiEL) + ui.
(8.1)

There are several ways to add the interaction term to the formula argument
when using lm() but the most intuitive way is to use HiEL * HiSTR.1

# estimate the model with a binary interaction term
bi_model <- lm(score ~ HiSTR * HiEL, data = CASchools)

# print a robust summary of the coefficients
coeftest(bi_model, vcov. = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 664.1433 1.3881 478.4589 < 2.2e-16 ***
#> HiSTR -1.9078 1.9322 -0.9874 0.3240
#> HiEL -18.3155 2.3340 -7.8472 3.634e-14 ***
#> HiSTR:HiEL -3.2601 3.1189 -1.0453 0.2965
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression model is

̂TestScore = 664.1
(1.39)

− 1.9
(1.93)

×HiSTR− 18.3
(2.33)

×HiEL− 3.3
(3.12)

× (HiSTR×HiEL)

and it predicts that the effect of moving from a school district with a low student-
teacher ratio to a district with a high student-teacher ratio, depending on high
or low percentage of english learners is −1.9−3.3×HiEL. So for districts with a
low share of english learners (HiEL = 0), the estimated effect is a decrease of 1.9
points in test scores while for districts with a large fraction of English learners

1Appending HiEL * HiSTR to the formula will add HiEL, HiSTR and their interaction as
regressors while HiEL:HiSTR only adds the interaction term.
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(HiEL = 1), the predicted decrease in test scores amounts to 1.9 + 3.3 = 5.2
points.

We can also use the model to estimate the mean test score for each possible
combination of the included binary variables.

# estimate means for all combinations of HiSTR and HiEL

# 1.
predict(bi_model, newdata = data.frame("HiSTR" = 0, "HiEL" = 0))
#> 1
#> 664.1433

# 2.
predict(bi_model, newdata = data.frame("HiSTR" = 0, "HiEL" = 1))
#> 1
#> 645.8278

# 3.
predict(bi_model, newdata = data.frame("HiSTR" = 1, "HiEL" = 0))
#> 1
#> 662.2354

# 4.
predict(bi_model, newdata = data.frame("HiSTR" = 1, "HiEL" = 1))
#> 1
#> 640.6598

We now verify that these predictions are differences in the coefficient estimates
presented in equation (8.1):

̂TestScore = β̂0 = 664.1 ⇔ HiSTR = 0, HIEL = 0
̂TestScore = β̂0 + β̂2 = 664.1− 18.3 = 645.8 ⇔ HiSTR = 0, HIEL = 1
̂TestScore = β̂0 + β̂1 = 664.1− 1.9 = 662.2 ⇔ HiSTR = 1, HIEL = 0

̂TestScore = β̂0 + β̂1 + β̂2 + β̂3 = 664.1− 1.9− 18.3− 3.3 = 640.6 ⇔ HiSTR = 1, HIEL = 1
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Interactions Between a Continuous and a Binary Variable

Now let Xi denote the years of working experience of person i, which is a
continuous variable. We have

Yi = ln(Earningsi),

Xi =working experience of person i,

Di =
{

1, if ith person has a college degree
0, else.

The baseline model thus is

Yi = β0 + β1Xi + β2Di + ui,

a multiple regression model that allows us to estimate the average benefit of
having a college degree holding working experience constant as well as the aver-
age effect on earnings of a change in working experience holding college degree
constant.

By adding the interaction term Xi × Di we allow the effect of an additional
year of work experience to differ between individuals with and without college
degree,

Yi = β0 + β1Xi + β2Di + β3(Xi ×Di) + ui.

Here, β3 is the expected difference in the effect of an additional year of work
experience for college graduates versus non-graduates. Another possible speci-
fication is

Yi = β0 + β1Xi + β2(Xi ×Di) + ui.

This model states that the expected impact of an additional year of work ex-
perience on earnings differs for college graduates and non-graduates but that
graduating on its own does not increase earnings.

All three regression functions can be visualized by straight lines. Key Concept
8.4 summarizes the differences.
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Key Concept 8.4
Interactions Between Binary and Continuous Variables

An interaction term like Xi × Di (where Xi is continuous and Di is
binary) allows for the slope to depend on the binary variable Di. There
are three possibilities:

1. Different intercept and same slope:

Yi = β0 + β1Xi + β2Di + ui

2. Different intercept and different slope:

Yi = β0 + β1Xi + β2Di + β3 × (Xi ×Di) + ui

3. Same intercept and different slope:

Yi = β0 + β1Xi + β2(Xi ×Di) + ui

The following code chunk demonstrates how to replicate the results shown in
Figure 8.8 of the book using artificial data.

# generate artificial data
set.seed(1)

X <- runif(200,0, 15)
D <- sample(0:1, 200, replace = T)
Y <- 450 + 150 * X + 500 * D + 50 * (X * D) + rnorm(200, sd = 300)

# divide plotting area accordingly
m <- rbind(c(1, 2), c(3, 0))
graphics::layout(m)

# estimate the models and plot the regression lines

# 1. (baseline model)
plot(X, log(Y),

pch = 20,
col = "steelblue",
main = "Different Intercepts, Same Slope")

mod1_coef <- lm(log(Y) ~ X + D)$coefficients

abline(coef = c(mod1_coef[1], mod1_coef[2]),



8.3. INTERACTIONS BETWEEN INDEPENDENT VARIABLES 225

col = "red",
lwd = 1.5)

abline(coef = c(mod1_coef[1] + mod1_coef[3], mod1_coef[2]),
col = "green",
lwd = 1.5)

# 2. (baseline model + interaction term)
plot(X, log(Y),

pch = 20,
col = "steelblue",
main = "Different Intercepts, Different Slopes")

mod2_coef <- lm(log(Y) ~ X + D + X:D)$coefficients

abline(coef = c(mod2_coef[1], mod2_coef[2]),
col = "red",
lwd = 1.5)

abline(coef = c(mod2_coef[1] + mod2_coef[3], mod2_coef[2] + mod2_coef[4]),
col = "green",
lwd = 1.5)

# 3. (omission of D as regressor + interaction term)
plot(X, log(Y),

pch = 20,
col = "steelblue",
main = "Same Intercept, Different Slopes")

mod3_coef <- lm(log(Y) ~ X + X:D)$coefficients

abline(coef = c(mod3_coef[1], mod3_coef[2]),
col = "red",
lwd = 1.5)

abline(coef = c(mod3_coef[1], mod3_coef[2] + mod3_coef[3]),
col = "green",
lwd = 1.5)
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Application to the Student-Teacher Ratio and the Percentage of En-
glish Learners

Using a model specification like the second one discussed in Key Concept 8.3
(different slope, different intercept) we may answer the question whether the
effect on test scores of decreasing the student-teacher ratio depends on whether
there are many or few English learners. We estimate the regression model

̂TestScorei = β0 + β1 × sizei + β2 ×HiELi + β2(sizei ×HiELi) + ui.

# estimate the model
bci_model <- lm(score ~ size + HiEL + size * HiEL, data = CASchools)

# print robust summary of coefficients to the console
coeftest(bci_model, vcov. = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 682.24584 11.86781 57.4871 <2e-16 ***
#> size -0.96846 0.58910 -1.6440 0.1009
#> HiEL 5.63914 19.51456 0.2890 0.7727
#> size:HiEL -1.27661 0.96692 -1.3203 0.1875
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression model is

̂TestScore = 682.2
(11.87)

− 0.97
(0.59)

× size+ 5.6
(19.51)

×HiEL− 1.28
(0.97)

× (size×HiEL).



8.3. INTERACTIONS BETWEEN INDEPENDENT VARIABLES 227

The estimated regression line for districts with a low fraction of English learners
(HiELi = 0) is

̂TestScore = 682.2− 0.97× sizei.

For districts with a high fraction of English learners we have

̂TestScore = 682.2 + 5.6− 0.97× sizei − 1.28× sizei
= 687.8− 2.25× sizei.

The predicted increase in test scores following a reduction of the student-teacher
ratio by 1 unit is about 0.97 points in districts where the fraction of English
learners is low but 2.25 in districts with a high share of English learners. From
the coefficient on the interaction term size ×HiEL we see that the difference
between both effects is 1.28 points.

The next code chunk draws both lines belonging to the model. In order to make
observations with HiEL = 0 distinguishable from those with HiEL = 1, we
use different colors.

# identify observations with PctEL >= 10
id <- CASchools$english >= 10

# plot observations with HiEL = 0 as red dots
plot(CASchools$size[!id], CASchools$score[!id],

xlim = c(0, 27),
ylim = c(600, 720),
pch = 20,
col = "red",
main = "",
xlab = "Class Size",
ylab = "Test Score")

# plot observations with HiEL = 1 as green dots
points(CASchools$size[id], CASchools$score[id],

pch = 20,
col = "green")

# read out estimated coefficients of bci_model
coefs <- bci_model$coefficients

# draw the estimated regression line for HiEL = 0
abline(coef = c(coefs[1], coefs[2]),

col = "red",
lwd = 1.5)
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# draw the estimated regression line for HiEL = 1
abline(coef = c(coefs[1] + coefs[3], coefs[2] + coefs[4]),

col = "green",
lwd = 1.5 )

# add a legend to the plot
legend("topright",

pch = c(20, 20),
col = c("red", "green"),
legend = c("HiEL = 0", "HiEL = 1"))
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Interactions Between Two Continuous Variables

Consider a regression model with Y the log earnings and two continuous re-
gressors X1, the years of work experience, and X2, the years of schooling. We
want to estimate the effect on wages of an additional year of work experience
depending on a given level of schooling. This effect can be assessed by including
the interaction term (X1i ×X2i) in the model:

∆Yi = β0 + β1 ×X1i + β2 ×X2i + β3 × (X1i ×X2i) + ui

Following Key Concept 8.1 we find that the effect on Y of a change on X1 given
X2 is

∆Y
∆X1

= β1 + β3X2.

In the earnings example, a positive β3 implies that the effect on log earnings
of an additional year of work experience grows linearly with years of schooling.
Vice versa we have

∆Y
∆X2

= β2 + β3X1
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as the effect on log earnings of an additional year of schooling holding work
experience constant.

Altogether we find that β3 measures the effect of a unit increase in X1 and X2
beyond the effects of increasing X1 alone and X2 alone by one unit. The overall
change in Y is thus

Yi = (β1 + β3X2)∆X1 + (β2 + β3X1)∆X2 + β3∆X1∆X2. (8.2)

Key Concept 8.5 summarizes interactions between two regressors in multiple
regression.

Key Concept 8.5
Interactions in Multiple Regression

The interaction term between the two regressors X1 and X2 is given by
their product X1 × X2. Adding this interaction term as a regressor to
the model

Yi = β0 + β1X1 + β2X2 + ui

allows the effect on Y of a change in X2 to depend on the value of X1
and vice versa. Thus the coefficient β3 in the model

Yi = β0 + β1X1 + β2X2 + β3(X1 ×X2) + ui

measures the effect of a one-unit increase in both X1 and X2 above and
beyond the sum of both individual effects. This holds for continuous and
binary regressors.

8.3.0.1 Application to the Student-Teacher Ratio and the Percent-
age of English Learners

We now examine the interaction between the continuous variables student-
teacher ratio and the percentage of English learners.

# estimate regression model including the interaction between 'PctEL' and 'size'
cci_model <- lm(score ~ size + english + english * size, data = CASchools)

# print a summary to the console
coeftest(cci_model, vcov. = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
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#> (Intercept) 686.3385268 11.7593466 58.3654 < 2e-16 ***
#> size -1.1170184 0.5875136 -1.9013 0.05796 .
#> english -0.6729119 0.3741231 -1.7986 0.07280 .
#> size:english 0.0011618 0.0185357 0.0627 0.95005
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated model equation is

̂TestScore = 686.3
(11.76)

− 1.12
(0.59)

×STR− 0.67
(0.37)

×PctEL+ 0.0012
(0.02)

× (STR×PctEL).

For the interpretation, let us consider the quartiles of PctEL.

summary(CASchools$english)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.000 1.941 8.778 15.768 22.970 85.540

According to (8.2), if PctEL is at its median value of 8.78, the slope of the
regression function relating test scores and the student teacher ratio is predicted
to be −1.12 + 0.0012× 8.78 = −1.11. This means that increasing the student-
teacher ratio by one unit is expected to deteriorate test scores by 1.11 points.
For the 75% quantile, the estimated change on TestScore of a one-unit increase
in STR is estimated by −1.12 + 0.0012×23.0 = −1.09 so the slope is somewhat
lower. The interpretation is that for a school district with a share of 23% English
learners, a reduction of the student-teacher ratio by one unit is expected to
increase test scores by only 1.09 points.

However, the output of summary() indicates that the difference of the effect for
the median and the 75% quantile is not statistically significant. H0 : β3 = 0
cannot be rejected at the 5% level of significance (the p-value is 0.95).

Example: The Demand for Economic Journals

In this section we replicate the empirical example The Demand for Economic
Journals presented at pages 336 - 337 of the book. The central question is:
how elastic is the demand by libraries for economic journals? The idea here
is to analyze the relationship between the number of subscription to a journal
at U.S. libraries and the journal’s subscription price. The study uses the data
set Journals which is provided with the AER package and contains observations
for 180 economic journals for the year 2000. You can use the help function
(?Journals) to get more information on the data after loading the package.
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# load package and the data set
library(AER)
data("Journals")

We measure the price as “price per citation” and compute journal age and the
number of characters manually. For consistency with the book we also rename
the variables.

# define and rename variables
Journals$PricePerCitation <- Journals$price/Journals$citations
Journals$Age <- 2000 - Journals$foundingyear
Journals$Characters <- Journals$charpp * Journals$pages/10ˆ6
Journals$Subscriptions <- Journals$subs

The range of “price per citation” is quite large:

# compute summary statistics for price per citation
summary(Journals$PricePerCitation)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.005223 0.464495 1.320513 2.548455 3.440171 24.459459

The lowest price observed is a mere 0.5¢ per citation while the highest price is
more than 20¢ per citation.

We now estimate four different model specifications. All models are log-log
models. This is useful because it allows us to directly interpret the coefficients
as elasticities, see Key Concept 8.2. (I) is a linear model. To alleviate a pos-
sible omitted variable bias, (II) augments (I) by the covariates ln(Age) and
ln(Characters). The largest model (III) attempts to capture nonlinearities in
the relationship of ln(Subscriptions) and ln(PricePerCitation) using a cubic
regression function of ln(PricePerCitation) and also adds the interaction term
(PricePerCitation × Age) while specification (IV ) does not include the cubic
term.

(I) ln(Subscriptionsi) =β0 + β1 ln(PricePerCitationi) + ui

(II) ln(Subscriptionsi) =β0 + β1 ln(PricePerCitationi) + β4 ln(Agei) + β6 ln(Charactersi) + ui

(III) ln(Subscriptionsi) =β0 + β1 ln(PricePerCitationi) + β2 ln(PricePerCitationi)2

+β3 ln(PricePerCitationi)3 + β4 ln(Agei) + β5 [ln(Agei)× ln(PricePerCitationi)]
+β6 ln(Charactersi) + ui

(IV ) ln(Subscriptionsi) =β0 + β1 ln(PricePerCitationi) + β4 ln(Agei) + β6 ln(Charactersi) + ui
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# Estimate models (I) - (IV)
Journals_mod1 <- lm(log(Subscriptions) ~ log(PricePerCitation),

data = Journals)

Journals_mod2 <- lm(log(Subscriptions) ~ log(PricePerCitation)
+ log(Age) + log(Characters),
data = Journals)

Journals_mod3 <- lm(log(Subscriptions) ~
log(PricePerCitation) + I(log(PricePerCitation)ˆ2)
+ I(log(PricePerCitation)ˆ3) + log(Age)
+ log(Age):log(PricePerCitation) + log(Characters),
data = Journals)

Journals_mod4 <- lm(log(Subscriptions) ~
log(PricePerCitation) + log(Age)
+ log(Age):log(PricePerCitation) +
log(Characters),
data = Journals)

Using summary(), we obtain the following estimated models:

(I) ̂ln(Subscriptionsi) = 4.77− 0.53 ln(PricePerCitationi)

(II) ̂ln(Subscriptionsi) = 3.21− 0.41 ln(PricePerCitationi) + 0.42 ln(Agei) + 0.21 ln(Charactersi)

(III) ̂ln(Subscriptionsi) = 3.41− 0.96 ln(PricePerCitationi) + 0.02 ln(PricePerCitationi)2

+ 0.004 ln(PricePerCitationi)3 + 0.37 ln(Agei)
+ 0.16 [ln(Agei)× ln(PricePerCitationi)]
+ 0.23 ln(Charactersi)

(IV ) ̂ln(Subscriptionsi) = 3.43− 0.90 ln(PricePerCitationi) + 0.37 ln(Agei)
+ 0.14 [ln(Agei)× ln(PricePerCitationi)] + 0.23 ln(Charactersi)

We use an F -Test to test if the transformations of ln(PricePerCitation) in
Model (III) are statistically significant.

# F-Test for significance of cubic terms
linearHypothesis(Journals_mod3,

c("I(log(PricePerCitation)ˆ2)=0", "I(log(PricePerCitation)ˆ3)=0"),
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vcov. = vcovHC, type = "HC1")
#> Linear hypothesis test
#>
#> Hypothesis:
#> I(log(PricePerCitation)ˆ2) = 0
#> I(log(PricePerCitation)ˆ3) = 0
#>
#> Model 1: restricted model
#> Model 2: log(Subscriptions) ~ log(PricePerCitation) + I(log(PricePerCitation)ˆ2) +
#> I(log(PricePerCitation)ˆ3) + log(Age) + log(Age):log(PricePerCitation) +
#> log(Characters)
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 175
#> 2 173 2 0.1943 0.8236

Clearly, we cannot reject the null hypothesis H0 : β3 = β4 = 0 in model (III).

We now demonstrate how the function stargazer() can be used to generate a
tabular representation of all four models.

# load the stargazer package
library(stargazer)

# gather robust standard errors in a list
rob_se <- list(sqrt(diag(vcovHC(Journals_mod1, type = "HC1"))),

sqrt(diag(vcovHC(Journals_mod2, type = "HC1"))),
sqrt(diag(vcovHC(Journals_mod3, type = "HC1"))),
sqrt(diag(vcovHC(Journals_mod4, type = "HC1"))))

# generate a Latex table using stargazer
stargazer(Journals_mod1, Journals_mod2, Journals_mod3, Journals_mod4,

se = rob_se,
digits = 3,
column.labels = c("(I)", "(II)", "(III)", "(IV)"))

The subsequent code chunk reproduces Figure 8.9 of the book.

# divide plotting area
m <- rbind(c(1, 2), c(3, 0))
graphics::layout(m)

# scatterplot
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plot(Journals$PricePerCitation,
Journals$Subscriptions,
pch = 20,
col = "steelblue",
ylab = "Subscriptions",
xlab = "ln(Price per ciation)",
main = "(a)")

# log-log scatterplot and estimated regression line (I)
plot(log(Journals$PricePerCitation),

log(Journals$Subscriptions),
pch = 20,
col = "steelblue",
ylab = "ln(Subscriptions)",
xlab = "ln(Price per ciation)",
main = "(b)")

abline(Journals_mod1,
lwd = 1.5)

# log-log scatterplot and regression lines (IV) for Age = 5 and Age = 80
plot(log(Journals$PricePerCitation),

log(Journals$Subscriptions),
pch = 20,
col = "steelblue",
ylab = "ln(Subscriptions)",
xlab = "ln(Price per ciation)",
main = "(c)")

JM4C <-Journals_mod4$coefficients

# Age = 80
abline(coef = c(JM4C[1] + JM4C[3] * log(80),

JM4C[2] + JM4C[5] * log(80)),
col = "darkred",
lwd = 1.5)

# Age = 5
abline(coef = c(JM4C[1] + JM4C[3] * log(5),

JM4C[2] + JM4C[5] * log(5)),
col = "darkgreen",
lwd = 1.5)
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As can be seen from plots (a) and (b), the relation between subscriptions and
the citation price is adverse and nonlinear. Log-transforming both variables
makes it approximately linear. Plot (c) shows that the price elasticity of journal
subscriptions depends on the journal’s age: the red line shows the estimated
relationship for Age = 80 while the green line represents the prediction from
model (IV ) for Age = 5.

Which conclusion can be drawn?

1. We conclude that the demand for journals is more elastic for young jour-
nals than for old journals.

2. For model (III) we cannot reject the null hypothesis that the coefficients
on ln(PricePerCitation)2 and ln(PricePerCitation)3 are both zero using
an F -test. This is evidence compatible with a linear relation between log-
subscriptions and log-price.

3. Demand is greater for Journals with more characters, holding price and
age constant.

Altogether our estimates suggest that the demand is very inelastic, i.e., the
libraries’ demand for economic journals is quite insensitive to the price: using
model (IV ), even for a young journal (Age = 5) we estimate the price elasticity
to be −0.899 + 0.374 × ln(5) + 0.141 × [ln(1)× ln(5)] ≈ −0.3 so a one percent
increase in price is predicted to reduce the demand by only 0.3 percent.

This finding comes at no surprise since providing the most recent publications
is a necessity for libraries.
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8.4 Nonlinear Effects on Test Scores of the
Student-Teacher Ratio

In this section we will discuss three specific questions about the relationship
between test scores and the student-teacher ratio:

1. Does the effect on test scores of decreasing the student-teacher ratio de-
pend on the fraction of English learners when we control for economic
idiosyncrasies of the different districts?

2. Does this effect depend on the the student-teacher ratio?

3. How strong is the effect of decreasing the student-teacher ratio (by two
students per teacher) if we take into account economic characteristics and
nonlinearities?

Too answer these questions we consider a total of seven models, some of which
are nonlinear regression specifications of the types that have been discussed
before. As measures for the students’ economic backgrounds, we additionally
consider the regressors lunch and ln(income). We use the logarithm of income
because the analysis in Chapter 8.2 showed that the nonlinear relationship be-
tween income and TestScores is approximately logarithmic. We do not include
expenditure per pupil (expenditure) because doing so would imply that expen-
diture varies with the student-teacher ratio (see Chapter 7.2 of the book for a
detailed argument).

Nonlinear Regression Models of Test Scores

The considered model specifications are:
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TestScorei =β0 + β1sizei + β4englishi + β9lunchi + ui (8.3)
TestScorei =β0 + β1sizei + β4englishi + β9lunchi + β10 ln(incomei) + ui

(8.4)
TestScorei =β0 + β1sizei + β5HiELi + β6(HiELi × sizei) + ui (8.5)
TestScorei =β0 + β1sizei + β5HiELi + β6(HiELi × sizei) + β9lunchi + β10 ln(incomei) + ui

(8.6)
TestScorei =β0 + β1sizei + β2size

2
i + β5HiELi + β9lunchi + β10 ln(incomei) + ui

(8.7)
TestScorei =β0 + β1sizei + β2size

2
i + β3size

3
i + β5HiELi + β6(HiEL× size)

(8.8)
+ β7(HiELi × size2

i ) + β8(HiELi × size3
i ) + β9lunchi + β10 ln(incomei) + ui

(8.9)
TestScorei =β0 + β1sizei + β2size

2
i + β3size

3
i + β4english+ β9lunchi + β10 ln(incomei) + ui

(8.10)

# estimate all models
TestScore_mod1 <- lm(score ~ size + english + lunch, data = CASchools)

TestScore_mod2 <- lm(score ~ size + english + lunch + log(income), data = CASchools)

TestScore_mod3 <- lm(score ~ size + HiEL + HiEL:size, data = CASchools)

TestScore_mod4 <- lm(score ~ size + HiEL + HiEL:size + lunch + log(income), data = CASchools)

TestScore_mod5 <- lm(score ~ size + I(sizeˆ2) + I(sizeˆ3) + HiEL + lunch + log(income),
data = CASchools)

TestScore_mod6 <- lm(score ~ size + I(sizeˆ2) + I(sizeˆ3) + HiEL + HiEL:size + HiEL:I(sizeˆ2) +
HiEL:I(sizeˆ3) + lunch + log(income), data = CASchools)

TestScore_mod7 <- lm(score ~ size + I(sizeˆ2) + I(sizeˆ3) + english + lunch + log(income),
data = CASchools)

We may use summary() to assess the models’ fit. Using stargazer() we may
also obtain a tabular representation of all regression outputs and which is more
convenient for comparison of the models.

# gather robust standard errors in a list
rob_se <- list(sqrt(diag(vcovHC(TestScore_mod1, type = "HC1"))),

sqrt(diag(vcovHC(TestScore_mod2, type = "HC1"))),
sqrt(diag(vcovHC(TestScore_mod3, type = "HC1"))),
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sqrt(diag(vcovHC(TestScore_mod4, type = "HC1"))),
sqrt(diag(vcovHC(TestScore_mod5, type = "HC1"))),
sqrt(diag(vcovHC(TestScore_mod6, type = "HC1"))),
sqrt(diag(vcovHC(TestScore_mod7, type = "HC1"))))

# generate a LaTeX table of regression outputs
stargazer(TestScore_mod1,

TestScore_mod2,
TestScore_mod3,
TestScore_mod4,
TestScore_mod5,
TestScore_mod6,
TestScore_mod7,
digits = 3,
dep.var.caption = "Dependent Variable: Test Score",
se = rob_se,
column.labels = c("(1)", "(2)", "(3)", "(4)", "(5)", "(6)", "(7)"))

Let us summarize what can be concluded from the results presented in Table
8.2.

First of all, the coefficient on size is statistically significant in all seven models.
Adding ln(income) to model (1) we find that the corresponding coefficient is
statistically significant at 1% while all other coefficients remain at their signif-
icance level. Furthermore, the estimate for the coefficient on size is roughly
0.27 points larger, which may be a sign of attenuated omitted variable bias. We
consider this a reason to include ln(income) as a regressor in other models, too.

Regressions (3) and (4) aim to assess the effect of allowing for an interaction
between size and HiEL, without and with economic control variables. In both
models, both the coefficient on the interaction term and the coefficient on the
dummy are not statistically significant. Thus, even with economic controls we
cannot reject the null hypotheses, that the effect of the student-teacher ratio
on test scores is the same for districts with high and districts with low share of
English learning students.

Regression (5) includes a cubic term for the student-teacher ratio and omits
the interaction between size and HiEl. The results indicate that there is a
nonlinear effect of the student-teacher ratio on test scores (Can you verify this
using an F -test of H0 : β2 = β3 = 0?)

Consequently, regression (6) further explores whether the fraction of English
learners impacts the student-teacher ratio by using HiEL × size and the in-
teractions HiEL × size2 and HiEL × size3. All individual t-tests indicate
that that there are significant effects. We check this using a robust F -test of
H0 : β6 = β7 = β8 = 0.
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Table
8.2:

N
onlinear

M
odels

ofTest
Scores

D
ependent

Variable:
Test

Score
score

(1)
(2)

(3)
(4)

(5)
(6)

(7)
size

−
0.998

∗∗∗
−
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# check joint significance of the interaction terms
linearHypothesis(TestScore_mod6,

c("size:HiEL=0", "I(sizeˆ2):HiEL=0", "I(sizeˆ3):HiEL=0"),
vcov. = vcovHC, type = "HC1")

#> Linear hypothesis test
#>
#> Hypothesis:
#> size:HiEL = 0
#> I(sizeˆ2):HiEL = 0
#> I(sizeˆ3):HiEL = 0
#>
#> Model 1: restricted model
#> Model 2: score ~ size + I(sizeˆ2) + I(sizeˆ3) + HiEL + HiEL:size + HiEL:I(sizeˆ2) +
#> HiEL:I(sizeˆ3) + lunch + log(income)
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 413
#> 2 410 3 2.1885 0.08882 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We find that the null can be rejected at the level of 5% and conclude that the
regression function differs for districts with high and low percentage of English
learners.

Specification (7) uses a continuous measure for the share of English learners
instead of a dummy variable (and thus does not include interaction terms). We
observe only small changes to the coefficient estimates on the other regressors
and thus conclude that the results observed for specification (5) are not sensitive
to the way the percentage of English learners is measured.

We continue by reproducing Figure 8.10 of the book for interpretation of the
nonlinear specifications (2), (5) and (7).

# scatterplot
plot(CASchools$size,

CASchools$score,
xlim = c(12, 28),
ylim = c(600, 740),
pch = 20,
col = "gray",
xlab = "Student-Teacher Ratio",
ylab = "Test Score")
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# add a legend
legend("top",

legend = c("Linear Regression (2)",
"Cubic Regression (5)",
"Cubic Regression (7)"),

cex = 0.8,
ncol = 3,
lty = c(1, 1, 2),
col = c("blue", "red", "black"))

# data for use with predict()
new_data <- data.frame("size" = seq(16, 24, 0.05),

"english" = mean(CASchools$english),
"lunch" = mean(CASchools$lunch),
"income" = mean(CASchools$income),
"HiEL" = mean(CASchools$HiEL))

# add estimated regression function for model (2)
fitted <- predict(TestScore_mod2, newdata = new_data)

lines(new_data$size,
fitted,
lwd = 1.5,
col = "blue")

# add estimated regression function for model (5)
fitted <- predict(TestScore_mod5, newdata = new_data)

lines(new_data$size,
fitted,
lwd = 1.5,
col = "red")

# add estimated regression function for model (7)
fitted <- predict(TestScore_mod7, newdata = new_data)

lines(new_data$size,
fitted,
col = "black",
lwd = 1.5,
lty = 2)
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For the above figure all regressors except size are set to their sample averages.
We see that the cubic regressions (5) and (7) are almost identical. They indicate
that the relation between test scores and the student-teacher ratio only has a
small amount of nonlinearity since they do not deviate much from the regression
function of (2).

The next code chunk reproduces Figure 8.11 of the book. We use plot() and
points() to color observations depending on HiEL. Again, the regression lines
are drawn based on predictions using average sample averages of all regressors
except for size.

# draw scatterplot

# observations with HiEL = 0
plot(CASchools$size[CASchools$HiEL == 0],

CASchools$score[CASchools$HiEL == 0],
xlim = c(12, 28),
ylim = c(600, 730),
pch = 20,
col = "gray",
xlab = "Student-Teacher Ratio",
ylab = "Test Score")

# observations with HiEL = 1
points(CASchools$size[CASchools$HiEL == 1],

CASchools$score[CASchools$HiEL == 1],
col = "steelblue",
pch = 20)

# add a legend
legend("top",

legend = c("Regression (6) with HiEL=0", "Regression (6) with HiEL=1"),
cex = 0.7,
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ncol = 2,
lty = c(1, 1),
col = c("green", "red"))

# data for use with 'predict()'
new_data <- data.frame("size" = seq(12, 28, 0.05),

"english" = mean(CASchools$english),
"lunch" = mean(CASchools$lunch),
"income" = mean(CASchools$income),
"HiEL" = 0)

# add estimated regression function for model (6) with HiEL=0
fitted <- predict(TestScore_mod6, newdata = new_data)

lines(new_data$size,
fitted,
lwd = 1.5,
col = "green")

# add estimated regression function for model (6) with HiEL=1
new_data$HiEL <- 1

fitted <- predict(TestScore_mod6, newdata = new_data)

lines(new_data$size,
fitted,
lwd = 1.5,
col = "red")
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The regression output shows that model (6) finds statistically significant coeffi-
cients on the interaction terms HiEL : size, HiEL : size2 and HiEL : size3,
i.e., there is evidence that the nonlinear relationship connecting test scores and
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student-teacher ratio depends on the fraction of English learning students in the
district. However, the above figure shows that this difference is not of practical
importance and is a good example for why one should be careful when interpret-
ing nonlinear models: although the two regression functions look different, we
see that the slope of both functions is almost identical for student-teacher ratios
between 17 and 23. Since this range includes almost 90% of all observations,
we can be confident that nonlinear interactions between the fraction of English
learners and the student-teacher ratio can be neglected.

One might be tempted to object since both functions show opposing slopes for
student-teacher ratios below 15 and beyond 24. There are at least to possible
objections:

1. There are only few observations with low and high values of the student-
teacher ratio, so there is only little information to be exploited when es-
timating the model. This means the estimated function is less precise in
the tails of the data set.

2. The above described behavior of the regression function, is a typical caveat
when using cubic functions since they generally show extreme behavior for
extreme regressor values. Think of the graph of f(x) = x3.

We thus find no clear evidence for a relation between class size and test scores
on the percentage of English learners in the district.

Summary

We are now able to answer the three question posed at the beginning of this
section.

1. In the linear models, the percentage of English learners has only little
influence on the effect on test scores from changing the student-teacher
ratio. This result stays valid if we control for economic background of
the students. While the cubic specification (6) provides evidence that
the effect the student-teacher ratio on test score depends on the share of
English learners, the strength of this effect is negligible.

2. When controlling for the students’ economic background we find evidence
of nonlinearities in the relationship between student-teacher ratio and test
scores.

3. The linear specification (2) predicts that a reduction of the student-teacher
ratio by two students per teacher leads to an improvement in test scores
of about −0.73× (−2) = 1.46 points. Since the model is linear, this effect
is independent of the class size. Assume that the student-teacher ratio
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is 20. For example, the nonlinear model (5) predicts that the reduction
increases test scores by

64.33·18+182·(−3.42)+183·(0.059)−(64.33·20+202·(−3.42)+203·(0.059)) ≈ 3.3

points. If the ratio is 22, a reduction to 20 leads to a predicted improve-
ment in test scores of

64.33·20+202·(−3.42)+203·(0.059)−(64.33·22+222·(−3.42)+223·(0.059)) ≈ 2.4

points. This suggests that the effect is stronger in smaller classes.

8.5 Exercises

This interactive part of the book is only available in the HTML version.



Chapter 9

Assessing Studies Based on
Multiple Regression

The majority of Chapter 9 of the book is of a theoretical nature. Therefore this
section briefly reviews the concepts of internal and external validity in general
and discusses examples of threats to internal and external validity of multiple
regression models. We discuss consequences of

• misspecification of the functional form of the regression function
• measurement errors
• missing data and sample selection
• simultaneous causality

as well as sources of inconsistency of OLS standard errors. We also review
concerns regarding internal validity and external validity in the context of fore-
casting using regression models.

The chapter closes with an application in R where we assess whether results
found by multiple regression using the CASchools data can be generalized to
school districts of another federal state of the United States.

For a more detailed treatment of these topics we encourage you to work through
Chapter 9 of the book.

The following packages and their dependencies are needed for reproduction of
the code chunks presented throughout this chapter:

• AER
• mvtnorm
• stargazer

247
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library(AER)
library(mvtnorm)
library(stargazer)

9.1 Internal and External Validity

Key Concept 9.1
Internal and External Validity

A statistical analysis has internal validity if the statistical inference
made about causal effects are valid for the considered population.

An analysis is said to have external validity if inferences and conclusion
are valid for the studies’ population and can be generalized to other
populations and settings.

Threats to Internal Validity

There are two conditions for internal validity to exist:

1. The estimator of the causal effect, which is measured the coefficient(s) of
interest, should be unbiased and consistent.

2. Statistical inference is valid, that is, hypothesis tests should have the de-
sired size and confidence intervals should have the desired coverage prob-
ability.

In multiple regression, we estimate the model coefficients using OLS. Thus for
condition 1. to be fulfilled we need the OLS estimator to be unbiased and
consistent. For the second condition to be valid, the standard errors must be
valid such that hypothesis testing and computation of confidence intervals yield
results that are trustworthy. Remember that a sufficient condition for conditions
1. and 2. to be fulfilled is that the assumptions of Key Concept 6.4 hold.

Threats to External Validity

External validity might be invalid

• if there are differences between the population studied and the population
of interest.

• if there are differences in the settings of the considered populations, e.g.,
the legal framework or the time of the investigation.
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9.2 Threats to Internal Validity of Multiple Re-
gression Analysis

This section treats five sources that cause the OLS estimator in (multiple) re-
gression models to be biased and inconsistent for the causal effect of interest
and discusses possible remedies. All five sources imply a violation of the first
least squares assumption presented in Key Concept 6.4.

This sections treats:

• omitted variable Bias

• misspecification of the functional form

• measurement errors

• missing data and sample selection

• simultaneous causality bias

Beside these threats for consistency of the estimator, we also briefly discuss
causes of inconsistent estimation of OLS standard errors.
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Omitted Variable Bias

Key Concept 9.2
Omitted Variable Bias: Should I include More Variables in My
Regression?

Inclusion of additional variables reduces the risk of omitted variable
bias but may increase the variance of the estimator of the coefficient of
interest.

We present some guidelines that help deciding whether to include an
additional variable:

• Specify the coefficient(s) of interest

• Identify the most important potential sources of omitted variable
bias by using knowledge available before estimating the model. You
should end up with a base specification and a set of regressors that
are questionable

• Use different model specifications to test whether questionable re-
gressors have coefficients different from zero

• Use tables to provide full disclosure of your results, i.e., present dif-
ferent model specifications that both support your argument and
enable the reader to see the effect of including questionable regres-
sors

By now you should be aware of omitted variable bias and its consequences. Key
Concept 9.2 gives some guidelines on how to proceed if there are control variables
that possibly allow to reduce omitted variable bias. If including additional
variables to mitigate the bias is not an option because there are no adequate
controls, there are different approaches to solve the problem:

• usage of panel data methods (discussed in Chapter 10)

• usage of instrumental variables regression (discussed in Chapter 12)

• usage of a randomized control experiment (discussed in Chapter 13)

Misspecification of the Functional Form of the Regression Function

If the population regression function is nonlinear but the regression function is
linear, the functional form of the regression model is misspecified. This leads to
a bias of the OLS estimator.
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Key Concept 9.3
Functional Form Misspecification

We say a regression suffers from misspecification of the functional form
when the functional form of the estimated regression model differs from
the functional form of the population regression function. Functional
form misspecification leads to biased and inconsistent coefficient estima-
tors. A way to detect functional form misspecification is to plot the
estimated regression function and the data. This may also be helpful to
choose the correct functional form.

It is easy to come up with examples of misspecification of the functional form:
consider the case where the population regression function is

Yi = X2
i

but the model used is
Yi = β0 + β1Xi + ui.

Clearly, the regression function is misspecified here. We now simulate data and
visualize this.

# set seed for reproducibility
set.seed(3)

# simulate data set
X <- runif(100, -5, 5)
Y <- Xˆ2 + rnorm(100)

# estimate the regression function
ms_mod <- lm(Y ~ X)
ms_mod
#>
#> Call:
#> lm(formula = Y ~ X)
#>
#> Coefficients:
#> (Intercept) X
#> 8.11363 -0.04684

# plot the data
plot(X, Y,

main = "Misspecification of Functional Form",
pch = 20,
col = "steelblue")
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# plot the linear regression line
abline(ms_mod,

col = "darkred",
lwd = 2)
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It is evident that the regression errors are relatively small for observations close
to X = −3 and X = 3 but that the errors increase for X values closer to
zero and even more for values beyond −4 and 4. Consequences are drastic:
the intercept is estimated to be 8.1 and for the slope parameter we obtain an
estimate obviously very close to zero. This issue does not disappear as the
number of observations is increased because OLS is biased and inconsistent due
to the misspecification of the regression function.

Measurement Error and Errors-in-Variables Bias

Key Concept 9.4
Errors-in-Variable Bias

When independent variables are measured imprecisely, we speak of
errors-in-variables bias. This bias does not disappear if the sample size
is large. If the measurement error has mean zero and is independent of
the affected variable, the OLS estimator of the respective coefficient is
biased towards zero.

Suppose you are incorrectly measuring the single regressor Xi so that there
is a measurement error and you observe

∼
Xi instead of Xi. Then, instead of

estimating the population the regression model

Yi = β0 + β1Xi + ui
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you end up estimating

Yi =β0 + β1
∼
Xi + β1(Xi −

∼
Xi) + ui︸ ︷︷ ︸

=vi

Yi =β0 + β1
∼
Xi + vi

where
∼
Xi and the error term vi are correlated. Thus OLS would be biased and

inconsistent for the true β1 in this example. One can show that direction and
strength of the bias depend on the correlation between the observed regressor,
∼
Xi, and the measurement error, wi = Xi−

∼
Xi. This correlation in turn depends

on the type of the measurement error made.

The classical measurement error model assumes that the measurement error,
wi, has zero mean and that it is uncorrelated with the variable, Xi, and the
error term of the population regression model, ui:

∼
Xi = Xi + wi, ρwi,ui

= 0, ρwi,Xi
= 0 (9.1)

Then it holds that
β̂1

p−→ σ2
X

σ2
X + σ2

w

β1 (9.2)

which implies inconsistency as σ2
X , σ

2
w > 0 such that the fraction in (9.2) is

smaller than 1. Note that there are two extreme cases:

1. If there is no measurement error, σ2
w = 0 such that β̂1

p−→ β1.

2. if σ2
w � σ2

X we have β̂1
p−→ 0. This is the case if the measurement error is

so large that there essentially is no information on X in the data that can
be used to estimate β1.

The most obvious way to deal with errors-in-variables bias is to use an accu-
rately measured X. If this not possible, instrumental variables regression is an
option. One might also deal with the issue by using a mathematical model of
the measurement error and adjust the estimates appropriately: if it is plausible
that the classical measurement error model applies and if there is information
that can be used to estimate the ratio in equation (9.2), one could compute an
estimate that corrects for the downward bias.

For example, consider two bivariate normally distributed random variablesX,Y .
It is a well known result that the conditional expectation function of Y given
X has the form

E(Y |X) = E(Y ) + ρX,Y
σY
σX

[X − E(X)] . (9.3)

https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Bivariate_case
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Thus for

(X,Y ) ∼ N
[(

50
100

)
,

(
10 5
5 10

)]
(9.4)

according to (9.3), the population regression function is

Yi = 100 + 0.5(Xi − 50)
= 75 + 0.5Xi.

Now suppose you gather data on X and Y , but that you can only measure
∼
Xi = Xi + wi with wi

i.i.d.∼ N (0, 10). Since the wi are independent of the Xi,
there is no correlation between the Xi and the wi so that we have a case of the
classical measurement error model. We now illustrate this example in R using
the package mvtnorm (Genz et al., 2020).

# set seed
set.seed(1)

# load the package 'mvtnorm' and simulate bivariate normal data
library(mvtnorm)
dat <- data.frame(
rmvnorm(1000, c(50, 100),

sigma = cbind(c(10, 5), c(5, 10))))

# set columns names
colnames(dat) <- c("X", "Y")

We now estimate a simple linear regression of Y on X using this sample data
and run the same regression again but this time we add i.i.d. N (0, 10) errors
added to X.

# estimate the model (without measurement error)
noerror_mod <- lm(Y ~ X, data = dat)

# estimate the model (with measurement error in X)
dat$X <- dat$X + rnorm(n = 1000, sd = sqrt(10))
error_mod <- lm(Y ~ X, data = dat)

# print estimated coefficients to console
noerror_mod$coefficients
#> (Intercept) X
#> 76.3002047 0.4755264
error_mod$coefficients
#> (Intercept) X
#> 87.276004 0.255212
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Next, we visualize the results and compare with the population regression func-
tion.

# plot sample data
plot(dat$X, dat$Y,

pch = 20,
col = "steelblue",
xlab = "X",
ylab = "Y")

# add population regression function
abline(coef = c(75, 0.5),

col = "darkgreen",
lwd = 1.5)

# add estimated regression functions
abline(noerror_mod,

col = "purple",
lwd = 1.5)

abline(error_mod,
col = "darkred",
lwd = 1.5)

# add legend
legend("topleft",

bg = "transparent",
cex = 0.8,
lty = 1,
col = c("darkgreen", "purple", "darkred"),
legend = c("Population", "No Errors", "Errors"))
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In the situation without measurement error, the estimated regression function
is close to the population regression function. Things are different when we
use the mismeasured regressor X: both the estimate for the intercept and the
estimate for the coefficient on X differ considerably from results obtained using
the “clean” data on X. In particular β̂1 = 0.255, so there is a downward bias.
We are in the comfortable situation to know σ2

X and σ2
w. This allows us to

correct for the bias using (9.2). Using this information we obtain the biased-
corrected estimate

σ2
X + σ2

w

σ2
X

· β̂1 = 10 + 10
10 · 0.255 = 0.51

which is quite close to β1 = 0.5, the true coefficient from the population regres-
sion function.

Bear in mind that the above analysis uses a single sample. Thus one may argue
that the results are just a coincidence. Can you show the contrary using a
simulation study?

Missing Data and Sample Selection

Key Concept 9.5
Sample Selection Bias

When the sampling process influences the availability of data and when
there is a relation of this sampling process to the dependent variable
that goes beyond the dependence on the regressors, we say that there is
a sample selection bias. This bias is due to correlation between one or
more regressors and the error term. Sample selection implies both bias
and inconsistency of the OLS estimator.

There are three cases of sample selection. Only one of them poses a threat to
internal validity of a regression study. The three cases are:

1. Data are missing at random.

2. Data are missing based on the value of a regressor.

3. Data are missing due to a selection process which is related to the depen-
dent variable.

Let us jump back to the example of variables X and Y distributed as stated in
equation (9.4) and illustrate all three cases using R.

If data are missing at random, this is nothing but loosing observations. For
example, loosing 50% of the sample would be the same as never having seen the
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(randomly chosen) half of the sample observed. Therefore, missing data do not
introduce an estimation bias and “only” lead to less efficient estimators.

# set seed
set.seed(1)

# simulate data
dat <- data.frame(
rmvnorm(1000, c(50, 100),

sigma = cbind(c(10, 5), c(5, 10))))

colnames(dat) <- c("X", "Y")

# mark 500 randomly selected observations
id <- sample(1:1000, size = 500)

plot(dat$X[-id],
dat$Y[-id],
col = "steelblue",
pch = 20,
cex = 0.8,
xlab = "X",
ylab = "Y")

points(dat$X[id],
dat$Y[id],
cex = 0.8,
col = "gray",
pch = 20)

# add the population regression function
abline(coef = c(75, 0.5),

col = "darkgreen",
lwd = 1.5)

# add the estimated regression function for the full sample
abline(noerror_mod)

# estimate model case 1 and add the regression line
dat <- dat[-id, ]

c1_mod <- lm(dat$Y ~ dat$X, data = dat)
abline(c1_mod, col = "purple")

# add a legend
legend("topleft",
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lty = 1,
bg = "transparent",
cex = 0.8,
col = c("darkgreen", "black", "purple"),
legend = c("Population", "Full sample", "500 obs. randomly selected"))

45 50 55 60

90
95

10
0

10
5

X

Y

Population
Full sample
500 obs. randomly selected

The gray dots represent the 500 discarded observations. When using the re-
maining observations, the estimation results deviate only marginally from the
results obtained using the full sample.

Selecting data randomly based on the value of a regressor has also the effect of
reducing the sample size and does not introduce estimation bias. We will now
drop all observations with X > 45, estimate the model again and compare.

# set random seed
set.seed(1)

# simulate data
dat <- data.frame(
rmvnorm(1000, c(50, 100),

sigma = cbind(c(10, 5), c(5, 10))))

colnames(dat) <- c("X", "Y")

# mark observations
id <- dat$X >= 45

plot(dat$X[-id],
dat$Y[-id],
col = "steelblue",
cex = 0.8,
pch = 20,
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xlab = "X",
ylab = "Y")

points(dat$X[id],
dat$Y[id],
col = "gray",
cex = 0.8,
pch = 20)

# add population regression function
abline(coef = c(75, 0.5),

col = "darkgreen",
lwd = 1.5)

# add estimated regression function for full sample
abline(noerror_mod)

# estimate model case 1, add regression line
dat <- dat[-id, ]

c2_mod <- lm(dat$Y ~ dat$X, data = dat)
abline(c2_mod, col = "purple")

# add legend
legend("topleft",

lty = 1,
bg = "transparent",
cex = 0.8,
col = c("darkgreen", "black", "purple"),
legend = c("Population", "Full sample", "Obs. with X <= 45"))
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Note that although we dropped more than 90% of all observations, the estimated
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regression function is very close to the line estimated based on the full sample.

In the third case we face sample selection bias. We can illustrate this by using
only observations with Xi < 55 and Yi > 100. These observations are easily
identified using the function which() and logical operators: which(dat$X < 55
& dat$Y > 100)

# set random seed
set.seed(1)

# simulate data
dat <- data.frame(
rmvnorm(1000, c(50,100),

sigma = cbind(c(10,5), c(5,10))))

colnames(dat) <- c("X","Y")

# mark observations
id <- which(dat$X <= 55 & dat$Y >= 100)

plot(dat$X[-id],
dat$Y[-id],
col = "gray",
cex = 0.8,
pch = 20,
xlab = "X",
ylab = "Y")

points(dat$X[id],
dat$Y[id],
col = "steelblue",
cex = 0.8,
pch = 20)

# add population regression function
abline(coef = c(75, 0.5),

col = "darkgreen",
lwd = 1.5)

# add estimated regression function for full sample
abline(noerror_mod)

# estimate model case 1, add regression line
dat <- dat[id, ]

c3_mod <- lm(dat$Y ~ dat$X, data = dat)
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abline(c3_mod, col = "purple")

# add legend
legend("topleft",

lty = 1,
bg = "transparent",
cex = 0.8,
col = c("darkgreen", "black", "purple"),
legend = c("Population", "Full sample", "X <= 55 & Y >= 100"))
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We see that the selection process leads to biased estimation results.

There are methods that allow to correct for sample selection bias. However,
these methods are beyond the scope of the book and are therefore not considered
here. The concept of sample selection bias is summarized in Key Concept 9.5.

Simultaneous Causality

Key Concept 9.6
Simultaneous Causality Bias

So far we have assumed that the changes in the independent variable
X are responsible for changes in the dependent variable Y . When the
reverse is also true, we say that there is simultaneous causality between
X and Y . This reverse causality leads to correlation between X and the
error in the population regression of interest such that the coefficient on
X is estimated with a bias.

Suppose we are interested in estimating the effect of a 20% increase in cigarettes
prices on cigarette consumption in the United States using a multiple regres-
sion model. This may be investigated using the dataset CigarettesSW which
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is part of the AER package. CigarettesSW is a panel data set on cigarette con-
sumption for all 48 continental U.S. federal states from 1985-1995 and provides
data on economic indicators and average local prices, taxes and per capita pack
consumption.

After loading the data set, we pick observations for the year 1995 and plot
logarithms of the per pack price, price, against pack consumption, packs, and
estimate a simple linear regression model.

# load the data set
library(AER)
data("CigarettesSW")
c1995 <- subset(CigarettesSW, year == "1995")

# estimate the model
cigcon_mod <- lm(log(packs) ~ log(price), data = c1995)
cigcon_mod
#>
#> Call:
#> lm(formula = log(packs) ~ log(price), data = c1995)
#>
#> Coefficients:
#> (Intercept) log(price)
#> 10.850 -1.213

# plot the estimated regression line and the data
plot(log(c1995$price), log(c1995$packs),

xlab = "ln(Price)",
ylab = "ln(Consumption)",
main = "Demand for Cigarettes",
pch = 20,
col = "steelblue")

abline(cigcon_mod,
col = "darkred",
lwd = 1.5)
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Remember from Chapter 8 that, due to the log-log specification, in the popu-
lation regression the coefficient on the logarithm of price is interpreted as the
price elasticity of consumption. The estimated coefficient suggests that a 1%
increase in cigarettes prices reduces cigarette consumption by about 1.2%, on
average. Have we estimated a demand curve? The answer is no: this is a classic
example of simultaneous causality, see Key Concept 9.6. The observations are
market equilibria which are determined by both changes in supply and changes
in demand. Therefore the price is correlated with the error term and the OLS
estimator is biased. We can neither estimate a demand nor a supply curve
consistently using this approach.

We will return to this issue in Chapter 12 which treats instrumental variables
regression, an approach that allows consistent estimation when there is simul-
taneous causality.

Sources of Inconsistency of OLS Standard Errors

There are two central threats to computation of consistent OLS standard errors:

1. Heteroskedasticity: implications of heteroskedasticiy have been discussed
in Chapter 5. Heteroskedasticity-robust standard errors as computed by
the function vcovHC() from the package sandwich produce valid standard
errors under heteroskedasticity.

2. Serial correlation: if the population regression error is correlated across
observations, we have serial correlation. This often happens in applica-
tions where repeated observations are used, e.g., in panel data studies.
As for heteroskedasticity, vcovHC() can be used to obtain valid standard
errors when there is serial correlation.
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Inconsistent standard errors will produce invalid hypothesis tests and wrong
confidence intervals. For example, when testing the null that some model coef-
ficient is zero, we cannot trust the outcome anymore because the test may fail
to have a size of 5% due to the wrongly computed standard error.

Key Concept 9.7 summarizes all threats to internal validity discussed above.

Key Concept 9.7
Threats to Internal Validity of a Regression Study

The five primary threats to internal validity of a multiple regression
study are:

1. Omitted variables

2. Misspecification of functional form

3. Errors in variables (measurement errors in the regressors)

4. Sample selection

5. Simultaneous causality

All these threats lead to failure of the first least squares assumption

E(ui|X1i, . . . , Xki) 6= 0

so that the OLS estimator is biased and inconsistent.

Furthermore, if one does not adjust for heteroskedasticity and/or serial
correlation, incorrect standard errors may be a threat to internal validity
of the study.

9.3 Internal and External Validity when the Re-
gression is Used for Forecasting

Recall the regression of test scores on the student-teacher ratio (STR) performed
in Chapter 4:

linear_model <- lm(score ~ STR, data = CASchools)
linear_model
#>
#> Call:
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#> lm(formula = score ~ STR, data = CASchools)
#>
#> Coefficients:
#> (Intercept) STR
#> 698.93 -2.28

The estimated regression function was

̂TestScore = 698.9− 2.28× STR.

The book discusses the example of a parent moving to a metropolitan area who
plans to choose where to live based on the quality of local schools: a school dis-
trict’s average test score is an adequate measure for the quality. However, the
parent has information on the student-teacher ratio only such that test scores
need to be predicted. Although we have established that there is omitted vari-
able bias in this model due to omission of variables like student learning oppor-
tunities outside school, the share of English learners and so on, linear_model
may in fact be useful for the parent:

The parent need not care if the coefficient on STR has causal interpretation, she
wants STR to explain as much variation in test scores as possible. Therefore,
despite the fact that linear_model cannot be used to estimate the causal effect
of a change in STR on test scores, it can be considered a reliable predictor of
test scores in general.

Thus, the threats to internal validity as summarized in Key Concept 9.7 are
negligible for the parent. This is, as instanced in the book, different for a
superintendent who has been tasked to take measures that increase test scores:
she requires a more reliable model that does not suffer from the threats listed
in Key Concept 9.7.

Consult Chapter 9.3 of the book for the corresponding discussion.

9.4 Example: Test Scores and Class Size

This section discusses internal and external validity of the results gained from
analyzing the California test score data using multiple regression models.

External Validity of the Study

External validity of the California test score analysis means that its results can
be generalized. Whether this is possible depends on the population and the
setting. Following the book we conduct the same analysis using data for fourth
graders in 220 public school districts in Massachusetts in 1998. Like CASchools,
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the data set MASchools is part of the AER package (Kleiber and Zeileis, 2020).
Use the help function (?MASchools) to get information on the definitions of all
the variables contained.

We start by loading the data set and proceed by computing some summary
statistics.

# attach the 'MASchools' dataset
data("MASchools")
summary(MASchools)
#> district municipality expreg expspecial
#> Length:220 Length:220 Min. :2905 Min. : 3832
#> Class :character Class :character 1st Qu.:4065 1st Qu.: 7442
#> Mode :character Mode :character Median :4488 Median : 8354
#> Mean :4605 Mean : 8901
#> 3rd Qu.:4972 3rd Qu.: 9722
#> Max. :8759 Max. :53569
#>
#> expbil expocc exptot scratio
#> Min. : 0 Min. : 0 Min. :3465 Min. : 2.300
#> 1st Qu.: 0 1st Qu.: 0 1st Qu.:4730 1st Qu.: 6.100
#> Median : 0 Median : 0 Median :5155 Median : 7.800
#> Mean : 3037 Mean : 1104 Mean :5370 Mean : 8.107
#> 3rd Qu.: 0 3rd Qu.: 0 3rd Qu.:5789 3rd Qu.: 9.800
#> Max. :295140 Max. :15088 Max. :9868 Max. :18.400
#> NA's :9
#> special lunch stratio income
#> Min. : 8.10 Min. : 0.40 Min. :11.40 Min. : 9.686
#> 1st Qu.:13.38 1st Qu.: 5.30 1st Qu.:15.80 1st Qu.:15.223
#> Median :15.45 Median :10.55 Median :17.10 Median :17.128
#> Mean :15.97 Mean :15.32 Mean :17.34 Mean :18.747
#> 3rd Qu.:17.93 3rd Qu.:20.02 3rd Qu.:19.02 3rd Qu.:20.376
#> Max. :34.30 Max. :76.20 Max. :27.00 Max. :46.855
#>
#> score4 score8 salary english
#> Min. :658.0 Min. :641.0 Min. :24.96 Min. : 0.0000
#> 1st Qu.:701.0 1st Qu.:685.0 1st Qu.:33.80 1st Qu.: 0.0000
#> Median :711.0 Median :698.0 Median :35.88 Median : 0.0000
#> Mean :709.8 Mean :698.4 Mean :35.99 Mean : 1.1177
#> 3rd Qu.:720.0 3rd Qu.:712.0 3rd Qu.:37.96 3rd Qu.: 0.8859
#> Max. :740.0 Max. :747.0 Max. :44.49 Max. :24.4939
#> NA's :40 NA's :25

It is fairly easy to replicate key components of Table 9.1 of the book using R. To
be consistent with variable names used in the CASchools data set, we do some
formatting beforehand.
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# Customized variables in MASchools
MASchools$score <- MASchools$score4
MASchools$STR <- MASchools$stratio

# Reproduce Table 9.1 of the book
vars <- c("score", "STR", "english", "lunch", "income")

cbind(CA_mean = sapply(CASchools[, vars], mean),
CA_sd = sapply(CASchools[, vars], sd),
MA_mean = sapply(MASchools[, vars], mean),
MA_sd = sapply(MASchools[, vars], sd))

#> CA_mean CA_sd MA_mean MA_sd
#> score 654.15655 19.053347 709.827273 15.126474
#> STR 19.64043 1.891812 17.344091 2.276666
#> english 15.76816 18.285927 1.117676 2.900940
#> lunch 44.70524 27.123381 15.315909 15.060068
#> income 15.31659 7.225890 18.746764 5.807637

The summary statistics reveal that the average test score is higher for school
districts in Massachusetts. The test used in Massachusetts is somewhat differ-
ent from the one used in California (the Massachusetts test score also includes
results for the school subject “Science”), therefore a direct comparison of test
scores is not appropriate. We also see that, on average, classes are smaller in
Massachusetts than in California and that the average district income, average
percentage of English learners as well as the average share of students receiving
subsidized lunch differ considerably from the averages computed for California.
There are also notable differences in the observed dispersion of the variables.

Following the book we examine the relationship between district income and test
scores in Massachusetts as we have done before in Chapter 8 for the California
data and reproduce Figure 9.2 of the book.

# estimate linear model
Linear_model_MA <- lm(score ~ income, data = MASchools)
Linear_model_MA
#>
#> Call:
#> lm(formula = score ~ income, data = MASchools)
#>
#> Coefficients:
#> (Intercept) income
#> 679.387 1.624

# estimate linear-log model
Linearlog_model_MA <- lm(score ~ log(income), data = MASchools)



268CHAPTER 9. ASSESSING STUDIES BASEDONMULTIPLE REGRESSION

Linearlog_model_MA
#>
#> Call:
#> lm(formula = score ~ log(income), data = MASchools)
#>
#> Coefficients:
#> (Intercept) log(income)
#> 600.80 37.71

# estimate Cubic model
cubic_model_MA <- lm(score ~ I(income) + I(incomeˆ2) + I(incomeˆ3), data = MASchools)
cubic_model_MA
#>
#> Call:
#> lm(formula = score ~ I(income) + I(incomeˆ2) + I(incomeˆ3), data = MASchools)
#>
#> Coefficients:
#> (Intercept) I(income) I(incomeˆ2) I(incomeˆ3)
#> 600.398531 10.635382 -0.296887 0.002762

# plot data
plot(MASchools$income, MASchools$score,

pch = 20,
col = "steelblue",
xlab = "District income",
ylab = "Test score",
xlim = c(0, 50),
ylim = c(620, 780))

# add estimated regression line for the linear model
abline(Linear_model_MA, lwd = 2)

# add estimated regression function for Linear-log model
order_id <- order(MASchools$income)

lines(MASchools$income[order_id],
fitted(Linearlog_model_MA)[order_id],
col = "darkgreen",
lwd = 2)

# add estimated cubic regression function
lines(x = MASchools$income[order_id],

y = fitted(cubic_model_MA)[order_id],
col = "orange",
lwd = 2)
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# add a legend
legend("topleft",

legend = c("Linear", "Linear-Log", "Cubic"),
lty = 1,
col = c("Black", "darkgreen", "orange"))
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The plot indicates that the cubic specification fits the data best. Interestingly,
this is different from the CASchools data where the pattern of nonlinearity is
better described by the linear-log specification.

We continue by estimating most of the model specifications used for analysis of
the CASchools data set in Chapter 8 and use stargazer() (Hlavac, 2018) to
generate a tabular representation of the regression results.

# add 'HiEL' to 'MASchools'
MASchools$HiEL <- as.numeric(MASchools$english > median(MASchools$english))

# estimate the model specifications from Table 9.2 of the book
TestScore_MA_mod1 <- lm(score ~ STR, data = MASchools)

TestScore_MA_mod2 <- lm(score ~ STR + english + lunch + log(income),
data = MASchools)

TestScore_MA_mod3 <- lm(score ~ STR + english + lunch + income + I(incomeˆ2)
+ I(incomeˆ3), data = MASchools)

TestScore_MA_mod4 <- lm(score ~ STR + I(STRˆ2) + I(STRˆ3) + english + lunch + income
+ I(incomeˆ2) + I(incomeˆ3), data = MASchools)

TestScore_MA_mod5 <- lm(score ~ STR + I(incomeˆ2) + I(incomeˆ3) + HiEL:STR + lunch
+ income, data = MASchools)
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TestScore_MA_mod6 <- lm(score ~ STR + I(incomeˆ2) + I(incomeˆ3) + HiEL + HiEL:STR + lunch
+ income, data = MASchools)

# gather robust standard errors
rob_se <- list(sqrt(diag(vcovHC(TestScore_MA_mod1, type = "HC1"))),

sqrt(diag(vcovHC(TestScore_MA_mod2, type = "HC1"))),
sqrt(diag(vcovHC(TestScore_MA_mod3, type = "HC1"))),
sqrt(diag(vcovHC(TestScore_MA_mod4, type = "HC1"))),
sqrt(diag(vcovHC(TestScore_MA_mod5, type = "HC1"))),
sqrt(diag(vcovHC(TestScore_MA_mod6, type = "HC1"))))

# generate a table with 'stargazer()'
library(stargazer)

stargazer(Linear_model_MA, TestScore_MA_mod2, TestScore_MA_mod3,
TestScore_MA_mod4, TestScore_MA_mod5, TestScore_MA_mod6,
title = "Regressions Using Massachusetts Test Score Data",
type = "latex",
digits = 3,
header = FALSE,
se = rob_se,
object.names = TRUE,
model.numbers = FALSE,
column.labels = c("(I)", "(II)", "(III)", "(IV)", "(V)", "(VI)"))

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-
mail: hlavac at fas.harvard.edu % Date and time: Tue, Sep 15, 2020 - 11:33:34
% Requires LaTeX packages: rotating

Next we reproduce the F -statistics and p-values for testing exclusion of groups
of variables.

# F-test model (3)
linearHypothesis(TestScore_MA_mod3,

c("I(incomeˆ2)=0", "I(incomeˆ3)=0"),
vcov. = vcovHC, type = "HC1")

#> Linear hypothesis test
#>
#> Hypothesis:
#> I(incomeˆ2) = 0
#> I(incomeˆ3) = 0
#>
#> Model 1: restricted model
#> Model 2: score ~ STR + english + lunch + income + I(incomeˆ2) + I(incomeˆ3)
#>
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#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 215
#> 2 213 2 6.227 0.002354 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# F-tests model (4)
linearHypothesis(TestScore_MA_mod4,

c("STR=0", "I(STRˆ2)=0", "I(STRˆ3)=0"),
vcov. = vcovHC, type = "HC1")

#> Linear hypothesis test
#>
#> Hypothesis:
#> STR = 0
#> I(STRˆ2) = 0
#> I(STRˆ3) = 0
#>
#> Model 1: restricted model
#> Model 2: score ~ STR + I(STRˆ2) + I(STRˆ3) + english + lunch + income +
#> I(incomeˆ2) + I(incomeˆ3)
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 214
#> 2 211 3 2.3364 0.07478 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(TestScore_MA_mod4,
c("I(STRˆ2)=0", "I(STRˆ3)=0"),
vcov. = vcovHC, type = "HC1")

#> Linear hypothesis test
#>
#> Hypothesis:
#> I(STRˆ2) = 0
#> I(STRˆ3) = 0
#>
#> Model 1: restricted model
#> Model 2: score ~ STR + I(STRˆ2) + I(STRˆ3) + english + lunch + income +
#> I(incomeˆ2) + I(incomeˆ3)
#>
#> Note: Coefficient covariance matrix supplied.
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#>
#> Res.Df Df F Pr(>F)
#> 1 213
#> 2 211 2 0.3396 0.7124

linearHypothesis(TestScore_MA_mod4,
c("I(incomeˆ2)=0", "I(incomeˆ3)=0"),
vcov. = vcovHC, type = "HC1")

#> Linear hypothesis test
#>
#> Hypothesis:
#> I(incomeˆ2) = 0
#> I(incomeˆ3) = 0
#>
#> Model 1: restricted model
#> Model 2: score ~ STR + I(STRˆ2) + I(STRˆ3) + english + lunch + income +
#> I(incomeˆ2) + I(incomeˆ3)
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 213
#> 2 211 2 5.7043 0.003866 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# F-tests model (5)
linearHypothesis(TestScore_MA_mod5,

c("STR=0", "STR:HiEL=0"),
vcov. = vcovHC, type = "HC1")

#> Linear hypothesis test
#>
#> Hypothesis:
#> STR = 0
#> STR:HiEL = 0
#>
#> Model 1: restricted model
#> Model 2: score ~ STR + HiEL + HiEL:STR + lunch + income + I(incomeˆ2) +
#> I(incomeˆ3)
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 214
#> 2 212 2 3.7663 0.0247 *
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#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(TestScore_MA_mod5,
c("I(incomeˆ2)=0", "I(incomeˆ3)=0"),
vcov. = vcovHC, type = "HC1")

#> Linear hypothesis test
#>
#> Hypothesis:
#> I(incomeˆ2) = 0
#> I(incomeˆ3) = 0
#>
#> Model 1: restricted model
#> Model 2: score ~ STR + HiEL + HiEL:STR + lunch + income + I(incomeˆ2) +
#> I(incomeˆ3)
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 214
#> 2 212 2 3.2201 0.04191 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

linearHypothesis(TestScore_MA_mod5,
c("HiEL=0", "STR:HiEL=0"),
vcov. = vcovHC, type = "HC1")

#> Linear hypothesis test
#>
#> Hypothesis:
#> HiEL = 0
#> STR:HiEL = 0
#>
#> Model 1: restricted model
#> Model 2: score ~ STR + HiEL + HiEL:STR + lunch + income + I(incomeˆ2) +
#> I(incomeˆ3)
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 214
#> 2 212 2 1.4674 0.2328

# F-test Model (6)
linearHypothesis(TestScore_MA_mod6,
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c("I(incomeˆ2)=0", "I(incomeˆ3)=0"),
vcov. = vcovHC, type = "HC1")

#> Linear hypothesis test
#>
#> Hypothesis:
#> I(incomeˆ2) = 0
#> I(incomeˆ3) = 0
#>
#> Model 1: restricted model
#> Model 2: score ~ STR + lunch + income + I(incomeˆ2) + I(incomeˆ3)
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 216
#> 2 214 2 4.2776 0.01508 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We see that, in terms of R̄2, specification (3) which uses a cubic to model the
relationship between district income and test scores indeed performs better than
the linear-log specification (2). Using different F -tests on models (4) and (5),
we cannot reject the hypothesis that there is no nonlinear relationship between
student teacher ratio and test score and also that the share of English learners
has an influence on the relationship of interest. Furthermore, regression (6)
shows that the percentage of English learners can be omitted as a regressor.
Because of the model specifications made in (4) to (6) do not lead to substan-
tially different results than those of regression (3), we choose model (3) as the
most suitable specification.

In comparison to the California data, we observe the following results:

1. Controlling for the students’ background characteristics in model speci-
fication (2) reduces the coefficient of interest (student-teacher ratio) by
roughly 60%. The estimated coefficients are close to each other.

2. The coefficient on student-teacher ratio is always significantly different
from zero at the level of 1% for both data sets. This holds for all considered
model specifications in both studies.

3. In both studies the share of English learners in a school district is of little
importance for the estimated impact of a change in the student-teacher
ratio on test score.

The biggest difference is that, in contrast to the California results, we do not
find evidence of a nonlinear relationship between test scores and the student
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teacher ratio for the Massachusetts data since the corresponding F -tests for
model (4) do not reject.

As pointed out in the book, the test scores for California and Massachusetts have
different units because the underlying tests are different. Thus the estimated
coefficients on the student-teacher ratio in both regressions cannot be compared
before standardizing test scores to the same units as

Testscore− TestScore
σTestScore

for all observations in both data sets and running the regressions of interest
using the standardized data again. One can show that the coefficient on student-
teacher ratio in the regression using standardized test scores is the coefficient of
the original regression divided by the standard deviation of test scores.

For model (3) of the Massachusetts data, the estimated coefficient on the
student-teacher ratio is −0.64. A reduction of the student-teacher ratio by
two students is predicted to increase test scores by −2 · (−0.64) = 1.28 points.
Thus we can compute the effect of a reduction of student-teacher ratio by two
students on the standardized test scores as follows:

TestScore_MA_mod3$coefficients[2] / sd(MASchools$score) * (-2)
#> STR
#> 0.08474001

For Massachusetts the predicted increase of test scores due to a reduction of
the student-teacher ratio by two students is 0.085 standard deviations of the
distribution of the observed distribution of test scores.

Using the linear specification (2) for California, the estimated coefficient on the
student-teacher ratio is −0.73 so the predicted increase of test scores induced by
a reduction of the student-teacher ratio by two students is −0.73 · (−2) = 1.46.
We use R to compute the predicted change in standard deviation units:

TestScore_mod2$coefficients[2] / sd(CASchools$score) * (-2)
#> STR
#> 0.07708103

This shows that the the predicted increase of test scores due to a reduction
of the student-teacher ratio by two students is 0.077 standard deviation of the
observed distribution of test scores for the California data.

In terms of standardized test scores, the predicted change is essentially the same
for school districts in California and Massachusetts.

Altogether, the results support external validity of the inferences made using
data on Californian elementary school districts — at least for Massachusetts.
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Internal Validity of the Study

External validity of the study does not ensure their internal validity. Although
the chosen model specification improves upon a simple linear regression model,
internal validity may still be violated due to some of the threats listed in Key
Concept 9.7. These threats are:

• omitted variable bias

• misspecification of functional form

• errors in variables

• sample selection issues

• simultaneous causality

• heteroskedasticity

• correlation of errors across observations

Consult the book for an in-depth discussion of these threats in view of both test
score studies.

Summary

We have found that there is a small but statistically significant effect of the
student-teacher ratio on test scores. However, it remains unclear if we have
indeed estimated the causal effect of interest since — despite that our approach
including control variables, taking into account nonlinearities in the population
regression function and statistical inference using robust standard errors — the
results might still be biased for example if there are omitted factors which we
have not considered. Thus internal validity of the study remains questionable.
As we have concluded from comparison with the analysis of the Massachusetts
data set, this result may be externally valid.

The following chapters address techniques that can be remedies to all the threats
to internal validity listed in Key Concept 9.7 if multiple regression alone is insuf-
ficient. This includes regression using panel data and approaches that employ
instrumental variables.

9.5 Exercises

This interactive part of the book is only available in the HTML version.
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Chapter 10

Regression with Panel Data

Regression using panel data may mitigate omitted variable bias when there is
no information on variables that correlate with both the regressors of interest
and the independent variable and if these variables are constant in the time
dimension or across entities. Provided that panel data is available panel regres-
sion methods may improve upon multiple regression models which, as discussed
in Chapter 9, produce results that are not internally valid in such a setting.

This chapter covers the following topics:

• notation for panel data
• fixed effects regression using time and/or entity fixed effects
• computation of standard errors in fixed effects regression models

Following the book, for applications we make use of the dataset Fatalities
from the AER package (Kleiber and Zeileis, 2020) which is a panel dataset re-
porting annual state level observations on U.S. traffic fatalities for the period
1982 through 1988. The applications analyze if there are effects of alcohol taxes
and drunk driving laws on road fatalities and, if present, how strong these effects
are.

We introduce plm(), a convenient R function that enables us to estimate linear
panel regression models which comes with the package plm (Croissant et al.,
2020). Usage of plm() is very similar as for the function lm() which we have
used throughout the previous chapters for estimation of simple and multiple
regression models.

The following packages and their dependencies are needed for reproduction of
the code chunks presented throughout this chapter on your computer:

• AER

279
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• plm
• stargazer

Check whether the following code chunk runs without any errors.

library(AER)
library(plm)
library(stargazer)

10.1 Panel Data

Key Concept 10.1
Notation for Panel Data

In contrast to cross-section data where we have observations on n sub-
jects (entities), panel data has observations on n entities at T ≥ 2 time
periods. This is denoted

(Xit, Yit), i = 1, . . . , n and t = 1, . . . , T

where the index i refers to the entity while t refers to the time period.

Sometimes panel data is also called longitudinal data as it adds a temporal
dimension to cross-sectional data. Let us have a look at the dataset Fatalities
by checking its structure and listing the first few observations.

# load the package and the dataset
library(AER)
data(Fatalities)

# obtain the dimension and inspect the structure
is.data.frame(Fatalities)
#> [1] TRUE
dim(Fatalities)
#> [1] 336 34

str(Fatalities)
#> 'data.frame': 336 obs. of 34 variables:
#> $ state : Factor w/ 48 levels "al","az","ar",..: 1 1 1 1 1 1 1 2 2 2 ...
#> $ year : Factor w/ 7 levels "1982","1983",..: 1 2 3 4 5 6 7 1 2 3 ...
#> $ spirits : num 1.37 1.36 1.32 1.28 1.23 ...
#> $ unemp : num 14.4 13.7 11.1 8.9 9.8 ...
#> $ income : num 10544 10733 11109 11333 11662 ...
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#> $ emppop : num 50.7 52.1 54.2 55.3 56.5 ...
#> $ beertax : num 1.54 1.79 1.71 1.65 1.61 ...
#> $ baptist : num 30.4 30.3 30.3 30.3 30.3 ...
#> $ mormon : num 0.328 0.343 0.359 0.376 0.393 ...
#> $ drinkage : num 19 19 19 19.7 21 ...
#> $ dry : num 25 23 24 23.6 23.5 ...
#> $ youngdrivers: num 0.212 0.211 0.211 0.211 0.213 ...
#> $ miles : num 7234 7836 8263 8727 8953 ...
#> $ breath : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
#> $ jail : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 2 2 2 ...
#> $ service : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 2 2 2 ...
#> $ fatal : int 839 930 932 882 1081 1110 1023 724 675 869 ...
#> $ nfatal : int 146 154 165 146 172 181 139 131 112 149 ...
#> $ sfatal : int 99 98 94 98 119 114 89 76 60 81 ...
#> $ fatal1517 : int 53 71 49 66 82 94 66 40 40 51 ...
#> $ nfatal1517 : int 9 8 7 9 10 11 8 7 7 8 ...
#> $ fatal1820 : int 99 108 103 100 120 127 105 81 83 118 ...
#> $ nfatal1820 : int 34 26 25 23 23 31 24 16 19 34 ...
#> $ fatal2124 : int 120 124 118 114 119 138 123 96 80 123 ...
#> $ nfatal2124 : int 32 35 34 45 29 30 25 36 17 33 ...
#> $ afatal : num 309 342 305 277 361 ...
#> $ pop : num 3942002 3960008 3988992 4021008 4049994 ...
#> $ pop1517 : num 209000 202000 197000 195000 204000 ...
#> $ pop1820 : num 221553 219125 216724 214349 212000 ...
#> $ pop2124 : num 290000 290000 288000 284000 263000 ...
#> $ milestot : num 28516 31032 32961 35091 36259 ...
#> $ unempus : num 9.7 9.6 7.5 7.2 7 ...
#> $ emppopus : num 57.8 57.9 59.5 60.1 60.7 ...
#> $ gsp : num -0.0221 0.0466 0.0628 0.0275 0.0321 ...

# list the first few observations
head(Fatalities)
#> state year spirits unemp income emppop beertax baptist mormon drinkage
#> 1 al 1982 1.37 14.4 10544.15 50.69204 1.539379 30.3557 0.32829 19.00
#> 2 al 1983 1.36 13.7 10732.80 52.14703 1.788991 30.3336 0.34341 19.00
#> 3 al 1984 1.32 11.1 11108.79 54.16809 1.714286 30.3115 0.35924 19.00
#> 4 al 1985 1.28 8.9 11332.63 55.27114 1.652542 30.2895 0.37579 19.67
#> 5 al 1986 1.23 9.8 11661.51 56.51450 1.609907 30.2674 0.39311 21.00
#> 6 al 1987 1.18 7.8 11944.00 57.50988 1.560000 30.2453 0.41123 21.00
#> dry youngdrivers miles breath jail service fatal nfatal sfatal
#> 1 25.0063 0.211572 7233.887 no no no 839 146 99
#> 2 22.9942 0.210768 7836.348 no no no 930 154 98
#> 3 24.0426 0.211484 8262.990 no no no 932 165 94
#> 4 23.6339 0.211140 8726.917 no no no 882 146 98
#> 5 23.4647 0.213400 8952.854 no no no 1081 172 119
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#> 6 23.7924 0.215527 9166.302 no no no 1110 181 114
#> fatal1517 nfatal1517 fatal1820 nfatal1820 fatal2124 nfatal2124 afatal
#> 1 53 9 99 34 120 32 309.438
#> 2 71 8 108 26 124 35 341.834
#> 3 49 7 103 25 118 34 304.872
#> 4 66 9 100 23 114 45 276.742
#> 5 82 10 120 23 119 29 360.716
#> 6 94 11 127 31 138 30 368.421
#> pop pop1517 pop1820 pop2124 milestot unempus emppopus gsp
#> 1 3942002 208999.6 221553.4 290000.1 28516 9.7 57.8 -0.02212476
#> 2 3960008 202000.1 219125.5 290000.2 31032 9.6 57.9 0.04655825
#> 3 3988992 197000.0 216724.1 288000.2 32961 7.5 59.5 0.06279784
#> 4 4021008 194999.7 214349.0 284000.3 35091 7.2 60.1 0.02748997
#> 5 4049994 203999.9 212000.0 263000.3 36259 7.0 60.7 0.03214295
#> 6 4082999 204999.8 208998.5 258999.8 37426 6.2 61.5 0.04897637

# summarize the variables 'state' and 'year'
summary(Fatalities[, c(1, 2)])
#> state year
#> al : 7 1982:48
#> az : 7 1983:48
#> ar : 7 1984:48
#> ca : 7 1985:48
#> co : 7 1986:48
#> ct : 7 1987:48
#> (Other):294 1988:48

We find that the dataset consists of 336 observations on 34 variables. Notice
that the variable state is a factor variable with 48 levels (one for each of the
48 contiguous federal states of the U.S.). The variable year is also a factor
variable that has 7 levels identifying the time period when the observation was
made. This gives us 7 × 48 = 336 observations in total. Since all variables are
observed for all entities and over all time periods, the panel is balanced. If there
were missing data for at least one entity in at least one time period we would
call the panel unbalanced.

Example: Traffic Deaths and Alcohol Taxes

We start by reproducing Figure 10.1 of the book. To this end we estimate sim-
ple regressions using data for years 1982 and 1988 that model the relationship
between beer tax (adjusted for 1988 dollars) and the traffic fatality rate, mea-
sured as the number of fatalities per 10000 inhabitants. Afterwards, we plot the
data and add the corresponding estimated regression functions.
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# define the fatality rate
Fatalities$fatal_rate <- Fatalities$fatal / Fatalities$pop * 10000

# subset the data
Fatalities1982 <- subset(Fatalities, year == "1982")
Fatalities1988 <- subset(Fatalities, year == "1988")

# estimate simple regression models using 1982 and 1988 data
fatal1982_mod <- lm(fatal_rate ~ beertax, data = Fatalities1982)
fatal1988_mod <- lm(fatal_rate ~ beertax, data = Fatalities1988)

coeftest(fatal1982_mod, vcov. = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 2.01038 0.14957 13.4408 <2e-16 ***
#> beertax 0.14846 0.13261 1.1196 0.2687
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coeftest(fatal1988_mod, vcov. = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 1.85907 0.11461 16.2205 < 2.2e-16 ***
#> beertax 0.43875 0.12786 3.4314 0.001279 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression functions are

̂FatalityRate = 2.01
(0.15)

+ 0.15
(0.13)

×BeerTax (1982 data),

̂FatalityRate = 1.86
(0.11)

+ 0.44
(0.13)

×BeerTax (1988 data).

# plot the observations and add the estimated regression line for 1982 data
plot(x = Fatalities1982$beertax,

y = Fatalities1982$fatal_rate,
xlab = "Beer tax (in 1988 dollars)",
ylab = "Fatality rate (fatalities per 10000)",
main = "Traffic Fatality Rates and Beer Taxes in 1982",
ylim = c(0, 4.5),
pch = 20,
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col = "steelblue")

abline(fatal1982_mod, lwd = 1.5)
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# plot observations and add estimated regression line for 1988 data
plot(x = Fatalities1988$beertax,

y = Fatalities1988$fatal_rate,
xlab = "Beer tax (in 1988 dollars)",
ylab = "Fatality rate (fatalities per 10000)",
main = "Traffic Fatality Rates and Beer Taxes in 1988",
ylim = c(0, 4.5),
pch = 20,
col = "steelblue")

abline(fatal1988_mod, lwd = 1.5)
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In both plots, each point represents observations of beer tax and fatality rate for
a given state in the respective year. The regression results indicate a positive
relationship between the beer tax and the fatality rate for both years. The
estimated coefficient on beer tax for the 1988 data is almost three times as
large as for the 1988 dataset. This is contrary to our expectations: alcohol
taxes are supposed to lower the rate of traffic fatalities. As we known from
Chapter 6, this is possibly due to omitted variable bias, since both models do
not include any covariates, e.g., economic conditions. This could be corrected
for using a multiple regression approach. However, this cannot account for
omitted unobservable factors that differ from state to state but can be assumed
to be constant over the observation span, e.g., the populations’ attitude towards
drunk driving. As shown in the next section, panel data allow us to hold such
factors constant.

10.2 Panel Data with Two Time Periods: “Be-
fore and After” Comparisons

Suppose there are only T = 2 time periods t = 1982, 1988. This allows us to
analyze differences in changes of the the fatality rate from year 1982 to 1988.
We start by considering the population regression model

FatalityRateit = β0 + β1BeerTaxit + β2Zi + uit

where the Zi are state specific characteristics that differ between states but are
constant over time. For t = 1982 and t = 1988 we have

FatalityRatei1982 =β0 + β1BeerTaxi1982 + β2Zi + ui1982,

FatalityRatei1988 =β0 + β1BeerTaxi1988 + β2Zi + ui1988.
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We can eliminate the Zi by regressing the difference in the fatality rate between
1988 and 1982 on the difference in beer tax between those years:

FatalityRatei1988−FatalityRatei1982 = β1(BeerTaxi1988−BeerTaxi1982)+ui1988−ui1982

This regression model yields an estimate for β1 robust a possible bias due to
omission of the Zi, since these influences are eliminated from the model. Next
we use use R to estimate a regression based on the differenced data and plot the
estimated regression function.

# compute the differences
diff_fatal_rate <- Fatalities1988$fatal_rate - Fatalities1982$fatal_rate
diff_beertax <- Fatalities1988$beertax - Fatalities1982$beertax

# estimate a regression using differenced data
fatal_diff_mod <- lm(diff_fatal_rate ~ diff_beertax)

coeftest(fatal_diff_mod, vcov = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.072037 0.065355 -1.1022 0.276091
#> diff_beertax -1.040973 0.355006 -2.9323 0.005229 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Including the intercept allows for a change in the mean fatality rate in the time
between 1982 and 1988 in the absence of a change in the beer tax.

We obtain the OLS estimated regression function

̂FatalityRatei1988 − FatalityRatei1982 = −0.072
(0.065)

−1.04
(0.36)

×(BeerTaxi1988−BeerTaxi1982).

# plot the differenced data
plot(x = diff_beertax,

y = diff_fatal_rate,
xlab = "Change in beer tax (in 1988 dollars)",
ylab = "Change in fatality rate (fatalities per 10000)",
main = "Changes in Traffic Fatality Rates and Beer Taxes in 1982-1988",
xlim = c(-0.6, 0.6),
ylim = c(-1.5, 1),
pch = 20,
col = "steelblue")

# add the regression line to plot
abline(fatal_diff_mod, lwd = 1.5)
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The estimated coefficient on beer tax is now negative and significantly different
from zero at 5%. Its interpretation is that raising the beer tax by $1 causes
traffic fatalities to decrease by 1.04 per 10000 people. This is rather large as the
average fatality rate is approximately 2 persons per 10000 people.

# compute mean fatality rate over all states for all time periods
mean(Fatalities$fatal_rate)
#> [1] 2.040444

Once more this outcome is likely to be a consequence of omitting factors in the
single-year regression that influence the fatality rate and are correlated with the
beer tax and change over time. The message is that we need to be more careful
and control for such factors before drawing conclusions about the effect of a
raise in beer taxes.

The approach presented in this section discards information for years 1983 to
1987. A method that allows to use data for more than T = 2 time periods and
enables us to add control variables is the fixed effects regression approach.

10.3 Fixed Effects Regression

Consider the panel regression model

Yit = β0 + β1Xit + β2Zi + uit

where the Zi are unobserved time-invariant heterogeneities across the entities
i = 1, . . . , n. We aim to estimate β1, the effect on Yi of a change in Xi holding
constant Zi. Letting αi = β0 + β2Zi we obtain the model

Yit = αi + β1Xit + uit. (10.1)
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Having individual specific intercepts αi, i = 1, . . . , n, where each of these can
be understood as the fixed effect of entity i, this model is called the fixed effects
model. The variation in the αi, i = 1, . . . , n comes from the Zi. (10.1) can
be rewritten as a regression model containing n − 1 dummy regressors and a
constant:

Yit = β0 + β1Xit + γ2D2i + γ3D3i + · · ·+ γnDni + uit. (10.2)

Model (10.2) has n different intercepts — one for every entity. (10.1) and (10.2)
are equivalent representations of the fixed effects model.

The fixed effects model can be generalized to contain more than just one de-
terminant of Y that is correlated with X and changes over time. Key Concept
10.2 presents the generalized fixed effects regression model.

Key Concept 10.2
The Fixed Effects Regression Model

The fixed effects regression model is

Yit = β1X1,it + · · ·+ βkXk,it + αi + uit (10.3)

with i = 1, . . . , n and t = 1, . . . , T . The αi are entity-specific intercepts
that capture heterogeneities across entities. An equivalent representation
of this model is given by

Yit = β0 + β1X1,it + · · ·+ βkXk,it + γ2D2i + γ3D3i + · · ·+ γnDni + uit
(10.4)

where the D2i, D3i, . . . , Dni are dummy variables.

Estimation and Inference

Software packages use a so-called “entity-demeaned” OLS algorithm which is
computationally more efficient than estimating regression models with k + n
regressors as needed for models (10.3) and (10.4).

Taking averages on both sides of (10.1) we obtain

1
n

n∑
i=1

Yit =β1
1
n

n∑
i=1

Xit + 1
n

n∑
i=1

ai + 1
n

n∑
i=1

uit

Y =β1Xi + αi + ui.

Subtraction from (10.1) yields

Yit − Y i =β1(Xit −Xi) + (uit − ui)
∼
Y it =β1

∼
Xit + ∼uit.

(10.5)
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In this model, the OLS estimate of the parameter of interest β1 is equal to the
estimate obtained using (10.2) — without the need to estimate n− 1 dummies
and an intercept.

We conclude that there are two ways of estimating β1 in the fixed effects regres-
sion:

1. OLS of the dummy regression model as shown in (10.2)

2. OLS using the entity demeaned data as in (10.5)

Provided the fixed effects regression assumptions stated in Key Concept 10.3
hold, the sampling distribution of the OLS estimator in the fixed effects regres-
sion model is normal in large samples. The variance of the estimates can be esti-
mated and we can compute standard errors, t-statistics and confidence intervals
for coefficients. In the next section, we see how to estimate a fixed effects model
using R and how to obtain a model summary that reports heteroskedasticity-
robust standard errors. We leave aside complicated formulas of the estimators.
See Chapter 10.5 and Appendix 10.2 of the book for a discussion of theoretical
aspects.

Application to Traffic Deaths

Following Key Concept 10.2, the simple fixed effects model for estimation of the
relation between traffic fatality rates and the beer taxes is

FatalityRateit = β1BeerTaxit + StateF ixedEffects+ uit, (10.6)

a regression of the traffic fatality rate on beer tax and 48 binary regressors —
one for each federal state.

We can simply use the function lm() to obtain an estimate of β1.

fatal_fe_lm_mod <- lm(fatal_rate ~ beertax + state - 1, data = Fatalities)
fatal_fe_lm_mod
#>
#> Call:
#> lm(formula = fatal_rate ~ beertax + state - 1, data = Fatalities)
#>
#> Coefficients:
#> beertax stateal stateaz statear stateca stateco statect statede
#> -0.6559 3.4776 2.9099 2.8227 1.9682 1.9933 1.6154 2.1700
#> statefl statega stateid stateil statein stateia stateks stateky
#> 3.2095 4.0022 2.8086 1.5160 2.0161 1.9337 2.2544 2.2601
#> statela stateme statemd statema statemi statemn statems statemo
#> 2.6305 2.3697 1.7712 1.3679 1.9931 1.5804 3.4486 2.1814
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#> statemt statene statenv statenh statenj statenm stateny statenc
#> 3.1172 1.9555 2.8769 2.2232 1.3719 3.9040 1.2910 3.1872
#> statend stateoh stateok stateor statepa stateri statesc statesd
#> 1.8542 1.8032 2.9326 2.3096 1.7102 1.2126 4.0348 2.4739
#> statetn statetx stateut statevt stateva statewa statewv statewi
#> 2.6020 2.5602 2.3137 2.5116 2.1874 1.8181 2.5809 1.7184
#> statewy
#> 3.2491

As discussed in the previous section, it is also possible to estimate β1 by applying
OLS to the demeaned data, that is, to run the regression

∼
FatalityRate = β1

∼
BeerTaxit + uit.

# obtain demeaned data
Fatalities_demeaned <- with(Fatalities,

data.frame(fatal_rate = fatal_rate - ave(fatal_rate, state),
beertax = beertax - ave(beertax, state)))

# estimate the regression
summary(lm(fatal_rate ~ beertax - 1, data = Fatalities_demeaned))

The function ave is convenient for computing group averages. We use it to
obtain state specific averages of the fatality rate and the beer tax.

Alternatively one may use plm() from the package with the same name.

# install and load the 'plm' package
## install.packages("plm")
library(plm)

As for lm() we have to specify the regression formula and the data to be used
in our call of plm(). Additionally, it is required to pass a vector of names of
entity and time ID variables to the argument index. For Fatalities, the ID
variable for entities is named state and the time id variable is year. Since
the fixed effects estimator is also called the within estimator, we set model =
"within". Finally, the function coeftest() allows to obtain inference based
on robust standard errors.

# estimate the fixed effects regression with plm()
fatal_fe_mod <- plm(fatal_rate ~ beertax,

data = Fatalities,
index = c("state", "year"),
model = "within")
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# print summary using robust standard errors
coeftest(fatal_fe_mod, vcov. = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> beertax -0.65587 0.28880 -2.271 0.02388 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated coefficient is again −0.6559. Note that plm() uses the entity-
demeaned OLS algorithm and thus does not report dummy coefficients. The
estimated regression function is

̂FatalityRate = −0.66
(0.29)

×BeerTax+ StateF ixedEffects. (10.7)

The coefficient on BeerTax is negative and significant. The interpretation is
that the estimated reduction in traffic fatalities due to an increase in the real
beer tax by $1 is 0.66 per 10000 people, which is still pretty high. Although
including state fixed effects eliminates the risk of a bias due to omitted factors
that vary across states but not over time, we suspect that there are other omitted
variables that vary over time and thus cause a bias.

10.4 Regression with Time Fixed Effects

Controlling for variables that are constant across entities but vary over time can
be done by including time fixed effects. If there are only time fixed effects, the
fixed effects regression model becomes

Yit = β0 + β1Xit + δ2B2t + · · ·+ δTBTt + uit,

where only T−1 dummies are included (B1 is omitted) since the model includes
an intercept. This model eliminates omitted variable bias caused by excluding
unobserved variables that evolve over time but are constant across entities.

In some applications it is meaningful to include both entity and time fixed
effects. The entity and time fixed effects model is

Yit = β0 + β1Xit + γ2D2i + · · ·+ γnDTi + δ2B2t + · · ·+ δTBTt + uit.

The combined model allows to eliminate bias from unobservables that change
over time but are constant over entities and it controls for factors that differ
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across entities but are constant over time. Such models can be estimated using
the OLS algorithm that is implemented in R.

The following code chunk shows how to estimate the combined entity and time
fixed effects model of the relation between fatalities and beer tax,

FatalityRateit = β1BeerTaxit + StateEffects+ TimeFixedEffects+ uit

using both lm() and plm(). It is straightforward to estimate this regression
with lm() since it is just an extension of (10.6) so we only have to adjust the
formula argument by adding the additional regressor year for time fixed effects.
In our call of plm() we set another argument effect = "twoways" for inclusion
of entity and time dummies.

# estimate a combined time and entity fixed effects regression model

# via lm()
fatal_tefe_lm_mod <- lm(fatal_rate ~ beertax + state + year - 1, data = Fatalities)
fatal_tefe_lm_mod
#>
#> Call:
#> lm(formula = fatal_rate ~ beertax + state + year - 1, data = Fatalities)
#>
#> Coefficients:
#> beertax stateal stateaz statear stateca stateco statect statede
#> -0.63998 3.51137 2.96451 2.87284 2.02618 2.04984 1.67125 2.22711
#> statefl statega stateid stateil statein stateia stateks stateky
#> 3.25132 4.02300 2.86242 1.57287 2.07123 1.98709 2.30707 2.31659
#> statela stateme statemd statema statemi statemn statems statemo
#> 2.67772 2.41713 1.82731 1.42335 2.04488 1.63488 3.49146 2.23598
#> statemt statene statenv statenh statenj statenm stateny statenc
#> 3.17160 2.00846 2.93322 2.27245 1.43016 3.95748 1.34849 3.22630
#> statend stateoh stateok stateor statepa stateri statesc statesd
#> 1.90762 1.85664 2.97776 2.36597 1.76563 1.26964 4.06496 2.52317
#> statetn statetx stateut statevt stateva statewa statewv statewi
#> 2.65670 2.61282 2.36165 2.56100 2.23618 1.87424 2.63364 1.77545
#> statewy year1983 year1984 year1985 year1986 year1987 year1988
#> 3.30791 -0.07990 -0.07242 -0.12398 -0.03786 -0.05090 -0.05180

# via plm()
fatal_tefe_mod <- plm(fatal_rate ~ beertax,

data = Fatalities,
index = c("state", "year"),
model = "within",
effect = "twoways")

coeftest(fatal_tefe_mod, vcov = vcovHC, type = "HC1")
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#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> beertax -0.63998 0.35015 -1.8277 0.06865 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Before discussing the outcomes we convince ourselves that state and year are
of the class factor .

# check the class of 'state' and 'year'
class(Fatalities$state)
#> [1] "factor"
class(Fatalities$year)
#> [1] "factor"

The lm() functions converts factors into dummies automatically. Since we ex-
clude the intercept by adding -1 to the right-hand side of the regression formula,
lm() estimates coefficients for n + (T − 1) = 48 + 6 = 54 binary variables (6
year dummies and 48 state dummies). Again, plm() only reports the estimated
coefficient on BeerTax.

The estimated regression function is

̂FatalityRate = −0.64
(0.35)

×BeerTax+ StateEffects+ TimeFixedEffects.

(10.8)

The result −0.66 is close to the estimated coefficient for the regression model
including only entity fixed effects. Unsurprisingly, the coefficient is less precisely
estimated but significantly different from zero at 10%.

In view of (10.7) and (10.8) we conclude that the estimated relationship between
traffic fatalities and the real beer tax is not affected by omitted variable bias
due to factors that are constant over time.

10.5 The Fixed Effects Regression Assumptions
and Standard Errors for Fixed Effects Re-
gression

This section focuses on the entity fixed effects model and presents model as-
sumptions that need to hold in order for OLS to produce unbiased estimates
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that are normally distributed in large samples. These assumptions are an ex-
tension of the assumptions made for the multiple regression model (see Key
Concept 6.4) and are given in Key Concept 10.3. We also briefly discuss stan-
dard errors in fixed effects models which differ from standard errors in multiple
regression as the regression error can exhibit serial correlation in panel models.

Key Concept 10.3
The Fixed Effects Regression Assumptions

In the fixed effects regression model

Yit = β1Xit + αi + uit , i = 1, . . . , n, t = 1, . . . , T,

we assume the following:

1. The error term uit has conditional mean zero, that is,
E(uit|Xi1, Xi2, . . . , XiT ).

2. (Xi1, Xi2, . . . , Xi3, ui1, . . . , uiT ), i = 1, . . . , n are i.i.d. draws from
their joint distribution.

3. Large outliers are unlikely, i.e., (Xit, uit) have nonzero finite fourth
moments.

4. There is no perfect multicollinearity.

When there are multiple regressors, Xit is replaced by
X1,it, X2,it, . . . , Xk,it.

The first assumption is that the error is uncorrelated with all observations of
the variable X for the entity i over time. If this assumption is violated, we
face omitted variables bias. The second assumption ensures that variables are
i.i.d. across entities i = 1, . . . , n. This does not require the observations to be
uncorrelated within an entity. The Xit are allowed to be autocorrelated within
entities. This is a common property of time series data. The same is allowed
for errors uit. Consult Chapter 10.5 of the book for a detailed explanation for
why autocorrelation is plausible in panel applications. The second assumption
is justified if the entities are selected by simple random sampling. The third
and fourth assumptions are analogous to the multiple regression assumptions
made in Key Concept 6.4.
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Standard Errors for Fixed Effects Regression

Similar as for heteroskedasticity, autocorrelation invalidates the usual standard
error formulas as well as heteroskedasticity-robust standard errors since these
are derived under the assumption that there is no autocorrelation. When there
is both heteroskedasticity and autocorrelation so-called heteroskedasticity and
autocorrelation-consistent (HAC) standard errors need to be used. Clustered
standard errors belong to these type of standard errors. They allow for het-
eroskedasticity and autocorrelated errors within an entity but not correlation
across entities.

As shown in the examples throughout this chapter, it is fairly easy to specify
usage of clustered standard errors in regression summaries produced by function
like coeftest() in conjunction with vcovHC() from the package sandwich.
Conveniently, vcovHC() recognizes panel model objects (objects of class plm)
and computes clustered standard errors by default.

The regressions conducted in this chapter are a good examples for why usage
of clustered standard errors is crucial in empirical applications of fixed effects
models. For example, consider the entity and time fixed effects model for fatal-
ities. Since fatal_tefe_lm_mod is an object of class lm, coeftest() does not
compute clustered standard errors but uses robust standard errors that are only
valid in the absence of autocorrelated errors.

# check class of the model object
class(fatal_tefe_lm_mod)
#> [1] "lm"

# obtain a summary based on heteroskedasticity-robust standard errors
# (no adjustment for heteroskedasticity only)
coeftest(fatal_tefe_lm_mod, vcov = vcovHC, type = "HC1")[1, ]
#> Estimate Std. Error t value Pr(>|t|)
#> -0.6399800 0.2547149 -2.5125346 0.0125470

# check class of the (plm) model object
class(fatal_tefe_mod)
#> [1] "plm" "panelmodel"

# obtain a summary based on clusterd standard errors
# (adjustment for autocorrelation + heteroskedasticity)
coeftest(fatal_tefe_mod, vcov = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> beertax -0.63998 0.35015 -1.8277 0.06865 .
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#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The outcomes differ rather strongly: imposing no autocorrelation we obtain
a standard error of 0.25 which implies significance of β̂1, the coefficient on
BeerTax at the level of 5%. On the contrary, using the clustered standard
error 0.35 leads to acceptance of the hypothesis H0 : β1 = 0 at the same level,
see equation (10.8). Consult Appendix 10.2 of the book for insights on the
computation of clustered standard errors.

10.6 Drunk Driving Laws and Traffic Deaths

There are two major sources of omitted variable bias that are not accounted for
by all of the models of the relation between traffic fatalities and beer taxes that
we have considered so far: economic conditions and driving laws. Fortunately,
Fatalities has data on state-specific legal drinking age (drinkage), punish-
ment (jail, service) and various economic indicators like unemployment rate
(unemp) and per capita income (income). We may use these covariates to extend
the preceding analysis.

These covariates are defined as follows:

• unemp: a numeric variable stating the state specific unemployment rate.
• log(income): the logarithm of real per capita income (in prices of 1988).
• miles: the state average miles per driver.
• drinkage: the state specify minimum legal drinking age.
• drinkagc: a discretized version of drinkage that classifies states into four

categories of minimal drinking age; 18, 19, 20, 21 and older. R denotes
this as [18,19), [19,20), [20,21) and [21,22]. These categories are
included as dummy regressors where [21,22] is chosen as the reference
category.

• punish: a dummy variable with levels yes and no that measures if drunk
driving is severely punished by mandatory jail time or mandatory com-
munity service (first conviction).

At first, we define the variables according to the regression results presented in
Table 10.1 of the book.

# discretize the minimum legal drinking age
Fatalities$drinkagec <- cut(Fatalities$drinkage,

breaks = 18:22,
include.lowest = TRUE,
right = FALSE)
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# set minimum drinking age [21, 22] to be the baseline level
Fatalities$drinkagec <- relevel(Fatalities$drinkagec, "[21,22]")

# mandadory jail or community service?
Fatalities$punish <- with(Fatalities, factor(jail == "yes" | service == "yes",

labels = c("no", "yes")))

# the set of observations on all variables for 1982 and 1988
Fatalities_1982_1988 <- Fatalities[with(Fatalities, year == 1982 | year == 1988), ]

Next, we estimate all seven models using plm().

# estimate all seven models
fatalities_mod1 <- lm(fatal_rate ~ beertax, data = Fatalities)

fatalities_mod2 <- plm(fatal_rate ~ beertax + state, data = Fatalities)

fatalities_mod3 <- plm(fatal_rate ~ beertax + state + year,
index = c("state","year"),
model = "within",
effect = "twoways",
data = Fatalities)

fatalities_mod4 <- plm(fatal_rate ~ beertax + state + year + drinkagec
+ punish + miles + unemp + log(income),
index = c("state", "year"),
model = "within",
effect = "twoways",
data = Fatalities)

fatalities_mod5 <- plm(fatal_rate ~ beertax + state + year + drinkagec
+ punish + miles,
index = c("state", "year"),
model = "within",
effect = "twoways",
data = Fatalities)

fatalities_mod6 <- plm(fatal_rate ~ beertax + year + drinkage
+ punish + miles + unemp + log(income),
index = c("state", "year"),
model = "within",
effect = "twoways",
data = Fatalities)

fatalities_mod7 <- plm(fatal_rate ~ beertax + state + year + drinkagec
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+ punish + miles + unemp + log(income),
index = c("state", "year"),
model = "within",
effect = "twoways",
data = Fatalities_1982_1988)

We again use stargazer() (Hlavac, 2018) to generate a comprehensive tabular
presentation of the results.

library(stargazer)

# gather clustered standard errors in a list
rob_se <- list(sqrt(diag(vcovHC(fatalities_mod1, type = "HC1"))),

sqrt(diag(vcovHC(fatalities_mod2, type = "HC1"))),
sqrt(diag(vcovHC(fatalities_mod3, type = "HC1"))),
sqrt(diag(vcovHC(fatalities_mod4, type = "HC1"))),
sqrt(diag(vcovHC(fatalities_mod5, type = "HC1"))),
sqrt(diag(vcovHC(fatalities_mod6, type = "HC1"))),
sqrt(diag(vcovHC(fatalities_mod7, type = "HC1"))))

# generate the table
stargazer(fatalities_mod1, fatalities_mod2, fatalities_mod3,

fatalities_mod4, fatalities_mod5, fatalities_mod6, fatalities_mod7,
digits = 3,
header = FALSE,
type = "latex",
se = rob_se,
title = "Linear Panel Regression Models of Traffic Fatalities due to Drunk Driving",
model.numbers = FALSE,
column.labels = c("(1)", "(2)", "(3)", "(4)", "(5)", "(6)", "(7)"))

While columns (2) and (3) recap the results (10.7) and (10.8), column (1)
presents an estimate of the coefficient of interest in the naive OLS regression
of the fatality rate on beer tax without any fixed effects. We obtain a positive
estimate for the coefficient on beer tax that is likely to be upward biased. The
model fit is rather bad, too (R̄2 = 0.091). The sign of the estimate changes as
we extend the model by both entity and time fixed effects in models (2) and (3).
Furthermore R̄2 increases substantially as fixed effects are included in the model
equation. Nonetheless, as discussed before, the magnitudes of both estimates
may be too large.

The model specifications (4) to (7) include covariates that shall capture the effect
of overall state economic conditions as well as the legal framework. Considering
(4) as the baseline specification, we observe four interesting results:
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1. Including the covariates does not lead to a major reduction of the esti-
mated effect of the beer tax. The coefficient is not significantly different
from zero at the level of 5% as the estimate is rather imprecise.

2. The minimum legal drinking age does not have an effect on traffic fatalities:
none of the three dummy variables are significantly different from zero
at any common level of significance. Moreover, an F -Test of the joint
hypothesis that all three coefficients are zero does not reject. The next
code chunk shows how to test this hypothesis.

# test if legal drinking age has no explanatory power
linearHypothesis(fatalities_mod4,

test = "F",
c("drinkagec[18,19)=0", "drinkagec[19,20)=0", "drinkagec[20,21)"),
vcov. = vcovHC, type = "HC1")

#> Linear hypothesis test
#>
#> Hypothesis:
#> drinkagec[18,19) = 0
#> drinkagec[19,20) = 0
#> drinkagec[20,21) = 0
#>
#> Model 1: restricted model
#> Model 2: fatal_rate ~ beertax + state + year + drinkagec + punish + miles +
#> unemp + log(income)
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 276
#> 2 273 3 0.3782 0.7688

3. There is no evidence that punishment for first offenders has a deterring
effects on drunk driving: the corresponding coefficient is not significant at
the 10% level.

4. The economic variables significantly explain traffic fatalities. We can check
that the employment rate and per capita income are jointly significant at
the level of 0.1%.

# test if economic indicators have no explanatory power
linearHypothesis(fatalities_mod4,

test = "F",
c("log(income)", "unemp"),
vcov. = vcovHC, type = "HC1")

#> Linear hypothesis test
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#>
#> Hypothesis:
#> log(income) = 0
#> unemp = 0
#>
#> Model 1: restricted model
#> Model 2: fatal_rate ~ beertax + state + year + drinkagec + punish + miles +
#> unemp + log(income)
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 275
#> 2 273 2 31.577 4.609e-13 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model (5) omits the economic factors. The result supports the notion that
economic indicators should remain in the model as the coefficient on beer tax
is sensitive to the inclusion of the latter.

Results for model (6) demonstrate that the legal drinking age has little explana-
tory power and that the coefficient of interest is not sensitive to changes in the
functional form of the relation between drinking age and traffic fatalities.

Specification (7) reveals that reducing the amount of available information (we
only use 95 observations for the period 1982 to 1988 here) inflates standard
errors but does not lead to drastic changes in coefficient estimates.

Summary

We have not found evidence that severe punishments and increasing the min-
imum drinking age reduce traffic fatalities due to drunk driving. Nonetheless,
there seems to be a negative effect of alcohol taxes on traffic fatalities which,
however, is estimated imprecisely and cannot be interpreted as the causal effect
of interest as there still may be a bias. The issue is that there may be omitted
variables that differ across states and change over time and this bias remains
even though we use a panel approach that controls for entity specific and time
invariant unobservables.

A powerful method that can be used if common panel regression approaches fail
is instrumental variables regression. We will return to this concept in Chapter
12.
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10.7 Exercises

This interactive part of the book is only available in the HTML version.



Chapter 11

Regression with a Binary
Dependent Variable

This chapter, we discusses a special class of regression models that aim to ex-
plain a limited dependent variable. In particular, we consider models where the
dependent variable is binary. We will see that in such models, the regression
function can be interpreted as a conditional probability function of the binary
dependent variable.

We review the following concepts:

• the linear probability model
• the Probit model
• the Logit model
• maximum likelihood estimation of nonlinear regression models

Of course, we will also see how to estimate above models using R and discuss an
application where we examine the question whether there is racial discrimination
in the U.S. mortgage market.

The following packages and their dependencies are needed for reproduction of
the code chunks presented throughout this chapter on your computer:

• AER (Kleiber and Zeileis, 2020)
• stargazer (Hlavac, 2018)

Check whether the following code chunk runs without any errors.
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library(AER)
library(stargazer)

11.1 Binary Dependent Variables and the Lin-
ear Probability Model

Key Concept 11.1
The Linear Probability Model

The linear regression model

Yi = β0 + β1 +X1i + β2X2i + · · ·+ βkXki + ui

with a binary dependent variable Yi is called the linear probability model.
In the linear probability model we have

E(Y |X1, X2, . . . , Xk) = P (Y = 1|X1, X2, . . . , X3)

where

P (Y = 1|X1, X2, . . . , Xk) = β0 + β1 +X1i + β2X2i + · · ·+ βkXki.

Thus, βj can be interpreted as the change in the probability that Yi = 1,
holding constant the other k− 1 regressors. Just as in common multiple
regression, the βj can be estimated using OLS and the robust standard
error formulas can be used for hypothesis testing and computation of
confidence intervals.

In most linear probability models, R2 has no meaningful interpretation
since the regression line can never fit the data perfectly if the dependent
variable is binary and the regressors are continuous. This can be seen
in the application below.

It is essential to use robust standard errors since the ui in a linear
probability model are always heteroskedastic.

Linear probability models are easily estimated in R using the function
lm().

Mortgage Data

Following the book, we start by loading the data set HMDA which provides data
that relate to mortgage applications filed in Boston in the year of 1990.
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# load `AER` package and attach the HMDA data
library(AER)
data(HMDA)

We continue by inspecting the first few observations and compute summary
statistics afterwards.

# inspect the data
head(HMDA)
#> deny pirat hirat lvrat chist mhist phist unemp selfemp insurance condomin
#> 1 no 0.221 0.221 0.8000000 5 2 no 3.9 no no no
#> 2 no 0.265 0.265 0.9218750 2 2 no 3.2 no no no
#> 3 no 0.372 0.248 0.9203980 1 2 no 3.2 no no no
#> 4 no 0.320 0.250 0.8604651 1 2 no 4.3 no no no
#> 5 no 0.360 0.350 0.6000000 1 1 no 3.2 no no no
#> 6 no 0.240 0.170 0.5105263 1 1 no 3.9 no no no
#> afam single hschool
#> 1 no no yes
#> 2 no yes yes
#> 3 no no yes
#> 4 no no yes
#> 5 no no yes
#> 6 no no yes
summary(HMDA)
#> deny pirat hirat lvrat chist
#> no :2095 Min. :0.0000 Min. :0.0000 Min. :0.0200 1:1353
#> yes: 285 1st Qu.:0.2800 1st Qu.:0.2140 1st Qu.:0.6527 2: 441
#> Median :0.3300 Median :0.2600 Median :0.7795 3: 126
#> Mean :0.3308 Mean :0.2553 Mean :0.7378 4: 77
#> 3rd Qu.:0.3700 3rd Qu.:0.2988 3rd Qu.:0.8685 5: 182
#> Max. :3.0000 Max. :3.0000 Max. :1.9500 6: 201
#> mhist phist unemp selfemp insurance condomin
#> 1: 747 no :2205 Min. : 1.800 no :2103 no :2332 no :1694
#> 2:1571 yes: 175 1st Qu.: 3.100 yes: 277 yes: 48 yes: 686
#> 3: 41 Median : 3.200
#> 4: 21 Mean : 3.774
#> 3rd Qu.: 3.900
#> Max. :10.600
#> afam single hschool
#> no :2041 no :1444 no : 39
#> yes: 339 yes: 936 yes:2341
#>
#>
#>
#>
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The variable we are interested in modelling is deny, an indicator for whether
an applicant’s mortgage application has been accepted (deny = no) or denied
(deny = yes). A regressor that ought to have power in explaining whether a
mortgage application has been denied is pirat, the size of the anticipated total
monthly loan payments relative to the the applicant’s income. It is straightfor-
ward to translate this into the simple regression model

deny = β0 + β1 × P/I ratio+ u. (11.1)

We estimate this model just as any other linear regression model using lm().
Before we do so, the variable deny must be converted to a numeric variable
using as.numeric() as lm() does not accepts the dependent variable to be of
class factor. Note that as.numeric(HMDA$deny) will turn deny = no into
deny = 1 and deny = yes into deny = 2, so using as.numeric(HMDA$deny)-1
we obtain the values 0 and 1.

# convert 'deny' to numeric
HMDA$deny <- as.numeric(HMDA$deny) - 1

# estimate a simple linear probabilty model
denymod1 <- lm(deny ~ pirat, data = HMDA)
denymod1
#>
#> Call:
#> lm(formula = deny ~ pirat, data = HMDA)
#>
#> Coefficients:
#> (Intercept) pirat
#> -0.07991 0.60353

Next, we plot the data and the regression line to reproduce Figure 11.1 of the
book.

# plot the data
plot(x = HMDA$pirat,

y = HMDA$deny,
main = "Scatterplot Mortgage Application Denial and the Payment-to-Income Ratio",
xlab = "P/I ratio",
ylab = "Deny",
pch = 20,
ylim = c(-0.4, 1.4),
cex.main = 0.8)

# add horizontal dashed lines and text



11.1. BINARYDEPENDENT VARIABLES AND THE LINEAR PROBABILITYMODEL307

abline(h = 1, lty = 2, col = "darkred")
abline(h = 0, lty = 2, col = "darkred")
text(2.5, 0.9, cex = 0.8, "Mortgage denied")
text(2.5, -0.1, cex= 0.8, "Mortgage approved")

# add the estimated regression line
abline(denymod1,

lwd = 1.8,
col = "steelblue")
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According to the estimated model, a payment-to-income ratio of 1 is associated
with an expected probability of mortgage application denial of roughly 50%.
The model indicates that there is a positive relation between the payment-to-
income ratio and the probability of a denied mortgage application so individuals
with a high ratio of loan payments to income are more likely to be rejected.

We may use coeftest() to obtain robust standard errors for both coefficient
estimates.

# print robust coefficient summary
coeftest(denymod1, vcov. = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.079910 0.031967 -2.4998 0.01249 *
#> pirat 0.603535 0.098483 6.1283 1.036e-09 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The estimated regression line is

d̂eny = −0.080
(0.032)

+ 0.604
(0.098)

P/I ratio. (11.2)

The true coefficient on P/I ratio is statistically different from 0 at the 1% level.
Its estimate can be interpreted as follows: a 1 percentage point increase in
P/I ratio leads to an increase in the probability of a loan denial by 0.604·0.01 =
0.00604 ≈ 0.6%.

Following the book we augment the simple model (11.1) by an additional regres-
sor black which equals 1 if the applicant is an African American and equals 0
otherwise. Such a specification is the baseline for investigating if there is racial
discrimination in the mortgage market: if being black has a significant (positive)
influence on the probability of a loan denial when we control for factors that
allow for an objective assessment of an applicants credit worthiness, this is an
indicator for discrimination.

# rename the variable 'afam' for consistency
colnames(HMDA)[colnames(HMDA) == "afam"] <- "black"

# estimate the model
denymod2 <- lm(deny ~ pirat + black, data = HMDA)
coeftest(denymod2, vcov. = vcovHC)
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.090514 0.033430 -2.7076 0.006826 **
#> pirat 0.559195 0.103671 5.3939 7.575e-08 ***
#> blackyes 0.177428 0.025055 7.0815 1.871e-12 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression function is

d̂eny = − 0.091
(0.029)

+ 0.559
(0.089)

P/I ratio+ 0.177
(0.025)

black. (11.3)

The coefficient on black is positive and significantly different from zero at the
0.01% level. The interpretation is that, holding constant the P/I ratio, be-
ing black increases the probability of a mortgage application denial by about
17.7%. This finding is compatible with racial discrimination. However, it might
be distorted by omitted variable bias so discrimination could be a premature
conclusion.
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11.2 Probit and Logit Regression

The linear probability model has a major flaw: it assumes the conditional prob-
ability function to be linear. This does not restrict P (Y = 1|X1, . . . , Xk) to lie
between 0 and 1. We can easily see this in our reproduction of Figure 11.1 of
the book: for P/I ratio ≥ 1.75, (11.2) predicts the probability of a mortgage
application denial to be bigger than 1. For applications with P/I ratio close to
0, the predicted probability of denial is even negative so that the model has no
meaningful interpretation here.

This circumstance calls for an approach that uses a nonlinear function to model
the conditional probability function of a binary dependent variable. Commonly
used methods are Probit and Logit regression.

Probit Regression

In Probit regression, the cumulative standard normal distribution function Φ(·)
is used to model the regression function when the dependent variable is binary,
that is, we assume

E(Y |X) = P (Y = 1|X) = Φ(β0 + β1X). (11.4)

β0 + β1X in (11.4) plays the role of a quantile z. Remember that

Φ(z) = P (Z ≤ z) , Z ∼ N (0, 1)

such that the Probit coefficient β1 in (11.4) is the change in z associated with a
one unit change in X. Although the effect on z of a change in X is linear, the
link between z and the dependent variable Y is nonlinear since Φ is a nonlinear
function of X.

Since the dependent variable is a nonlinear function of the regressors, the coef-
ficient on X has no simple interpretation. According to Key Concept 8.1, the
expected change in the probability that Y = 1 due to a change in P/I ratio can
be computed as follows:

1. Compute the predicted probability that Y = 1 for the original value of X.
2. Compute the predicted probability that Y = 1 for X + ∆X.
3. Compute the difference between both predicted probabilities.

Of course we can generalize (11.4) to Probit regression with multiple regressors
to mitigate the risk of facing omitted variable bias. Probit regression essentials
are summarized in Key Concept 11.2.
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Key Concept 11.2
Probit Model, Predicted Probabilities and Estimated Effects

Assume that Y is a binary variable. The model

Y = β0 + β1 +X1 + β2X2 + · · ·+ βkXk + u

with

P (Y = 1|X1, X2, . . . , Xk) = Φ(β0 + β1 +X1 + β2X2 + · · ·+ βkXk)

is the population Probit model with multiple regressors X1, X2, . . . , Xk

and Φ(·) is the cumulative standard normal distribution function.

The predicted probability that Y = 1 given X1, X2, . . . , Xk can be
calculated in two steps:

1. Compute z = β0 + β1X1 + β2X2 + · · ·+ βkXk

2. Look up Φ(z) by calling pnorm().

βj is the effect on z of a one unit change in regressor Xj , holding
constant all other k − 1 regressors.

The effect on the predicted probability of a change in a regressor can be
computed as in Key Concept 8.1.

In R, Probit models can be estimated using the function glm() from the
package stats. Using the argument family we specify that we want to
use a Probit link function.

We now estimate a simple Probit model of the probability of a mortgage denial.

# estimate the simple probit model
denyprobit <- glm(deny ~ pirat,

family = binomial(link = "probit"),
data = HMDA)

coeftest(denyprobit, vcov. = vcovHC, type = "HC1")
#>
#> z test of coefficients:
#>
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.19415 0.18901 -11.6087 < 2.2e-16 ***
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#> pirat 2.96787 0.53698 5.5269 3.259e-08 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated model is

̂P (deny|P/I ratio) = Φ(−2.19
(0.19)

+ 2.97
(0.54)

P/I ratio). (11.5)

Just as in the linear probability model we find that the relation between the
probability of denial and the payments-to-income ratio is positive and that the
corresponding coefficient is highly significant.

The following code chunk reproduces Figure 11.2 of the book.

# plot data
plot(x = HMDA$pirat,

y = HMDA$deny,
main = "Probit Model of the Probability of Denial, Given P/I Ratio",
xlab = "P/I ratio",
ylab = "Deny",
pch = 20,
ylim = c(-0.4, 1.4),
cex.main = 0.85)

# add horizontal dashed lines and text
abline(h = 1, lty = 2, col = "darkred")
abline(h = 0, lty = 2, col = "darkred")
text(2.5, 0.9, cex = 0.8, "Mortgage denied")
text(2.5, -0.1, cex= 0.8, "Mortgage approved")

# add estimated regression line
x <- seq(0, 3, 0.01)
y <- predict(denyprobit, list(pirat = x), type = "response")

lines(x, y, lwd = 1.5, col = "steelblue")
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The estimated regression function has a stretched “S”-shape which is typical for
the CDF of a continuous random variable with symmetric PDF like that of a
normal random variable. The function is clearly nonlinear and flattens out for
large and small values of P/I ratio. The functional form thus also ensures that
the predicted conditional probabilities of a denial lie between 0 and 1.

We use predict() to compute the predicted change in the denial probability
when P/I ratio is increased from 0.3 to 0.4.

# 1. compute predictions for P/I ratio = 0.3, 0.4
predictions <- predict(denyprobit,

newdata = data.frame("pirat" = c(0.3, 0.4)),
type = "response")

# 2. Compute difference in probabilities
diff(predictions)
#> 2
#> 0.06081433

We find that an increase in the payment-to-income ratio from 0.3 to 0.4 is
predicted to increase the probability of denial by approximately 6.2%.

We continue by using an augmented Probit model to estimate the effect of race
on the probability of a mortgage application denial.

denyprobit2 <- glm(deny ~ pirat + black,
family = binomial(link = "probit"),
data = HMDA)

coeftest(denyprobit2, vcov. = vcovHC, type = "HC1")
#>
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#> z test of coefficients:
#>
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -2.258787 0.176608 -12.7898 < 2.2e-16 ***
#> pirat 2.741779 0.497673 5.5092 3.605e-08 ***
#> blackyes 0.708155 0.083091 8.5227 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated model equation is

̂P (deny|P/I ratio, black) = Φ(−2.26
(0.18)

+ 2.74
(0.50)

P/I ratio+ 0.71
(0.08)

black). (11.6)

While all coefficients are highly significant, both the estimated coefficients on
the payments-to-income ratio and the indicator for African American descent
are positive. Again, the coefficients are difficult to interpret but they indicate
that, first, African Americans have a higher probability of denial than white ap-
plicants, holding constant the payments-to-income ratio and second, applicants
with a high payments-to-income ratio face a higher risk of being rejected.

How big is the estimated difference in denial probabilities between two hypo-
thetical applicants with the same payments-to-income ratio? As before, we may
use predict() to compute this difference.

# 1. compute predictions for P/I ratio = 0.3
predictions <- predict(denyprobit2,

newdata = data.frame("black" = c("no", "yes"),
"pirat" = c(0.3, 0.3)),

type = "response")

# 2. compute difference in probabilities
diff(predictions)
#> 2
#> 0.1578117

In this case, the estimated difference in denial probabilities is about 15.8%.

Logit Regression

Key Concept 11.3 summarizes the Logit regression function.
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Key Concept 11.3
Logit Regression

The population Logit regression function is

P (Y = 1|X1, X2, . . . , Xk) =F (β0 + β1X1 + β2X2 + · · ·+ βkXk)

= 1
1 + e−(β0+β1X1+β2X2+···+βkXk) .

The idea is similar to Probit regression except that a different CDF is
used:

F (x) = 1
1 + e−x

is the CDF of a standard logistically distributed random variable.

As for Probit regression, there is no simple interpretation of the model coeffi-
cients and it is best to consider predicted probabilities or differences in predicted
probabilities. Here again, t-statistics and confidence intervals based on large
sample normal approximations can be computed as usual.

It is fairly easy to estimate a Logit regression model using R.

denylogit <- glm(deny ~ pirat,
family = binomial(link = "logit"),
data = HMDA)

coeftest(denylogit, vcov. = vcovHC, type = "HC1")
#>
#> z test of coefficients:
#>
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -4.02843 0.35898 -11.2218 < 2.2e-16 ***
#> pirat 5.88450 1.00015 5.8836 4.014e-09 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The subsequent code chunk reproduces Figure 11.3 of the book.

# plot data
plot(x = HMDA$pirat,

y = HMDA$deny,
main = "Probit and Logit Models Model of the Probability of Denial, Given P/I Ratio",
xlab = "P/I ratio",
ylab = "Deny",
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pch = 20,
ylim = c(-0.4, 1.4),
cex.main = 0.9)

# add horizontal dashed lines and text
abline(h = 1, lty = 2, col = "darkred")
abline(h = 0, lty = 2, col = "darkred")
text(2.5, 0.9, cex = 0.8, "Mortgage denied")
text(2.5, -0.1, cex= 0.8, "Mortgage approved")

# add estimated regression line of Probit and Logit models
x <- seq(0, 3, 0.01)
y_probit <- predict(denyprobit, list(pirat = x), type = "response")
y_logit <- predict(denylogit, list(pirat = x), type = "response")

lines(x, y_probit, lwd = 1.5, col = "steelblue")
lines(x, y_logit, lwd = 1.5, col = "black", lty = 2)

# add a legend
legend("topleft",

horiz = TRUE,
legend = c("Probit", "Logit"),
col = c("steelblue", "black"),
lty = c(1, 2))
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Both models produce very similar estimates of the probability that a mortgage
application will be denied depending on the applicants payment-to-income ratio.

Following the book we extend the simple Logit model of mortgage denial with
the additional regressor black.
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# estimate a Logit regression with multiple regressors
denylogit2 <- glm(deny ~ pirat + black,

family = binomial(link = "logit"),
data = HMDA)

coeftest(denylogit2, vcov. = vcovHC, type = "HC1")
#>
#> z test of coefficients:
#>
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -4.12556 0.34597 -11.9245 < 2.2e-16 ***
#> pirat 5.37036 0.96376 5.5723 2.514e-08 ***
#> blackyes 1.27278 0.14616 8.7081 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We obtain

̂P (deny = 1|P/Iratio, black) = F (−4.13
(0.35)

+ 5.37
(0.96)

P/I ratio+ 1.27
(0.15)

black).

(11.7)

As for the Probit model (11.6) all model coefficients are highly significant and
we obtain positive estimates for the coefficients on P/I ratio and black. For
comparison we compute the predicted probability of denial for two hypothetical
applicants that differ in race and have a P/I ratio of 0.3.

# 1. compute predictions for P/I ratio = 0.3
predictions <- predict(denylogit2,

newdata = data.frame("black" = c("no", "yes"),
"pirat" = c(0.3, 0.3)),

type = "response")

predictions
#> 1 2
#> 0.07485143 0.22414592

# 2. Compute difference in probabilities
diff(predictions)
#> 2
#> 0.1492945

We find that the white applicant faces a denial probability of only 7.5%, while
the African American is rejected with a probability of 22.4%, a difference of
14.9%.
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Comparison of the Models

The Probit model and the Logit model deliver only approximations to the un-
known population regression function E(Y |X). It is not obvious how to decide
which model to use in practice. The linear probability model has the clear
drawback of not being able to capture the nonlinear nature of the population
regression function and it may predict probabilities to lie outside the interval
[0, 1]. Probit and Logit models are harder to interpret but capture the non-
linearities better than the linear approach: both models produce predictions of
probabilities that lie inside the interval [0, 1]. Predictions of all three models are
often close to each other. The book suggests to use the method that is easiest
to use in the statistical software of choice. As we have seen, it is equally easy
to estimate Probit and Logit model using R. We can therefore give no general
recommendation which method to use.

11.3 Estimation and Inference in the Logit and
Probit Models

So far nothing has been said about how Logit and Probit models are estimated
by statistical software. The reason why this is interesting is that both models
are nonlinear in the parameters and thus cannot be estimated using OLS. In-
stead one relies on maximum likelihood estimation (MLE). Another approach is
estimation by nonlinear least squares (NLS).

Nonlinear Least Squares

Consider the multiple regression Probit model

E(Yi|X1i, . . . , Xki) = P (Yi = 1|X1i, . . . , Xki) = Φ(β0 + β1X1i + · · ·+ βkXki).
(11.8)

Similarly to OLS, NLS estimates the parameters β0, β1, . . . , βk by minimizing
the sum of squared mistakes

n∑
i=1

[Yi − Φ(b0 + b1X1i + · · ·+ bkXki)]2 .

NLS estimation is a consistent approach that produces estimates which are nor-
mally distributed in large samples. In R there are functions like nls() from pack-
age stats which provide algorithms for solving nonlinear least squares problems.
However, NLS is inefficient, meaning that there are estimation techniques that
have a smaller variance which is why we will not dwell any further on this topic.
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Maximum Likelihood Estimation

In MLE we seek to estimate the unknown parameters choosing them such that
the likelihood of drawing the sample observed is maximized. This probability is
measured by means of the likelihood function, the joint probability distribution
of the data treated as a function of the unknown parameters. Put differently,
the maximum likelihood estimates of the unknown parameters are the values
that result in a model which is most likely to produce the data observed. It
turns out that MLE is more efficient than NLS.

As maximum likelihood estimates are normally distributed in large samples,
statistical inference for coefficients in nonlinear models like Logit and Probit
regression can be made using the same tools that are used for linear regression
models: we can compute t-statistics and confidence intervals.

Many software packages use an MLE algorithm for estimation of nonlinear mod-
els. The function glm() uses an algorithm named iteratively reweighted least
squares.

Measures of Fit

It is important to be aware that the usual R2 and R̄2 are invalid for nonlinear
regression models. The reason for this is simple: both measures assume that
the relation between the dependent and the explanatory variable(s) is linear.
This obviously does not hold for Probit and Logit models. Thus R2 need not lie
between 0 and 1 and there is no meaningful interpretation. However, statistical
software sometimes reports these measures anyway.

There are many measures of fit for nonlinear regression models and there is no
consensus which one should be reported. The situation is even more compli-
cated because there is no measure of fit that is generally meaningful. For models
with a binary response variable like deny one could use the following rule:
If Yi = 1 and ̂P (Yi|Xi1, . . . , Xik) > 0.5 or if Yi = 0 and ̂P (Yi|Xi1, . . . , Xik) < 0.5,
consider the Yi as correctly predicted. Otherwise Yi is said to be incorrectly pre-
dicted. The measure of fit is the share of correctly predicted observations. The
downside of such an approach is that it does not mirror the quality of the predic-
tion: whether ̂P (Yi = 1|Xi1, . . . , Xik) = 0.51 or ̂P (Yi = 1|Xi1, . . . , Xik) = 0.99
is not reflected, we just predict Yi = 1.1

An alternative to the latter are so called pseudo-R2 measures. In order to mea-
sure the quality of the fit, these measures compare the value of the maximized
(log-)likelihood of the model with all regressors (the full model) to the likelihood
of a model with no regressors (null model, regression on a constant).

1This is in contrast to the case of a numeric dependent variable where we use the squared
errors for assessment of the quality of the prediction.
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For example, consider a Probit regression. The pseudo-R2 is given by

pseudo-R2 = 1−
ln(fmaxfull )
ln(fmaxnull )

where fmaxj ∈ [0, 1] denotes the maximized likelihood for model j.

The reasoning behind this is that the maximized likelihood increases as ad-
ditional regressors are added to the model, similarly to the decrease in SSR
when regressors are added in a linear regression model. If the full model has a
similar maximized likelihood as the null model, the full model does not really
improve upon a model that uses only the information in the dependent vari-
able, so pseudo-R2 ≈ 0. If the full model fits the data very well, the maximized
likelihood should be close to 1 such that ln(fmaxfull ) ≈ 0 and pseudo-R2 ≈ 1. See
Appendix 11.2 of the book for more on MLE and pseudo-R2 measures.

summary() does not report pseudo-R2 for models estimated by glm() but we can
use the entries residual deviance (deviance) and null deviance (null.deviance)
instead. These are computed as

deviance = −2×
[
ln(fmaxsaturated)− ln(fmaxfull )

]
and

null deviance = −2× [ln(fmaxsaturated)− ln(fmaxnull )]

where fmaxsaturated is the maximized likelihood for a model which assumes that each
observation has its own parameter (there are n+ 1 parameters to be estimated
which leads to a perfect fit). For models with a binary dependent variable, it
holds that

pseudo-R2 = 1− deviance
null deviance = 1−

ln(fmaxfull )
ln(fmaxnull ) .

We now compute the pseudo-R2 for the augmented Probit model of mortgage
denial.

# compute pseudo-R2 for the probit model of mortgage denial
pseudoR2 <- 1 - (denyprobit2$deviance) / (denyprobit2$null.deviance)
pseudoR2
#> [1] 0.08594259

Another way to obtain the pseudo-R2 is to estimate the null model using glm()
and extract the maximized log-likelihoods for both the null and the full model
using the function logLik().
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# compute the null model
denyprobit_null <- glm(formula = deny ~ 1,

family = binomial(link = "probit"),
data = HMDA)

# compute the pseudo-R2 using 'logLik'
1 - logLik(denyprobit2)[1]/logLik(denyprobit_null)[1]
#> [1] 0.08594259

11.4 Application to the Boston HMDA Data

Models (11.6) and (11.7) indicate that denial rates are higher for African Amer-
ican applicants holding constant the payment-to-income ratio. Both results
could be subject to omitted variable bias. In order to obtain a more trust-
worthy estimate of the effect of being black on the probability of a mortgage
application denial we estimate a linear probability model as well as several Logit
and Probit models. We thereby control for financial variables and additional
applicant characteristics which are likely to influence the probability of denial
and differ between black and white applicants.

Sample averages as shown in Table 11.1 of the book can be easily reproduced
using the functions mean() (as usual for numeric variables) and prop.table()
(for factor variables).

# Mean P/I ratio
mean(HMDA$pirat)
#> [1] 0.3308136

# inhouse expense-to-total-income ratio
mean(HMDA$hirat)
#> [1] 0.2553461

# loan-to-value ratio
mean(HMDA$lvrat)
#> [1] 0.7377759

# consumer credit score
mean(as.numeric(HMDA$chist))
#> [1] 2.116387

# mortgage credit score
mean(as.numeric(HMDA$mhist))
#> [1] 1.721008
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# public bad credit record
mean(as.numeric(HMDA$phist)-1)
#> [1] 0.07352941

# denied mortgage insurance
prop.table(table(HMDA$insurance))
#>
#> no yes
#> 0.97983193 0.02016807

# self-employed
prop.table(table(HMDA$selfemp))
#>
#> no yes
#> 0.8836134 0.1163866

# single
prop.table(table(HMDA$single))
#>
#> no yes
#> 0.6067227 0.3932773

# high school diploma
prop.table(table(HMDA$hschool))
#>
#> no yes
#> 0.01638655 0.98361345

# unemployment rate
mean(HMDA$unemp)
#> [1] 3.774496

# condominium
prop.table(table(HMDA$condomin))
#>
#> no yes
#> 0.7117647 0.2882353

# black
prop.table(table(HMDA$black))
#>
#> no yes
#> 0.857563 0.142437

# deny
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prop.table(table(HMDA$deny))
#>
#> 0 1
#> 0.8802521 0.1197479

See Chapter 11.4 of the book or use R’s help function for more on variables
contained in the HMDA dataset.

Before estimating the models we transform the loan-to-value ratio (lvrat) into
a factor variable, where

lvrat =


low if lvrat < 0.8,
medium if 0.8 ≤ lvrat ≤ 0.95,
high if lvrat > 0.95

and convert both credit scores to numeric variables.

# define low, medium and high loan-to-value ratio
HMDA$lvrat <- factor(
ifelse(HMDA$lvrat < 0.8, "low",
ifelse(HMDA$lvrat >= 0.8 & HMDA$lvrat <= 0.95, "medium", "high")),
levels = c("low", "medium", "high"))

# convert credit scores to numeric
HMDA$mhist <- as.numeric(HMDA$mhist)
HMDA$chist <- as.numeric(HMDA$chist)

Next we reproduce the estimation results presented in Table 11.2 of the book.

# estimate all 6 models for the denial probability
lpm_HMDA <- lm(deny ~ black + pirat + hirat + lvrat + chist + mhist + phist

+ insurance + selfemp, data = HMDA)

logit_HMDA <- glm(deny ~ black + pirat + hirat + lvrat + chist + mhist + phist
+ insurance + selfemp,
family = binomial(link = "logit"),
data = HMDA)

probit_HMDA_1 <- glm(deny ~ black + pirat + hirat + lvrat + chist + mhist + phist
+ insurance + selfemp,
family = binomial(link = "probit"),
data = HMDA)
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probit_HMDA_2 <- glm(deny ~ black + pirat + hirat + lvrat + chist + mhist + phist
+ insurance + selfemp + single + hschool + unemp,
family = binomial(link = "probit"),
data = HMDA)

probit_HMDA_3 <- glm(deny ~ black + pirat + hirat + lvrat + chist + mhist
+ phist + insurance + selfemp + single + hschool + unemp + condomin
+ I(mhist==3) + I(mhist==4) + I(chist==3) + I(chist==4) + I(chist==5)
+ I(chist==6),
family = binomial(link = "probit"),
data = HMDA)

probit_HMDA_4 <- glm(deny ~ black * (pirat + hirat) + lvrat + chist + mhist + phist
+ insurance + selfemp + single + hschool + unemp,
family = binomial(link = "probit"),
data = HMDA)

Just as in previous chapters, we store heteroskedasticity-robust standard errors
of the coefficient estimators in a list which is then used as the argument se in
stargazer().

rob_se <- list(sqrt(diag(vcovHC(lpm_HMDA, type = "HC1"))),
sqrt(diag(vcovHC(logit_HMDA, type = "HC1"))),
sqrt(diag(vcovHC(probit_HMDA_1, type = "HC1"))),
sqrt(diag(vcovHC(probit_HMDA_2, type = "HC1"))),
sqrt(diag(vcovHC(probit_HMDA_3, type = "HC1"))),
sqrt(diag(vcovHC(probit_HMDA_4, type = "HC1"))))

stargazer(lpm_HMDA, logit_HMDA, probit_HMDA_1,
probit_HMDA_2, probit_HMDA_3, probit_HMDA_4,
digits = 3,
type = "latex",
header = FALSE,
se = rob_se,
model.numbers = FALSE,
column.labels = c("(1)", "(2)", "(3)", "(4)", "(5)", "(6)"))

In Table 11.1, models (1), (2) and (3) are baseline specifications that include
several financial control variables. They differ only in the way they model the
denial probability. Model (1) is a linear probability model, model (2) is a Logit
regression and model (3) uses the Probit approach.

In the linear model (1), the coefficients have direct interpretation. For example,
an increase in the consumer credit score by 1 unit is estimated to increase the
probability of a loan denial by about 0.031 percentage points. Having a high
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loan-to-value ratio is detriment for credit approval: the coefficient for a loan-to-
value ratio higher than 0.95 is 0.189 so clients with this property are estimated to
face an almost 19% larger risk of denial than those with a low loan-to-value ratio,
ceteris paribus. The estimated coefficient on the race dummy is 0.084, which
indicates the denial probability for African Americans is 8.4% larger than for
white applicants with the same characteristics except for race. Apart from the
housing-expense-to-income ratio and the mortgage credit score, all coefficients
are significant.

Models (2) and (3) provide similar evidence that there is racial discrimination
in the U.S. mortgage market. All coefficients except for the housing expense-
to-income ratio (which is not significantly different from zero) are significant at
the 1% level. As discussed above, the nonlinearity makes the interpretation of
the coefficient estimates more difficult than for model (1). In order to make a
statement about the effect of being black, we need to compute the estimated
denial probability for two individuals that differ only in race. For the comparison
we consider two individuals that share mean values for all numeric regressors.
For the qualitative variables we assign the property that is most representative
for the data at hand. For example, consider self-employment: we have seen that
about 88% of all individuals in the sample are not self-employed such that we
set selfemp = no. Using this approach, the estimate for the effect on the denial
probability of being African American of the Logit model (2) is about 4%. The
next code chunk shows how to apply this approach for models (1) to (7) using
R.

# comppute regressor values for an average black person
new <- data.frame(
"pirat" = mean(HMDA$pirat),
"hirat" = mean(HMDA$hirat),
"lvrat" = "low",
"chist" = mean(HMDA$chist),
"mhist" = mean(HMDA$mhist),
"phist" = "no",
"insurance" = "no",
"selfemp" = "no",
"black" = c("no", "yes"),
"single" = "no",
"hschool" = "yes",
"unemp" = mean(HMDA$unemp),
"condomin" = "no")

# differnce predicted by the LPM
predictions <- predict(lpm_HMDA, newdata = new)
diff(predictions)
#> 2
#> 0.08369674
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# differnce predicted by the logit model
predictions <- predict(logit_HMDA, newdata = new, type = "response")
diff(predictions)
#> 2
#> 0.04042135

# difference predicted by probit model (3)
predictions <- predict(probit_HMDA_1, newdata = new, type = "response")
diff(predictions)
#> 2
#> 0.05049716

# difference predicted by probit model (4)
predictions <- predict(probit_HMDA_2, newdata = new, type = "response")
diff(predictions)
#> 2
#> 0.03978918

# difference predicted by probit model (5)
predictions <- predict(probit_HMDA_3, newdata = new, type = "response")
diff(predictions)
#> 2
#> 0.04972468

# difference predicted by probit model (6)
predictions <- predict(probit_HMDA_4, newdata = new, type = "response")
diff(predictions)
#> 2
#> 0.03955893

The estimates of the impact on the denial probability of being black are similar
for models (2) and (3). It is interesting that the magnitude of the estimated
effects is much smaller than for Probit and Logit models that do not control
for financial characteristics (see section 11.2). This indicates that these simple
models produce biased estimates due to omitted variables.

Regressions (4) to (6) use regression specifications that include different appli-
cant characteristics and credit rating indicator variables as well as interactions.
However, most of the corresponding coefficients are not significant and the es-
timates of the coefficient on black obtained for these models as well as the
estimated difference in denial probabilities do not differ much from those ob-
tained for the similar specifications (2) and (3).

An interesting question related to racial discrimination can be investigated
using the Probit model (6) where the interactions blackyes:pirat and
blackyes:hirat are added to model (4). If the coefficient on blackyes:pirat
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was different from zero, the effect of the payment-to-income ratio on the denial
probability would be different for black and white applicants. Similarly, a
non-zero coefficient on blackyes:hirat would indicate that loan officers weight
the risk of bankruptcy associated with a high loan-to-value ratio differently for
black and white mortgage applicants. We can test whether these coefficients
are jointly significant at the 5% level using an F -Test.

linearHypothesis(probit_HMDA_4,
test = "F",
c("blackyes:pirat=0", "blackyes:hirat=0"),
vcov = vcovHC, type = "HC1")

#> Linear hypothesis test
#>
#> Hypothesis:
#> blackyes:pirat = 0
#> blackyes:hirat = 0
#>
#> Model 1: restricted model
#> Model 2: deny ~ black * (pirat + hirat) + lvrat + chist + mhist + phist +
#> insurance + selfemp + single + hschool + unemp
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 2366
#> 2 2364 2 0.2473 0.7809

Since p-value ≈ 0.77 for this test, the null cannot be rejected. Nonetheless, we
can reject the hypothesis that there is no racial discrimination at all since the
corresponding F -test has a p-value of about 0.002.

linearHypothesis(probit_HMDA_4,
test = "F",
c("blackyes=0", "blackyes:pirat=0", "blackyes:hirat=0"),
vcov = vcovHC, type = "HC1")

#> Linear hypothesis test
#>
#> Hypothesis:
#> blackyes = 0
#> blackyes:pirat = 0
#> blackyes:hirat = 0
#>
#> Model 1: restricted model
#> Model 2: deny ~ black * (pirat + hirat) + lvrat + chist + mhist + phist +
#> insurance + selfemp + single + hschool + unemp
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#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 2367
#> 2 2364 3 4.7774 0.002534 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Summary

Models (1) to (6) provide evidence that there is an effect of being African Ameri-
can on the probability of a mortgage application denial: in all specifications, the
effect is estimated to be positive (ranging from 4% to 5%) and is significantly
different from zero at the 1% level. While the linear probability model seems to
slightly overestimate this effect, it still can be used as an approximation to an
intrinsically nonlinear relationship.

See Chapters 11.4 and 11.5 of the book for a discussion of external and internal
validity of this study and some concluding remarks on regression models where
the dependent variable is binary.

11.5 Exercises

This interactive part of the book is only available in the HTML version.



Chapter 12

Instrumental Variables
Regression

As discussed in Chapter 9, regression models may suffer from problems like omit-
ted variables, measurement errors and simultaneous causality. If so, the error
term is correlated with the regressor of interest and so that the corresponding
coefficient is estimated inconsistently. So far we have assumed that we can add
the omitted variables to the regression to mitigate the risk of biased estimation
of the causal effect of interest. However, if omitted factors cannot be measured
or are not available for other reasons, multiple regression cannot solve the prob-
lem. The same issue arises if there is simultaneous causality. When causality
runs from X to Y and vice versa, there will be an estimation bias that cannot
be corrected for by multiple regression.

A general technique for obtaining a consistent estimator of the coefficient of
interest is instrumental variables (IV) regression. In this chapter we focus on the
IV regression tool called two-stage least squares (TSLS). The first sections briefly
recap the general mechanics and assumptions of IV regression and show how
to perform TSLS estimation using R. Next, IV regression is used for estimating
the elasticity of the demand for cigarettes — a classical example where multiple
regression fails to do the job because of simultaneous causality.

Just like for the previous chapter, the packages AER (Kleiber and Zeileis, 2020)
and stargazer (Hlavac, 2018) are required for reproducing the code presented
in this chapter. Check whether the code chunk below executes without any
error messages.

library(AER)
library(stargazer)

329
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12.1 The IV Estimator with a Single Regressor
and a Single Instrument

Consider the simple regression model

Yi = β0 + β1Xi + ui , i = 1, . . . , n (12.1)

where the error term ui is correlated with the regressor Xi (X is endogenous)
such that OLS is inconsistent for the true β1. In the most simple case, IV
regression uses a single instrumental variable Z to obtain a consistent estimator
for β1.

Z must satisfy two conditions to be a valid instrument:

1. Instrument relevance condition:

X and its instrument Z must be correlated: ρZi,Xi
6= 0.

2. Instrument exogeneity condition:

The instrument Z must not be correlated with the error term u: ρZi,ui
= 0.

The Two-Stage Least Squares Estimator

As can be guessed from its name, TSLS proceeds in two stages. In the first stage,
the variation in the endogenous regressor X is decomposed into a problem-free
component that is explained by the instrument Z and a problematic component
that is correlated with the error ui. The second stage uses the problem-free
component of the variation in X to estimate β1.

The first stage regression model is

Xi = π0 + π1Zi + νi,

where π0 + π1Zi is the component of Xi that is explained by Zi while νi is the
component that cannot be explained by Zi and exhibits correlation with ui.

Using the OLS estimates π̂0 and π̂1 we obtain predicted values X̂i, i = 1, . . . , n.
If Z is a valid instrument, the X̂i are problem-free in the sense that X̂ is ex-
ogenous in a regression of Y on X̂ which is done in the second stage regression.
The second stage produces β̂TSLS0 and β̂TSLS1 , the TSLS estimates of β0 and
β1.

For the case of a single instrument one can show that the TSLS estimator of β1
is
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β̂TSLS1 = sZY
sZX

=
1

n−1
∑n
i=1(Yi − Y )(Zi − Z)

1
n−1

∑n
i=1(Xi −X)(Zi − Z)

, (12.2)

which is nothing but the ratio of the sample covariance between Z and Y to the
sample covariance between Z and X.

As shown in Appendix 12.3 of the book, (12.2) is a consistent estimator for β1 in
(12.1) under the assumption that Z is a valid instrument. Just as for every other
OLS estimator we have considered so far, the CLT implies that the distribution
of β̂TSLS1 can be approximated by a normal distribution if the sample size is
large. This allows us to use t-statistics and confidence intervals which are also
computed by certain R functions. A more detailed argument on the large-sample
distribution of the TSLS estimator is sketched in Appendix 12.3 of the book.

Application to the Demand For Cigarettes

The relation between the demand for and the price of commodities is a simple
yet widespread problem in economics. Health economics is concerned with the
study of how health-affecting behavior of individuals is influenced by the health-
care system and regulation policy. Probably the most prominent example in
public policy debates is smoking as it is related to many illnesses and negative
externalities.

It is plausible that cigarette consumption can be reduced by taxing cigarettes
more heavily. The question is by how much taxes must be increased to reach
a certain reduction in cigarette consumption. Economists use elasticities to an-
swer this kind of question. Since the price elasticity for the demand of cigarettes
is unknown, it must be estimated. As discussed in the box Who Invented In-
strumental Variables Regression presented in Chapter 12.1 of the book, an OLS
regression of log quantity on log price cannot be used to estimate the effect
of interest since there is simultaneous causality between demand and supply.
Instead, IV regression can be used.

We use the data set CigarettesSW which comes with the package AER. It is a
panel data set that contains observations on cigarette consumption and several
economic indicators for all 48 continental federal states of the U.S. from 1985
to 1995. Following the book we consider data for the cross section of states in
1995 only.

We start by loading the package, attaching the data set and getting an overview.

# load the data set and get an overview
library(AER)
data("CigarettesSW")
summary(CigarettesSW)
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#> state year cpi population packs
#> AL : 2 1985:48 Min. :1.076 Min. : 478447 Min. : 49.27
#> AR : 2 1995:48 1st Qu.:1.076 1st Qu.: 1622606 1st Qu.: 92.45
#> AZ : 2 Median :1.300 Median : 3697472 Median :110.16
#> CA : 2 Mean :1.300 Mean : 5168866 Mean :109.18
#> CO : 2 3rd Qu.:1.524 3rd Qu.: 5901500 3rd Qu.:123.52
#> CT : 2 Max. :1.524 Max. :31493524 Max. :197.99
#> (Other):84
#> income tax price taxs
#> Min. : 6887097 Min. :18.00 Min. : 84.97 Min. : 21.27
#> 1st Qu.: 25520384 1st Qu.:31.00 1st Qu.:102.71 1st Qu.: 34.77
#> Median : 61661644 Median :37.00 Median :137.72 Median : 41.05
#> Mean : 99878736 Mean :42.68 Mean :143.45 Mean : 48.33
#> 3rd Qu.:127313964 3rd Qu.:50.88 3rd Qu.:176.15 3rd Qu.: 59.48
#> Max. :771470144 Max. :99.00 Max. :240.85 Max. :112.63
#>

Use ?CigarettesSW for a detailed description of the variables.

We are interested in estimating β1 in

log(Qcigarettesi ) = β0 + β1 log(P cigarettesi ) + ui, (12.3)

where Qcigarettesi is the number of cigarette packs per capita sold and P cigarettesi

is the after-tax average real price per pack of cigarettes in state i.

The instrumental variable we are going to use for instrumenting the endogenous
regressor log(P cigarettesi ) is SalesTax, the portion of taxes on cigarettes arising
from the general sales tax. SalesTax is measured in dollars per pack. The
idea is that SalesTax is a relevant instrument as it is included in the after-tax
average price per pack. Also, it is plausible that SalesTax is exogenous since
the sales tax does not influence quantity sold directly but indirectly through the
price.

We perform some transformations in order to obtain deflated cross section data
for the year 1995.

We also compute the sample correlation between the sales tax and price per
pack. The sample correlation is a consistent estimator of the population cor-
relation. The estimate of approximately 0.614 indicates that SalesTax and
P cigarettesi exhibit positive correlation which meets our expectations: higher
sales taxes lead to higher prices. However, a correlation analysis like this is not
sufficient for checking whether the instrument is relevant. We will later come
back to the issue of checking whether an instrument is relevant and exogenous.
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# compute real per capita prices
CigarettesSW$rprice <- with(CigarettesSW, price / cpi)

# compute the sales tax
CigarettesSW$salestax <- with(CigarettesSW, (taxs - tax) / cpi)

# check the correlation between sales tax and price
cor(CigarettesSW$salestax, CigarettesSW$price)
#> [1] 0.6141228

# generate a subset for the year 1995
c1995 <- subset(CigarettesSW, year == "1995")

The first stage regression is

log(P cigarettesi ) = π0 + π1SalesTaxi + νi.

We estimate this model in R using lm(). In the second stage we run a regression
of log(Qcigarettesi ) on ̂log(P cigarettesi ) to obtain β̂TSLS0 and β̂TSLS1 .

# perform the first stage regression
cig_s1 <- lm(log(rprice) ~ salestax, data = c1995)

coeftest(cig_s1, vcov = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 4.6165463 0.0289177 159.6444 < 2.2e-16 ***
#> salestax 0.0307289 0.0048354 6.3549 8.489e-08 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The first stage regression is

̂log(P cigarettesi ) = 4.62
(0.03)

+ 0.031
(0.005)

SalesTaxi

which predicts the relation between sales tax price per cigarettes to be positive.
How much of the observed variation in log(P cigarettes) is explained by the in-
strument SalesTax? This can be answered by looking at the regression’s R2

which states that about 47% of the variation in after tax prices is explained by
the variation of the sales tax across states.



334 CHAPTER 12. INSTRUMENTAL VARIABLES REGRESSION

# inspect the Rˆ2 of the first stage regression
summary(cig_s1)$r.squared
#> [1] 0.4709961

We next store ̂log(P cigarettesi ), the fitted values obtained by the first stage re-
gression cig_s1, in the variable lcigp_pred.

# store the predicted values
lcigp_pred <- cig_s1$fitted.values

Next, we run the second stage regression which gives us the TSLS estimates we
seek.

# run the stage 2 regression
cig_s2 <- lm(log(c1995$packs) ~ lcigp_pred)
coeftest(cig_s2, vcov = vcovHC)
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 9.71988 1.70304 5.7074 7.932e-07 ***
#> lcigp_pred -1.08359 0.35563 -3.0469 0.003822 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Thus estimating the model (12.3) using TSLS yields

̂log(Qcigarettesi ) = 9.72
(1.70)

+ 1.08
(0.36)

log(P cigarettesi ), (12.4)

where we write log(P cigarettesi ) instead of ̂log(P cigarettesi ) for consistency with
the book.

The function ivreg() from the package AER carries out TSLS procedure auto-
matically. It is used similarly as lm(). Instruments can be added to the usual
specification of the regression formula using a vertical bar separating the model
equation from the instruments. Thus, for the regression at hand the correct
formula is log(packs) ~ log(rprice) | salestax.

# perform TSLS using 'ivreg()'
cig_ivreg <- ivreg(log(packs) ~ log(rprice) | salestax, data = c1995)
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coeftest(cig_ivreg, vcov = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 9.71988 1.52832 6.3598 8.346e-08 ***
#> log(rprice) -1.08359 0.31892 -3.3977 0.001411 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We find that the coefficient estimates coincide for both approaches.

Two Notes on the Computation of TSLS Standard Errors

1. We have demonstrated that running the individual regressions for each
stage of TSLS using lm() leads to the same coefficient estimates as when
using ivreg(). However, the standard errors reported for the second-
stage regression, e.g., by coeftest() or summary(), are invalid: neither
adjusts for using predictions from the first-stage regression as regressors
in the second-stage regression. Fortunately, ivreg() performs the nec-
essary adjustment automatically. This is another advantage over manual
step-by-step estimation which we have done above for demonstrating the
mechanics of the procedure.

2. Just like in multiple regression it is important to compute heteroskedasticity-
robust standard errors as we have done above using vcovHC().

The TSLS estimate for β1 in (12.4) suggests that an increase in cigarette prices
by one percent reduces cigarette consumption by roughly 1.08 percentage points,
which is fairly elastic. However, we should keep in mind that this estimate might
not be trustworthy even though we used IV estimation: there still might be a
bias due to omitted variables. Thus a multiple IV regression approach is needed.

12.2 The General IV Regression Model

The simple IV regression model is easily extended to a multiple regression model
which we refer to as the general IV regression model. In this model we distin-
guish between four types of variables: the dependent variable, included exoge-
nous variables, included endogenous variables and instrumental variables. Key
Concept 12.1 summarizes the model and the common terminology. See Chapter
12.2 of the book for a more comprehensive discussion of the individual compo-
nents of the general model.
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Key Concept 12.1
The General Instrumental Variables Regression Model and Ter-
minology

Yi = β0 + β1X1i + · · ·+ βkXki + βk+1W1i + · · ·+ βk+rWri + ui,
(12.5)

with i = 1, . . . , n is the general instrumental variables regression model
where

• Yi is the dependent variable

• β1, . . . , βk+r are 1 + k + r unknown regression coefficients

• X1i, . . . , Xki are k endogenous regressors

• W1i, . . . ,Wri are r exogenous regressors which are uncorrelated
with ui

• ui is the error term

• Z1i, . . . , Zmi are m instrumental variables

The coefficients are overidentified if m > k. If m < k, the coefficients
are underidentified and when m = k they are exactly identified. For
estimation of the IV regression model we require exact identification or
overidentification.

While computing both stages of TSLS individually is not a big deal in (12.1),
the simple regression model with a single endogenous regressor, Key Concept
12.2 clarifies why resorting to TSLS functions like ivreg() are more convenient
when the set of potentially endogenous regressors (and instruments) is large.

Estimating regression models with TSLS using multiple instruments by means
of ivreg() is straightforward. There are, however, some subtleties in correctly
specifying the regression formula.

Assume that you want to estimate the model

Yi = β0 + β1X1i + β2X2i +W1i + ui

where X1i and X2i are endogenous regressors that shall be instrumented by Z1i,
Z2i and Z3i andW1i is an exogenous regressor. The corresponding data is avail-
able in a data.frame with column names y, x1, x1, w1, z1, z2 and z3. It might
be tempting to specify the argument formula in your call of ivreg() as y ~
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x1 + x2 + w1 | z1 + z2 + z3 which is wrong. As explained in the documen-
tation of ivreg() (see ?ivreg), it is necessary to list all exogenous variables as
instruments too, that is joining them by +’s on the right of the vertical bar: y
~ x1 + x2 + w1 | w1 + z1 + z2 + z3 where w1 is “instrumenting itself”.

If there is a large number of exogenous variables it may be convenient to provide
an update formula with a . (this includes all variables except for the dependent
variable) right after the | and to exclude all endogenous variables using a -. For
example, if there is one exogenous regressor w1 and one endogenous regressor
x1 with instrument z1, the appropriate formula would be y ~ w1 + x1 | w1
+ z1 which is equivalent to y ~ w1 + x1 | . - x1 + z1.

Key Concept 12.2
Two-Stage Least Squares

Similarly to the simple IV regression model, the general IV model (12.5)
can be estimated using the two-stage least squares estimator:

• First-stage regression(s)
Run an OLS regression for each of the endogenous variables
(X1i, . . . , Xki) on all instrumental variables (Z1i, . . . , Zmi), all
exogenous variables (W1i, . . . ,Wri) and an intercept. Compute
the fitted values (X̂1i, . . . , X̂ki).

• Second-stage regression
Regress the dependent variable on the predicted values of all en-
dogenous regressors, all exogenous variables and an intercept us-
ing OLS. This gives β̂TSLS0 , . . . , β̂TSLSk+r , the TSLS estimates of the
model coefficients.

In the general IV regression model, the instrument relevance and instrument
exogeneity assumptions are the same as in the simple regression model with a
single endogenous regressor and only one instrument. See Key Concept 12.3 for
a recap using the terminology of general IV regression.
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Key Concept 12.3
Two Conditions for Valid Instruments

For Z1i, . . . , Zmi to be a set of valid instruments, the following two
conditions must be fulfilled:

1. Instrument Relevance
If there are k endogenous variables, r exogenous variables and m ≥
k instruments Z and the X̂∗1i, . . . , X̂∗ki are the predicted values from
the k population first stage regressions, it must hold that

(X̂∗1i, . . . , X̂∗ki,W1i, . . . ,Wri, 1)

are not perfectly multicollinear. 1 denotes the constant regressor
which equals 1 for all observations.

Note: If there is only one endogenous regressor Xi, there must
be at least one non-zero coefficient on the Z and the W in the
population regression for this condition to be valid: if all of the
coefficients are zero, all the X̂∗i are just the mean of X such that
there is perfect multicollinearity.

2. Instrument Exogeneity
All m instruments must be uncorrelated with the error term,

ρZ1i,ui
= 0, . . . , ρZmi,ui

= 0.

One can show that if the IV regression assumptions presented in Key Concept
12.4 hold, the TSLS estimator in (12.5) is consistent and normally distributed
when the sample size is large. Appendix 12.3 of the book deals with a proof in
the special case with a single regressor, a single instrument and no exogenous
variables. The reasoning behind this carries over to the general IV model.
Chapter 18 of the book proves a more complicated explanation for the general
case.

For our purposes it is sufficient to bear in mind that validity of the assumptions
stated in Key Concept 12.4 allows us to obtain valid statistical inference using
R functions which compute t-Tests, F -Tests and confidence intervals for model
coefficients.
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Key Concept 12.4
The IV Regression Assumptions

For the general IV regression model in Key Concept 12.1 we assume the
following:

1. E(ui|W1i, . . . ,Wri) = 0.

2. (X1i, . . . , Xki,W1i, . . . ,Wri, Z1i, . . . , Zmi) are i.i.d. draws from
their joint distribution.

3. All variables have nonzero finite fourth moments, i.e., outliers are
unlikely.

4. The Zs are valid instruments (see Key Concept 12.3).

Application to the Demand for Cigarettes

The estimated elasticity of the demand for cigarettes in (12.1) is 1.08. Although
(12.1) was estimated using IV regression it is plausible that this IV estimate is
biased: in this model, the TSLS estimator is inconsistent for the true β1 if the
instrument (the real sales tax per pack) correlates with the error term. This is
likely to be the case since there are economic factors, like state income, which
impact the demand for cigarettes and correlate with the sales tax. States with
high personal income tend to generate tax revenues by income taxes and less
by sales taxes. Consequently, state income should be included in the regression
model.

log(Qcigarettesi ) = β0 + β1 log(P cigarettesi ) + β2 log(incomei) + ui (12.6)

Before estimating (12.6) using ivreg() we define income as real per capita
income rincome and append it to the data set CigarettesSW.

# add rincome to the dataset
CigarettesSW$rincome <- with(CigarettesSW, income / population / cpi)

c1995 <- subset(CigarettesSW, year == "1995")

# estimate the model
cig_ivreg2 <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) +

salestax, data = c1995)

coeftest(cig_ivreg2, vcov = vcovHC, type = "HC1")
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#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 9.43066 1.25939 7.4883 1.935e-09 ***
#> log(rprice) -1.14338 0.37230 -3.0711 0.003611 **
#> log(rincome) 0.21452 0.31175 0.6881 0.494917
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We obtain

̂log(Qcigarettesi ) = 9.42
(1.26)

− 1.14
(0.37)

log(P cigarettesi ) + 0.21
(0.31)

log(incomei). (12.7)

Following the book we add the cigarette-specific taxes (cigtaxi) as a further
instrumental variable and estimate again using TSLS.

# add cigtax to the data set
CigarettesSW$cigtax <- with(CigarettesSW, tax/cpi)

c1995 <- subset(CigarettesSW, year == "1995")

# estimate the model
cig_ivreg3 <- ivreg(log(packs) ~ log(rprice) + log(rincome) |

log(rincome) + salestax + cigtax, data = c1995)

coeftest(cig_ivreg3, vcov = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 9.89496 0.95922 10.3157 1.947e-13 ***
#> log(rprice) -1.27742 0.24961 -5.1177 6.211e-06 ***
#> log(rincome) 0.28040 0.25389 1.1044 0.2753
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Using the two instruments salestaxi and cigtaxi we have m = 2 and k = 1
so the coefficient on the endogenous regressor log(P cigarettesi ) is overidentified.
The TSLS estimate of (12.6) is

̂log(Qcigarettesi ) = 9.89
(0.96)

− 1.28
(0.25)

log(P cigarettesi ) + 0.28
(0.25)

log(incomei). (12.8)
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Should we trust the estimates presented in (12.7) or rather rely on (12.8)? The
estimates obtained using both instruments are more precise since in (12.8) all
standard errors reported are smaller than in (12.7). In fact, the standard error
for the estimate of the demand elasticity is only two thirds of the standard error
when the sales tax is the only instrument used. This is due to more information
being used in estimation (12.8). If the instruments are valid, (12.8) can be
considered more reliable.

However, without insights regarding the validity of the instruments it is not sen-
sible to make such a statement. This stresses why checking instrument validity
is essential. Chapter 12.3 briefly discusses guidelines in checking instrument
validity and presents approaches that allow to test for instrument relevance and
exogeneity under certain conditions. These are then used in an application to
the demand for cigarettes in Chapter 12.4.

12.3 Checking Instrument Validity

Instrument Relevance

Instruments that explain little variation in the endogenous regressorX are called
weak instruments. Weak instruments provide little information about the vari-
ation in X that is exploited by IV regression to estimate the effect of interest:
the estimate of the coefficient on the endogenous regressor is estimated inac-
curately. Moreover, weak instruments cause the distribution of the estimator
to deviate considerably from a normal distribution even in large samples such
that the usual methods for obtaining inference about the true coefficient on X
may produce wrong results. See Chapter 12.3 and Appendix 12.4 of the book
for a more detailed argument on the undesirable consequences of using weak
instruments in IV regression.
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Key Concept 12.5
A Rule of Thumb for Checking for Weak Instruments

Consider the case of a single endogenous regressor X and m instruments
Z1, . . . , Zm. If the coefficients on all instruments in the population
first-stage regression of a TSLS estimation are zero, the instruments
do not explain any of the variation in the X which clearly violates
assumption 1 of Key Concept 12.2. Although the latter case is unlikely
to be encountered in practice, we should ask ourselves to what extent
the assumption of instrument relevance should be fulfilled.

While this is hard to answer for general IV regression, in the case of
a single endogenous regressor X one may use the following rule of thumb:

Compute the F -statistic which corresponds to the hypothesis that the
coefficients on Z1, . . . , Zm are all zero in the first-stage regression. If
the F -statistic is less than 10, the instruments are weak such that the
TSLS estimate of the coefficient on X is biased and no valid statistical
inference about its true value can be made. See also Appendix 12.5 of
the book.

The rule of thumb of Key Concept 12.5 is easily implemented in R. Run the first-
stage regression using lm() and subsequently compute the heteroskedasticity-
robust F -statistic by means of linearHypothesis(). This is part of the appli-
cation to the demand for cigarettes discussed in Chapter 12.4.

If Instruments are Weak

There are two ways to proceed if instruments are weak:

1. Discard the weak instruments and/or find stronger instruments. While
the former is only an option if the unknown coefficients remain identified
when the weak instruments are discarded, the latter can be very difficult
and even may require a redesign of the whole study.

2. Stick with the weak instruments but use methods that improve upon TSLS
in this scenario, for example limited information maximum likelihood es-
timation, see Appendix 12.5 of the book.

When the Assumption of Instrument Exogeneity is Violated

If there is correlation between an instrument and the error term, IV regression is
not consistent (this is shown in Appendix 12.4 of the book). The overidentifying
restrictions test (also called the J-test) is an approach to test the hypothesis that
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additional instruments are exogenous. For the J-test to be applicable there need
to be more instruments than endogenous regressors. The J-test is summarized
in Key Concept 12.5.

Key Concept 12.6
J-Statistic / Overidentifying Restrictions Test

Take ûTSLSi , i = 1, . . . , n, the residuals of the TSLS estimation of the
general IV regression model 12.5. Run the OLS regression

ûTSLSi = δ0 + δ1Z1i + · · ·+ δmZmi + δm+1W1i + · · ·+ δm+rWri + ei
(12.9)

and test the joint hypothesis

H0 : δ1 = 0, . . . , δm = 0

which states that all instruments are exogenous. This can be done using
the corresponding F -statistic by computing

J = mF.

This test is the overidentifying restrictions test and the statistic is called
the J-statistic with

J ∼ χ2
m−k

in large samples under the null and the assumption of homoskedasticity.
The degrees of freedom m−k state the degree of overidentification since
this is the number of instruments m minus the number of endogenous
regressors k.

It is important to note that the J-statistic discussed in Key Concept 12.6 is
only χ2

m−k distributed when the error term ei in the regression (12.9) is ho-
moskedastic. A discussion of the heteroskedasticity-robust J-statistic is beyond
the scope of this chapter. We refer to Section 18.7 of the book for a theoretical
argument.

As for the procedure shown in Key Concept 12.6, the application in the next
section shows how to apply the J-test using linearHypothesis().

12.4 Application to the Demand for Cigarettes

Are the general sales tax and the cigarette-specific tax valid instruments? If not,
TSLS is not helpful to estimate the demand elasticity for cigarettes discussed
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in Chapter 12.2. As discussed in Chapter 12.1, both variables are likely to be
relevant but whether they are exogenous is a different question.

The book argues that cigarette-specific taxes could be endogenous because there
might be state specific historical factors like economic importance of the tobacco
farming and cigarette production industry that lobby for low cigarette specific
taxes. Since it is plausible that tobacco growing states have higher rates of
smoking than others, this would lead to endogeneity of cigarette specific taxes. If
we had data on the size on the tobacco and cigarette industry, we could solve this
potential issue by including the information in the regression. Unfortunately,
this is not the case.

However, since the role of the tobacco and cigarette industry is a factor that
can be assumed to differ across states but not over time we may exploit the
panel structure of CigarettesSW instead: as shown in Chapter 10.2, regression
using data on changes between two time periods eliminates such state specific
and time invariant effects. Following the book we consider changes in variables
between 1985 and 1995. That is, we are interested in estimating the long-run
elasticity of the demand for cigarettes.

The model to be estimated by TSLS using the general sales tax and the cigarette-
specific sales tax as instruments hence is

log(Qcigarettesi,1995 )− log(Qcigarettesi,1995 ) =β0 + β1

[
log(P cigarettesi,1995 )− log(P cigarettesi,1985 )

]
+ β2 [log(incomei,1995)− log(incomei,1985)] + ui.

(12.10)

We first create differences from 1985 to 1995 for the dependent variable, the
regressors and both instruments.

# subset data for year 1985
c1985 <- subset(CigarettesSW, year == "1985")

# define differences in variables
packsdiff <- log(c1995$packs) - log(c1985$packs)

pricediff <- log(c1995$price/c1995$cpi) - log(c1985$price/c1985$cpi)

incomediff <- log(c1995$income/c1995$population/c1995$cpi) -
log(c1985$income/c1985$population/c1985$cpi)

salestaxdiff <- (c1995$taxs - c1995$tax)/c1995$cpi - (c1985$taxs - c1985$tax)/c1985$cpi

cigtaxdiff <- c1995$tax/c1995$cpi - c1985$tax/c1985$cpi

We now perform three different IV estimations of (12.10) using ivreg():
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1. TSLS using only the difference in the sales taxes between 1985 and 1995
as the instrument.

2. TSLS using only the difference in the cigarette-specific sales taxes 1985
and 1995 as the instrument.

3. TSLS using both the difference in the sales taxes 1985 and 1995 and the
difference in the cigarette-specific sales taxes 1985 and 1995 as instru-
ments.

# estimate the three models
cig_ivreg_diff1 <- ivreg(packsdiff ~ pricediff + incomediff | incomediff +

salestaxdiff)

cig_ivreg_diff2 <- ivreg(packsdiff ~ pricediff + incomediff | incomediff +
cigtaxdiff)

cig_ivreg_diff3 <- ivreg(packsdiff ~ pricediff + incomediff | incomediff +
salestaxdiff + cigtaxdiff)

As usual we use coeftest() in conjunction with vcovHC() to obtain robust
coefficient summaries for all models.

# robust coefficient summary for 1.
coeftest(cig_ivreg_diff1, vcov = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.117962 0.068217 -1.7292 0.09062 .
#> pricediff -0.938014 0.207502 -4.5205 4.454e-05 ***
#> incomediff 0.525970 0.339494 1.5493 0.12832
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# robust coefficient summary for 2.
coeftest(cig_ivreg_diff2, vcov = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.017049 0.067217 -0.2536 0.8009
#> pricediff -1.342515 0.228661 -5.8712 4.848e-07 ***
#> incomediff 0.428146 0.298718 1.4333 0.1587
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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# robust coefficient summary for 3.
coeftest(cig_ivreg_diff3, vcov = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.052003 0.062488 -0.8322 0.4097
#> pricediff -1.202403 0.196943 -6.1053 2.178e-07 ***
#> incomediff 0.462030 0.309341 1.4936 0.1423
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We proceed by generating a tabulated summary of the estimation results using
stargazer().

# gather robust standard errors in a list
rob_se <- list(sqrt(diag(vcovHC(cig_ivreg_diff1, type = "HC1"))),

sqrt(diag(vcovHC(cig_ivreg_diff2, type = "HC1"))),
sqrt(diag(vcovHC(cig_ivreg_diff3, type = "HC1"))))

# generate table
stargazer(cig_ivreg_diff1, cig_ivreg_diff2,cig_ivreg_diff3,
header = FALSE,
type = "html",
omit.table.layout = "n",
digits = 3,
column.labels = c("IV: salestax", "IV: cigtax", "IVs: salestax, cigtax"),
dep.var.labels.include = FALSE,
dep.var.caption = "Dependent Variable: 1985-1995 Difference in Log per Pack Price",
se = rob_se)

Table 12.1 reports negative estimates of the coefficient on pricediff that are
quite different in magnitude. Which one should we trust? This hinges on the
validity of the instruments used. To assess this we compute F -statistics for the
first-stage regressions of all three models to check instrument relevance.

# first-stage regressions
mod_relevance1 <- lm(pricediff ~ salestaxdiff + incomediff)
mod_relevance2 <- lm(pricediff ~ cigtaxdiff + incomediff)
mod_relevance3 <- lm(pricediff ~ incomediff + salestaxdiff + cigtaxdiff)

# check instrument relevance for model (1)
linearHypothesis(mod_relevance1,

"salestaxdiff = 0",
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Table 12.1: TSLS Estimates of the Long-Term Elasticity of the Demand for
Cigarettes using Panel Data

Dependent variable: 1985-1995 difference in log per pack price
IV: salestax IV: cigtax IVs: salestax, cigtax

(1) (2) (3)
pricediff −0.938∗∗∗ −1.343 −1.202

incomediff 0.526∗∗∗ 0.428 0.462

Constant −0.118∗∗∗ −0.017 −0.052
(0.028) (0.484) (0.250)

Observations 48 48 48
R2 0.550 0.520 0.547
Adjusted R2 0.530 0.498 0.526
Residual Std. Error (df = 45) 0.091 0.094 0.091

vcov = vcovHC, type = "HC1")
#> Linear hypothesis test
#>
#> Hypothesis:
#> salestaxdiff = 0
#>
#> Model 1: restricted model
#> Model 2: pricediff ~ salestaxdiff + incomediff
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 46
#> 2 45 1 28.445 3.009e-06 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# check instrument relevance for model (2)
linearHypothesis(mod_relevance2,

"cigtaxdiff = 0",
vcov = vcovHC, type = "HC1")

#> Linear hypothesis test
#>
#> Hypothesis:
#> cigtaxdiff = 0
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#>
#> Model 1: restricted model
#> Model 2: pricediff ~ cigtaxdiff + incomediff
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 46
#> 2 45 1 98.034 7.09e-13 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# check instrument relevance for model (3)
linearHypothesis(mod_relevance3,

c("salestaxdiff = 0", "cigtaxdiff = 0"),
vcov = vcovHC, type = "HC1")

#> Linear hypothesis test
#>
#> Hypothesis:
#> salestaxdiff = 0
#> cigtaxdiff = 0
#>
#> Model 1: restricted model
#> Model 2: pricediff ~ incomediff + salestaxdiff + cigtaxdiff
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 46
#> 2 44 2 76.916 4.339e-15 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We also conduct the overidentifying restrictions test for model three which is
the only model where the coefficient on the difference in log prices is overiden-
tified (m = 2, k = 1) such that the J-statistic can be computed. To do this
we take the residuals stored in cig_ivreg_diff3 and regress them on both in-
struments and the presumably exogenous regressor incomediff. We again use
linearHypothesis() to test whether the coefficients on both instruments are
zero which is necessary for the exogeneity assumption to be fulfilled. Note that
with test = "Chisq" we obtain a chi-squared distributed test statistic instead
of an F -statistic.
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# compute the J-statistic
cig_iv_OR <- lm(residuals(cig_ivreg_diff3) ~ incomediff + salestaxdiff + cigtaxdiff)

cig_OR_test <- linearHypothesis(cig_iv_OR,
c("salestaxdiff = 0", "cigtaxdiff = 0"),
test = "Chisq")

cig_OR_test
#> Linear hypothesis test
#>
#> Hypothesis:
#> salestaxdiff = 0
#> cigtaxdiff = 0
#>
#> Model 1: restricted model
#> Model 2: residuals(cig_ivreg_diff3) ~ incomediff + salestaxdiff + cigtaxdiff
#>
#> Res.Df RSS Df Sum of Sq Chisq Pr(>Chisq)
#> 1 46 0.37472
#> 2 44 0.33695 2 0.037769 4.932 0.08492 .
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Caution: In this case the p-Value reported by linearHypothesis() is wrong
because the degrees of freedom are set to 2. This differs from the degree of
overidentification (m−k = 2−1 = 1) so the J-statistic is χ2

1 distributed instead
of following a χ2

2 distribution as assumed defaultly by linearHypothesis().
We may compute the correct p-Value using pchisq().

# compute correct p-value for J-statistic
pchisq(cig_OR_test[2, 5], df = 1, lower.tail = FALSE)
#> [1] 0.02636406

Since this value is smaller than 0.05 we reject the hypothesis that both instru-
ments are exogenous at the level of 5%. This means one of the following:

1. The sales tax is an invalid instrument for the per-pack price.
2. The cigarettes-specific sales tax is an invalid instrument for the per-pack

price.
3. Both instruments are invalid.

The book argues that the assumption of instrument exogeneity is more likely
to hold for the general sales tax (see Chapter 12.4 of the book) such that the
IV estimate of the long-run elasticity of demand for cigarettes we consider the
most trustworthy is −0.94, the TSLS estimate obtained using the general sales
tax as the only instrument.
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The interpretation of this estimate is that over a 10-year period, an increase in
the average price per package by one percent is expected to decrease consump-
tion by about 0.94 percentage points. This suggests that, in the long run, price
increases can reduce cigarette consumption considerably.

12.5 Where Do Valid Instruments Come From?

Chapter 12.5 of the book presents a comprehensive discussion of approaches to
find valid instruments in practice by the example of three research questions:

• Does putting criminals in jail reduce crime?
• Does cutting class sizes increase test scores?
• Does aggressive treatment of heart attacks prolong lives?

This section is not directly related to applications in R which is why we do not
discuss the contents here. We encourage you to work through this on your own.

Summary

ivreg() from the package AER provides convenient functionalities to estimate
IV regression models in R. It is an implementation of the TSLS estimation
approach.

Besides treating IV estimation, we have also discussed how to test for weak
instruments and how to conduct an overidentifying restrictions test when there
are more instruments than endogenous regressors using R.

An empirical application has shown how ivreg() can be used to estimate the
long-run elasticity of demand for cigarettes based on CigarettesSW, a panel data
set on cigarette consumption and economic indicators for all 48 continental U.S.
states for 1985 and 1995. Different sets of instruments were used and it has been
argued why using the general sales tax as the only instrument is the preferred
choice. The estimate of the demand elasticity deemed the most trustworthy
is −0.94. This estimate suggests that there is a remarkable negative long-run
effect on cigarette consumption of increasing prices.

12.6 Exercises



Chapter 13

Experiments and
Quasi-Experiments

This chapter discusses statistical tools that are commonly applied in program
evaluation, where interest lies in measuring the causal effects of programs, poli-
cies or other interventions. An optimal research design for this purpose is what
statisticians call an ideal randomized controlled experiment. The basic idea is
to randomly assign subjects to two different groups, one that receives the treat-
ment (the treatment group) and one that does not (the control group) and to
compare outcomes for both groups in order to get an estimate of the average
treatment effect.

Such experimental data is fundamentally different from observational data. For
example, one might use a randomized controlled experiment to measure how
much the performance of students in a standardized test differs between two
classes where one has a “regular”" student-teacher ratio and the other one has
fewer students. The data produced by such an experiment would be different
from, e.g., the observed cross-section data on the students’ performance used
throughout Chapters 4 to 8 where class sizes are not randomly assigned to
students but instead are the results of an economic decision where educational
objectives and budgetary aspects were balanced.

For economists, randomized controlled experiments are often difficult or even
indefeasible to implement. For example, due to ethic, moral and legal reasons
it is practically impossible for a business owner to estimate the causal effect on
the productivity of workers of setting them under psychological stress using an
experiment where workers are randomly assigned either to the treatment group
that is under time pressure or to the control group where work is under regular
conditions, at best without knowledge of being in an experiment (see the box
The Hawthorne Effect on p. 528 of the book).

However, sometimes external circumstances produce what is called a quasi-

351
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experiment or natural experiment. This “as if” randomness allows for estimation
of causal effects that are of interest for economists using tools which are very
similar to those valid for ideal randomized controlled experiments. These tools
draw heavily on the theory of multiple regression and also on IV regression (see
Chapter 12). We will review the core aspects of these methods and demonstrate
how to apply them in R using the STAR data set (see the description of the
data set).

The following packages and their dependencies are needed for reproduction of
the code chunks presented throughout this chapter:

• AER (Kleiber and Zeileis, 2020)
• dplyr (Wickham et al., 2020)
• MASS (Ripley, 2020)
• mvtnorm (Genz et al., 2020)
• rddtools (Stigler and Quast, 2020)
• scales (Wickham and Seidel, 2020)
• stargazer(Hlavac, 2018)
• tidyr (Wickham and Henry, 2020)

Make sure the following code chunk runs without any errors.

library(AER)
library(dplyr)
library(MASS)
library(mvtnorm)
library(rddtools)
library(scales)
library(stargazer)
library(tidyr)

13.1 Potential Outcomes, Causal Effects and
Idealized Experiments

We now briefly recap the idea of the average causal effect and how it can be esti-
mated using the differences estimator. We advise you to work through Chapter
13.1 of the book for a better understanding.

Potential Outcomes and the average causal effect

A potential outcome is the outcome for an individual under a potential treat-
ment. For this individual, the causal effect of the treatment is the difference
between the potential outcome if the individual receives the treatment and the

https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/10766
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potential outcome if she does not. Since this causal effect may be different for
different individuals and it is not possible to measure the causal effect for a
single individual, one is interested in studying the average causal effect of the
treatment, hence also called the average treatment effect.

In an ideal randomized controlled experiment the following conditions are ful-
filled:

1. The subjects are selected at random from the population.
2. The subjects are randomly assigned to treatment and control group.

Condition 1 guarantees that the subjects’ potential outcomes are drawn ran-
domly from the same distribution such that the expected value of the causal
effect in the sample is equal to the average causal effect in the distribution. Con-
dition 2 ensures that the receipt of treatment is independent from the subjects’
potential outcomes. If both conditions are fulfilled, the expected causal effect
is the expected outcome in the treatment group minus the expected outcome in
the control group. Using conditional expectations we have

Average causal effect = E(Yi|Xi = 1)− E(Yi|Xi = 0),

where Xi is a binary treatment indicator.

The average causal effect can be estimated using the differences estimator, which
is nothing but the OLS estimator in the simple regression model

Yi = β0 + β1Xi + ui , i = 1, . . . , n, (13.1)

where random assignment ensures that E(ui|Xi) = 0.

The OLS estimator in the regression model

Yi = β0 + β1Xi + β2W1i + · · ·+ β1+rWri + ui , i = 1, . . . , n (13.2)

with additional regressors W1, . . . ,Wr is called the differences estimator with
additional regressors. It is assumed that treatment Xi is randomly assigned
so that it is independent of the the pretreatment characteristic Wi. This is
assumption is called conditional mean independence and implies

E(ui|Xi,Wi) = E(ui|Wi) = 0,

so the conditional expectation of the error ui given the treatment indicator Xi

and the pretreatment characteristicWi does not depend on the Xi. Conditional
mean independence replaces the first least squares assumption in Key Concept
6.4 and thus ensures that the differences estimator of β1 is unbiased. The differ-
ences estimator with additional regressors is more efficient than the differences
estimator if the additional regressors explain some of the variation in the Yi.
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13.2 Threats to Validity of Experiments

The concepts of internal and external validity discussed in Key Concept 9.1 are
also applicable for studies based on experimental and quasi-experimental data.
Chapter 13.2 of the book provides a thorough explanation of the particular
threats to internal and external validity of experiments including examples. We
limit ourselves to a short repetition of the threats listed there. Consult the book
for a more detailed explanation.

Threats to Internal Validity

1. Failure to Randomize
If the subjects are not randomly assigned to the treatment group, then the
outcomes will be contaminated with the effect of the subjects’ individual
characteristics or preferences and it is not possible to obtain an unbiased
estimate of the treatment effect. One can test for nonrandom assignment
using a significance test (F -Test) on the coefficients in the regression model

Xi = β0 + β1W1i + · · ·+ β2Wri + ui , i = 1, . . . , n.

2. Failure to Follow the Treatment Protocol
If subjects do not follow the treatment protocol, i.e., some subjects in the
treatment group manage to avoid receiving the treatment and/or some
subjects in the control group manage to receive the treatment (partial
compliance), there is correlation between Xi und ui such that the OLS
estimator of the average treatment effect will be biased. If there are data
on both treatment actually recieved (Xi) and initial random assignment
(Zi), IV regression of the models (13.1) and (13.2) is a remedy.

3. Attrition
Attrition may result in a nonrandomly selected sample. If subjects sys-
tematically drop out of the study after beeing assigned to the control or
the treatment group (systematic means that the reason of the dropout is
related to the treatment) there will be correlation between Xi and ui and
hence bias in the OLS estimator of the treatment effect.

4. Experimental Effects
If human subjects in treatment group and/or control group know that
they are in an experiment, they might adapt their behaviour in a way
that prevents unbiased estimation of the treatment effect.

5. Small Sample Sizes
As we know from the theory of linear regression, small sample sizes lead to
imprecise estimation of the coefficients and thus imply imprecise estima-
tion of the causal effect. Furthermore, confidence intervals and hypothesis
test may produce wrong inference when the sample size is small.
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Threats to External Validity

1. Nonrepresentative Sample
If the population studied and the population of interest are not sufficiently
similar, there is no justification in generalizing the results.

2. Nonrepresentative Program or Policy
If the program or policy for the population studied differs considerably
from the program (to be) applied to population(s) of interest, the results
cannot be generalized. For example, a small-scale programm with low
funding might have different effects than a widely available scaled-up pro-
gram that is actually implemented. There are other factors like duration
and the extent of monitoring that should be considered here.

3. General Equilibrium Effects
If market and/or environmental conditions cannot be kept constant when
an internally valid program is implemented broadly, external validity may
be doubtful.

13.3 Experimental Estimates of the Effect of
Class Size Reductions

Experimental Design and the Data Set

The Project Student-Teacher Achievement Ratio (STAR) was a large random-
ized controlled experiment with the aim of asserting whether a class size reduc-
tion is effective in improving education outcomes. It has been conducted in 80
Tennessee elementary schools over a period of four years during the 1980s by
the State Department of Education.

In the first year, about 6400 students were randomly assigned into one of three
interventions: small class (13 to 17 students per teacher), regular class (22 to
25 students per teacher), and regular-with-aide class (22 to 25 students with a
full-time teacher’s aide). Teachers were also randomly assigned to the classes
they taught. The interventions were initiated as the students entered school
in kindergarten and continued through to third grade. Control and treatment
groups across grades are summarized in Table 13.1.

Table 13.1: Control and treatment groups in the STAR experiment

K 1 2 3
Treatment
1

Small class Small class Small class Small class
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K 1 2 3
Treatment
2

Regular class
+ aide

Regular class
+ aide

Regular class
+ aide

Regular class
+ aide

Control Regular class Regular class Regular class Regular class

Each year, the students’ learning progress was assessed using the sum of the
points scored on the math and reading parts of a standardized test (the Stanford
Achievement Test).

The STAR data set is part of the package AER.

# load the package AER and the STAR dataset
library(AER)
data(STAR)

head(STAR) shows that there is a variety of factor variables that describe student
and teacher characteristics as well as various school indicators, all of which are
separately recorded for the four different grades. The data is in wide format.
That is, each variable has its own column and for each student, the rows contain
observations on these variables. Using dim(STAR) we find that there are a total
of 11598 observations on 47 variables.

# get an overview
head(STAR, 2)
#> gender ethnicity birth stark star1 star2 star3 readk read1 read2 read3
#> 1122 female afam 1979 Q3 <NA> <NA> <NA> regular NA NA NA 580
#> 1137 female cauc 1980 Q1 small small small small 447 507 568 587
#> mathk math1 math2 math3 lunchk lunch1 lunch2 lunch3 schoolk school1
#> 1122 NA NA NA 564 <NA> <NA> <NA> free <NA> <NA>
#> 1137 473 538 579 593 non-free free non-free free rural rural
#> school2 school3 degreek degree1 degree2 degree3 ladderk ladder1
#> 1122 <NA> suburban <NA> <NA> <NA> bachelor <NA> <NA>
#> 1137 rural rural bachelor bachelor bachelor bachelor level1 level1
#> ladder2 ladder3 experiencek experience1 experience2 experience3
#> 1122 <NA> level1 NA NA NA 30
#> 1137 apprentice apprentice 7 7 3 1
#> tethnicityk tethnicity1 tethnicity2 tethnicity3 systemk system1 system2
#> 1122 <NA> <NA> <NA> cauc <NA> <NA> <NA>
#> 1137 cauc cauc cauc cauc 30 30 30
#> system3 schoolidk schoolid1 schoolid2 schoolid3
#> 1122 22 <NA> <NA> <NA> 54
#> 1137 30 63 63 63 63
dim(STAR)
#> [1] 11598 47

https://en.wikipedia.org/wiki/Stanford_Achievement_Test_Series
https://en.wikipedia.org/wiki/Stanford_Achievement_Test_Series
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# get variable names
names(STAR)
#> [1] "gender" "ethnicity" "birth" "stark" "star1"
#> [6] "star2" "star3" "readk" "read1" "read2"
#> [11] "read3" "mathk" "math1" "math2" "math3"
#> [16] "lunchk" "lunch1" "lunch2" "lunch3" "schoolk"
#> [21] "school1" "school2" "school3" "degreek" "degree1"
#> [26] "degree2" "degree3" "ladderk" "ladder1" "ladder2"
#> [31] "ladder3" "experiencek" "experience1" "experience2" "experience3"
#> [36] "tethnicityk" "tethnicity1" "tethnicity2" "tethnicity3" "systemk"
#> [41] "system1" "system2" "system3" "schoolidk" "schoolid1"
#> [46] "schoolid2" "schoolid3"

A majority of the variable names contain a suffix (k, 1, 2 or 3) stating the grade
which the respective variable is referring to. This facilitates regression analysis
because it allows to adjust the formula argument in lm() for each grade by
simply changing the variables’ suffixes accordingly.

The outcome produced by head() shows that some values recorded are NA and
<NA>, i.e., there is no data on this variable for the student under consideration.
This lies in the nature of the data: for example, take the first observation
STAR[1,].

In the output of head(STAR, 2) we find that the student entered the experiment
in third grade in a regular class, which is why the class size is recorded in star3
and the other class type indicator variables are <NA>. For the same reason there
are no recordings of her math and reading score but for the third grade. It is
straightforward to only get her non-NA/<NA> recordings: simply drop the NAs
using !is.na().

# drop NA recordings for the first observation and print to the console
STAR[1, !is.na(STAR[1, ])]
#> gender ethnicity birth star3 read3 math3 lunch3 school3 degree3
#> 1122 female afam 1979 Q3 regular 580 564 free suburban bachelor
#> ladder3 experience3 tethnicity3 system3 schoolid3
#> 1122 level1 30 cauc 22 54

is.na(STAR[1, ]) returns a logical vector with TRUE at positions that corre-
spond to <NA> entries for the first observation. The ! operator is used to invert
the result such that we obtain only non-<NA> entries for the first observations.

In general it is not necessary to remove rows with missing data because lm()
does so by default. Missing data may imply a small sample size and thus may
lead to imprecise estimation and wrong inference This is, however, not an issue
for the study at hand since, as we will see below, sample sizes lie beyond 5000
observations for each regression conducted.
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Analysis of the STAR Data

As can be seen from Table 13.1 there are two treatment groups in each grade,
small classes with only 13 to 17 students and regular classes with 22 to 25 stu-
dents and a teaching aide. Thus, two binary variables, each being an indicator
for the respective treatment group, are introduced for the differences estimator
to capture the treatment effect for each treatment group separately. This yields
the population regression model

Yi = β0 + β1SmallClassi + β2RegAidei + ui, (13.3)

with test score Yi, the small class indicator SmallClassi and RegAidei, the
indicator for a regular class with aide.

We reproduce the results presented in Table 13.1 of the book by performing
the regression (13.3) for each grade separately. For each student, the dependent
variable is simply the sum of the points scored in the math and reading parts,
constructed using I().

# compute differences Estimates for each grades
fmk <- lm(I(readk + mathk) ~ stark, data = STAR)
fm1 <- lm(I(read1 + math1) ~ star1, data = STAR)
fm2 <- lm(I(read2 + math2) ~ star2, data = STAR)
fm3 <- lm(I(read3 + math3) ~ star3, data = STAR)

# obtain coefficient matrix using robust standard errors
coeftest(fmk, vcov = vcovHC, type= "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 918.04289 1.63339 562.0473 < 2.2e-16 ***
#> starksmall 13.89899 2.45409 5.6636 1.554e-08 ***
#> starkregular+aide 0.31394 2.27098 0.1382 0.8901
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coeftest(fm1, vcov = vcovHC, type= "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 1039.3926 1.7846 582.4321 < 2.2e-16 ***
#> star1small 29.7808 2.8311 10.5190 < 2.2e-16 ***
#> star1regular+aide 11.9587 2.6520 4.5093 6.62e-06 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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coeftest(fm2, vcov = vcovHC, type= "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 1157.8066 1.8151 637.8820 < 2.2e-16 ***
#> star2small 19.3944 2.7117 7.1522 9.55e-13 ***
#> star2regular+aide 3.4791 2.5447 1.3672 0.1716
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coeftest(fm3, vcov = vcovHC, type= "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 1228.50636 1.68001 731.2483 < 2.2e-16 ***
#> star3small 15.58660 2.39604 6.5051 8.393e-11 ***
#> star3regular+aide -0.29094 2.27271 -0.1280 0.8981
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We gather the results and present them in a table using stargazer().

# compute robust standard errors for each model and gather them in a list
rob_se_1 <- list(sqrt(diag(vcovHC(fmk, type = "HC1"))),

sqrt(diag(vcovHC(fm1, type = "HC1"))),
sqrt(diag(vcovHC(fm2, type = "HC1"))),
sqrt(diag(vcovHC(fm2, type = "HC1"))))

library(stargazer)

stargazer(fmk,fm1,fm2,fm3,
title = "Project STAR: Differences Estimates",
header = FALSE,
type = "latex",
model.numbers = F,
omit.table.layout = "n",
digits = 3,
column.labels = c("K", "1", "2", "3"),
dep.var.caption = "Dependent Variable: Grade",
dep.var.labels.include = FALSE,
se = rob_se_1)

The estimates presented in Table 13.2 suggest that the class size reduction im-
proves student performance. Except for grade 1, the estimates of the coefficient
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Table
13.2:

Project
STA

R
-D

ifferences
Estim

ates

D
ependent

Variable:
G
rade

K
1

2
3

starksm
all

13.899
∗∗∗

(2.454)

starkregular+
aide

0.314
(2.271)

star1sm
all

29.781
∗∗∗

(2.831)

star1regular+
aide

11.959
∗∗∗

(2.652)

star2sm
all

19.394
∗∗∗

(2.712)

star2regular+
aide

3.479
(2.545)

star3sm
all

15.587

star3regular+
aide

−
0.291

C
onstant

918.043
∗∗∗

1,039.393
∗∗∗

1,157.807
∗∗∗

1,228.506
∗∗∗

(1.633)
(1.785)

(1.815)
(1.815)

O
bservations

5,786
6,379

6,049
5,967

R
2

0.007
0.017

0.009
0.010

A
djusted
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on SmallClass are roughly of the same magnitude (the estimates lie between
13.90 and 19.39 points) and they are statistically significant at 1%. Further-
more, a teaching aide has little, possibly zero, effect on the performance of the
students.

Following the book, we augment the regression model (13.3) by different sets of
regressors for two reasons:

1. If the additional regressors explain some of the observed variation in the
dependent variable, we obtain more efficient estimates of the coefficients
of interest.

2. If the treatment is not received at random due to failures to follow the
treatment protocol (see Chapter 13.3 of the book), the estimates obtained
using (13.3) may be biased. Adding additional regressors may solve or
mitigate this problem.

In particular, we consider the following student and teacher characteristics

• experience — Teacher’s years of experience
• boy — Student is a boy (dummy)
• lunch — Free lunch eligibility (dummy)
• black — Student is African-American (dummy)
• race — Student’s race is other than black or white (dummy)
• schoolid — School indicator variables

in the four population regression specifications

Yi =β0 + β1SmallClassi + β2RegAidei + ui, (13.4)
Yi =β0 + β1SmallClassi + β2RegAidei + β3experiencei + ui, (13.5)
Yi =β0 + β1SmallClassi + β2RegAidei + β3experiencei + schoolid+ ui,

(13.6)

and

Yi =β0 + β1SmallClassi + β2RegAidei + β3experiencei + β4boy + β5lunch
(13.7)

+ β6black + β7race+ schoolid+ ui. (13.8)

Prior to estimation, we perform some subsetting and data wrangling using func-
tions from the packages dplyr and tidyr. These are both part of tidyverse,
a collection of R packages designed for data science and handling big datasets
(see the official site for more on tidyverse packages). The functions %>%,
transmute() and mutate() are sufficient for us here:

• %>% allows to chain function calls.

https://www.tidyverse.org/
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• transmute() allows to subset the data set by naming the variables to be
kept.

• mutate() is convenient for adding new variables based on existing ones
while preserving the latter.

The regression models (13.4) to (13.8) require the variables gender, ethnicity,
stark, readk, mathk, lunchk, experiencek and schoolidk. After dropping
the remaining variables using transmute(), we use mutate() to add three ad-
ditional binary variables which are derivatives of existing ones: black, race and
boy. They are generated using logical statements within the function ifelse().

# load packages 'dplyr' and 'tidyr' for data wrangling functionalities
library(dplyr)
library(tidyr)

# generate subset with kindergarten data
STARK <- STAR %>%

transmute(gender,
ethnicity,
stark,
readk,
mathk,
lunchk,
experiencek,
schoolidk) %>%

mutate(black = ifelse(ethnicity == "afam", 1, 0),
race = ifelse(ethnicity == "afam" | ethnicity == "cauc", 1, 0),
boy = ifelse(gender == "male", 1, 0))

# estimate the models
gradeK1 <- lm(I(mathk + readk) ~ stark + experiencek,

data = STARK)

gradeK2 <- lm(I(mathk + readk) ~ stark + experiencek + schoolidk,
data = STARK)

gradeK3 <- lm(I(mathk + readk) ~ stark + experiencek + boy + lunchk
+ black + race + schoolidk,
data = STARK)

For brevity, we exclude the coefficients for the indicator dummies in
coeftest()’s output by subsetting the matrices.
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# obtain robust inference on the significance of coefficients
coeftest(gradeK1, vcov. = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 904.72124 2.22235 407.1020 < 2.2e-16 ***
#> starksmall 14.00613 2.44704 5.7237 1.095e-08 ***
#> starkregular+aide -0.60058 2.25430 -0.2664 0.7899
#> experiencek 1.46903 0.16929 8.6778 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coeftest(gradeK2, vcov. = vcovHC, type = "HC1")[1:4, ]
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 925.6748750 7.6527218 120.9602155 0.000000e+00
#> starksmall 15.9330822 2.2411750 7.1092540 1.310324e-12
#> starkregular+aide 1.2151960 2.0353415 0.5970477 5.504993e-01
#> experiencek 0.7431059 0.1697619 4.3773429 1.222880e-05
coeftest(gradeK3, vcov. = vcovHC, type = "HC1")[1:7, ]
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 937.6831330 14.3726687 65.2407117 0.000000e+00
#> starksmall 15.8900507 2.1551817 7.3729516 1.908960e-13
#> starkregular+aide 1.7869378 1.9614592 0.9110247 3.623211e-01
#> experiencek 0.6627251 0.1659298 3.9940097 6.578846e-05
#> boy -12.0905123 1.6726331 -7.2284306 5.533119e-13
#> lunchkfree -34.7033021 1.9870366 -17.4648529 1.437931e-66
#> black -25.4305130 3.4986918 -7.2685776 4.125252e-13

We now use stargazer() to gather all relevant information in a structured
table.

# compute robust standard errors for each model and gather them in a list
rob_se_2 <- list(sqrt(diag(vcovHC(fmk, type = "HC1"))),

sqrt(diag(vcovHC(gradeK1, type = "HC1"))),
sqrt(diag(vcovHC(gradeK2, type = "HC1"))),
sqrt(diag(vcovHC(gradeK3, type = "HC1"))))

stargazer(fmk, fm1, fm2, fm3,
title = "Project STAR - Differences Estimates with
Additional Regressors for Kindergarten",
header = FALSE,
type = "latex",
model.numbers = F,
omit.table.layout = "n",
digits = 3,
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column.labels = c("(1)", "(2)", "(3)", "(4)"),
dep.var.caption = "Dependent Variable: Test Score in Kindergarten",
dep.var.labels.include = FALSE,
se = rob_se_2)

The results in column (1) of Table 13.3 just a repeat the results obtained for
(13.3). Columns (2) to (4) reveal that adding student characteristics and school
fixed effects does not lead to substantially different estimates of the treatment
effects. This result makes it more plausible that the estimates of the effects
obtained using model (13.3) do not suffer from failure of random assignment.
There is some decrease in the standard errors and some increase in R̄2, implying
that the estimates are more precise.

Because teachers were randomly assigned to classes, inclusion of school fixed
effect allows us to estimate the causal effect of a teacher’s experience on test
scores of students in kindergarten. Regression (3) predicts the average effect of
10 years experience on test scores to be 10 ·0.74 = 7.4 points. Be aware that the
other estimates on student characteristics in regression (4) do not have causal
interpretation due to nonrandom assignment (see Chapter 13.3 of the book for
a detailed discussion).

Are the estimated effects presented in Table 13.3 large or small in a practical
sense? Let us translate the predicted changes in test scores to units of stan-
dard deviation in order to allow for a comparison (see Section 9.4 for a similar
argument).

# compute the sample standard deviations of test scores
SSD <- c("K" = sd(na.omit(STAR$readk + STAR$mathk)),

"1" = sd(na.omit(STAR$read1 + STAR$math1)),
"2" = sd(na.omit(STAR$read2 + STAR$math2)),
"3" = sd(na.omit(STAR$read3 + STAR$math3)))

# translate the effects of small classes to standard deviations
Small <- c("K" = as.numeric(coef(fmk)[2]/SSD[1]),

"1" = as.numeric(coef(fm1)[2]/SSD[2]),
"2" = as.numeric(coef(fm2)[2]/SSD[3]),
"3" = as.numeric(coef(fm3)[2]/SSD[4]))

# adjust the standard errors
SmallSE <- c("K" = as.numeric(rob_se_1[[1]][2]/SSD[1]),

"1" = as.numeric(rob_se_1[[2]][2]/SSD[2]),
"2" = as.numeric(rob_se_1[[3]][2]/SSD[3]),
"3" = as.numeric(rob_se_1[[4]][2]/SSD[4]))

# translate the effects of regular classes with aide to standard deviations
RegAide<- c("K" = as.numeric(coef(fmk)[3]/SSD[1]),
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"1" = as.numeric(coef(fm1)[3]/SSD[2]),
"2" = as.numeric(coef(fm2)[3]/SSD[3]),
"3" = as.numeric(coef(fm3)[3]/SSD[4]))

# adjust the standard errors
RegAideSE <- c("K" = as.numeric(rob_se_1[[1]][3]/SSD[1]),

"1" = as.numeric(rob_se_1[[2]][3]/SSD[2]),
"2" = as.numeric(rob_se_1[[3]][3]/SSD[3]),
"3" = as.numeric(rob_se_1[[4]][3]/SSD[4]))

# gather the results in a data.frame and round
df <- t(round(data.frame(

Small, SmallSE, RegAide, RegAideSE, SSD),
digits = 2))

It is fairly easy to turn the data.frame df into a table.

# generate a simple table using stargazer
stargazer(df,

title = "Estimated Class Size Effects
(in Units of Standard Deviations)",
type = "html",
summary = FALSE,
header = FALSE
)

Table 13.4: Estimated Class Size Effects (in Units of Standard Deviations)

K 1 2 3
Small 0.190 0.330 0.230 0.210

SmallSE 0.030 0.030 0.030 0.040
RegAide 0 0.130 0.040 0

RegAideSE 0.030 0.030 0.030 0.030
SSD 73.750 91.280 84.080 73.270

The estimated effect of a small classes is largest for grade 1. As pointed out in
the book, this is probably because students in the control group for grade 1 did
poorly on the test for some unknown reason or simply due to random variation.
The difference between the estimated effect of being in a small class and being
in a regular classes with an aide is roughly 0.2 standard deviations for all grades.
This leads to the conclusion that the effect of being in a regular sized class with
an aide is zero and the effect of being in a small class is roughly the same for
all grades.
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The remainder of Chapter 13.3 in the book discusses to what extent these exper-
imental estimates are comparable with observational estimates obtained using
data on school districts in California and Massachusetts in Chapter 9. It turns
out that the estimates are indeed very similar. Please refer to the aforemen-
tioned section in the book for a more detailed discussion.

13.4 Quasi Experiments

In quasi-experiments, “as if” randomness is exploited to use methods similar to
those that have been discussed in the previous chapter. There are two types of
quasi-experiments:1

1. Random variations in individual circumstances allow to view the treat-
ment “as if” it was randomly determined.

2. The treatment is only partially determined by “as if” random variation.

The former allows to estimate the effect using either model (13.2), i.e., the
difference estimator with additional regressors, or, if there is doubt that the “as
if” randomness does not entirely ensure that there are no systematic differences
between control and treatment group, using the differences-in-differences (DID)
estimator. In the latter case, an IV approach for estimation of a model like
(13.2) which uses the source of “as if” randomness in treatment assignment as
the instrument may be applied.

Some more advanced techniques that are helpful in settings where the treat-
ment assignment is (partially) determined by a threshold in a so-called running
variable are sharp regression discontinuity design (RDD) and fuzzy regression
discontinuity design (FRDD).

We briefly review these techniques and, since the book does not provide any
empirical examples in this section, we will use our own simulated data in a
minimal example to discuss how DID, RDD and FRDD can be applied in R.

The Differences-in-Differences Estimator

In quasi-experiments the source of “as if” randomness in treatment assignment
can often not entirely prevent systematic differences between control and treat-
ment groups. This problem was encountered by Card and Krueger (1994) who
use geography as the “as if” random treatment assignment to study the effect
on employment in fast-food restaurants caused by an increase in the state mini-
mum wage in New Jersey in the year of 1992. Their idea was to use the fact that

1See Chapter 13.4 of the book for some example studies that are based on quasi-
experiments.
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the increase in minimum wage applied to employees in New Jersey (treatment
group) but not to those living in neighboring Pennsylvania (control group).

It is quite conceivable that such a wage hike is not correlated with other deter-
minants of employment. However, there still might be some state-specific dif-
ferences and thus differences between control and treatment group. This would
render the differences estimator biased and inconsistent. Card and Krueger
(1994) solved this by using a DID estimator: they collected data in February
1992 (before the treatment) and November 1992 (after the treatment) for the
same restaurants and estimated the effect of the wage hike by analyzing differ-
ences in the differences in employment for New Jersey and Pennsylvania before
and after the increase.2 The DID estimator is

β̂diffs-in-diffs1 = (Y treatment,after − Y treatment,before)− (Y control,after − Y control,before)
(13.9)

=∆Y treatment −∆Y control (13.10)

with

• Y
treatment,before - the sample average in the treatment group before the

treatment

• Y
treatment,after - the sample average in the treatment group after the treat-

ment

• Y
treatment,before - the sample average in the control group before the treat-

ment

• Y
treatment,after - the sample average in the control group after the treat-

ment.

We now use R to reproduce Figure 13.1 of the book.

# initialize plot and add control group
plot(c(0, 1), c(6, 8),

type = "p",
ylim = c(5, 12),
xlim = c(-0.3, 1.3),
main = "The Differences-in-Differences Estimator",
xlab = "Period",
ylab = "Y",
col = "steelblue",

2Also see the box What is the Effect on Employment of the Minimum Wage? in Chapter
13.4 of the book.
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pch = 20,
xaxt = "n",
yaxt = "n")

axis(1, at = c(0, 1), labels = c("before", "after"))
axis(2, at = c(0, 13))

# add treatment group
points(c(0, 1, 1), c(7, 9, 11),

col = "darkred",
pch = 20)

# add line segments
lines(c(0, 1), c(7, 11), col = "darkred")
lines(c(0, 1), c(6, 8), col = "steelblue")
lines(c(0, 1), c(7, 9), col = "darkred", lty = 2)
lines(c(1, 1), c(9, 11), col = "black", lty = 2, lwd = 2)

# add annotations
text(1, 10, expression(hat(beta)[1]ˆ{DID}), cex = 0.8, pos = 4)
text(0, 5.5, "s. mean control", cex = 0.8 , pos = 4)
text(0, 6.8, "s. mean treatment", cex = 0.8 , pos = 4)
text(1, 7.9, "s. mean control", cex = 0.8 , pos = 4)
text(1, 11.1, "s. mean treatment", cex = 0.8 , pos = 4)

The Differences−in−Differences Estimator

Period

Y

before after

β̂1

DID

s. mean control

s. mean treatment

s. mean control

s. mean treatment

The DID estimator (13.10) can also be written in regression notation: β̂DID
1 is

the OLS estimator of β1 in

∆Yi = β0 + β1Xi + ui, (13.11)
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where ∆Yi denotes the difference in pre- and post-treatment outcomes of indi-
vidual i and Xi is the treatment indicator.

Adding additional regressors that measure pre-treatment characteristics to
(13.11) we obtain

∆Yi = β0 + β1Xi + β2W1i + · · ·+ β1+rWri + ui, (13.12)

the difference-in-differences estimator with additional regressors. The addi-
tional regressors may lead to a more precise estimate of β1.

We keep things simple and focus on estimation of the treatment effect using
DID in the simplest case, that is a control and a treatment group observed for
two time periods — one before and one after the treatment. In particular, we
will see that there are three different ways to proceed.

First, we simulate pre- and post-treatment data using R.

# set sample size
n <- 200

# define treatment effect
TEffect <- 4

# generate treatment dummy
TDummy <- c(rep(0, n/2), rep(1, n/2))

# simulate pre- and post-treatment values of the dependent variable
y_pre <- 7 + rnorm(n)
y_pre[1:n/2] <- y_pre[1:n/2] - 1
y_post <- 7 + 2 + TEffect * TDummy + rnorm(n)
y_post[1:n/2] <- y_post[1:n/2] - 1

Next plot the data. The function jitter() is used to add some artificial disper-
sion in the horizontal component of the points so that there is less overplotting.
The function alpha() from the package scales allows to adjust the opacity of
colors used in plots.

library(scales)

pre <- rep(0, length(y_pre[TDummy==0]))
post <- rep(1, length(y_pre[TDummy==0]))

# plot control group in t=1
plot(jitter(pre, 0.6),

y_pre[TDummy == 0],
ylim = c(0, 16),
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col = alpha("steelblue", 0.3),
pch = 20,
xlim = c(-0.5, 1.5),
ylab = "Y",
xlab = "Period",
xaxt = "n",
main = "Artificial Data for DID Estimation")

axis(1, at = c(0, 1), labels = c("before", "after"))

# add treatment group in t=1
points(jitter(pre, 0.6),

y_pre[TDummy == 1],
col = alpha("darkred", 0.3),
pch = 20)

# add control group in t=2
points(jitter(post, 0.6),

y_post[TDummy == 0],
col = alpha("steelblue", 0.5),
pch = 20)

# add treatment group in t=2
points(jitter(post, 0.6),

y_post[TDummy == 1],
col = alpha("darkred", 0.5),
pch = 20)

0
5

10
15

Artificial Data for DID Estimation

Period

Y

before after

Observations from both the control and treatment group have a higher mean
after the treatment but that the increase is stronger for the treatment group.
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Using DID we may estimate how much of that difference is due to the treatment.

It is straightforward to compute the DID estimate in the fashion of (13.10).

# compute the DID estimator for the treatment effect 'by hand'
mean(y_post[TDummy == 1]) - mean(y_pre[TDummy == 1]) -
(mean(y_post[TDummy == 0]) - mean(y_pre[TDummy == 0]))
#> [1] 3.960268

Notice that the estimate is close to 4, the value chosen as the treatment effect
TEffect above. Since (13.11) is a simple linear model, we may perform OLS
estimation of this regression specification using lm().

# compute the DID estimator using a linear model
lm(I(y_post - y_pre) ~ TDummy)
#>
#> Call:
#> lm(formula = I(y_post - y_pre) ~ TDummy)
#>
#> Coefficients:
#> (Intercept) TDummy
#> 2.104 3.960

We find that the estimates coincide. Furthermore, one can show that the DID
estimate obtained by estimating specification (13.11) OLS is the same as the
OLS estimate of βTE in

Yi =β0 + β1Di + β2Periodi + βTE(Periodi ×Di) + εi (13.13)

where Di is the binary treatment indicator, Periodi is a binary indicator for
the after-treatment period and the Periodi ×Di is the interaction of both.

As for (13.11), estimation of (13.13) using R is straightforward. See Chapter 8
for a discussion of interaction terms.

# prepare data for DID regression using the interaction term
d <- data.frame("Y" = c(y_pre,y_post),

"Treatment" = TDummy,
"Period" = c(rep("1", n), rep("2", n)))

# estimate the model
lm(Y ~ Treatment * Period, data = d)
#>
#> Call:
#> lm(formula = Y ~ Treatment * Period, data = d)
#>
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#> Coefficients:
#> (Intercept) Treatment Period2 Treatment:Period2
#> 5.858 1.197 2.104 3.960

As expected, the estimate of the coefficient on the interaction of the treatment
dummy and the time dummy coincide with the estimates obtained using (13.10)
and OLS estimation of (13.11).

Regression Discontinuity Estimators

Consider the model

Yi =β0 + β1Xi + β2Wi + ui (13.14)

and let

Xi =
{

1, Wi ≥ c
0, Wi < c

so that the receipt of treatment, Xi, is determined by some threshold c of a
continuous variable Wi, the so called running variable. The idea of regression
discontinuity design is to use observations with a Wi close to c for estimation
of β1. β1 is the average treatment effect for individuals with Wi = c which is
assumed to be a good approximation to the treatment effect in the population.
(13.14) is called a sharp regression discontinuity design because treatment as-
signment is deterministic and discontinuous at the cutoff: all observations with
Wi < c do not receive treatment and all observations where Wi ≥ c are treated.

The subsequent code chunks show how to estimate a linear SRDD using R and
how to produce plots in the way of Figure 13.2 of the book.

# generate some sample data
W <- runif(1000, -1, 1)
y <- 3 + 2 * W + 10 * (W>=0) + rnorm(1000)

# load the package 'rddtools'
library(rddtools)

# construct rdd_data
data <- rdd_data(y, W, cutpoint = 0)

# plot the sample data
plot(data,

col = "steelblue",
cex = 0.35,
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xlab = "W",
ylab = "Y")

−1.0 −0.5 0.0 0.5 1.0

2
4

6
8

12

W

Y

h=0.0205/0.0205,		n bins=98 (49/49)

The argument nbins sets the number of bins the running variable is divided
into for aggregation. The dots represent bin averages of the outcome variable.

We may use the function rdd_reg_lm() to estimate the treatment effect using
model (13.14) for the artificial data generated above. By choosing slope =
"same" we restrict the slopes of the estimated regression function to be the
same on both sides of the jump at the cutpoint W = 0.

# estimate the sharp RDD model
rdd_mod <- rdd_reg_lm(rdd_object = data,

slope = "same")
summary(rdd_mod)
#>
#> Call:
#> lm(formula = y ~ ., data = dat_step1, weights = weights)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -3.2361 -0.6779 -0.0039 0.7113 3.0096
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 2.93889 0.07082 41.50 <2e-16 ***
#> D 10.12692 0.12631 80.18 <2e-16 ***
#> x 1.88249 0.11074 17.00 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
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#> Residual standard error: 1.019 on 997 degrees of freedom
#> Multiple R-squared: 0.972, Adjusted R-squared: 0.972
#> F-statistic: 1.732e+04 on 2 and 997 DF, p-value: < 2.2e-16

The coefficient estimate of interest is labeled D. The estimate is very close to
the treatment effect chosen in the DGP above.

It is easy to visualize the result: simply call plot() on the estimated model
object.

# plot the RDD model along with binned observations
plot(rdd_mod,

cex = 0.35,
col = "steelblue",
xlab = "W",
ylab = "Y")
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h=0.9961/0.9961,		n bins=3 (1/2)

As above, the dots represent averages of binned observations.

So far we assumed that crossing of the threshold determines receipt of treatment
so that the jump of the population regression functions at the threshold can be
regarded as the causal effect of the treatment.

When crossing the threshold c is not the only cause for receipt of the treatment,
treatment is not a deterministic function of Wi. Instead, it is useful to think of
c as a threshold where the probability of receiving the treatment jumps.

This jump may be due to unobservable variables that have impact on the prob-
ability of being treated. Thus, Xi in (13.14) will be correlated with the error
ui and it becomes more difficult to consistently estimate the treatment effect.
In this setting, using a fuzzy regression discontinuity design which is based an
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IV approach may be a remedy: take the binary variable Zi as an indicator for
crossing of the threshold,

Zi =
{

1, Wi ≥ c
0, Wi < c,

and assume that Zi relates to Yi only through the treatment indicator Xi.
Then Zi and ui are uncorrelated but Zi influences receipt of treatment so it is
correlated with Xi. Thus, Zi is a valid instrument for Xi and (13.14) can be
estimated using TSLS.

The following code chunk generates sample data where observations with a value
of the running variable Wi below the cutoff c = 0 do not receive treatment and
observations with Wi ≥ 0 do receive treatment with a probability of 80% so
that treatment status is only partially determined by the running variable and
the cutoff. Treatment leads to an increase in Y by 2 units. Observations with
Wi ≥ 0 that do not receive treatment are called no-shows: think of an individual
that was assigned to receive the treatment but somehow manages to avoid it.

library(MASS)

# generate sample data
mu <- c(0, 0)
sigma <- matrix(c(1, 0.7, 0.7, 1), ncol = 2)

set.seed(1234)
d <- as.data.frame(mvrnorm(2000, mu, sigma))
colnames(d) <- c("W", "Y")

# introduce fuzziness
d$treatProb <- ifelse(d$W < 0, 0, 0.8)

fuzz <- sapply(X = d$treatProb, FUN = function(x) rbinom(1, 1, prob = x))

# treatment effect
d$Y <- d$Y + fuzz * 2

sapply() applies the function provided to FUN to every element of the argument
X. Here, d$treatProb is a vector and the result is a vector, too.

We plot all observations and use blue color to mark individuals that did not
receive the treatment and use red color for those who received the treatment.

# generate a colored plot of treatment and control group
plot(d$W, d$Y,

col = c("steelblue", "darkred")[factor(fuzz)],
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pch= 20,
cex = 0.5,
xlim = c(-3, 3),
ylim = c(-3.5, 5),
xlab = "W",
ylab = "Y")

# add a dashed vertical line at cutoff
abline(v = 0, lty = 2)
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Obviously, receipt of treatment is no longer a deterministic function of the run-
ning variable W . Some observations with W ≥ 0 did not receive the treatment.
We may estimate a FRDD by additionally setting treatProb as the assignment
variable z in rdd_data(). Then rdd_reg_lm() applies the following TSLS
procedure: treatment is predicted using Wi and the cutoff dummy Zi, the in-
strumental variable, in the first stage regression. The fitted values from the first
stage regression are used to obtain a consistent estimate of the treatment effect
using the second stage where the outcome Y is regressed on the fitted values
and the running variable W .

# estimate the Fuzzy RDD
data <- rdd_data(d$Y, d$W,

cutpoint = 0,
z = d$treatProb)

frdd_mod <- rdd_reg_lm(rdd_object = data,
slope = "same")

frdd_mod
#> ### RDD regression: parametric ###
#> Polynomial order: 1
#> Slopes: same
#> Number of obs: 2000 (left: 999, right: 1001)
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#>
#> Coefficient:
#> Estimate Std. Error t value Pr(>|t|)
#> D 1.981297 0.084696 23.393 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimate is close to 2, the population treatment effect. We may call plot()
on the model object to obtain a figure consisting of binned data and the esti-
mated regression function.

# plot estimated FRDD function
plot(frdd_mod,

cex = 0.5,
lwd = 0.4,
xlim = c(-4, 4),
ylim = c(-3.5, 5),
xlab = "W",
ylab = "Y")
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h=3.3374/3.3374,		n bins=4 (2/2)

What if we used a SRDD instead, thereby ignoring the fact that treatment is
not perfectly determined by the cutoff in W? We may get an impression of the
consequences by estimating an SRDD using the previously simulated data.

# estimate SRDD
data <- rdd_data(d$Y,

d$W,
cutpoint = 0)

srdd_mod <- rdd_reg_lm(rdd_object = data,
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slope = "same")
srdd_mod
#> ### RDD regression: parametric ###
#> Polynomial order: 1
#> Slopes: same
#> Number of obs: 2000 (left: 999, right: 1001)
#>
#> Coefficient:
#> Estimate Std. Error t value Pr(>|t|)
#> D 1.585038 0.067756 23.393 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimate obtained using a SRDD is suggestive of a substantial downward
bias. In fact, this procedure is inconsistent for the true causal effect so increasing
the sample would not alleviate the bias.

The book continues with a discussion of potential problems with quasi-
experiments. As for all empirical studies, these potential problems are related
to internal and external validity. This part is followed by a technical discussion
of treatment effect estimation when the causal effect of treatment is heteroge-
neous in the population. We encourage you to work on these sections on your
own.

Summary

This chapter has introduced the concept of causal effects in randomized con-
trolled experiments and quasi-experiments where variations in circumstances
or accidents of nature are treated as sources of “as if” random assignment to
treatment. We have also discussed methods that allow for consistent estima-
tion of these effects in both settings. These included the differences estimator,
the differences-in-differences estimator as well as sharp and fuzzy regression
discontinuity design estimators. It was shown how to apply these estimation
techniques in R.

In an empirical application we have shown how to replicate the results of the
analysis of the STAR data presented in Chapter 13.3 of the book using R.
This study uses a randomized controlled experiment to assess whether smaller
classes improve students’ performance on standardized tests. Being related to
a randomized controlled experiment, the data of this study is fundamentally
different to those used in the cross-section studies in Chapters 4 to 8. We
therefore have motivated usage of a differences estimator.

Chapter 12.4 demonstrated how estimates of treatment effects can be obtained
when the design of the study is a quasi-experiment that allows for differences-in-
differences or regression discontinuity design estimators. In particular, we have
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introduced functions of the package rddtools that are convenient for estimation
as well as graphical analysis when estimating a regression discontinuity design.

13.5 Exercises

The subsequent exercises guide you in reproducing some of the results presented
in one of the most famous DID studies by Card and Krueger (1994). The authors
use geography as the “as if” random treatment assignment to study the effect on
employment in fast food restaurants caused by an increase in the state minimum
wage in New Jersey in the year of 1992, see Chapter 13.4.

The study is based on survey data collected in February 1992 and in November
1992, after New Jersey’s minimum wage rose by $0.80 from $4.25 to $5.05 in
April 1992.

Estimating the effect of the wage increase simply by computing the change in
employment in New Jersey (as you are asked to do in Exercise 3) would fail to
control for omitted variables. By using Pennsylvania as a control in a difference-
in-differences (DID) model one can control for variables with a common influence
on New Jersey (treatment group) and Pennsylvania (control group). This re-
duces the risk of omitted variable bias enormously and even works when these
variables are unobserved.

For the DID approach to work we must assume that New Jersey and Penn-
sylvania have parallel trends over time, i.e., we assume that the (unobserved)
factors influence employment in Pennsylvania and New Jersey in the same man-
ner. This allows to interpret an observed change in employment in Pennsylvania
as the change New Jersey would have experienced if there was no increase in
minimum wage (and vice versa).

Against to what standard economic theory would suggest, the authors did not
find evidence that the increased minimum wage induced an increase in unem-
ployment in New Jersey using the DID approach: quite the contrary, their
results suggest that the $0.80 minimum wage increase in New Jersey led to a
2.75 full-time equivalent (FTE) increase in employment.



Chapter 14

Introduction to Time Series
Regression and Forecasting

Time series data is data is collected for a single entity over time. This is funda-
mentally different from cross-section data which is data on multiple entities at
the same point in time. Time series data allows estimation of the effect on Y of
a change in X over time. This is what econometricians call a dynamic causal
effect. Let us go back to the application to cigarette consumption of Chapter
12 where we were interested in estimating the effect on cigarette demand of a
price increase caused by a raise of the general sales tax. One might use time
series data to assess the causal effect of a tax increase on smoking both initially
and in subsequent periods.

Another application of time series data is forecasting. For example, weather ser-
vices use time series data to predict tomorrow’s temperature by inter alia using
today’s temperature and temperatures of the past. To motivate an economic ex-
ample, central banks are interested in forecasting next month’s unemployment
rates.

The remainder of Chapters in the book deals with the econometric techniques
for the analysis of time series data and applications to forecasting and estima-
tion of dynamic causal effects. This section covers the basic concepts presented
in Chapter 14 of the book, explains how to visualize time series data and demon-
strates how to estimate simple autoregressive models, where the regressors are
past values of the dependent variable or other variables. In this context we also
discuss the concept of stationarity, an important property which has far-reaching
consequences.

Most empirical applications in this chapter are concerned with forecasting and
use data on U.S. macroeconomic indicators or financial time series like Gross
Domestic Product (GDP), the unemployment rate or excess stock returns.

381
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The following packages and their dependencies are needed for reproduction of
the code chunks presented throughout this chapter:

• AER (Kleiber and Zeileis, 2020)
• dynlm (Zeileis, 2019)
• forecast (Hyndman et al., 2020)
• readxl (Wickham and Bryan, 2019)
• stargazer (Hlavac, 2018)
• scales (Wickham and Seidel, 2020)
• quantmod (Ryan and Ulrich, 2020)
• urca (Pfaff, 2016)

Please verify that the following code chunk runs on your machine without any
errors.

library(AER)
library(dynlm)
library(forecast)
library(readxl)
library(stargazer)
library(scales)
library(quantmod)
library(urca)

14.1 Using Regression Models for Forecasting

What is the difference between estimating models for assessment of causal effects
and forecasting? Consider again the simple example of estimating the casual
effect of the student-teacher ratio on test scores introduced in Chapter 4.

library(AER)
data(CASchools)
CASchools$STR <- CASchools$students/CASchools$teachers
CASchools$score <- (CASchools$read + CASchools$math)/2

mod <- lm(score ~ STR, data = CASchools)
mod
#>
#> Call:
#> lm(formula = score ~ STR, data = CASchools)
#>
#> Coefficients:
#> (Intercept) STR
#> 698.93 -2.28
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As has been stressed in Chapter 6, the estimate of the coefficient on the student-
teacher ratio does not have a causal interpretation due to omitted variable
bias. However, in terms of deciding which school to send her child to, it might
nevertheless be appealing for a parent to use mod for forecasting test scores in
schooling districts where no public data about on scores are available.

As an example, assume that the average class in a district has 25 students. This
is not a perfect forecast but the following one-liner might be helpful for the
parent to decide.

predict(mod, newdata = data.frame("STR" = 25))
#> 1
#> 641.9377

In a time series context, the parent could use data on present and past years
test scores to forecast next year’s test scores — a typical application for an
autoregressive model.

14.2 Time Series Data and Serial Correlation

GDP is commonly defined as the value of goods and services produced over a
given time period. The data set us_macro_quarterly.xlsx is provided by the
authors and can be downloaded here. It provides quarterly data on U.S. real
(i.e. inflation adjusted) GDP from 1947 to 2004.

As before, a good starting point is to plot the data. The package quantmod
provides some convenient functions for plotting and computing with time series
data. We also load the package readxl to read the data into R.

# attach the package 'quantmod'
library(quantmod)

We begin by importing the data set.

# load US macroeconomic data
USMacroSWQ <- read_xlsx("Data/us_macro_quarterly.xlsx",

sheet = 1,
col_types = c("text", rep("numeric", 9)))

# format date column
USMacroSWQ$...1 <- as.yearqtr(USMacroSWQ$...1, format = "%Y:0%q")

# adjust column names
colnames(USMacroSWQ) <- c("Date", "GDPC96", "JAPAN_IP", "PCECTPI",

"GS10", "GS1", "TB3MS", "UNRATE", "EXUSUK", "CPIAUCSL")

http://wps.pearsoned.co.uk/wps/media/objects/16103/16489878/data3eu/us_macro_quarterly.xlsx
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We the first column of us_macro_quarterly.xlsx contains text and the re-
maining ones are numeric. Using col_types = c("text", rep("numeric",
9)) we tell read_xlsx() take this into account when importing the data.

It is useful to work with time-series objects that keep track of the frequency of
the data and are extensible. In what follows we will use objects of the class xts,
see ?xts. Since the data in USMacroSWQ are in quarterly frequency we convert
the first column to yearqtr format before generating the xts object GDP.

# GDP series as xts object
GDP <- xts(USMacroSWQ$GDPC96, USMacroSWQ$Date)["1960::2013"]

# GDP growth series as xts object
GDPGrowth <- xts(400 * log(GDP/lag(GDP)))

The following code chunks reproduce Figure 14.1 of the book.

# reproduce Figure 14.1 (a) of the book
plot(log(as.zoo(GDP)),

col = "steelblue",
lwd = 2,
ylab = "Logarithm",
xlab = "Date",
main = "U.S. Quarterly Real GDP")
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# reproduce Figure 14.1 (b) of the book
plot(as.zoo(GDPGrowth),

col = "steelblue",
lwd = 2,
ylab = "Logarithm",
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xlab = "Date",
main = "U.S. Real GDP Growth Rates")
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Notation, Lags, Differences, Logarithms and Growth Rates

For observations of a variable Y recorded over time, Yt denotes the value ob-
served at time t. The period between two sequential observations Yt and Yt−1
is a unit of time: hours, days, weeks, months, quarters, years etc. Key Concept
14.1 introduces the essential terminology and notation for time series data we
use in the subsequent sections.
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Key Concept 14.1
Lags, First Differences, Logarithms and Growth Rates

• Previous values of a time series are called lags. The first lag of
Yt is Yt−1. The jth lag of Yt is Yt−j . In R, lags of univariate
or multivariate time series objects are conveniently computed by
lag(), see ?lag.

• Sometimes we work with differenced series. The first difference of
a series is ∆Yt = Yt − Yt−1, the difference between periods t and
t−1. If Y is a time series, the series of first differences is computed
as diff(Y).

• It may be convenient to work with the first difference in logarithms
of a series. We denote this by ∆ log(Yt) = log(Yt)− log(Yt−1). For
a time series Y, this is obtained using log(Y/lag(Y)).

• 100∆ log(Yt) is an approximation for the percentage change be-
tween Yt and Yt−1.

The definitions made in Key Concept 14.1 are useful because of two properties
that are common to many economic time series:

• Exponential growth: some economic series grow approximately exponen-
tially such that their logarithm is approximately linear.

• The standard deviation of many economic time series is approximately
proportional to their level. Therefore, the standard deviation of the loga-
rithm of such a series is approximately constant.

Furthermore, it is common to report growth rates in macroeconomic series which
is why log-differences are often used.

Table 14.1 of the book presents the quarterly U.S. GDP time series, its loga-
rithm, the annualized growth rate and the first lag of the annualized growth
rate series for the period 2012:Q1 - 2013:Q1. The following simple function can
be used to compute these quantities for a quarterly time series series.

# compute logarithms, annual growth rates and 1st lag of growth rates
quants <- function(series) {

s <- series
return(
data.frame("Level" = s,

"Logarithm" = log(s),
"AnnualGrowthRate" = 400 * log(s / lag(s)),
"1stLagAnnualGrowthRate" = lag(400 * log(s / lag(s))))
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)
}

The annual growth rate is computed using the approximation

AnnualGrowthYt = 400 ·∆ log(Yt)

since 100 · ∆ log(Yt) is an approximation of the quarterly percentage changes,
see Key Concept 14.1.

We call quants() on observations for the period 2011:Q3 - 2013:Q1.

# obtain a data.frame with level, logarithm, annual growth rate and its 1st lag of GDP
quants(GDP["2011-07::2013-01"])
#> Level Logarithm AnnualGrowthRate X1stLagAnnualGrowthRate
#> 2011 Q3 15062.14 9.619940 NA NA
#> 2011 Q4 15242.14 9.631819 4.7518062 NA
#> 2012 Q1 15381.56 9.640925 3.6422231 4.7518062
#> 2012 Q2 15427.67 9.643918 1.1972004 3.6422231
#> 2012 Q3 15533.99 9.650785 2.7470216 1.1972004
#> 2012 Q4 15539.63 9.651149 0.1452808 2.7470216
#> 2013 Q1 15583.95 9.653997 1.1392015 0.1452808

Autocorrelation

Observations of a time series are typically correlated. This type of correlation
is called autocorrelation or serial correlation. Key Concept 14.2 summarizes
the concepts of population autocovariance and population autocorrelation and
shows how to compute their sample equivalents.
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Key Concept 14.2
Autocorrelation and Autocovariance

The covariance between Yt and its jth lag, Yt−j , is called the jth au-
tocovariance of the series Yt. The jth autocorrelation coefficient, also
called the serial correlation coefficient, measures the correlation between
Yt and Yt−j . We thus have

jthautocovariance =Cov(Yt, Yt−j),

jthautocorrelation = ρj = ρYt,Yt−j
=

Cov(Yt, Yt−j)√
V ar(Yt)V ar(Yt−j)

.

Population autocovariance and population autocorrelation can be esti-
mated by ̂Cov(Yt, Yt−j), the sample autocovariance, and ρ̂j , the sample
autocorrelation:

̂Cov(Yt, Yt−j) = 1
T

T∑
t=j+1

(Yt − Y j+1:T )(Yt−j − Y 1:T−j),

ρ̂j =
̂Cov(Yt, Yt−j)
̂V ar(Yt)

.

Y j+1:T denotes the average of Yj+1, Y j + 2, . . . , YT .

In R the function acf() from the package stats computes the sample
autocovariance or the sample autocorrelation function.

Using acf() it is straightforward to compute the first four sample autocorrela-
tions of the series GDPGrowth.

acf(na.omit(GDPGrowth), lag.max = 4, plot = F)
#>
#> Autocorrelations of series 'na.omit(GDPGrowth)', by lag
#>
#> 0.00 0.25 0.50 0.75 1.00
#> 1.000 0.352 0.273 0.114 0.106

This is evidence that there is mild positive autocorrelation in the growth of
GDP: if GDP grows faster than average in one period, there is a tendency for
it to grow faster than average in the following periods.
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Other Examples of Economic Time Series

Figure 14.2 of the book presents four plots: the U.S. unemployment rate, the
U.S. Dollar / British Pound exchange rate, the logarithm of the Japanese indus-
trial production index as well as daily changes in the Wilshire 5000 stock price
index, a financial time series. The next code chunk reproduces the plots of the
three macroeconomic series and adds percentage changes in the daily values of
the New York Stock Exchange Composite index as a fourth one (the data set
NYSESW comes with the AER package).

# define series as xts objects
USUnemp <- xts(USMacroSWQ$UNRATE, USMacroSWQ$Date)["1960::2013"]

DollarPoundFX <- xts(USMacroSWQ$EXUSUK, USMacroSWQ$Date)["1960::2013"]

JPIndProd <- xts(log(USMacroSWQ$JAPAN_IP), USMacroSWQ$Date)["1960::2013"]

# attach NYSESW data
data("NYSESW")
NYSESW <- xts(Delt(NYSESW))

# divide plotting area into 2x2 matrix
par(mfrow = c(2, 2))

# plot the series
plot(as.zoo(USUnemp),

col = "steelblue",
lwd = 2,
ylab = "Percent",
xlab = "Date",
main = "US Unemployment Rate",
cex.main = 1)

plot(as.zoo(DollarPoundFX),
col = "steelblue",
lwd = 2,
ylab = "Dollar per pound",
xlab = "Date",
main = "U.S. Dollar / B. Pound Exchange Rate",
cex.main = 1)

plot(as.zoo(JPIndProd),
col = "steelblue",
lwd = 2,
ylab = "Logarithm",
xlab = "Date",
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main = "Japanese Industrial Production",
cex.main = 1)

plot(as.zoo(NYSESW),
col = "steelblue",
lwd = 2,
ylab = "Percent per Day",
xlab = "Date",
main = "New York Stock Exchange Composite Index",
cex.main = 1)
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The series show quite different characteristics. The unemployment rate increases
during recessions and declines during economic recoveries and growth. The
Dollar/Pound exchange rates shows a deterministic pattern until the end of
the Bretton Woods system. Japan’s industrial production exhibits an upward
trend and decreasing growth. Daily changes in the New York Stock Exchange
composite index seem to fluctuate randomly around the zero line. The sample
autocorrelations support this conjecture.

# compute sample autocorrelation for the NYSESW series
acf(na.omit(NYSESW), plot = F, lag.max = 10)
#>
#> Autocorrelations of series 'na.omit(NYSESW)', by lag
#>
#> 0 1 2 3 4 5 6 7 8 9 10
#> 1.000 0.040 -0.016 -0.023 0.000 -0.036 -0.027 -0.059 0.013 0.017 0.004

The first 10 sample autocorrelation coefficients are very close to zero. The
default plot generated by acf() provides further evidence.
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# plot sample autocorrelation for the NYSESW series
acf(na.omit(NYSESW), main = "Sample Autocorrelation for NYSESW Data")
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The blue dashed bands represent values beyond which the autocorrelations are
significantly different from zero at 5% level. Even when the true autocorrela-
tions are zero, we need to expect a few exceedences — recall the definition of
a type-I-error from Key Concept 3.5. For most lags we see that the sample
autocorrelation does not exceed the bands and there are only a few cases that
lie marginally beyond the limits.

Furthermore, the NYSESW series exhibits what econometricians call volatility
clustering: there are periods of high and periods of low variance. This is com-
mon for many financial time series.

14.3 Autoregressions

Autoregressive models are heavily used in economic forecasting. An autoregres-
sive model relates a time series variable to its past values. This section discusses
the basic ideas of autoregressions models, shows how they are estimated and dis-
cusses an application to forecasting GDP growth using R.

The First-Order Autoregressive Model

It is intuitive that the immediate past of a variable should have power to predict
its near future. The simplest autoregressive model uses only the most recent
outcome of the time series observed to predict future values. For a time series
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Yt such a model is called a first-order autoregressive model, often abbreviated
AR(1), where the 1 indicates that the order of autoregression is one:

Yt = β0 + β1Yt−1 + ut

is the AR(1) population model of a time series Yt.

For the GDP growth series, an autoregressive model of order one uses only
the information on GDP growth observed in the last quarter to predict a fu-
ture growth rate. The first-order autoregression model of GDP growth can
be estimated by computing OLS estimates in the regression of GDPGRt on
GDPGRt−1,

̂GDPGRt = β̂0 + β̂1GDPGRt−1. (14.1)

Following the book we use data from 1962 to 2012 to estimate (14.1). This is
easily done with the function ar.ols() from the package stats.

# subset data
GDPGRSub <- GDPGrowth["1962::2012"]

# estimate the model
ar.ols(GDPGRSub,

order.max = 1,
demean = F,
intercept = T)

#>
#> Call:
#> ar.ols(x = GDPGRSub, order.max = 1, demean = F, intercept = T)
#>
#> Coefficients:
#> 1
#> 0.3384
#>
#> Intercept: 1.995 (0.2993)
#>
#> Order selected 1 sigmaˆ2 estimated as 9.886

We can check that the computations done by ar.ols() are the same as done
by lm().

# length of data set
N <-length(GDPGRSub)

GDPGR_level <- as.numeric(GDPGRSub[-1])
GDPGR_lags <- as.numeric(GDPGRSub[-N])
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# estimate the model
armod <- lm(GDPGR_level ~ GDPGR_lags)
armod
#>
#> Call:
#> lm(formula = GDPGR_level ~ GDPGR_lags)
#>
#> Coefficients:
#> (Intercept) GDPGR_lags
#> 1.9950 0.3384

As usual, we may use coeftest() to obtain a robust summary on the estimated
regression coefficients.

# robust summary
coeftest(armod, vcov. = vcovHC, type = "HC1")
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 1.994986 0.351274 5.6793 4.691e-08 ***
#> GDPGR_lags 0.338436 0.076188 4.4421 1.470e-05 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Thus the estimated model is

̂GDPGRt = 1.995
(0.351)

+ 0.338
(0.076)

GDPGRt−1. (14.2)

We omit the first observation for GDPGR1962 Q1 from the vector of the de-
pendent variable since GDPGR1962 Q1−1 = GDPGR1961 Q4, is not included
in the sample. Similarly, the last observation, GDPGR2012 Q4, is excluded
from the predictor vector since the data does not include GDPGR2012 Q4+1 =
GDPGR2013 Q1. Put differently, when estimating the model, one observation
is lost because of the time series structure of the data.

Forecasts and Forecast Errors

Suppose Yt follows an AR(1) model with an intercept and that you have an
OLS estimate of the model on the basis of observations for T periods. Then you
may use the AR(1) model to obtain ŶT+1|T , a forecast for YT+1 using data up
to period T where

ŶT+1|T = β̂0 + β̂1YT .
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The forecast error is

Forecast error = YT+1 − ŶT+1|T .

Forecasts and Predicted Values

Forecasted values of Yt are not what we refer to as OLS predicted values of Yt.
Also, the forecast error is not an OLS residual. Forecasts and forecast errors
are obtained using out-of-sample values while predicted values and residuals
are computed for in-sample values that were actually observed and used in
estimating the model.

The root mean squared forecast error (RMSFE) measures the typical size of the
forecast error and is defined as

RMSFE =

√
E

[(
YT+1 − ŶT+1|T

)2
]
.

The RMSFE is composed of the future errors ut and the error made when
estimating the coefficients. When the sample size is large, the former may
be much larger than the latter so that RMSFE ≈

√
V ar()ut which can be

estimated by the standard error of the regression.

Application to GDP Growth

Using (14.2), the estimated AR(1) model of GDP growth, we perform the fore-
cast for GDP growth for 2013:Q1 (remember that the model was estimated
using data for periods 1962:Q1 - 2012:Q4, so 2013:Q1 is an out-of-sample pe-
riod). Plugging GDPGR2012:Q4 ≈ 0.15 into (14.2),

̂GDPGR2013:Q1 = 1.995 + 0.348 · 0.15 = 2.047.

The function forecast() from the forecast package has some useful features
for forecasting time series data.

library(forecast)

# assign GDP growth rate in 2012:Q4
new <- data.frame("GDPGR_lags" = GDPGR_level[N-1])

# forecast GDP growth rate in 2013:Q1
forecast(armod, newdata = new)
#> Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
#> 1 2.044155 -2.036225 6.124534 -4.213414 8.301723
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Using forecast()produces the same point forecast of about 2.0, along with
80% and 95% forecast intervals, see section 14.5. We conclude that our AR(1)
model forecasts GDP growth to be 2% in 2013:Q1.

How accurate is this forecast? The forecast error is quite large: GDPGR2013:Q1 ≈
1.1% while our forecast is 2%. Second, by calling summary(armod) shows that
the model explains only little of the variation in the growth rate of GDP and
the SER is about 3.16. Leaving aside forecast uncertainty due to estimation
of the model coefficients β0 and β1, the RMSFE must be at least 3.16%, the
estimate of the standard deviation of the errors. We conclude that this forecast
is pretty inaccurate.

# compute the forecast error
forecast(armod, newdata = new)$mean - GDPGrowth["2013"][1]
#> x
#> 2013 Q1 0.9049532

# Rˆ2
summary(armod)$r.squared
#> [1] 0.1149576

# SER
summary(armod)$sigma
#> [1] 3.15979

Autoregressive Models of Order p

For forecasting GDP growth, the AR(1) model (14.2) disregards any information
in the past of the series that is more distant than one period. An AR(p) model
incorporates the information of p lags of the series. The idea is explained in
Key Concept 14.3.

Key Concept 14.3
Autoregressions

An AR(p) model assumes that a time series Yt can be modeled by a
linear function of the first p of its lagged values.

Yt = β0 + β1Yt−1 + β2Yt−2 + · · ·+ βpYt−p + ut

is an autoregressive model of order p where E(ut|Yt−1, Yt−2, . . . , Yt−p) =
0.

Following the book, we estimate an AR(2) model of the GDP growth series from
1962:Q1 to 2012:Q4.
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# estimate the AR(2) model
GDPGR_AR2 <- dynlm(ts(GDPGR_level) ~ L(ts(GDPGR_level)) + L(ts(GDPGR_level), 2))

coeftest(GDPGR_AR2, vcov. = sandwich)
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 1.631747 0.402023 4.0588 7.096e-05 ***
#> L(ts(GDPGR_level)) 0.277787 0.079250 3.5052 0.0005643 ***
#> L(ts(GDPGR_level), 2) 0.179269 0.079951 2.2422 0.0260560 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimation yields

̂GDPGRt = 1.63
(0.40)

+ 0.28
(0.08)

GDPGRt−1 + 0.18
(0.08)

GDPGRt−1. (14.3)

We see that the coefficient on the second lag is significantly different from zero.
The fit improves slightly: R̄2 grows from 0.11 for the AR(1) model to about
0.14 and the SER reduces to 3.13.

# Rˆ2
summary(GDPGR_AR2)$r.squared
#> [1] 0.1425484

# SER
summary(GDPGR_AR2)$sigma
#> [1] 3.132122

We may use the AR(2) model to obtain a forecast for GDP growth in 2013:Q1
in the same manner as for the AR(1) model.

# AR(2) forecast of GDP growth in 2013:Q1
forecast <- c("2013:Q1" = coef(GDPGR_AR2) %*% c(1, GDPGR_level[N-1], GDPGR_level[N-2]))

This leads to a forecast error of roughly −1%.

# compute AR(2) forecast error
GDPGrowth["2013"][1] - forecast
#> x
#> 2013 Q1 -1.025358
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14.4 Can You Beat the Market? (Part I)

The theory of efficient capital markets states that stock prices embody all cur-
rently available information. If this hypothesis holds, it should not be possible
to estimate a useful model for forecasting future stock returns using publicly
available information on past returns (this is also referred to as the weak-form
efficiency hypothesis): if it was possible to forecast the market, traders would
be able to arbitrage, e.g., by relying on an AR(2) model, they would use infor-
mation that is not already priced-in which would push prices until the expected
return is zero.

This idea is presented in the box Can You Beat the Market? (Part I) on p. 582
of the book. This section reproduces the estimation results.

We start by importing monthly data from 1931:1 to 2002:12 on excess returns
of a broad-based index of stock prices, the CRSP value-weighted index. The
data are provided by the authors of the book as an excel sheet which can be
downloaded here.

# read in data on stock returns
SReturns <- read_xlsx("Data/Stock_Returns_1931_2002.xlsx",

sheet = 1,
col_types = "numeric")

We continue by converting the data to an object of class ts.

# convert to ts object
StockReturns <- ts(SReturns[, 3:4],

start = c(1931, 1),
end = c(2002, 12),
frequency = 12)

Next, we estimate AR(1), AR(2) and AR(4) models of excess returns for the
time period 1960:1 to 2002:12.

# estimate AR models:

# AR(1)
SR_AR1 <- dynlm(ExReturn ~ L(ExReturn),

data = StockReturns, start = c(1960, 1), end = c(2002, 12))

# AR(2)
SR_AR2 <- dynlm(ExReturn ~ L(ExReturn) + L(ExReturn, 2),

data = StockReturns, start = c(1960, 1), end = c(2002, 12))

http://wps.aw.com/wps/media/objects/11422/11696965/data3eu/Stock_Returns_1931_2002.xlsx
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# AR(4)
SR_AR4 <- dynlm(ExReturn ~ L(ExReturn) + L(ExReturn, 1:4),

data = StockReturns, start = c(1960, 1), end = c(2002, 12))

After computing robust standard errors, we gather the results in a table gener-
ated by stargazer().

# compute robust standard errors
rob_se <- list(sqrt(diag(sandwich(SR_AR1))),

sqrt(diag(sandwich(SR_AR2))),
sqrt(diag(sandwich(SR_AR4))))

# generate table using 'stargazer()'
stargazer(SR_AR1, SR_AR2, SR_AR4,

title = "Autoregressive Models of Monthly Excess Stock Returns",
header = FALSE,
model.numbers = F,
omit.table.layout = "n",
digits = 3,
column.labels = c("AR(1)", "AR(2)", "AR(4)"),
dep.var.caption = "Dependent Variable: Excess Returns on the CSRP Value-Weighted Index",
dep.var.labels.include = FALSE,
covariate.labels = c("$excess return_{t-1}$", "$excess return_{t-2}$",

"$excess return_{t-3}$", "$excess return_{t-4}$",
"Intercept"),

se = rob_se,
omit.stat = "rsq")

The results are consistent with the hypothesis of efficient financial markets:
there are no statistically significant coefficients in any of the estimated models
and the hypotheses that all coefficients are zero cannot be rejected. R̄2 is almost
zero in all models and even negative for the AR(4) model. This suggests that
none of the models are useful for forecasting stock returns.

14.5 Additional Predictors and The ADL Model

Instead of only using the dependent variable’s lags as predictors, an autoregres-
sive distributed lag (ADL) model also uses lags of other variables for forecasting.
The general ADL model is summarized in Key Concept 14.4:
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Table 14.1: Autoregressive Models of Monthly Excess Stock Returns

Dependent Variable: Excess returns on the CSRP Value-Weighted Index
AR(1) AR(2) AR(4)

excessreturnt−1 0.050 0.053 0.054
(0.051) (0.051) (0.051)

excessreturnt−2 −0.053
(0.048)

excessreturnt−3

excessreturnt−4 −0.054
(0.048)

Intercept 0.009
(0.050)

L(ExReturn, 1:4)4 −0.016
(0.047)

Constant 0.312 0.328∗ 0.331
(0.197) (0.199) (0.202)

Observations 516 516 516
Adjusted R2 0.001 0.001 −0.002
Residual Std. Error 4.334 (df = 514) 4.332 (df = 513) 4.340 (df = 511)
F Statistic 1.306 (df = 1; 514) 1.367 (df = 2; 513) 0.721 (df = 4; 511)
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Key Concept 14.4
The Autoregressive Distributed Lag Model

An ADL(p,q) model assumes that a time series Yt can be represented
by a linear function of p of its lagged values and q lags of another time
series Xt:

Yt =β0 + β1Yt−1 + β2Yt−2 + · · ·+ βpYt−p

+ δ1Xt−1 + δ2Xt−2 + · · ·+ δqXt−qXt−q + ut.

is an autoregressive distributed lag model with p lags of Yt and q lags of
Xt where

E(ut|Yt−1, Yt−2, . . . , Xt−1, Xt−2, . . . ) = 0.

Forecasting GDP Growth Using the Term Spread

Interest rates on long-term and short term treasury bonds are closely linked to
macroeconomic conditions. While interest rates on both types of bonds have
the same long-run tendencies, they behave quite differently in the short run.
The difference in interest rates of two bonds with distinct maturity is called the
term spread.

The following code chunks reproduce Figure 14.3 of the book which displays
interest rates of 10-year U.S. Treasury bonds and 3-months U.S. Treasury bills
from 1960 to 2012.

# 3-months Treasury bills interest rate
TB3MS <- xts(USMacroSWQ$TB3MS, USMacroSWQ$Date)["1960::2012"]

# 10-years Treasury bonds interest rate
TB10YS <- xts(USMacroSWQ$GS10, USMacroSWQ$Date)["1960::2012"]

# term spread
TSpread <- TB10YS - TB3MS

# reproduce Figure 14.2 (a) of the book
plot(merge(as.zoo(TB3MS), as.zoo(TB10YS)),

plot.type = "single",
col = c("darkred", "steelblue"),
lwd = 2,
xlab = "Date",
ylab = "Percent per annum",
main = "Interest Rates")

# define function that transform years to class 'yearqtr'
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YToYQTR <- function(years) {
return(

sort(as.yearqtr(sapply(years, paste, c("Q1", "Q2", "Q3", "Q4"))))
)

}

# recessions
recessions <- YToYQTR(c(1961:1962, 1970, 1974:1975, 1980:1982, 1990:1991, 2001, 2007:2008))

# add color shading for recessions
xblocks(time(as.zoo(TB3MS)),

c(time(TB3MS) %in% recessions),
col = alpha("steelblue", alpha = 0.3))

# add a legend
legend("topright",

legend = c("TB3MS", "TB10YS"),
col = c("darkred", "steelblue"),
lwd = c(2, 2))
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# reproduce Figure 14.2 (b) of the book
plot(as.zoo(TSpread),

col = "steelblue",
lwd = 2,
xlab = "Date",
ylab = "Percent per annum",
main = "Term Spread")

# add color shading for recessions
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xblocks(time(as.zoo(TB3MS)),
c(time(TB3MS) %in% recessions),
col = alpha("steelblue", alpha = 0.3))
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Before recessions, the gap between interest rates on long-term bonds and short
term bills narrows and consequently the term spread declines drastically towards
zero or even becomes negative in times of economic stress. This information
might be used to improve GDP growth forecasts of future.

We check this by estimating an ADL(2, 1) model and an ADL(2, 2) model of
the GDP growth rate using lags of GDP growth and lags of the term spread as
regressors. We then use both models for forecasting GDP growth in 2013:Q1.

# convert growth and spread series to ts objects
GDPGrowth_ts <- ts(GDPGrowth,

start = c(1960, 1),
end = c(2013, 4),
frequency = 4)

TSpread_ts <- ts(TSpread,
start = c(1960, 1),
end = c(2012, 4),
frequency = 4)

# join both ts objects
ADLdata <- ts.union(GDPGrowth_ts, TSpread_ts)

# estimate the ADL(2,1) model of GDP growth
GDPGR_ADL21 <- dynlm(GDPGrowth_ts ~ L(GDPGrowth_ts) + L(GDPGrowth_ts, 2) + L(TSpread_ts),

start = c(1962, 1), end = c(2012, 4))
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coeftest(GDPGR_ADL21, vcov. = sandwich)
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.954990 0.486976 1.9611 0.051260 .
#> L(GDPGrowth_ts) 0.267729 0.082562 3.2428 0.001387 **
#> L(GDPGrowth_ts, 2) 0.192370 0.077683 2.4763 0.014104 *
#> L(TSpread_ts) 0.444047 0.182637 2.4313 0.015925 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated equation of the ADL(2, 1) model is

̂GDPGRt = 0.96
(0.49)

+ 0.26
(0.08)

GDPGRt−1 + 0.19
(0.08)

GDPGRt−2 + 0.44
(0.18)

TSpreadt−1

(14.4)

All coefficients are significant at the level of 5%.

# 2012:Q3 / 2012:Q4 data on GDP growth and term spread
subset <- window(ADLdata, c(2012, 3), c(2012, 4))

# ADL(2,1) GDP growth forecast for 2013:Q1
ADL21_forecast <- coef(GDPGR_ADL21) %*% c(1, subset[2, 1], subset[1, 1], subset[2, 2])
ADL21_forecast
#> [,1]
#> [1,] 2.241689

# compute the forecast error
window(GDPGrowth_ts, c(2013, 1), c(2013, 1)) - ADL21_forecast
#> Qtr1
#> 2013 -1.102487

Model (14.4) predicts the GDP growth in 2013:Q1 to be 2.24% which leads to
a forecast error of −1.10%.

We estimate the ADL(2,2) specification to see whether adding additional infor-
mation on past term spread improves the forecast.

# estimate the ADL(2,2) model of GDP growth
GDPGR_ADL22 <- dynlm(GDPGrowth_ts ~ L(GDPGrowth_ts) + L(GDPGrowth_ts, 2)

+ L(TSpread_ts) + L(TSpread_ts, 2),
start = c(1962, 1), end = c(2012, 4))
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coeftest(GDPGR_ADL22, vcov. = sandwich)
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.967967 0.472470 2.0487 0.041800 *
#> L(GDPGrowth_ts) 0.243175 0.077836 3.1242 0.002049 **
#> L(GDPGrowth_ts, 2) 0.177070 0.077027 2.2988 0.022555 *
#> L(TSpread_ts) -0.139554 0.422162 -0.3306 0.741317
#> L(TSpread_ts, 2) 0.656347 0.429802 1.5271 0.128326
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We obtain

̂GDPGRt = 0.98
(0.47)

+ 0.24
(0.08)

GDPGRt−1

+ 0.18
(0.08)

GDPGRt−2 − 0.14
(0.42)

TSpreadt−1 + 0.66
(0.43)

TSpreadt−2.

(14.5)

The coefficients on both lags of the term spread are not significant at the 10%
level.

# ADL(2,2) GDP growth forecast for 2013:Q1
ADL22_forecast <- coef(GDPGR_ADL22) %*% c(1, subset[2, 1], subset[1, 1], subset[2, 2], subset[1, 2])
ADL22_forecast
#> [,1]
#> [1,] 2.274407

# compute the forecast error
window(GDPGrowth_ts, c(2013, 1), c(2013, 1)) - ADL22_forecast
#> Qtr1
#> 2013 -1.135206

The ADL(2,2) forecast of GDP growth in 2013:Q1 is 2.27% which implies a
forecast error of 1.14%.

Do the ADL models (14.4) and (14.5) improve upon the simple AR(2) model
(14.3)? The answer is yes: while SER and R̄2 improve only slightly, an F -test
on the term spread coefficients in (14.5) provides evidence that the model does
better in explaining GDP growth than the AR(2) model as the hypothesis that
both coefficients are zero cannot be rejected at the level of 5%.
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# compare adj. R2
c("Adj.R2 AR(2)" = summary(GDPGR_AR2)$r.squared,

"Adj.R2 ADL(2,1)" = summary(GDPGR_ADL21)$r.squared,
"Adj.R2 ADL(2,2)" = summary(GDPGR_ADL22)$r.squared)

#> Adj.R2 AR(2) Adj.R2 ADL(2,1) Adj.R2 ADL(2,2)
#> 0.1425484 0.1743996 0.1855245

# compare SER
c("SER AR(2)" = summary(GDPGR_AR2)$sigma,

"SER ADL(2,1)" = summary(GDPGR_ADL21)$sigma,
"SER ADL(2,2)" = summary(GDPGR_ADL22)$sigma)

#> SER AR(2) SER ADL(2,1) SER ADL(2,2)
#> 3.132122 3.070760 3.057655

# F-test on coefficients of term spread
linearHypothesis(GDPGR_ADL22,

c("L(TSpread_ts)=0", "L(TSpread_ts, 2)=0"),
vcov. = sandwich)

#> Linear hypothesis test
#>
#> Hypothesis:
#> L(TSpread_ts) = 0
#> L(TSpread_ts, 2) = 0
#>
#> Model 1: restricted model
#> Model 2: GDPGrowth_ts ~ L(GDPGrowth_ts) + L(GDPGrowth_ts, 2) + L(TSpread_ts) +
#> L(TSpread_ts, 2)
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 201
#> 2 199 2 4.4344 0.01306 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Stationarity

In general, forecasts can be improved by using multiple predictors — just as
in cross-sectional regression. When constructing time series models one should
take into account whether the variables are stationary or nonstationary. Key
Concept 14.5 explains what stationarity is.
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Key Concept 14.5
Stationarity

A time series Yt is stationary if its probability distribution is time
independent, that is the joint distribution of Ys+1, Ys+2, . . . , Ys+T does
not change as s is varied, regardless of T .

Similarly, two time series Xt and Yt are jointly stationary if the
joint distribution of (Xs+1, Ys+1, Xs+2, Ys+2 . . . , Xs+T , Ys+T ) does not
depend on s, regardless of T .

In a probabilistic sense, stationarity means that information about how
a time series evolves in the future is inherent to its past. If this is not
the case, we cannot use the past of a series as a reliable guideline for its
future.

Stationarity makes it easier to learn about the characteristics of past
data.

Time Series Regression with Multiple Predictors

The concept of stationarity is a key assumption in the general time series re-
gression model with multiple predictors. Key Concept 14.6 lays out this model
and its assumptions.
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Key Concept 14.6
Time Series Regression with Multiple Predictors

The general time series regression model extends the ADL model such
that multiple regressors and their lags are included. It uses p lags of
the dependent variable and ql lags of l additional predictors where l =
1, . . . , k:

Yt =β0 + β1Yt−1 + β2Yt−2 + · · ·+ βpYt−p

+ δ11X1,t−1 + δ12X1,t−2 + · · ·+ δ1qX1,t−q

+ . . .

+ δk1Xk,t−1 + δk2Xk,t−2 + · · ·+ δkqXk,t−q

+ut

(14.6)

For estimation we make the following assumptions:

1. The error term ut has conditional mean zero given all regressors
and their lags:

E(ut|Yt−1, Yt−2, . . . , X1,t−1, X1,t−2 . . . , Xk,t−1, Xk,t−2, . . . )

This assumption is an extension of the conditional mean zero as-
sumption used for AR and ADL models and guarantees that the
general time series regression model stated above gives the best
forecast of Yt given its lags, the additional regressors X1,t, . . . , Xk,t

and their lags.

2. The i.i.d. assumption for cross-sectional data is not (entirely)
meaningful for time series data. We replace it by the following
assumption witch consists of two parts:

(a) The (Yt, X1,t, . . . , Xk,t) have a stationary distribution (the
"identically distributed" part of the i.i.d. assumption for cross-
setional data). If this does not hold, forecasts may be biased
and inference can be strongly misleading.

(b) (Yt, X1,t, . . . , Xk,t) and (Yt−j , X1,t−j , . . . , Xk,t−j) become in-
dependent as j gets large (the "idependently" distributed part
of the i.i.d. assumption for cross-sectional data). This as-
sumption is also called weak dependence. It ensures that the
WLLN and the CLT hold in large samples.

3. Large outliers are unlikely: E(X4
1,t), E(X4

2,t), . . . , E(X4
k,t) and

E(Y 4
t ) have nonzero, finite fourth moments.

4. No perfect multicollinearity.
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Since many economic time series appear to be nonstationary, assumption two of
Key Concept 14.6 is a crucial one in applied macroeconomics and finance which
is why statistical test for stationarity or nonstationarity have been developed.
Chapters 14.6 and 14.7 are devoted to this topic.

Statistical inference and the Granger causality test

If a X is a useful predictor for Y , in a regression of Yt on lags of its own and
lags of Xt, not all of the coefficients on the lags on Xt are zero. This concept is
called Granger causality and is an interesting hypothesis to test. Key Concept
14.7 summarizes the idea.

Key Concept 14.7
Granger Causality Tests

The Granger causality test (Granger, 1969) is an F test of the null hy-
pothesis that all lags of a variable X included in a time series regression
model do not have predictive power for Yt. The Granger causality test
does not test whether X actually causes Y but whether the included lags
are informative in terms of predicting Y .

We have already performed a Granger causality test on the coefficients of term
spread in (14.5), the ADL(2,2) model of GDP growth and concluded that at
least one of the first two lags of term spread has predictive power for GDP
growth.

Forecast Uncertainty and Forecast Intervals

In general, it is good practice to report a measure of the uncertainty when
presenting results that are affected by the latter. Uncertainty is particularly of
interest when forecasting a time series. For example, consider a simple ADL(1, 1)
model

Yt = β0 + β1Yt−1 + δ1Xt−1 + ut

where ut is a homoskedastic error term. The forecast error is

YT+1 − ŶT+1|T = uT+1 −
[
(β̂0 − β0) + (β̂1 − β1)YT + (δ̂1 − δ1)XT

]
.
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The mean squared forecast error (MSFE) and the RMFSE are

MFSE =E
[
(YT+1 − ŶT+1|T )2

]
=σ2

u + V ar
[
(β̂0 − β0) + (β̂1 − β1)YT + (δ̂1 − δ1)XT

]
,

RMFSE =
√
σ2
u + V ar

[
(β̂0 − β0) + (β̂1 − β1)YT + (δ̂1 − δ1)XT

]
.

A 95% forecast interval is an interval that covers the true value of YT+1 in 95%
of repeated applications. There is a major difference in computing a confidence
interval and a forecast interval: when computing a confidence interval of a point
estimate we use large sample approximations that are justified by the CLT and
thus are valid for a large range of error term distributions. For computation of
a forecast interval of YT+1, however, we must make an additional assumption
about the distribution of uT+1, the error term in period T + 1. Assuming that
uT+1 is normally distributed one can construct a 95% forecast interval for YT+1
using SE(YT+1 − ŶT+1|T ), an estimate of the RMSFE:

ŶT+1|T ± 1.96 · SE(YT+1 − ŶT+1|T )

Of course, the computation gets more complicated when the error term is
heteroskedastic or if we are interested in computing a forecast interval for
T + s, s > 1.

In some applications it is useful to report multiple forecast intervals for subse-
quent periods, see the box The River of Blood on p. 592 of the book. These
can be visualized in a so-called fan chart. We will not replicate the fan chart
presented in Figure 14.2 of book because the underlying model is by far more
complex than the simple AR and ADL models treated here. Instead, in the
example below we use simulated time series data and estimate an AR(2) model
which is then used for forecasting the subsequent 25 future outcomes of the
series.

# set seed
set.seed(1234)

# simulate the time series
Y <- arima.sim(list(order = c(2, 0, 0), ar = c(0.2, 0.2)), n = 200)

# estimate an AR(2) model using 'arima()', see ?arima
model <- arima(Y, order = c(2, 0, 0))

# compute points forecasts and prediction intervals for the next 25 periods
fc <- forecast(model, h = 25, level = seq(5, 99, 10))

# plot a fan chart
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plot(fc,
main = "Forecast Fan Chart for AR(2) Model of Simulated Data",
showgap = F,
fcol = "red",
flty = 2)

Forecast Fan Chart for AR(2) Model of Simulated Data
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arima.sim() simulates autoregressive integrated moving average (ARIMA)
models. AR models belong to this class of models. We use list(order = c(2,
0, 0), ar = c(0.2, 0.2)) so the DGP is

Yt = 0.2Yt−1 + 0.2Yt−2 + ut.

We choose level = seq(5, 99, 10) in the call of forecast() such that fore-
cast intervals with levels 5%, 15%, . . . , 95% are computed for each point forecast
of the series.

The dashed red line shows point forecasts of the series for the next 25 periods
based on an ADL(1, 1) model and the shaded areas represent the prediction
intervals. The degree of shading indicates the level of the prediction interval.
The darkest of the blue bands displays the 5% forecast intervals and the color
fades towards grey as the level of the intervals increases.

14.6 Lag Length Selection Using Information
Criteria

The selection of lag lengths in AR and ADL models can sometimes be guided
by economic theory. However, there are statistical methods that are helpful
to determine how many lags should be included as regressors. In general, too
many lags inflate the standard errors of coefficient estimates and thus imply an
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increase in the forecast error while omitting lags that should be included in the
model may result in an estimation bias.

The order of an AR model can be determined using two approaches:

1. The F-test approach
Estimate an AR(p) model and test the significance of the largest lag(s). If
the test rejects, drop the respective lag(s) from the model. This approach
has the tendency to produce models where the order is too large: in a
significance test we always face the risk of rejecting a true null hypothesis!

2. Relying on an information criterion
To circumvent the issue of producing too large models, one may choose
the lag order that minimizes one of the following two information criteria:

• The Bayes information criterion (BIC):

BIC(p) = log
(
SSR(p)

T

)
+ (p+ 1) log(T )

T

• The Akaike information criterion (AIC):

AIC(p) = log
(
SSR(p)

T

)
+ (p+ 1) 2

T

Both criteria are estimators of the optimal lag length p. The lag order p̂
that minimizes the respective criterion is called the BIC estimate or the
AIC estimate of the optimal model order. The basic idea of both criteria
is that the SSR decreases as additional lags are added to the model such
that the first term decreases whereas the second increases as the lag order
grows. One can show that the the BIC is a consistent estimator of the
true lag order while the AIC is not which is due to the differing factors
in the second addend. Nevertheless, both estimators are used in practice
where the AIC is sometimes used as an alternative when the BIC yields
a model with “too few” lags.

The function dynlm() does not compute information criteria by default. We will
therefore write a short function that reports the BIC (along with the chosen
lag order p and R2) for objects of class dynlm.

# compute BIC for AR model objects of class 'dynlm'
BIC <- function(model) {

ssr <- sum(model$residualsˆ2)
t <- length(model$residuals)
npar <- length(model$coef)
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return(
round(c("p" = npar - 1,

"BIC" = log(ssr/t) + npar * log(t)/t,
"R2" = summary(model)$r.squared), 4)

)
}

Table 14.3 of the book presents a breakdown of how the BIC is computed for
AR(p) models of GDP growth with order p = 1, . . . , 6. The final result can
easily be reproduced using sapply() and the function BIC() defined above.

# apply the BIC() to an intercept-only model of GDP growth
BIC(dynlm(ts(GDPGR_level) ~ 1))
#> p BIC R2
#> 0.0000 2.4394 0.0000

# loop BIC over models of different orders
order <- 1:6

BICs <- sapply(order, function(x)
"AR" = BIC(dynlm(ts(GDPGR_level) ~ L(ts(GDPGR_level), 1:x))))

BICs
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> p 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000
#> BIC 2.3486 2.3475 2.3774 2.4034 2.4188 2.4429
#> R2 0.1143 0.1425 0.1434 0.1478 0.1604 0.1591

Note that increasing the lag order increases R2 because the SSR decreases as
additional lags are added to the model but according to the BIC, we should
settle for the AR(2) model instead of the AR(6) model. It helps us to decide
whether the decrease in SSR is enough to justify adding an additional regressor.

If we had to compare a bigger set of models, a convenient way to select the
model with the lowest BIC is using the function which.min().

# select the AR model with the smallest BIC
BICs[, which.min(BICs[2, ])]
#> p BIC R2
#> 2.0000 2.3475 0.1425

The BIC may also be used to select lag lengths in time series regression models
with multiple predictors. In a model withK coefficients, including the intercept,



14.7. NONSTATIONARITY I: TRENDS 413

we have

BIC(K) = log
(
SSR(K)

T

)
+K

log(T )
T

.

Notice that choosing the optimal model according to the BIC can be compu-
tationally demanding because there may be many different combinations of lag
lengths when there are multiple predictors.
To give an example, we estimate ADL(p,q) models of GDP growth where, as
above, the additional variable is the term spread between short-term and long-
term bonds. We impose the restriction that p = q1 = · · · = qk so that only
pmax models (p = 1, . . . , pmax) need to be estimated. In the example below we
choose pmax = 12.

# loop 'BIC()' over multiple ADL models
order <- 1:12

BICs <- sapply(order, function(x)
BIC(dynlm(GDPGrowth_ts ~ L(GDPGrowth_ts, 1:x) + L(TSpread_ts, 1:x),

start = c(1962, 1), end = c(2012, 4))))

BICs
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> p 2.0000 4.0000 6.0000 8.0000 10.0000 12.0000 14.0000 16.0000 18.0000 20.0000
#> BIC 2.3411 2.3408 2.3813 2.4181 2.4568 2.5048 2.5539 2.6029 2.6182 2.6646
#> R2 0.1417 0.1855 0.1950 0.2072 0.2178 0.2211 0.2234 0.2253 0.2581 0.2678
#> [,11] [,12]
#> p 22.0000 24.0000
#> BIC 2.7205 2.7664
#> R2 0.2702 0.2803

From the definition of BIC(), for ADL models with p = q it follows that p
reports the number of estimated coefficients excluding the intercept. Thus the
lag order is obtained by dividing p by 2.

# select the ADL model with the smallest BIC
BICs[, which.min(BICs[2, ])]
#> p BIC R2
#> 4.0000 2.3408 0.1855

The BIC is in favor of the ADL(2,2) model (14.5) we have estimated before.

14.7 Nonstationarity I: Trends

If a series is nonstationary, conventional hypothesis tests, confidence intervals
and forecasts can be strongly misleading. The assumption of stationarity is
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violated if a series exhibits trends or breaks and the resulting complications in
an econometric analysis depend on the specific type of the nonstationarity. This
section focuses on time series that exhibit trends.

A series is said to exhibit a trend if it has a persistent long-term movement.
One distinguishes between deterministic and stochastic trends.

• A trend is deterministic if it is a nonrandom function of time.

• A trend is said to be stochastic if it is a random function of time.

The figures we have produced in Chapter 14.2 reveal that many economic time
series show a trending behavior that is probably best modeled by stochastic
trends. This is why the book focuses on the treatment of stochastic trends.

The Random Walk Model of a Trend

The simplest way to model a time series Yt that has stochastic trend is the
random walk

Yt = Yt−1 + ut, (14.7)

where the ut are i.i.d. errors with E(ut|Yt−1, Yt−2, . . . ) = 0. Note that

E(Yt|Yt−1, Yt−2 . . . ) =E(Yt−1|Yt−1, Yt−2 . . . ) + E(ut|Yt−1, Yt−2 . . . )
=Yt−1

so the best forecast for Yt is yesterday’s observation Yt−1. Hence the difference
between Yt and Yt−1 is unpredictable. The path followed by Yt consists of
random steps ut, hence it is called a random walk.

Assume that Y0, the starting value of the random walk is 0. Another way to
write (14.7) is

Y0 = 0
Y1 = 0 + u1

Y2 = 0 + u1 + u2

...

Yt =
t∑
i=1

ui.

Therefore we have

V ar(Yt) =V ar(u1 + u2 + · · ·+ ut)
= tσ2

u.
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Thus the variance of a random walk depends on t which violates the assumption
presented in Key Concept 14.5: a random walk is nonstationary.

Obviously, (14.7) is a special case of an AR(1) model where β1 = 1. One can
show that a time series that follows an AR(1) model is stationary if |β1| < 1.
In a general AR(p) model, stationarity is linked to the roots of the polynomial

1− β1z − β2z
2 − β3z

3 − · · · − βpzp.

If all roots are greater than 1 in absolute value, the AR(p) series is stationary.
If at least one root equals 1, the AR(p) is said to have a unit root and thus has
a stochastic trend.

It is straightforward to simulate random walks in R using arima.sim(). The
function matplot() is convenient for simple plots of the columns of a matrix.

# simulate and plot random walks starting at 0
set.seed(1)

RWs <- ts(replicate(n = 4,
arima.sim(model = list(order = c(0, 1 ,0)), n = 100)))

matplot(RWs,
type = "l",
col = c("steelblue", "darkgreen", "darkred", "orange"),
lty = 1,
lwd = 2,
main = "Four Random Walks",
xlab = "Time",
ylab = "Value")
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Adding a constant to (14.7) yields

Yt = β0 + Yt−1 + ut, (14.8)

a random walk model with a drift which allows to model the tendency of a series
to move upwards or downwards. If β0 is positive, the series drifts upwards and
it follows a downward trend if β0 is negative.

# simulate and plot random walks with drift
set.seed(1)

RWsd <- ts(replicate(n = 4,
arima.sim(model = list(order = c(0, 1, 0)),

n = 100,
mean = -0.2)))

matplot(RWsd,
type = "l",
col = c("steelblue", "darkgreen", "darkred", "orange"),
lty = 1,
lwd = 2,
main = "Four Random Walks with Drift",
xlab = "Time",
ylab = "Value")
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Problems Caused by Stochastic Trends

OLS estimation of the coefficients on regressors that have a stochastic trend
is problematic because the distribution of the estimator and its t-statistic is
non-normal, even asymptotically. This has various consequences:
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• Downward bias of autoregressive coefficients:

If Yt is a random walk, β1 can be consistently estimated by OLS but the
estimator is biased toward zero. This bias is roughly E(β̂1) ≈ 1 − 5.3/T
which is substantial for sample sizes typically encountered in macroeco-
nomics. This estimation bias causes forecasts of Yt to perform worse than
a pure random walk model.

• Non-normally distributed t-statistics:

The nonnormal distribution of the estimated coefficient of a stochastic
regressor translates to a nonnormal distribution of its t-statistic so that
normal critical values are invalid and therefore usual confidence intervals
and hypothesis tests are invalid, too, and the true distribution of the t-
statistic cannot be readily determined.

• Spurious Regression:

When two stochastically trending time series are regressed onto each other,
the estimated relationship may appear highly significant using conven-
tional normal critical values although the series are unrelated. This is
what econometricians call a spurious relationship.

As an example for spurious regression, consider again the green and the red ran-
dom walks that we have simulated above. We know that there is no relationship
between both series: they are generated independently of each other.

# plot spurious relationship
matplot(RWs[, c(2, 3)],

lty = 1,
lwd = 2,
type = "l",
col = c("darkgreen", "darkred"),
xlab = "Time",
ylab = "",
main = "A Spurious Relationship")
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Imagine we did not have this information and instead conjectured that the
green series is useful for predicting the red series and thus end up estimating
the ADL(0,1) model

Redt = β0 + β1Greent−1 + ut.

# estimate spurious AR model
summary(dynlm(RWs[, 2] ~ L(RWs[, 3])))$coefficients
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -3.459488 0.3635104 -9.516889 1.354156e-15
#> L(RWs[, 3]) 1.047195 0.1450874 7.217687 1.135828e-10

The result is obviously spurious: the coefficient on Greent−1 is estimated to be
about 1 and the p-value of 1.14 ·10−10 of the corresponding t-test indicates that
the coefficient is highly significant while its true value is in fact zero.

As an empirical example, consider the U.S. unemployment rate and the Japanese
industrial production. Both series show an upward trending behavior from the
mid-1960s through the early 1980s.

# plot U.S. unemployment rate & Japanese industrial production
plot(merge(as.zoo(USUnemp), as.zoo(JPIndProd)),

plot.type = "single",
col = c("darkred", "steelblue"),
lwd = 2,
xlab = "Date",
ylab = "",
main = "Spurious Regression: Macroeconomic Time series")
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# add a legend
legend("topleft",

legend = c("USUnemp", "JPIndProd"),
col = c("darkred", "steelblue"),
lwd = c(2, 2))
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Spurious Regression: Macroeconomic Time series
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# estimate regression using data from 1962 to 1985
SR_Unemp1 <- dynlm(ts(USUnemp["1962::1985"]) ~ ts(JPIndProd["1962::1985"]))
coeftest(SR_Unemp1, vcov = sandwich)
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -2.37452 1.12041 -2.1193 0.0367 *
#> ts(JPIndProd["1962::1985"]) 2.22057 0.29233 7.5961 2.227e-11 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A simple regression of the U.S. unemployment rate on Japanese industrial pro-
duction using data from 1962 to 1985 yields

Û.S.URt = −2.37
(1.12)

+ 2.22
(0.29)

log(JapaneseIPt). (14.9)

This appears to be a significant relationship: the t-statistic of the coefficient on
log(JapaneseIPt) is bigger than 7.

# Estimate regression using data from 1986 to 2012
SR_Unemp2 <- dynlm(ts(USUnemp["1986::2012"]) ~ ts(JPIndProd["1986::2012"]))
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coeftest(SR_Unemp2, vcov = sandwich)
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 41.7763 5.4066 7.7270 6.596e-12 ***
#> ts(JPIndProd["1986::2012"]) -7.7771 1.1714 -6.6391 1.386e-09 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

When estimating the same model, this time with data from 1986 to 2012, we
obtain

Û.S.URt = 41.78
(5.41)

− 7.78
(1.17)

log(JapaneseIP )t (14.10)

which surprisingly is quite different. (14.9) indicates a moderate positive re-
lationship, in contrast to the large negative coefficient in (14.10). This phe-
nomenon can be attributed to stochastic trends in the series: since there is no
economic reasoning that relates both trends, both regressions may be spurious.

Testing for a Unit AR Root

A formal test for a stochastic trend has been proposed by Dickey and Fuller
(1979) which thus is termed the Dickey-Fuller test. As discussed above, a time
series that follows an AR(1) model with β1 = 1 has a stochastic trend. Thus,
the testing problem is

H0 : β1 = 1 vs. H1 : |β1| < 1.

The null hypothesis is that the AR(1) model has a unit root and the alternative
hypothesis is that it is stationary. One often rewrites the AR(1) model by
subtracting Yt−1 on both sides:

Yt = β0 + β1Yt−1 + ut ⇔ ∆Yt = β0 + δYt−1 + ut (14.11)

where δ = β1 − 1. The testing problem then becomes

H0 : δ = 0 vs. H1 : δ < 0

which is convenient since the corresponding test statistic is reported by many
relevant R functions.1

The Dickey-Fuller test can also be applied in an AR(p) model. The Augmented
Dickey-Fuller (ADF) test is summarized in Key Concept 14.8.

1The t-statistic of the Dickey-Fuller test is computed using homoskedasticity-only stan-
dard errors since under the null hypothesis, the usual t-statistic is robust to conditional het-
eroskedasticity.
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Key Concept 14.8
The ADF Test for a Unit Root

Consider the regression

∆Yt = β0 + δYt−1 + γ1∆1Yt−1 + γ2∆Yt−2 + · · ·+ γp∆Yt−p + ut.
(14.12)

The ADF test for a unit autoregressive root tests the hypothesis
H0 : δ = 0 (stochastic trend) against the one-sided alternative
H1 : δ < 0 (stationarity) using the usual OLS t-statistic.

If it is assumed that Yt is stationary around a deterministic linear time
trend, the model is augmented by the regressor t:

∆Yt = β0 + at+ δYt−1 + γ1∆1Yt−1 + γ2∆Yt−2 + · · ·+ γp∆Yt−p + ut,
(14.13)

where again H0 : δ = 0 is tested against H1 : δ < 0.

The optimal lag length p can be estimated using information criteria.
In (14.12), p = 0 (no lags of ∆Yt are used as regressors) corresponds to
a simple AR(1).

Under the null, the t-statistic corresponding to H0 : δ = 0 does not
have a normal distribution. The critical values can only be obtained
from simulation and differ for regressions (14.12) and (14.13) since the
distribution of the ADF test statistic is sensitive to the deterministic
components included in the regression.

Critical Values for the ADF Statistic

Key Concept 14.8 states that the critical values for the ADF test in the regres-
sions (14.12) and (14.13) can only be determined using simulation. The idea of
the simulation study is to simulate a large number of ADF test statistics and
use them to estimate quantiles of their asymptotic distribution. This section
shows how this can be done using R.

First, consider the following AR(1) model with intercept

Yt =α+ zt, zt = ρzt−1 + ut.

This can be written as

Yt = (1− ρ)α+ ρyt−1 + ut,

i.e., Yt is a random walk without drift under the null ρ = 1. One can show that
Yt is a stationary process with mean α for |ρ| < 1.
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The procedure for simulating critical values of a unit root test using the t-ratio
of δ in (14.11) is as follows:

• Simulate N random walks with n observations using the data generating
process

Yt = a+ zt, zt = ρzt−1 + ut,

t = 1, . . . , n where N and n are large numbers, a is a constant and u is a
zero mean error term.

• For each random walk, estimate the regression

∆Yt =β0 + δYt−1 + ut

and compute the ADF test statistic. Save all N test statistics.

• Estimate quantiles of the distribution of the ADF test statistic using the
N test statistics obtained from the simulation.

For the case with drift and linear time trend we replace the data generating
process by

Yt = a+ b · t+ zt, zt = ρzt−1 + ut (14.14)

where b · t is a linear time trend. Yt in (14.14) is a random walk with (without)
drift if b 6= 0 (b = 0) under the null of ρ = 1 (can you show this?). We estimate
the regression

∆Yt =β0 + α · t+ δYt−1 + ut.

Loosely speaking, the precision of the estimated quantiles depends on two fac-
tors: n, the length of the underlying series and N , the number of test statistics
used. Since we are interested in estimating quantiles of the asymptotic distribu-
tion (the Dickey-Fuller distribution) of the ADF test statistic both using many
observations and large number of simulated test statistics will increase the preci-
sion of the estimated quantiles. We choose n = N = 1000 as the computational
burden grows quickly with n and N .

# repetitions
N <- 1000

# observations
n <- 1000

# define constant, trend and rho
drift <- 0.5
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trend <- 1:n
rho <- 1

# function which simulates an AR(1) process
AR1 <- function(rho) {
out <- numeric(n)
for(i in 2:n) {
out[i] <- rho * out[i-1] + rnorm(1)

}
return(out)

}

# simulate from DGP with constant
RWD <- ts(replicate(n = N, drift + AR1(rho)))

# compute ADF test statistics and store them in 'ADFD'
ADFD <- numeric(N)

for(i in 1:ncol(RWD)) {
ADFD[i] <- summary(

dynlm(diff(RWD[, i], 1) ~ L(RWD[, i], 1)))$coef[2, 3]
}

# simulate from DGP with constant and trend
RWDT <- ts(replicate(n = N, drift + trend + AR1(rho)))

# compute ADF test statistics and store them in 'ADFDT'
ADFDT <- numeric(N)

for(i in 1:ncol(RWDT)) {
ADFDT[i] <- summary(
dynlm(diff(RWDT[, i], 1) ~ L(RWDT[, i], 1) + trend(RWDT[, i]))

)$coef[2, 3]
}

# estimate quantiles for ADF regression with a drift
round(quantile(ADFD, c(0.1, 0.05, 0.01)), 2)
#> 10% 5% 1%
#> -2.62 -2.83 -3.39

# estimate quantiles for ADF regression with drift and trend
round(quantile(ADFDT, c(0.1, 0.05, 0.01)), 2)
#> 10% 5% 1%
#> -3.11 -3.43 -3.97
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The estimated quantiles are close to the large-sample critical values of the ADF
test statistic reported in Table 14.4 of the book.

Table 14.2: Large Sample Critical Values of ADF Test

Deterministic Regressors 10% 5% 1%
Intercept only -2.57 -2.86 -3.43
Intercept and time trend -3.12 -3.41 -3.96

The results show that using standard normal critical values is erroneous: the
5% critical value of the standard normal distribution is −1.64. For the Dickey-
Fuller distributions the estimated critical values are −2.87 (drift) and −3.43
(drift and linear time trend). This implies that a true null (the series has a
stochastic trend) would be rejected far too often if inappropriate normal critical
values were used.

We may use the simulated test statistics for a graphical comparison of the
standard normal density and (estimates of) both Dickey-Fuller densities.

# plot standard normal density
curve(dnorm(x),

from = -6, to = 3,
ylim = c(0, 0.6),
lty = 2,
ylab = "Density",
xlab = "t-Statistic",
main = "Distributions of ADF Test Statistics",
col = "darkred",
lwd = 2)

# plot density estimates of both Dickey-Fuller distributions
lines(density(ADFD), lwd = 2, col = "darkgreen")
lines(density(ADFDT), lwd = 2, col = "blue")

# add a legend
legend("topleft",

c("N(0,1)", "Drift", "Drift+Trend"),
col = c("darkred", "darkgreen", "blue"),
lty = c(2, 1, 1),
lwd = 2)
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The deviations from the standard normal distribution are significant: both
Dickey-Fuller distributions are skewed to the left and have a heavier left tail
than the standard normal distribution.

Does U.S. GDP Have a Unit Root?

As an empirical example, we use the ADF test to assess whether there is a
stochastic trend in U.S. GDP using the regression

∆ log(GDPt) = β0 + αt+ β1 log(GDPt−1) + β2∆ log(GDPt−1) + β3∆ log(GDPt−2) + ut.

# generate log GDP series
LogGDP <- ts(log(GDP["1962::2012"]))

# estimate the model
coeftest(
dynlm(diff(LogGDP) ~ trend(LogGDP, scale = F) + L(LogGDP)

+ diff(L(LogGDP)) + diff(L(LogGDP), 2)))
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.27877045 0.11793233 2.3638 0.019066 *
#> trend(LogGDP, scale = F) 0.00023818 0.00011090 2.1476 0.032970 *
#> L(LogGDP) -0.03332452 0.01441436 -2.3119 0.021822 *
#> diff(L(LogGDP)) 0.08317976 0.11295542 0.7364 0.462371
#> diff(L(LogGDP), 2) 0.18763384 0.07055574 2.6594 0.008476 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The estimation yields

∆ log(GDPt) = 0.28
(0.118)

+ 0.0002
(0.0001)

t− 0.033
(0.014)

log(GDPt−1)

+ 0.083
(0.113)

∆ log(GDPt−1) + 0.188
(0.071)

∆ log(GDPt−2) + ut,

so the ADF test statistic is t = −0.033/0.014 = −2.35. The corresponding 5%
critical value from Table 14.2 is −3.41 so we cannot reject the null hypothe-
sis that log(GDP ) has a stochastic trend in favor of the alternative that it is
stationary around a deterministic linear time trend.

The ADF test can be done conveniently using ur.df() from the package urca.

# test for unit root in GDP using 'ur.df()' from the package 'urca'
summary(ur.df(LogGDP,

type = "trend",
lags = 2,
selectlags = "Fixed"))

#>
#> ###############################################
#> # Augmented Dickey-Fuller Test Unit Root Test #
#> ###############################################
#>
#> Test regression trend
#>
#>
#> Call:
#> lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.025580 -0.004109 0.000321 0.004869 0.032781
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.2790086 0.1180427 2.364 0.019076 *
#> z.lag.1 -0.0333245 0.0144144 -2.312 0.021822 *
#> tt 0.0002382 0.0001109 2.148 0.032970 *
#> z.diff.lag1 0.2708136 0.0697696 3.882 0.000142 ***
#> z.diff.lag2 0.1876338 0.0705557 2.659 0.008476 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.007704 on 196 degrees of freedom
#> Multiple R-squared: 0.1783, Adjusted R-squared: 0.1616
#> F-statistic: 10.63 on 4 and 196 DF, p-value: 8.076e-08
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#>
#>
#> Value of test-statistic is: -2.3119 11.2558 4.267
#>
#> Critical values for test statistics:
#> 1pct 5pct 10pct
#> tau3 -3.99 -3.43 -3.13
#> phi2 6.22 4.75 4.07
#> phi3 8.43 6.49 5.47

The first test statistic at the bottom of the output is the one we are interested
in. The number of test statistics reported depends on the test regression. For
type = "trend", the second statistics corresponds to the test that there is no
unit root and no time trend while the third one corresponds to a test of the
hypothesis that there is a unit root, no time trend and no drift term.

14.8 Nonstationarity II: Breaks

When there are discrete (at a distinct date) or gradual (over time) changes in
the population regression coefficients, the series is nonstationary. These changes
are called breaks. There is a variety of reasons why breaks can occur in macroe-
conomic time series but most often they are related to changes in economic
policy or major changes in the structure of the economy. See Chapter 14.7 of
the book for some examples.

If breaks are not accounted for in the regression model, OLS estimates will reflect
the average relationship. Since these estimates might be strongly misleading
and result in poor forecast quality, we are interested in testing for breaks. One
distinguishes between testing for a break when the date is known and testing
for a break with an unknown break date.

Let τ denote a known break date and let Dt(τ) be a binary variable indicating
time periods before and after the break. Incorporating the break in an ADL(1,1)
regression model yields

Yt =β0 + β1Yt−1 + δ1Xt−1 + γ0Dt(τ) + γ1 [Dt(τ) · Yt−1]
+ γ2 [Dt(τ) ·Xt−1] + ut,

where we allow for discrete changes in β0, β1 and β2 at the break date τ . The
null hypothesis of no break,

H0 : γ0 = γ1 = γ2 = 0,

can be tested against the alternative that at least one of the γ’s is not zero using
an F -Test. This idea is called a Chow test after Gregory Chow (1960).



428CHAPTER 14. INTRODUCTION TO TIME SERIES REGRESSION AND FORECASTING

When the break date is unknown the Quandt likelihood ratio (QLR) test
(Quandt, 1960) may be used. It is a modified version of the Chow test which
uses the largest of all F -statistics obtained when applying the Chow test for
all possible break dates in a predetermined range [τ0, τ1]. The QLR test is
summarized in Key Concept 14.9.

Key Concept 14.9
The QLR Test for Coefficient Stability

The QLR test can be used to test for a break in the population regression
function if the date of the break is unknown. The QLR test statistic is
the largest (Chow) F (τ) statistic computed over a range of eligible break
dates τ0 ≤ τ ≤ τ1:

QLR = max [F (τ0), F (τ0 + 1), . . . , F (τ1)] . (14.15)

The most important properties are:

• The QLR test can be applied to test whether a subset of the co-
efficients in the population regression function breaks but the test
also rejects if there is a slow evolution of the regression function.
When there is a single discrete break in the population regression
function that lying at a date within the range tested, the QLR test
statistic is F (τ̂) and τ̂ /T is a consistent estimator of fraction of the
sample at which the break is.

• The large-sample distribution of QLR depends on q, the number
of restrictions being tested and both ratios of end points to the
sample size, τ0/T, τ1/T .

• Similar to the ADF test, the large-sample distribution of QLR is
nonstandard. Critical values are presented in Table 14.5 of the
book.

Has the Predictive Power of the term spread been stable?

Using the QLR statistic we may test whether there is a break in the coefficients
on the lags of the term spread in (14.5), the ADL(2,2) regression model of GDP
growth. Following Key Concept 14.9 we modify the specification of (14.5) by
adding a break dummy D(τ) and its interactions with both lags of term spread
and choose the range of break points to be tested as 1970:Q1 - 2005:Q2 (these
periods are the center 70% of the sample data from 1962:Q2 - 2012:Q4). Thus,
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the model becomes

GDPGRt =β0 + β1GDPGRt−1 + β2GDPGRt−2

+ β3TSpreadt−1 + β4TSpreadt−2

+ γ1D(τ) + γ2(D(τ) · TSpreadt−1)
+ γ3(D(τ) · TSpreadt−2)
+ ut.

Next, we estimate the model for each break point and compute the F -statistic
corresponding to the null hypothesis H0 : γ1 = γ2 = γ3 = 0. The QLR-statistic
is the largest of the F -statistics obtained in this manner.

# set up a range of possible break dates
tau <- seq(1970, 2005, 0.25)

# initialize vector of F-statistics
Fstats <- numeric(length(tau))

# estimation loop over break dates
for(i in 1:length(tau)) {

# set up dummy variable
D <- time(GDPGrowth_ts) > tau[i]

# estimate ADL(2,2) model with intercations
test <- dynlm(GDPGrowth_ts ~ L(GDPGrowth_ts) + L(GDPGrowth_ts, 2) +

D*L(TSpread_ts) + D*L(TSpread_ts, 2),
start = c(1962, 1),
end = c(2012, 4))

# compute and save the F-statistic
Fstats[i] <- linearHypothesis(test,

c("DTRUE=0", "DTRUE:L(TSpread_ts)",
"DTRUE:L(TSpread_ts, 2)"),

vcov. = sandwich)$F[2]

}

We determine the QLR statistic using max().

# identify QLR statistic
QLR <- max(Fstats)
QLR
#> [1] 6.651156
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Let us check that the QLR-statistic is the F -statistic obtained for the regression
where 1980:Q4 is chosen as the break date.

# identify the time period where the QLR-statistic is observed
as.yearqtr(tau[which.max(Fstats)])
#> [1] "1980 Q4"

Since q = 3 hypotheses are tested and the central 70% of the sample are con-
sidered to contain breaks, the corresponding 1% critical value of the QLR test
is 6.02. We reject the null hypothesis that all coefficients (the coefficients on
both lags of term spread and the intercept) are stable since the computed QLR-
statistic exceeds this threshold. Thus evidence from the QLR test suggests that
there is a break in the ADL(2,2) model of GDP growth in the early 1980s.

To reproduce Figure 14.5 of the book, we convert the vector of sequential break-
point F -statistics into a time series object and then generate a simple plot with
some annotations.

# series of F-statistics
Fstatsseries <- ts(Fstats,

start = tau[1],
end = tau[length(tau)],
frequency = 4)

# plot the F-statistics
plot(Fstatsseries,

xlim = c(1960, 2015),
ylim = c(1, 7.5),
lwd = 2,
col = "steelblue",
ylab = "F-Statistic",
xlab = "Break Date",
main = "Testing for a Break in GDP ADL(2,2) Regression at Different Dates")

# dashed horizontal lines for critical values and QLR statistic
abline(h = 4.71, lty = 2)
abline(h = 6.02, lty = 2)
segments(0, QLR, 1980.75, QLR, col = "darkred")
text(2010, 6.2, "1% Critical Value")
text(2010, 4.9, "5% Critical Value")
text(1980.75, QLR+0.2, "QLR Statistic")



14.8. NONSTATIONARITY II: BREAKS 431

Testing for a Break in GDP ADL(2,2) Regression at Different Dates

Break Date

F
−

S
ta

tis
tic

1960 1970 1980 1990 2000 2010

1
2

3
4

5
6

7
1% Critical Value

5% Critical Value

QLR Statistic

Pseudo Out-of-Sample Forecasting

Pseudo out-of-sample forecasts are used to simulate the out-of-sample perfor-
mance (the real time forecast performance) of a time series regression model. In
particular, pseudo out-of-sample forecasts allow estimation of the RMSFE of
the model and enable researchers to compare different model specifications with
respect to their predictive power. Key Concept 14.10 summarizes this idea.

Key Concept 14.10
Pseudo Out-of-Sample Forecasting

1. Divide the sample data into s = T − P and P subsequent ob-
servations. The P observations are used as pseudo-out-of-sample
observations.

2. Estimate the model using the first s observations.

3. Compute the pseudo-forecast
∼
Y s+1|s.

4. Compute the pseudo-forecast-error ∼us+1 = Ys+1 −
∼
Y s+1|s.

5. Repeat steps 2 trough 4 for all remaining pseudo-out-of-sample
dates, i.e., reestimate the model at each date.

Did the Predictive Power of the Term Spread Change During the
2000s?

The insight gained in the previous section gives reason to presume that the
pseudo-out-of-sample performance of ADL(2,2) models estimated using data
after the break in the early 1980s should not deteriorate relative to using the
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whole sample: provided that the coefficients of the population regression func-
tion are stable after the potential break in 1980:Q4, these models should have
good predictive power. We check this by computing pseudo-out-of-sample fore-
casts for the period 2003:Q1 - 2012:Q4, a range covering 40 periods, where the
forecast for 2003:Q1 is done using data from 1981:Q1 - 2002:Q4, the forecast for
2003:Q2 is based on data from 1981:Q1 - 2003:Q1 and so on.

Similarly as for the QLR-test we use a for() loop for estimation of all 40 models
and gather their SERs and the obtained forecasts in a vector which is then used
to compute pseudo-out-of-sample forecast errors.

# end of sample dates
EndOfSample <- seq(2002.75, 2012.5, 0.25)

# initialize matrix forecasts
forecasts <- matrix(nrow = 1,

ncol = length(EndOfSample))

# initialize vector SER
SER <- numeric(length(EndOfSample))

# estimation loop over end of sample dates
for(i in 1:length(EndOfSample)) {

# estimate ADL(2,2) model
m <- dynlm(GDPGrowth_ts ~ L(GDPGrowth_ts) + L(GDPGrowth_ts, 2)

+ L(TSpread_ts) + L(TSpread_ts, 2),
start = c(1981, 1),
end = EndOfSample[i])

SER[i] <- summary(m)$sigma

# sample data for one-period ahead forecast
s <- window(ADLdata, EndOfSample[i] - 0.25, EndOfSample[i])

# compute forecast
forecasts[i] <- coef(m) %*% c(1, s[1, 1], s[2, 1], s[1, 2], s[2, 2])

}

# compute psuedo-out-of-sample forecast errors
POOSFCE <- c(window(GDPGrowth_ts, c(2003, 1), c(2012, 4))) - forecasts

We next translate the pseudo-out-of-sample forecasts into an object of class ts
and plot the real GDP growth rate against the forecasted series.
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# series of pseudo-out-of-sample forecasts
PSOSSFc <- ts(c(forecasts),

start = 2003,
end = 2012.75,
frequency = 4)

# plot the GDP growth time series
plot(window(GDPGrowth_ts, c(2003, 1), c(2012, 4)),

col = "steelblue",
lwd = 2,
ylab = "Percent",
main = "Pseudo-Out-Of-Sample Forecasts of GDP Growth")

# add the series of pseudo-out-of-sample forecasts
lines(PSOSSFc,

lwd = 2,
lty = 2)

# shade area between curves (the pseudo forecast error)
polygon(c(time(PSOSSFc), rev(time(PSOSSFc))),

c(window(GDPGrowth_ts, c(2003, 1), c(2012, 4)), rev(PSOSSFc)),
col = alpha("blue", alpha = 0.3),
border = NA)

# add a legend
legend("bottomleft",

lty = c(1, 2, 1),
lwd = c(2, 2, 10),
col = c("steelblue", "black", alpha("blue", alpha = 0.3)),
legend = c("Actual GDP growth rate",
"Forecasted GDP growth rate",
"Pseudo forecast Error"))
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Apparently, the pseudo forecasts track the actual GDP growth rate quite well,
except for the kink in 2009 which can be attributed to the recent financial crisis.

The SER of the first model (estimated using data from 1981:Q1 to 2002:Q4) is
2.39 so based on the in-sample fit we would expect the out of sample forecast
errors to have mean zero and a root mean squared forecast error of about 2.39.

# SER of ADL(2,2) mode using data from 1981:Q1 - 2002:Q4
SER[1]
#> [1] 2.389773

The root mean squared forecast error of the pseudo-out-of-sample forecasts is
somewhat larger.

# compute root mean squared forecast error
sd(POOSFCE)
#> [1] 2.667612

An interesting hypothesis is whether the mean forecast error is zero, that is the
ADL(2,2) forecasts are right, on average. This hypothesis is easily tested using
the function t.test().

# test if mean forecast error is zero
t.test(POOSFCE)
#>
#> One Sample t-test
#>
#> data: POOSFCE
#> t = -1.5523, df = 39, p-value = 0.1287
#> alternative hypothesis: true mean is not equal to 0
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#> 95 percent confidence interval:
#> -1.5078876 0.1984001
#> sample estimates:
#> mean of x
#> -0.6547438

The hypothesis cannot be rejected at the 10% significance level. Altogether the
analysis suggests that the ADL(2,2) model coefficients have been stable since
the presumed break in the early 1980s.

14.9 Can You Beat the Market? (Part II)

The dividend yield (the ratio of current dividends to the stock price) can be
considered as an indicator of future dividends: if a stock has a high current
dividend yield, it can be considered undervalued and it can be presumed that
the price of the stock goes up in the future, meaning that future excess returns
go up.

This presumption can be examined using ADL models of excess returns, where
lags of the logarithm of the stock’s dividend yield serve as additional regressors.

Unfortunately, a graphical inspection of the time series of the logarithm of the
dividend yield casts doubt on the assumption that the series is stationary which,
as has been discussed in Chapter 14.7, is necessary to conduct standard inference
in a regression analysis.

# plot logarithm of dividend yield series
plot(StockReturns[, 2],

col = "steelblue",
lwd = 2,
ylab = "Logarithm",
main = "Dividend Yield for CRSP Index")
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The Dickey-Fuller test statistic for an autoregressive unit root in an AR(1)
model with drift provides further evidence that the series might be nonstation-
ary.

# test for unit root in GDP using 'ur.df()' from the package 'urca'
summary(ur.df(window(StockReturns[, 2],

c(1960,1),
c(2002, 12)),

type = "drift",
lags = 0))

#>
#> ###############################################
#> # Augmented Dickey-Fuller Test Unit Root Test #
#> ###############################################
#>
#> Test regression drift
#>
#>
#> Call:
#> lm(formula = z.diff ~ z.lag.1 + 1)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -14.3540 -2.9118 -0.2952 2.6374 25.5170
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -2.740964 2.080039 -1.318 0.188
#> z.lag.1 -0.007652 0.005989 -1.278 0.202
#>
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#> Residual standard error: 4.45 on 513 degrees of freedom
#> Multiple R-squared: 0.003172, Adjusted R-squared: 0.001229
#> F-statistic: 1.633 on 1 and 513 DF, p-value: 0.2019
#>
#>
#> Value of test-statistic is: -1.2777 0.9339
#>
#> Critical values for test statistics:
#> 1pct 5pct 10pct
#> tau2 -3.43 -2.86 -2.57
#> phi1 6.43 4.59 3.78

We use window() to get observations from January 1960 to December 2012 only.

Since the t-value for the coefficient on the lagged logarithm of the dividend yield
is −1.27, the hypothesis that the true coefficient is zero cannot be rejected, even
at the 10% significance level.

However, it is possible to examine whether the dividend yield has predictive
power for excess returns by using its differences in an ADL(1,1) and an ADL(2,2)
model (remember that differencing a series with a unit root yields a stationary
series), although these model specifications do not correspond to the economic
reasoning mentioned above. Thus, we also estimate an ADL(1,1) regression
using the level of the logarithm of the dividend yield.

That is we estimate three different specifications:

excess returnst =β0 + β1excess returnst−1 + β3∆ log(dividendyieldt−1) + ut

excess returnst =β0 + β1excess returnst−1 + β2excess returnst−2

+ β3∆ log(dividendyieldt−1) + β4∆ log(dividendyieldt−2) + ut

excess returnst =β0 + β1excess returnst−1 + β5 log(dividendyieldt−1) + ut

# ADL(1,1) (1st difference of log dividend yield)
CRSP_ADL_1 <- dynlm(ExReturn ~ L(ExReturn) + d(L(ln_DivYield)),

data = StockReturns,
start = c(1960, 1), end = c(2002, 12))

# ADL(2,2) (1st & 2nd differences of log dividend yield)
CRSP_ADL_2 <- dynlm(ExReturn ~ L(ExReturn) + L(ExReturn, 2)

+ d(L(ln_DivYield)) + d(L(ln_DivYield, 2)),
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data = StockReturns,
start = c(1960, 1), end = c(2002, 12))

# ADL(1,1) (level of log dividend yield)
CRSP_ADL_3 <- dynlm(ExReturn ~ L(ExReturn) + L(ln_DivYield),

data = StockReturns,
start = c(1960, 1), end = c(1992, 12))

# gather robust standard errors
rob_se_CRSP_ADL <- list(sqrt(diag(sandwich(CRSP_ADL_1))),

sqrt(diag(sandwich(CRSP_ADL_2))),
sqrt(diag(sandwich(CRSP_ADL_3))))

A tabular representation of the results can then be generated using
stargazer().

stargazer(CRSP_ADL_1, CRSP_ADL_2, CRSP_ADL_3,
title = "ADL Models of Monthly Excess Stock Returns",
header = FALSE,
type = "latex",
column.sep.width = "-5pt",
no.space = T,
digits = 3,
column.labels = c("ADL(1,1)", "ADL(2,2)", "ADL(1,1)"),
dep.var.caption = "Dependent Variable: Excess returns on the CSRP value-weighted index",
dep.var.labels.include = FALSE,
covariate.labels = c("$excess return_{t-1}$",

"$excess return_{t-2}$",
"$1ˆ{st} diff log(dividend yield_{t-1})$",
"$1ˆ{st} diff log(dividend yield_{t-2})$",
"$log(dividend yield_{t-1})$",
"Constant"),

se = rob_se_CRSP_ADL)

For models (1) and (2) none of the individual t-statistics suggest that the co-
efficients are different from zero. Also, we cannot reject the hypothesis that
none of the lags have predictive power for excess returns at any common level
of significance (an F -test that the lags have predictive power does not reject for
both models).

Things are different for model (3). The coefficient on the level of the logarithm
of the dividend yield is different from zero at the 5% level and the F -test rejects,
too. But we should be suspicious: the high degree of persistence in the dividend
yield series probably renders this inference dubious because t- and F -statistics
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Table 14.3: ADL Models of Monthly Excess Stock Returns

Dependent Variable: Excess returns on the CSRP Value-Weighted Index
ADL(1,1) ADL(2,2) ADL(1,1)

(1) (2) (3)
excessreturnt−1 0.059 0.042 0.078

(0.158) (0.162) (0.057)
excessreturnt−2 −0.213

(0.193)
1stdifflog(dividendyieldt−1) 0.009 −0.012

(0.157) (0.163)
1stdifflog(dividendyieldt−2) −0.161

(0.185)
log(dividendyieldt−1) 0.026∗∗

(0.012)
Constant 0.309 0.372∗ 8.987∗∗

(0.199) (0.208) (3.912)
Observations 516 516 396
R2 0.003 0.007 0.018
Adjusted R2 −0.001 −0.001 0.013
Residual Std. Error 4.338 (df = 513) 4.337 (df = 511) 4.407 (df = 393)
F Statistic 0.653 (df = 2; 513) 0.897 (df = 4; 511) 3.683∗∗ (df = 2; 393)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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may follow distributions that deviate considerably from their theoretical large-
sample distributions such that the usual critical values cannot be applied.

If model (3) were of use for predicting excess returns, pseudo-out-of-sample
forecasts based on (3) should at least outperform forecasts of an intercept-only
model in terms of the sample RMSFE. We can perform this type of comparison
using R code in the fashion of the applications of Chapter 14.8.

# end of sample dates
EndOfSample <- as.numeric(window(time(StockReturns), c(1992, 12), c(2002, 11)))

# initialize matrix forecasts
forecasts <- matrix(nrow = 2,

ncol = length(EndOfSample))

# estimation loop over end of sample dates
for(i in 1:length(EndOfSample)) {

# estimate model (3)
mod3 <- dynlm(ExReturn ~ L(ExReturn) + L(ln_DivYield), data = StockReturns,

start = c(1960, 1),
end = EndOfSample[i])

# estimate intercept only model
modconst <- dynlm(ExReturn ~ 1, data = StockReturns,

start = c(1960, 1),
end = EndOfSample[i])

# sample data for one-period ahead forecast
t <- window(StockReturns, EndOfSample[i], EndOfSample[i])

# compute forecast
forecasts[, i] <- c(coef(mod3) %*% c(1, t[1], t[2]), coef(modconst))

}

# gather data
d <- cbind("Excess Returns" = c(window(StockReturns[,1], c(1993, 1), c(2002, 12))),

"Model (3)" = forecasts[1,],
"Intercept Only" = forecasts[2,],
"Always Zero" = 0)

# Compute RMSFEs
c("ADL model (3)" = sd(d[, 1] - d[, 2]),
"Intercept-only model" = sd(d[, 1] - d[, 3]),
"Always zero" = sd(d[,1] - d[, 4]))
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#> ADL model (3) Intercept-only model Always zero
#> 4.043757 4.000221 3.995428

The comparison indicates that model (3) is not useful since it is outperformed
in terms of sample RMSFE by the intercept-only model. A model forecasting
excess returns always to be zero has an even lower sample RMSFE. This find-
ing is consistent with the weak-form efficiency hypothesis which states that all
publicly available information is accounted for in stock prices such that there is
no way to predict future stock prices or excess returns using past observations,
implying that the perceived significant relationship indicated by model (3) is
wrong.

Summary

This chapter dealt with introductory topics in time series regression analysis,
where variables are generally correlated from one observation to the next, a
concept termed serial correlation. We presented several ways of storing and
plotting time series data using R and used these for informal analysis of economic
data.

We have introduced AR and ADL models and applied them in the context of
forecasting of macroeconomic and financial time series using R. The discussion
also included the topic of lag length selection. It was shown how to set up a
simple function that computes the BIC for a model object supplied.

We have also seen how to write simple R code for performing and evaluat-
ing forecasts and demonstrated some more sophisticated approaches to conduct
pseudo-out-of-sample forecasts for assessment of a model’s predictive power for
unobserved future outcomes of a series, to check model stability and to compare
different models.

Furthermore, some more technical aspects like the concept of stationarity were
addressed. This included applications to testing for an autoregressive unit root
with the Dickey-Fuller test and the detection of a break in the population re-
gression function using the QLR statistic. For both methods, the distribution
of the relevant test statistic is non-normal, even in large samples. Concerning
the Dickey-Fuller test we have used R’s random number generation facilities to
produce evidence for this by means of a Monte-Carlo simulation and motivated
usage of the quantiles tabulated in the book.

Also, empirical studies regarding the validity of the weak and the strong form
efficiency hypothesis which are presented in the applications Can You Beat the
Market? Part I & II in the book have been reproduced using R.

In all applications of this chapter, the focus was on forecasting future outcomes
rather than estimation of causal relationships between time series variables.
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However, the methods needed for the latter are quite similar. Chapter 15 is
devoted to estimation of so called dynamic causal effects.



Chapter 15

Estimation of Dynamic
Causal Effects

It sometimes is of interest to know the size of current and future reaction of Y
to a change in X. This is called the dynamic causal effect on Y of a change
in X. This Chapter we discusses how to estimate dynamic causal effects in R
applications, where we investigate the dynamic effect of cold weather in Florida
on the price of orange juice concentrate.

The discussion covers:

• estimation of distributed lag models
• heteroskedasticity- and autocorrelation-consistent (HAC) standard errors
• generalized least squares (GLS) estimation of ADL models

To reproduce code examples, install the R packages listed below beforehand and
make sure that the subsequent code chunk executes without any errors.

• AER (Kleiber and Zeileis, 2020)
• dynlm (Zeileis, 2019)
• nlme (Pinheiro et al., 2020)
• orcutt (Spada, 2018)
• quantmod (Ryan and Ulrich, 2020)
• stargazer (Hlavac, 2018)

library(AER)
library(quantmod)
library(dynlm)
library(orcutt)

443
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library(nlme)
library(stargazer)

15.1 The Orange Juice Data

The largest cultivation region for oranges in the U.S. is located in Florida which
usually has ideal climate for the fruit growth. It thus is the source of almost
all frozen juice concentrate produced in the country. However, from time to
time and depending on their severeness, cold snaps cause a loss of harvests
such that the supply of oranges decreases and consequently the price of frozen
juice concentrate rises. The timing of the price increases is complicated: a
cut in today’s supply of concentrate influences not just today’s price but also
future prices because supply in future periods will decrease, too. Clearly, the
magnitude of today’s and future prices increases due to freeze is an empirical
question that can be investigated using a distributed lag model — a time series
model that relates price changes to weather conditions.

To begin with the analysis, we reproduce Figure 15.1 of the book which displays
plots of the price index for frozen concentrated orange juice, percentage changes
in the price as well as monthly freezing degree days in Orlando, the center of
Florida’s orange-growing region.

# load the frozen orange juice data set
data("FrozenJuice")

# compute the price index for frozen concentrated juice
FOJCPI <- FrozenJuice[, "price"]/FrozenJuice[, "ppi"]
FOJC_pctc <- 100 * diff(log(FOJCPI))
FDD <- FrozenJuice[, "fdd"]

# convert series to xts objects
FOJCPI_xts <- as.xts(FOJCPI)
FDD_xts <- as.xts(FrozenJuice[, 3])

# Plot orange juice price index
plot(as.zoo(FOJCPI),

col = "steelblue",
lwd = 2,
xlab = "Date",
ylab = "Price index",
main = "Frozen Concentrated Orange Juice")
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# divide plotting area
par(mfrow = c(2, 1))

# Plot percentage changes in prices
plot(as.zoo(FOJC_pctc),

col = "steelblue",
lwd = 2,
xlab = "Date",
ylab = "Percent",
main = "Monthly Changes in the Price of Frozen Conentrated Orange Juice")

# plot freezing degree days
plot(as.zoo(FDD),

col = "steelblue",
lwd = 2,
xlab = "Date",
ylab = "Freezing degree days",
main = "Monthly Freezing Degree Days in Orlando, FL")
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Periods with a high amount of freezing degree days are followed by large month-
to-month price changes. These coinciding movements motivate a simple regres-
sion of price changes (%ChgOJCt) on freezing degree days (FDDt) to estimate
the effect of an additional freezing degree day one the price in the current month.
For this, as for all other regressions in this chapter, we use T = 611 observations
(January 1950 to December 2000).

# simple regression of percentage changes on freezing degree days
orange_SR <- dynlm(FOJC_pctc ~ FDD)
coeftest(orange_SR, vcov. = vcovHAC)
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.42095 0.18683 -2.2531 0.0246064 *
#> FDD 0.46724 0.13385 3.4906 0.0005167 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Notice that the standard errors are computed using a “HAC” estimator of the
variance-covariance matrix, see Chapter 14.5 for a discussion of this estimator.

̂%ChgOJCt = −0.42
(0.19)

+ 0.47
(0.13)

FDDt

The estimated coefficient on FDDt has the following interpretation: an addi-
tional freezing degree day in month t leads to a price increase 0f 0.47 percentage
points in the same month.

To consider effects of cold snaps on the orange juice price over the subsequent pe-
riods, we include lagged values of FDDt in our model which leads to a distributed
lag regression model. We estimate a specification using a contemporaneous and
six lagged values of FDDt as regressors.

# distributed lag model with 6 lags of freezing degree days
orange_DLM <- dynlm(FOJC_pctc ~ FDD + L(FDD, 1:6))
coeftest(orange_DLM, vcov. = vcovHAC)
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.692961 0.212445 -3.2618 0.0011700 **
#> FDD 0.471433 0.135195 3.4871 0.0005242 ***
#> L(FDD, 1:6)1 0.145021 0.081557 1.7782 0.0758853 .
#> L(FDD, 1:6)2 0.058364 0.058911 0.9907 0.3222318
#> L(FDD, 1:6)3 0.074166 0.047143 1.5732 0.1162007
#> L(FDD, 1:6)4 0.036304 0.029335 1.2376 0.2163670
#> L(FDD, 1:6)5 0.048756 0.031370 1.5543 0.1206535
#> L(FDD, 1:6)6 0.050246 0.045129 1.1134 0.2659919
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As the result we obtain

̂%ChgOJCt =− 0.69
(0.21)

+ 0.47
(0.14)

FDDt + 0.15
(0.08)

FDDt−1 + 0.06
(0.06)

FDDt−2 + 0.07
(0.05)

FDDt−3

+ 0.04
(0.03)

FDDt−4 + 0.05
(0.03)

FDDt−5 + 0.05
(0.05)

FDDt−6,

(15.1)

where the coefficient on FDDt−1 estimates the price increase in period t caused
by an additional freezing degree day in the preceding month, the coefficient on
FDDt−2 estimates the effect of an additional freezing degree day two month
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ago and so on. Consequently, the coefficients in (15.1) can be interpreted as
price changes in current and future periods due to a unit increase in the current
month’ freezing degree days.

15.2 Dynamic Causal Effects

This section of the book describes the general idea of a dynamic causal effect
and how the concept of a randomized controlled experiment can be translated
to time series applications, using several examples.

In general, for empirical attempts to measure a dynamic causal effect, the as-
sumptions of stationarity (see Key Concept 14.5) and exogeneity must hold. In
time series applications up until here we have assumed that the model error
term has conditional mean zero given current and past values of the regressors.
For estimation of a dynamic causal effect using a distributed lag model, assum-
ing a stronger form termed strict exogeneity may be useful. Strict exogeneity
states that the error term has mean zero conditional on past, present and future
values of the independent variables.

The two concepts of exogeneity and the distributed lag model are summarized
in Key Concept 15.1.
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Key Concept 15.1
The Distributed Lag Model and Exogeneity

The general distributed lag model is

Yt = β0 + β1Xt + β2Xt−1 + β3Xt−2 + · · ·+ βr+1Xt−r + ut, (15.2)

where it is assumed that

1. X is an exogenous variable,

E(ut|Xt, Xt−1, Xt−2, . . . ) = 0.

2. (a) Xt, Yt have a stationary distribution.
(b) (Yt, Xt) and (Yt−j , Xt−j) become independently distributed

as j gets large.

3. Large outliers are unlikely. In particular, we need that all the vari-
ables have more than eight finite moments — a stronger assumption
than before (four finite moments) that is required for computation
of the HAC covariance matrix estimator.

4. There is no perfect multicollinearity.

The distributed lag model may be extended to include contemporaneous
and past values of additional regressors.

On the assumption of exogeneity

• There is another form of exogeneity termed strict exogeneity which
assumes

E(ut| . . . , Xt+2, Xt+1, Xt, Xt−1, Xt−2, . . . ) = 0,

that is the error term has mean zero conditional on past, present
and future values of X. Strict exogeneity implies exogeneity (as
defined in 1. above) but not the other way around. From this
point on we will therefore distinguish between exogeneity and strict
exogeneity.

• Exogeneity as in 1. suffices for the OLS estimators of the coefficient
in distributed lag models to be consistent. However, if the the
assumption of strict exogeneity is valid, more efficient estimators
can be applied.
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15.3 Dynamic Multipliers and Cumulative Dy-
namic Multipliers

The following terminology regarding the coefficients in the distributed lag model
(15.2) is useful for upcoming applications:

• The dynamic causal effect is also called the dynamic multiplier. βh+1 in
(15.2) is the h-period dynamic multiplier.

• The contemporaneous effect of X on Y , β1, is termed the impact effect.

• The h-period cumulative dynamic multiplier of a unit change in X and Y
is defined as the cumulative sum of the dynamic multipliers. In particular,
β1 is the zero-period cumulative dynamic multiplier, β1 + β2 is the one-
period cumulative dynamic multiplier and so forth.
The cumulative dynamic multipliers of the distributed lag model (15.2)
are the coefficients δ1, δ2, . . . , δr, δr+1 in the modified regression

Yt = δ0 + δ1∆Xt + δ2∆Xt−1 + · · ·+ δr∆Xt−r+1 + δr+1Xt−r + ut (15.3)

and thus can be directly estimated using OLS which makes it convenient to
compute their HAC standard errors. δr+1 is called the long-run cumulative
dynamic multiplier.

It is straightforward to compute the cumulative dynamic multipliers for (15.1),
the estimated distributed lag regression of changes in orange juice concen-
trate prices on freezing degree days, using the corresponding model object
orange_DLM and the function cumsum().

# compute cumulative multipliers
cum_mult <-cumsum(orange_DLM$coefficients[-1])

# rename entries
names(cum_mult) <- paste(0:6, sep = "-", "period CDM")

cum_mult
#> 0-period CDM 1-period CDM 2-period CDM 3-period CDM 4-period CDM 5-period CDM
#> 0.4714329 0.6164542 0.6748177 0.7489835 0.7852874 0.8340436
#> 6-period CDM
#> 0.8842895

Translating the distributed lag model with six lags of FDD to (15.3), we see
that the OLS coefficient estimates in this model coincide with the multipliers
stored in cum_mult.
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# estimate cumulative dynamic multipliers using the modified regression
cum_mult_reg <-dynlm(FOJC_pctc ~ d(FDD) + d(L(FDD,1:5)) + L(FDD,6))
coef(cum_mult_reg)[-1]
#> d(FDD) d(L(FDD, 1:5))1 d(L(FDD, 1:5))2 d(L(FDD, 1:5))3 d(L(FDD, 1:5))4
#> 0.4714329 0.6164542 0.6748177 0.7489835 0.7852874
#> d(L(FDD, 1:5))5 L(FDD, 6)
#> 0.8340436 0.8842895

As noted above, using a model specification as in (15.3) allows to easily obtain
standard errors for the estimated dynamic cumulative multipliers.

# obtain coefficient summary that reports HAC standard errors
coeftest(cum_mult_reg, vcov. = vcovHAC)
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.69296 0.23668 -2.9278 0.0035431 **
#> d(FDD) 0.47143 0.13583 3.4709 0.0005562 ***
#> d(L(FDD, 1:5))1 0.61645 0.13145 4.6896 3.395e-06 ***
#> d(L(FDD, 1:5))2 0.67482 0.16009 4.2151 2.882e-05 ***
#> d(L(FDD, 1:5))3 0.74898 0.17263 4.3387 1.682e-05 ***
#> d(L(FDD, 1:5))4 0.78529 0.17351 4.5260 7.255e-06 ***
#> d(L(FDD, 1:5))5 0.83404 0.18236 4.5737 5.827e-06 ***
#> L(FDD, 6) 0.88429 0.19303 4.5810 5.634e-06 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

15.4 HAC Standard Errors

The error term ut in the distributed lag model (15.2) may be serially correlated
due to serially correlated determinants of Yt that are not included as regressors.
When these factors are not correlated with the regressors included in the model,
serially correlated errors do not violate the assumption of exogeneity such that
the OLS estimator remains unbiased and consistent.

However, autocorrelated standard errors render the usual homoskedasticity-only
and heteroskedasticity-robust standard errors invalid and may cause misleading
inference. HAC errors are a remedy.



452 CHAPTER 15. ESTIMATION OF DYNAMIC CAUSAL EFFECTS

Key Concept 15.2
HAC Standard errors

Problem:

If the error term ut in the distributed lag model (15.2) is serially corre-
lated, statistical inference that rests on usual (heteroskedasticity-robust)
standard errors can be strongly misleading.

Solution:

Heteroskedasticity- and autocorrelation-consistent (HAC) estimators
of the variance-covariance matrix circumvent this issue. There are
R functions like vcovHAC() from the package sandwich which are
convenient for computation of such estimators.

The package sandwich also contains the function NeweyWest(), an im-
plementation of the HAC variance-covariance estimator proposed by
Newey and West (1987).

Consider the distributed lag regression model with no lags and a single regressor
Xt

Yt = β0 + β1Xt + ut.

with autocorrelated errors. A brief derivation of
∼
σ

2
β̂1

= σ̂2
β̂1
f̂t (15.4)

the so-called Newey-West variance estimator for the variance of the OLS es-
timator of β1 is presented in Chapter 15.4 of the book. σ̂2

β̂1
in (15.4) is the

heteroskedasticity-robust variance estimate of β̂1 and

f̂t = 1 + 2
m−1∑
j=1

(
m− j
m

)
∼
ρj (15.5)

is a correction factor that adjusts for serially correlated errors and involves
estimates of m − 1 autocorrelation coefficients ∼ρj . As it turns out, using the
sample autocorrelation as implemented in acf() to estimate the autocorrelation
coefficients renders (15.4) inconsistent, see pp. 650-651 of the book for a detailed
argument. Therefore, we use a somewhat different estimator. For a time series
X we have

∼
ρj =

∑T
t=j+1 v̂tv̂t−j∑T

t=1 v̂
2
t

, with v̂ = (Xt −X)ût.

We implement this estimator in the function acf_c() below.
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m in (15.5) is a truncation parameter to be chosen. A rule of thumb for choosing
m is

m =
⌈
0.75 · T 1/3

⌉
. (15.6)

We simulate a time series that, as stated above, follows a distributed lag model
with autocorrelated errors and then show how to compute the Newey-West HAC
estimate of SE(β̂1) using R. This is done via two separate but, as we will see,
identical approaches: at first we follow the derivation presented in the book
step-by-step and compute the estimate “manually”. We then show that the
result is exactly the estimate obtained when using the function NeweyWest().

# function that computes rho tilde
acf_c <- function(x, j) {

return(
t(x[-c(1:j)]) %*% na.omit(Lag(x, j)) / t(x) %*% x

)
}

# simulate time series with serially correlated errors
set.seed(1)

N <- 100

eps <- arima.sim(n = N, model = list(ma = 0.5))
X <- runif(N, 1, 10)
Y <- 0.5 * X + eps

# compute OLS residuals
res <- lm(Y ~ X)$res

# compute v
v <- (X - mean(X)) * res

# compute robust estimate of beta_1 variance
var_beta_hat <- 1/N * (1/(N-2) * sum((X - mean(X))ˆ2 * resˆ2) ) /

(1/N * sum((X - mean(X))ˆ2))ˆ2

# rule of thumb truncation parameter
m <- floor(0.75 * Nˆ(1/3))

# compute correction factor
f_hat_T <- 1 + 2 * sum(
(m - 1:(m-1))/m * sapply(1:(m - 1), function(i) acf_c(x = v, j = i))
)
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# compute Newey-West HAC estimate of the standard error
sqrt(var_beta_hat * f_hat_T)
#> [1] 0.04036208

For the code to be reusable in other applications, we use sapply() to estimate
the m− 1 autocorrelations ∼ρj .

# Using NeweyWest():
NW_VCOV <- NeweyWest(lm(Y ~ X),

lag = m - 1, prewhite = F,
adjust = T)

# compute standard error
sqrt(diag(NW_VCOV))[2]
#> X
#> 0.04036208

By choosing lag = m-1 we ensure that the maximum order of autocorrelations
used is m − 1 — just as in equation (15.5). Notice that we set the arguments
prewhite = F and adjust = T to ensure that the formula (15.4) is used and
finite sample adjustments are made.

We find that the computed standard errors coincide. Of course, a variance-
covariance matrix estimate as computed by NeweyWest() can be supplied as
the argument vcov in coeftest() such that HAC t-statistics and p-values are
provided by the latter.

example_mod <- lm(Y ~ X)
coeftest(example_mod, vcov = NW_VCOV)
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.542310 0.235423 2.3036 0.02336 *
#> X 0.423305 0.040362 10.4877 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

15.5 Estimation of Dynamic Causal Effects with
Strictly Exogeneous Regressors

In general, the errors in a distributed lag model are correlated which necessitates
usage of HAC standard errors for valid inference. If, however, the assumption
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of exogeneity (the first assumption stated in Key Concept 15.1) is replaced by
strict exogeneity, that is

E(ut| . . . , Xt+1, Xt, Xt−1, . . . ) = 0,

more efficient approaches than OLS estimation of the coefficients are available.
For a general distributed lag model with r lags and AR(p) errors, these ap-
proaches are summarized in Key Concept 15.4.

Key Concept 15.4
Estimation of Dynamic Multipliers Under Strict Exogeneity

Consider the general distributed lag model with r lags and errors follow-
ing an AR(p) process,

Yt =β0 + β1Xt + β2Xt−1 + · · ·+ βr+1Xt−r + ut (15.7)

ut =φ1ut−1 + φut−2 + · · ·+ φput−p + ∼ut. (15.8)

Under strict exogeneity of Xt, one may rewrite the above model in the
ADL specification

Yt =α0 + φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p

+ δ0Xt + δ1Xt−1 + · · ·+ δqXt−q + ∼ut

where q = r + p and compute estimates of the dynamic multipliers
β1, β2, . . . , βr+1 using OLS estimates of φ1, φ2, . . . , φp, δ0, δ1, . . . , δq.

An alternative is to estimate the dynamic multipliers using feasible GLS,
that is to apply the OLS estimator to a quasi-difference specification of
(??). Under strict exogeneity, the feasible GLS approach is the BLUE
estimator for the dynamic multipliers in large samples.

On the one hand, as demonstrated in Chapter 15.5 of the book, OLS
estimation of the ADL representation can be beneficial for estimation of
the dynamic multipliers in large distributed lag models because it allows
for a more parsimonious model that may be a good approximation to
the large model. On the other hand, the GLS approach is more efficient
than the ADL estimator if the sample size is large.

We shortly review how the different representations of a small distributed lag
model can be obtained and show how this specification can be estimated by
OLS and GLS using R.

The model is

Yt = β0 + β1Xt + β2Xt−1 + ut, (15.9)
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so a change in X is modeled to effect Y contemporaneously (β1) and in the next
period (β2). The error term ut is assumed to follow an AR(1) process,

ut = φ1ut−1 + ∼
ut,

where ∼ut is serially uncorrelated.

One can show that the ADL representation of this model is

Yt = α0 + φ1Yt−1 + δ0Xt + δ1Xt−1 + δ2Xt−2 + ∼ut, (15.10)

with the restrictions

β1 = δ0,

β2 = δ1 + φ1δ0,

see p. 657 of the book.

Quasi-Differences

Another way of writing the ADL(1,2) representation (15.10) is the quasi-
difference model

∼
Y t = α0 + β1

∼
Xt + β2

∼
Xt−1 + ∼ut, (15.11)

where
∼
Y t = Yt − φ1Yt−1 and

∼
Xt = Xt − φ1Xt−1. Notice that the error term ∼

ut
is uncorrelated in both models and, as shown in Chapter 15.5 of the book,

E(ut|Xt+1, Xt, Xt−1, . . . ) = 0,

which is implied by the assumption of strict exogeneity.

We continue by simulating a time series of 500 observations using the model
(15.9) with β1 = 0.1, β2 = 0.25, φ = 0.5 and ∼ut ∼ N (0, 1) and estimate the
different representations, starting with the distributed lag model (15.9).

# set seed for reproducibility
set.seed(1)

# simulate a time series with serially correlated errors
obs <- 501
eps <- arima.sim(n = obs-1 , model = list(ar = 0.5))
X <- arima.sim(n = obs, model = list(ar = 0.25))
Y <- 0.1 * X[-1] + 0.25 * X[-obs] + eps
X <- ts(X[-1])

# estimate the distributed lag model
dlm <- dynlm(Y ~ X + L(X))
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Let us check that the residuals of this model exhibit autocorrelation using acf().

# check that the residuals are serially correlated
acf(residuals(dlm))
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In particular, the pattern reveals that the residuals follow an autoregressive
process, as the sample autocorrelation function decays quickly for the first few
lags and is probably zero for higher lag orders. In any case, HAC standard
errors should be used.

# coefficient summary using the Newey-West SE estimates
coeftest(dlm, vcov = NeweyWest, prewhite = F, adjust = T)
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.038340 0.073411 0.5223 0.601717
#> X 0.123661 0.046710 2.6474 0.008368 **
#> L(X) 0.247406 0.046377 5.3347 1.458e-07 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

OLS Estimation of the ADL Model

Next, we estimate the ADL(1,2) model (15.10) using OLS. The errors are un-
correlated in this representation of the model. This statement is supported by
a plot of the sample autocorrelation function of the residual series.
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# estimate the ADL(2,1) representation of the distributed lag model
adl21_dynamic <- dynlm(Y ~ L(Y) + X + L(X, 1:2))

# plot the sample autocorrelaltions of residuals
acf(adl21_dynamic$residuals)
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The estimated coefficients of adl21_dynamic$coefficients are not the dy-
namic multipliers we are interested in, but instead can be computed according
to the restrictions in (15.10), where the true coefficients are replaced by the OLS
estimates.

# compute estimated dynamic effects using coefficient restrictions
# in the ADL(2,1) representation
t <- adl21_dynamic$coefficients

c("hat_beta_1" = t[3],
"hat_beta_2" = t[4] + t[3] * t[2])

#> hat_beta_1.X hat_beta_2.L(X, 1:2)1
#> 0.1176425 0.2478484

GLS Estimation

Strict exogeneity allows for OLS estimation of the quasi-difference model
(15.11). The idea of applying the OLS estimator to a model where the variables
are linearly transformed, such that the model errors are uncorrelated and
homoskedastic, is called generalized least squares (GLS).

The OLS estimator in (15.11) is called the infeasible GLS estimator because
∼
Y
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and
∼
X cannot be computed without knowing φ1, the autoregressive coefficient

in the error AR(1) model, which is generally unknown in practice.

Assume we knew that φ = 0.5. We then may obtain the infeasible GLS estimates
of the dynamic multipliers in (15.9) by applying OLS to the transformed data.

# GLS: estimate quasi-differenced specification by OLS
iGLS_dynamic <- dynlm(I(Y- 0.5 * L(Y)) ~ I(X - 0.5 * L(X)) + I(L(X) - 0.5 * L(X, 2)))

summary(iGLS_dynamic)
#>
#> Time series regression with "ts" data:
#> Start = 3, End = 500
#>
#> Call:
#> dynlm(formula = I(Y - 0.5 * L(Y)) ~ I(X - 0.5 * L(X)) + I(L(X) -
#> 0.5 * L(X, 2)))
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -3.0325 -0.6375 -0.0499 0.6658 3.7724
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.01620 0.04564 0.355 0.72273
#> I(X - 0.5 * L(X)) 0.12000 0.04237 2.832 0.00481 **
#> I(L(X) - 0.5 * L(X, 2)) 0.25266 0.04237 5.963 4.72e-09 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 1.017 on 495 degrees of freedom
#> Multiple R-squared: 0.07035, Adjusted R-squared: 0.0666
#> F-statistic: 18.73 on 2 and 495 DF, p-value: 1.442e-08

The feasible GLS estimator uses preliminary estimation of the coefficients in
the presumed error term model, computes the quasi-differenced data and then
estimates the model using OLS. This idea was introduced by Cochrane and
Orcutt (1949) and can be extended by continuing this process iteratively. Such a
procedure is implemented in the function cochrane.orcutt() from the package
orcutt.

X_t <- c(X[-1])
# create first lag
X_l1 <- c(X[-500])
Y_t <- c(Y[-1])
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# iterated cochrane-orcutt procedure
summary(cochrane.orcutt(lm(Y_t ~ X_t + X_l1)))
#> Call:
#> lm(formula = Y_t ~ X_t + X_l1)
#>
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.032885 0.085163 0.386 0.69956
#> X_t 0.120128 0.042534 2.824 0.00493 **
#> X_l1 0.252406 0.042538 5.934 5.572e-09 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 1.0165 on 495 degrees of freedom
#> Multiple R-squared: 0.0704 , Adjusted R-squared: 0.0666
#> F-statistic: 18.7 on 2 and 495 DF, p-value: < 1.429e-08
#>
#> Durbin-Watson statistic
#> (original): 1.06907 , p-value: 1.05e-25
#> (transformed): 1.98192 , p-value: 4.246e-01

Some more sophisticated methods for GLS estimation are provided with the
package nlme. The function gls() can be used to fit linear models by maximum
likelihood estimation algorithms and allows to specify a correlation structure for
the error term.

# feasible GLS maximum likelihood estimation procedure
summary(gls(Y_t ~ X_t + X_l1, correlation = corAR1()))
#> Generalized least squares fit by REML
#> Model: Y_t ~ X_t + X_l1
#> Data: NULL
#> AIC BIC logLik
#> 1451.847 1472.88 -720.9235
#>
#> Correlation Structure: AR(1)
#> Formula: ~1
#> Parameter estimate(s):
#> Phi
#> 0.4668343
#>
#> Coefficients:
#> Value Std.Error t-value p-value
#> (Intercept) 0.03929124 0.08530544 0.460595 0.6453
#> X_t 0.11986994 0.04252270 2.818963 0.0050
#> X_l1 0.25287471 0.04252497 5.946500 0.0000
#>
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#> Correlation:
#> (Intr) X_t
#> X_t 0.039
#> X_l1 0.037 0.230
#>
#> Standardized residuals:
#> Min Q1 Med Q3 Max
#> -3.00075518 -0.64255522 -0.05400347 0.69101814 3.28555793
#>
#> Residual standard error: 1.14952
#> Degrees of freedom: 499 total; 496 residual

Notice that in this example, the coefficient estimates produced by GLS are
somewhat closer to their true values and that the standard errors are the smallest
for the GLS estimator.

15.6 Orange Juice Prices and Cold Weather

This section investigates the following two questions using the time series re-
gression methods discussed here:

• How persistent is the effect of a single freeze on orange juice concentrate
prices?

• Has the effect been stable over the whole time span?

We start by estimating dynamic causal effects with a distributed lag model
where %ChgOJCt is regressed on FDDt and 18 lags. A second model specifi-
cation considers a transformation of the the distributed lag model which allows
to estimate the 19 cumulative dynamic multipliers using OLS. The third model,
adds 11 binary variables (one for each of the months from February to De-
cember) to adjust for a possible omitted variable bias arising from correlation of
FDDt and seasons by adding season(FDD) to the right hand side of the formula
of the second model.

# estimate distributed lag models of frozen orange juice price changes
FOJC_mod_DM <- dynlm(FOJC_pctc ~ L(FDD, 0:18))
FOJC_mod_CM1 <- dynlm(FOJC_pctc ~ L(d(FDD), 0:17) + L(FDD, 18))
FOJC_mod_CM2 <- dynlm(FOJC_pctc ~ L(d(FDD), 0:17) + L(FDD, 18) + season(FDD))

The above models include a large number of lags with default labels that corre-
spond to the degree of differencing and the lag orders which makes it somewhat
cumbersome to read the output. The regressor labels of a model object may
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be altered by overriding the attribute names of the coefficient section using the
function attr(). Thus, for better readability we use the lag orders as regressor
labels.

# set lag orders as regressor labels
attr(FOJC_mod_DM$coefficients, "names")[1:20] <- c("(Intercept)", as.character(0:18))
attr(FOJC_mod_CM1$coefficients, "names")[1:20] <- c("(Intercept)", as.character(0:18))
attr(FOJC_mod_CM2$coefficients, "names")[1:20] <- c("(Intercept)", as.character(0:18))

Next, we compute HAC standard errors standard errors for each model using
NeweyWest() and gather the results in a list which is then supplied as the
argument se to the function stargazer(), see below. The sample consists of
612 observations:

length(FDD)
#> [1] 612

According to (15.6), the rule of thumb for choosing the HAC standard error
truncation parameter m, we choose

m =
⌈
0.75 · 6121/3

⌉
= d6.37e = 7.

To check for sensitivity of the standard errors to different choices of the trunca-
tion parameter in the model that is used to estimate the cumulative multipliers,
we also compute the Newey-West estimator for m = 14.

# gather HAC standard error errors in a list
SEs <- list(sqrt(diag(NeweyWest(FOJC_mod_DM, lag = 7, prewhite = F))),

sqrt(diag(NeweyWest(FOJC_mod_CM1, lag = 7, prewhite = F))),
sqrt(diag(NeweyWest(FOJC_mod_CM1, lag = 14, prewhite = F))),
sqrt(diag(NeweyWest(FOJC_mod_CM2, lag = 7, prewhite = F))))

The results are then used to reproduce the outcomes presented in Table 15.1 of
the book.

stargazer(FOJC_mod_DM , FOJC_mod_CM1, FOJC_mod_CM1, FOJC_mod_CM2,
title = "Dynamic Effects of a Freezing Degree Day on the Price of Orange Juice",
header = FALSE,
digits = 3,
column.labels = c("Dynamic Multipliers", rep("Dynamic Cumulative Multipliers", 3)),
dep.var.caption = "Dependent Variable: Monthly Percentage Change in Orange Juice Price",
dep.var.labels.include = FALSE,
covariate.labels = as.character(0:18),
omit = "season",
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se = SEs,
no.space = T,
add.lines = list(c("Monthly indicators?","no", "no", "no", "yes"),

c("HAC truncation","7", "7", "14", "7")),
omit.stat = c("rsq", "f","ser"))

According to column (1) of Table 15.1, the contemporaneous effect of a freezing
degree day is an increase of 0.5% in orange juice prices. The estimated effect
is only 0.17% for the next month and close to zero for subsequent months. In
fact, for all lags larger than 1, we cannot reject the null hypotheses that the
respective coefficients are zero using individual t-tests. The model FOJC_mod_DM
only explains little of the variation in the dependent variable (R̄2 = 0.11).

Columns (2) and (3) present estimates of the dynamic cumulative multipliers of
model FOJC_mod_CM1. Apparently, it does not matter whether we choose m = 7
or m = 14 when computing HAC standard errors so we stick with m = 7 and
the standard errors reported in column (2).

If the demand for orange juice is higher in winter, FDDt would be correlated
with the error term since freezes occur rather in winter so we would face omit-
ted variable bias. The third model estimate, FOJC_mod_CM2, accounts for this
possible issue by using an additional set of 11 monthly dummies. For brevity,
estimates of the dummy coefficients are excluded from the output produced by
stargazer (this is achieved by setting omit = ’season’). We may check that
the dummy for January was omitted to prevent perfect multicollinearity.

# estimates on mothly dummies
FOJC_mod_CM2$coefficients[-c(1:20)]
#> season(FDD)Feb season(FDD)Mar season(FDD)Apr season(FDD)May season(FDD)Jun
#> -0.9565759 -0.6358007 0.5006770 -1.0801764 0.3195624
#> season(FDD)Jul season(FDD)Aug season(FDD)Sep season(FDD)Oct season(FDD)Nov
#> 0.1951113 0.3644312 -0.4130969 -0.1566622 0.3116534
#> season(FDD)Dec
#> 0.1481589

A comparison of the estimates presented in columns (3) and (4) indicates that
adding monthly dummies has a negligible effect. Further evidence for this comes
from a joint test of the hypothesis that the 11 dummy coefficients are zero.
Instead of using linearHypothesis(), we use the function waldtest() and
supply two model objects instead: unres_model, the unrestricted model object
which is the same as FOJC_mod_CM2 (except for the coefficient names since we
have modified them above) and res_model, the model where the restriction that
all dummy coefficients are zero is imposed. res_model is conveniently obtained
using the function update(). It extracts the argument formula of a model
object, updates it as specified and then re-fits the model. By setting formula
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= . ~ . - season(FDD) we impose that the monthly dummies do not enter
the model.

# test if coefficients on monthly dummies are zero
unres_model <- dynlm(FOJC_pctc ~ L(d(FDD), 0:17) + L(FDD, 18) + season(FDD))

res_model <- update(unres_model, formula = . ~ . - season(FDD))

waldtest(unres_model,
res_model,
vcov = NeweyWest(unres_model, lag = 7, prewhite = F))

#> Wald test
#>
#> Model 1: FOJC_pctc ~ L(d(FDD), 0:17) + L(FDD, 18) + season(FDD)
#> Model 2: FOJC_pctc ~ L(d(FDD), 0:17) + L(FDD, 18)
#> Res.Df Df F Pr(>F)
#> 1 563
#> 2 574 -11 0.9683 0.4743

The p-value is 0.47 so we cannot reject the hypothesis that the coefficients on
the monthly dummies are zero, even at the 10% level. We conclude that the
seasonal fluctuations in demand for orange juice do not pose a serious threat to
internal validity of the model.

It is convenient to use plots of dynamic multipliers and cumulative dynamic
multipliers. The following two code chunks reproduce Figures 15.2 (a) and
15.2 (b) of the book which display point estimates of dynamic and cumulative
multipliers along with upper and lower bounds of their 95% confidence intervals
computed using the above HAC standard errors.

# 95% CI bounds
point_estimates <- FOJC_mod_DM$coefficients

CI_bounds <- cbind("lower" = point_estimates - 1.96 * SEs[[1]],
"upper" = point_estimates + 1.96 * SEs[[1]])[-1, ]

# plot the estimated dynamic multipliers
plot(0:18, point_estimates[-1],

type = "l",
lwd = 2,
col = "steelblue",
ylim = c(-0.4, 1),
xlab = "Lag",
ylab = "Dynamic multiplier",
main = "Dynamic Effect of FDD on Orange Juice Price")
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# add a dashed line at 0
abline(h = 0, lty = 2)

# add CI bounds
lines(0:18, CI_bounds[,1], col = "darkred")
lines(0:18, CI_bounds[,2], col = "darkred")
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Figure 15.1: Dynamic Multipliers

The 95% confidence intervals plotted in Figure 15.1 indeed include zero for lags
larger than 1 such that the null of a zero multiplier cannot be rejected for these
lags.

# 95% CI bounds
point_estimates <- FOJC_mod_CM1$coefficients

CI_bounds <- cbind("lower" = point_estimates - 1.96 * SEs[[2]],
"upper" = point_estimates + 1.96 * SEs[[2]])[-1,]

# plot estimated dynamic multipliers
plot(0:18, point_estimates[-1],

type = "l",
lwd = 2,
col = "steelblue",
ylim = c(-0.4, 1.6),
xlab = "Lag",
ylab = "Cumulative dynamic multiplier",
main = "Cumulative Dynamic Effect of FDD on Orange Juice Price")
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# add dashed line at 0
abline(h = 0, lty = 2)

# add CI bounds
lines(0:18, CI_bounds[, 1], col = "darkred")
lines(0:18, CI_bounds[, 2], col = "darkred")
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Figure 15.2: Dynamic Cumulative Multipliers

As can be seen from Figure 15.2, the estimated dynamic cumulative multipliers
grow until the seventh month up to a price increase of about 0.91% and then
decrease slightly to the estimated long-run cumulative multiplier of 0.37% which,
however, is not significantly different from zero at the 5% level.

Have the dynamic multipliers been stable over time? One way to see this is
to estimate these multipliers for different subperiods of the sample span. For
example, consider periods 1950 - 1966, 1967 - 1983 and 1984 - 2000. If the
multipliers are the same for all three periods the estimates should be close and
thus the estimated cumulative multipliers should be similar, too. We investigate
this by re-estimating FOJC_mod_CM1 for the three different time spans and then
plot the estimated cumulative dynamic multipliers for the comparison.

# estimate cumulative multiplieres using different sample periods
FOJC_mod_CM1950 <- update(FOJC_mod_CM1, start = c(1950, 1), end = c(1966, 12))

FOJC_mod_CM1967 <- update(FOJC_mod_CM1, start = c(1967, 1), end = c(1983, 12))

FOJC_mod_CM1984 <- update(FOJC_mod_CM1, start = c(1984, 1), end = c(2000, 12))
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# plot estimated dynamic cumulative multipliers (1950-1966)
plot(0:18, FOJC_mod_CM1950$coefficients[-1],

type = "l",
lwd = 2,
col = "steelblue",
xlim = c(0, 20),
ylim = c(-0.5, 2),
xlab = "Lag",
ylab = "Cumulative dynamic multiplier",
main = "Cumulative Dynamic Effect for Different Sample Periods")

# plot estimated dynamic multipliers (1967-1983)
lines(0:18, FOJC_mod_CM1967$coefficients[-1], lwd = 2)

# plot estimated dynamic multipliers (1984-2000)
lines(0:18, FOJC_mod_CM1984$coefficients[-1], lwd = 2, col = "darkgreen")

# add dashed line at 0
abline(h = 0, lty = 2)

# add annotations
text(18, -0.24, "1984 - 2000")
text(18, 0.6, "1967 - 1983")
text(18, 1.2, "1950 - 1966")
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Clearly, the cumulative dynamic multipliers have changed considerably over
time. The effect of a freeze was stronger and more persistent in the 1950s and
1960s. For the 1970s the magnitude of the effect was lower but still highly persis-
tent. We observe an even lower magnitude for the final third of the sample span
(1984 - 2000) where the long-run effect is much less persistent and essentially
zero after a year.
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A QLR test for a break in the distributed lag regression of column (1) in Table
@ref{tab:deoafddotpooj} with 15% trimming using a HAC variance-covariance
matrix estimate supports the conjecture that the population regression coeffi-
cients have changed over time.

# set up a range of possible break dates
tau <- c(window(time(FDD),

time(FDD)[round(612/100*15)],
time(FDD)[round(612/100*85)]))

# initialize the vector of F-statistics
Fstats <- numeric(length(tau))

# the restricted model
res_model <- dynlm(FOJC_pctc ~ L(FDD, 0:18))

# estimation, loop over break dates
for(i in 1:length(tau)) {

# set up dummy variable
D <- time(FOJC_pctc) > tau[i]

# estimate DL model with intercations
unres_model <- dynlm(FOJC_pctc ~ D * L(FDD, 0:18))

# compute and save F-statistic
Fstats[i] <- waldtest(res_model,

unres_model,
vcov = NeweyWest(unres_model, lag = 7, prewhite = F))$F[2]

}

Note that this code takes a couple of seconds to run since a total of length(tau)
regressions with 40 model coefficients each are estimated.

# QLR test statistic
max(Fstats)
#> [1] 36.76819

The QLR statistic is 36.77. From Table 14.5 of the book we see that the 1%
critical value for the QLR test with 15% trimming and q = 20 restrictions is
2.43. Since this is a right-sided test, the QLR statistic clearly lies in the region
of rejection so we can discard the null hypothesis of no break in the population
regression function.

See Chapter 15.7 of the book for a discussion of empirical examples where it
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is questionable whether the assumption of (past and present) exogeneity of the
regressors is plausible.

Summary

• We have seen how R can be used to estimate the time path of the effect
on Y of a change in X (the dynamic causal effect on Y of a change in
X) using time series data on both. The corresponding model is called the
distributed lag model. Distributed lag models are conveniently estimated
using the function dynlm() from the package dynlm.

• The regression error in distributed lag models is often serially correlated
such that standard errors which are robust to heteroskedasticity and
autocorrelation should be used to obtain valid inference. The package
sandwich provides functions for computation of so-called HAC covariance
matrix estimators, for example vcovHAC() and NeweyWest().

• When X is strictly exogeneous, more efficient estimates can be obtained
using an ADL model or by GLS estimation. Feasible GLS algorithms can
be found in the R packages orcutt and nlme. Chapter 15.7 of the book
emphasizes that the assumption of strict exogeneity is often implausible
in empirical applications.



Chapter 16

Additional Topics in Time
Series Regression

This chapter discusses the following advanced topics in time series regression
and demonstrates how core techniques can be applied using R:

• Vector autoregressions (VARs). We focus on using VARs for forecasting.
Another branch of the literature is concerned with so-called Structural
VARs which are, however, beyond the scope of this chapter.

• Multiperiod forecasts. This includes a discussion of iterated and direct
(multivariate) forecasts.

• The DF-GLS test, a modification of the ADF test that has more power
than the latter when the series has deterministic components and is close
to being nonstationarity.

• Cointegration analysis with an application to short- and long-term interest
rates. We demonstrate how to estimate a vector error correction model.

• Autoregressive conditional heteroskedasticity (ARCH) models. We show
how a simple generalized ARCH (GARCH) model can be helpful in quan-
tifying the risk associated with investing in the stock market in terms of
estimation and forecasting of the volatility of asset returns.

To reproduce the code examples, install the R packages listed below and make
sure that the subsequent code chunk executes without any errors.

• AER (Kleiber and Zeileis, 2020)
• dynlm (Zeileis, 2019)
• fGarch (Wuertz et al., 2020)
• quantmod (Ryan and Ulrich, 2020)
• readxl (Wickham and Bryan, 2019)

471
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• scales (Wickham and Seidel, 2020)
• vars (Pfaff, 2018)

library(AER)
library(readxl)
library(dynlm)
library(vars)
library(quantmod)
library(scales)
library(fGarch)

16.1 Vector Autoregressions

A Vector autoregressive (VAR) model is useful when one is interested in pre-
dicting multiple time series variables using a single model. At its core, the VAR
model is an extension of the univariate autoregressive model we have dealt with
in Chapters 14 and 15. Key Concept 16.1 summarizes the essentials of VAR.

Key Concept 16.1
Vector Autoregressions

The vector autoregression (VAR) model extends the idea of univariate
autoregression to k time series regressions, where the lagged values of all
k series appear as regressors. Put differently, in a VAR model we regress
a vector of time series variables on lagged vectors of these variables. As
for AR(p) models, the lag order is denoted by p so the VAR(p) model of
two variables Xt and Yt (k = 2) is given by the equations

Yt =β10 + β11Yt−1 + · · ·+ β1pYt−p + γ11Xt−1 + · · ·+ γ1pXt−p + u1t,

Xt =β20 + β21Yt−1 + · · ·+ β2pYt−p + γ21Xt−1 + · · ·+ γ2pXt−p + u2t.

The βs and γs can be estimated using OLS on each equation. The
assumptions for VARs are the time series assumptions presented in Key
Concept 14.6 applied to each of the equations.

It is straightforward to estimate VAR models in R. A feasible approach
is to simply use lm() for estimation of the individual equations. Fur-
thermore, the R package vars provides standard tools for estimation,
diagnostic testing and prediction using this type of models.

When the assumptions of Key Concept 16.1 hold, the OLS estimators of the
VAR coefficients are consistent and jointly normal in large samples so that the
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usual inferential methods such as confidence intervals and t-statistics can be
used.

The structure of VARs also allows to jointly test restrictions across multiple
equations. For instance, it may be of interest to test whether the coefficients on
all regressors of the lag p are zero. This corresponds to testing the null that the
lag order p−1 is correct. Large sample joint normality of the coefficient estimates
is convenient because it implies that we may simply use an F -test for this testing
problem. The explicit formula for such a test statistic is rather complicated
but fortunately such computations are easily done using the R functions we
work with in this chapter. Another way to determine optimal lag lengths are
information criteria like the BIC which we have introduced for univariate time
series regressions in Chapter 14.6. Just as in the case of a single equation, for
a multiple equation model we choose the specification which has the smallest
BIC(p), where

BIC(p) = log
[
det(Σ̂u)

]
+ k(kp+ 1) log(T )

T
.

with Σ̂u denoting the estimate of the k×k covariance matrix of the VAR errors
and det(·) denotes the determinant.

As for univariate distributed lag models, one should think carefully about vari-
ables to include in a VAR, as adding unrelated variables reduces the forecast
accuracy by increasing the estimation error. This is particularly important
because the number of parameters to be estimated grows qudratically to the
number of variables modeled by the VAR. In the application below we shall see
that economic theory and empirical evidence are helpful for this decision.

A VAR Model of the Growth Rate of GDP and the Term Spread

We now show how to estimate a VAR model of the GDP growth rate, GDPGR,
and the term spread, TSpread. As following the discussion on nonstationarity
of GDP growth in Chapter 14.7 (recall the possible break in the early 1980s
detected by the QLR test statistic), we use data from 1981:Q1 to 2012:Q4. The
two model equations are

GDPGRt =β10 + β11GDPGRt−1 + β12GDPGRt−2 + γ11TSpreadt−1 + γ12TSpreadt−2 + u1t,

TSpreadt =β20 + β21GDPGRt−1 + β22GDPGRt−2 + γ21TSpreadt−1 + γ22TSpreadt−2 + u2t.

The data set us_macro_quarterly.xlsx is provided on the companion website
to Stock and Watson (2015) and can be downloaded here. It contains quarterly
data on U.S. real (i.e., inflation adjusted) GDP from 1947 to 2004. We begin
by importing the data set and do some formatting (we already worked with this
data set in Chapter 14 so you may skip these steps if you have already loaded
the data in your working environment).

http://wps.aw.com/aw_stock_ie_3/178/45691/11696965.cw/index.html
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# load the U.S. macroeconomic data set
USMacroSWQ <- read_xlsx("Data/us_macro_quarterly.xlsx",

sheet = 1,
col_types = c("text", rep("numeric", 9)))

# set the column names
colnames(USMacroSWQ) <- c("Date", "GDPC96", "JAPAN_IP", "PCECTPI", "GS10",

"GS1", "TB3MS", "UNRATE", "EXUSUK", "CPIAUCSL")

# format the date column
USMacroSWQ$Date <- as.yearqtr(USMacroSWQ$Date, format = "%Y:0%q")

# define GDP as ts object
GDP <- ts(USMacroSWQ$GDPC96,

start = c(1957, 1),
end = c(2013, 4),
frequency = 4)

# define GDP growth as a ts object
GDPGrowth <- ts(400*log(GDP[-1]/GDP[-length(GDP)]),

start = c(1957, 2),
end = c(2013, 4),
frequency = 4)

# 3-months Treasury bill interest rate as a 'ts' object
TB3MS <- ts(USMacroSWQ$TB3MS,

start = c(1957, 1),
end = c(2013, 4),
frequency = 4)

# 10-years Treasury bonds interest rate as a 'ts' object
TB10YS <- ts(USMacroSWQ$GS10,

start = c(1957, 1),
end = c(2013, 4),
frequency = 4)

# generate the term spread series
TSpread <- TB10YS - TB3MS

We estimate both equations separately by OLS and use coeftest() to obtain
robust standard errors.

# Estimate both equations using 'dynlm()'
VAR_EQ1 <- dynlm(GDPGrowth ~ L(GDPGrowth, 1:2) + L(TSpread, 1:2),

start = c(1981, 1),
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end = c(2012, 4))

VAR_EQ2 <- dynlm(TSpread ~ L(GDPGrowth, 1:2) + L(TSpread, 1:2),
start = c(1981, 1),
end = c(2012, 4))

# rename regressors for better readability
names(VAR_EQ1$coefficients) <- c("Intercept","Growth_t-1",

"Growth_t-2", "TSpread_t-1", "TSpread_t-2")
names(VAR_EQ2$coefficients) <- names(VAR_EQ1$coefficients)

# robust coefficient summaries
coeftest(VAR_EQ1, vcov. = sandwich)
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> Intercept 0.516344 0.524429 0.9846 0.3267616
#> Growth_t-1 0.289553 0.110827 2.6127 0.0101038 *
#> Growth_t-2 0.216392 0.085879 2.5197 0.0130255 *
#> TSpread_t-1 -0.902549 0.358290 -2.5190 0.0130498 *
#> TSpread_t-2 1.329831 0.392660 3.3867 0.0009503 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coeftest(VAR_EQ2, vcov. = sandwich)
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> Intercept 0.4557740 0.1214227 3.7536 0.0002674 ***
#> Growth_t-1 0.0099785 0.0218424 0.4568 0.6485920
#> Growth_t-2 -0.0572451 0.0264099 -2.1676 0.0321186 *
#> TSpread_t-1 1.0582279 0.0983750 10.7571 < 2.2e-16 ***
#> TSpread_t-2 -0.2191902 0.1086198 -2.0180 0.0457712 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We end up with the following results:

GDPGRt = 0.52
(0.46)

+ 0.29
(0.11)

GDPGRt−1 + 0.22
(0.09)

GDPGRt−2 − 0.90
(0.36)

TSpreadt−1 + 1.33
(0.39)

TSpreadt−2

TSpreadt = 0.46
(0.12)

+ 0.01
(0.02)

GDPGRt−1 − 0.06
(0.03)

GDPGRt−2 + 1.06
(0.10)

TSpreadt−1 − 0.22
(0.11)

TSpreadt−2

The function VAR() can be used to obtain the same coefficient estimates as
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presented above since it applies OLS per equation, too.

# set up data for estimation using `VAR()`
VAR_data <- window(ts.union(GDPGrowth, TSpread), start = c(1980, 3), end = c(2012, 4))

# estimate model coefficients using `VAR()`
VAR_est <- VAR(y = VAR_data, p = 2)
VAR_est
#>
#> VAR Estimation Results:
#> =======================
#>
#> Estimated coefficients for equation GDPGrowth:
#> ==============================================
#> Call:
#> GDPGrowth = GDPGrowth.l1 + TSpread.l1 + GDPGrowth.l2 + TSpread.l2 + const
#>
#> GDPGrowth.l1 TSpread.l1 GDPGrowth.l2 TSpread.l2 const
#> 0.2895533 -0.9025493 0.2163919 1.3298305 0.5163440
#>
#>
#> Estimated coefficients for equation TSpread:
#> ============================================
#> Call:
#> TSpread = GDPGrowth.l1 + TSpread.l1 + GDPGrowth.l2 + TSpread.l2 + const
#>
#> GDPGrowth.l1 TSpread.l1 GDPGrowth.l2 TSpread.l2 const
#> 0.009978489 1.058227945 -0.057245123 -0.219190243 0.455773969

VAR() returns a list of lm objects which can be passed to the usual functions,
for example summary() and so it is straightforward to obtain model statistics
for the individual equations.

# obtain the adj. Rˆ2 from the output of 'VAR()'
summary(VAR_est$varresult$GDPGrowth)$adj.r.squared
#> [1] 0.2887223
summary(VAR_est$varresult$TSpread)$adj.r.squared
#> [1] 0.8254311

We may use the individual model objects to conduct Granger causality tests.

# Granger causality tests:

# test if term spread has no power in explaining GDP growth
linearHypothesis(VAR_EQ1,
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hypothesis.matrix = c("TSpread_t-1", "TSpread_t-2"),
vcov. = sandwich)

#> Linear hypothesis test
#>
#> Hypothesis:
#> TSpread_t - 0
#> TSpread_t - 2 = 0
#>
#> Model 1: restricted model
#> Model 2: GDPGrowth ~ L(GDPGrowth, 1:2) + L(TSpread, 1:2)
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 125
#> 2 123 2 5.9094 0.003544 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# test if GDP growth has no power in explaining term spread
linearHypothesis(VAR_EQ2,

hypothesis.matrix = c("Growth_t-1", "Growth_t-2"),
vcov. = sandwich)

#> Linear hypothesis test
#>
#> Hypothesis:
#> Growth_t - 0
#> Growth_t - 2 = 0
#>
#> Model 1: restricted model
#> Model 2: TSpread ~ L(GDPGrowth, 1:2) + L(TSpread, 1:2)
#>
#> Note: Coefficient covariance matrix supplied.
#>
#> Res.Df Df F Pr(>F)
#> 1 125
#> 2 123 2 3.4777 0.03395 *
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Both Granger causality tests reject at the level of 5%. This is evidence in favor
of the conjecture that the term spread has power in explaining GDP growth
and vice versa.
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Iterated Multivariate Forecasts using an Iterated VAR

The idea of an iterated forecast for period T + 2 based on observations up to
period T is to use the one-period-ahead forecast as an intermediate step. That
is, the forecast for period T + 1 is used as an observation when predicting the
level of a series for period T + 2. This can be generalized to a h-period-ahead
forecast where all intervening periods between T and T + h must be forecasted
as they are used as observations in the process (see Chapter 16.2 of the book
for a more detailed argument on this concept). Iterated multiperiod forecasts
are summarized in Key Concept 16.2.

Key Concept 16.2
Iterated Multiperiod Forecasts

The steps for an iterated multiperiod AR forecast are:

1. Estimate the AR(p) model using OLS and compute the one-period-
ahead forecast.

2. Use the one-period-ahead forecast to obtain the two-period-ahead
forecast.

3. Continue by iterating to obtain forecasts farther into the future.

An iterated multiperiod VAR forecast is done as follows:

1. Estimate the VAR(p) model using OLS per equation and compute
the one-period-ahead forecast for all variables in the VAR.

2. Use the one-period-ahead forecasts to obtain the two-period-ahead
forecasts.

3. Continue by iterating to obtain forecasts of all variables in the VAR
farther into the future.

Since a VAR models all variables using lags of the respective other variables, we
need to compute forecasts for all variables. It can be cumbersome to do so when
the VAR is large but fortunately there are R functions that facilitate this. For
example, the function predict() can be used to obtain iterated multivariate
forecasts for VAR models estimated by the function VAR().

The following code chunk shows how to compute iterated forecasts for GDP
growth and the term spread up to period 2015:Q1, that is h = 10, using the
model object VAR_est.
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# compute iterated forecasts for GDP growth and term spread for the next 10 quarters
forecasts <- predict(VAR_est)
forecasts
#> $GDPGrowth
#> fcst lower upper CI
#> [1,] 1.738653 -3.006124 6.483430 4.744777
#> [2,] 1.692193 -3.312731 6.697118 5.004925
#> [3,] 1.911852 -3.282880 7.106583 5.194731
#> [4,] 2.137070 -3.164247 7.438386 5.301317
#> [5,] 2.329667 -3.041435 7.700769 5.371102
#> [6,] 2.496815 -2.931819 7.925449 5.428634
#> [7,] 2.631849 -2.846390 8.110088 5.478239
#> [8,] 2.734819 -2.785426 8.255064 5.520245
#> [9,] 2.808291 -2.745597 8.362180 5.553889
#> [10,] 2.856169 -2.722905 8.435243 5.579074
#>
#> $TSpread
#> fcst lower upper CI
#> [1,] 1.676746 0.708471226 2.645021 0.9682751
#> [2,] 1.884098 0.471880228 3.296316 1.4122179
#> [3,] 1.999409 0.336348101 3.662470 1.6630609
#> [4,] 2.080836 0.242407507 3.919265 1.8384285
#> [5,] 2.131402 0.175797245 4.087008 1.9556052
#> [6,] 2.156094 0.125220562 4.186968 2.0308738
#> [7,] 2.161783 0.085037834 4.238528 2.0767452
#> [8,] 2.154170 0.051061544 4.257278 2.1031082
#> [9,] 2.138164 0.020749780 4.255578 2.1174139
#> [10,] 2.117733 -0.007139213 4.242605 2.1248722

This reveals that the two-quarter-ahead forecast of GDP growth in 2013:Q2
using data through 2012:Q4 is 1.69. For the same period, the iterated VAR
forecast for the term spread is 1.88.

The matrices returned by predict(VAR_est) also include 95% prediction inter-
vals (however, the function does not adjust for autocorrelation or heteroskedas-
ticity of the errors!).

We may also plot the iterated forecasts for both variables by calling plot() on
the output of predict(VAR_est).

# visualize the iterated forecasts
plot(forecasts)
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Direct Multiperiod Forecasts

A direct multiperiod forecast uses a model where the predictors are lagged
appropriately such that the available observations can be used directly to do
the forecast. The idea of direct multiperiod forecasting is summarized in Key
Concept 16.3.
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Key Concept 16.3
Direct Multiperiod Forecasts

A direct multiperiod forecast that forecasts h periods into the future using
a model of Yt and an additional predictor Xt with p lags is done by first
estimating

Yt = δ0 + δ1Yt−h + · · ·+ δpYt−p−h+1 + δp+1Xt−h

+ · · ·+ δ2pYt−p−h+1 + ut,

which is then used to compute the forecast of YT+h based on observations
through period T .

For example, to obtain two-quarter-ahead forecasts of GDP growth and the
term spread we first estimate the equations

GDPGRt =β10 + β11GDPGRt−2 + β12GDPGRt−3 + γ11TSpreadt−2 + γ12TSpreadt−3 + u1t,

TSpreadt =β20 + β21GDPGRt−2 + β22GDPGRt−3 + γ21TSpreadt−2 + γ22TSpreadt−3 + u2t

and then substitute the values of GDPGR2012:Q4, GDPGR2012:Q3,
TSpread2012:Q4 and TSpread2012:Q3 into both equations. This is easily
done manually.

# estimate models for direct two-quarter-ahead forecasts
VAR_EQ1_direct <- dynlm(GDPGrowth ~ L(GDPGrowth, 2:3) + L(TSpread, 2:3),

start = c(1981, 1), end = c(2012, 4))

VAR_EQ2_direct <- dynlm(TSpread ~ L(GDPGrowth, 2:3) + L(TSpread, 2:3),
start = c(1981, 1), end = c(2012, 4))

# compute direct two-quarter-ahead forecasts
coef(VAR_EQ1_direct) %*% c(1, # intercept

window(GDPGrowth, start = c(2012, 3), end = c(2012, 4)),
window(TSpread, start = c(2012, 3), end = c(2012, 4)))

#> [,1]
#> [1,] 2.439497

coef(VAR_EQ2_direct) %*% c(1, # intercept
window(GDPGrowth, start = c(2012, 3), end = c(2012, 4)),
window(TSpread, start = c(2012, 3), end = c(2012, 4)))

#> [,1]
#> [1,] 1.66578

Applied economists often use the iterated method since this forecasts are more
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reliable in terms of MSFE, provided that the one-period-ahead model is cor-
rectly specified. If this is not the case, for example because one equation in a
VAR is believed to be misspecified, it can be beneficial to use direct forecasts
since the iterated method will then be biased and thus have a higher MSFE
than the direct method. See Chapter 16.2 for a more detailed discussion on
advantages and disadvantages of both methods.

16.2 Orders of Integration and the DF-GLS
Unit Root Test

Some economic time series have smoother trends than variables that can be
described by random walk models. A way to model these time series is

∆Yt = β0 + ∆Yt−1 + ut,

where ut is a serially uncorrelated error term. This model states that the first
difference of a series is a random walk. Consequently, the series of second
differences of Yt is stationary. Key Concept 16.4 summarizes the notation.

Key Concept 16.4
Orders of Integration, Differencing and Stationarity

• When a time series Yt has a unit autoregressive root, Yt is inte-
grated of order one. This is often denoted by Yt ∼ I(1). We
simply say that Yt is I(1). If Yt is I(1), its first difference ∆Yt is
stationary.

• Yt is I(2) when Yt needs to be differenced twice in order to obtain
a stationary series. Using the notation introduced here, Yt is I(2),
its first difference ∆Yt is I(1) and its second difference ∆2Yt is
stationary. Yt is I(d) when Yt must be differenced d times to obtain
a stationary series.

• When Yt is stationary, it is integrated of order 0 so Yt is I(0).

It is fairly easy to obtain differences of time series in R. For example,
the function diff() returns suitably lagged and iterated differences of
numeric vectors, matrices and time series objects of the class ts.

Following the book, we take the price level of the U.S. measured by the Personal
Consumption Expenditures Price Index as an example.
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# define ts object of the U.S. PCE Price Index
PCECTPI <- ts(log(USMacroSWQ$PCECTPI),

start = c(1957, 1),
end = c(2012, 4),
freq = 4)

# plot logarithm of the PCE Price Index
plot(log(PCECTPI),

main = "Log of United States PCE Price Index",
ylab = "Logarithm",
col = "steelblue",
lwd = 2)
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The logarithm of the price level has a smoothly varying trend. This is typical for
an I(2) series. If the price level is indeed I(2), the first differences of this series
should be I(1). Since we are considering the logarithm of the price level, we
obtain growth rates by taking first differences. Therefore, the differenced price
level series is the series of quarterly inflation rates. This is quickly done in R
using the function Delt() from the package quantmod. As explained in Chapter
14.2, multiplying the quarterly inflation rates by 400 yields the quarterly rate
of inflation, measured in percentage points at an annual rate.

# plot U.S. PCE price inflation
plot(400 * Delt(PCECTPI),

main = "United States PCE Price Index",
ylab = "Percent per annum",
col = "steelblue",
lwd = 2)
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# add a dashed line at y = 0
abline(0, 0, lty = 2)
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The inflation rate behaves much more erratically than the smooth graph of the
logarithm of the PCE price index.

The DF-GLS Test for a Unit Root

The DF-GLS test for a unit root has been developed by Elliott et al. (1996) and
has higher power than the ADF test when the autoregressive root is large but
less than one. That is, the DF-GLS has a higher probability of rejecting the
false null of a stochastic trend when the sample data stems from a time series
that is close to being integrated.

The idea of the DF-GLS test is to test for an autoregressive unit root in the
detrended series, whereby GLS estimates of the deterministic components are
used to obtain the detrended version of the original series. See Chapter 16.3 of
the book for a more detailed explanation of the approach.

A function that performs the DF-GLS test is implemented in the package urca
(this package is a dependency of the package vars so it should be already loaded
if vars is attached). The function that computes the test statistic is ur.ers.

# DF-GLS test for unit root in GDP
summary(ur.ers(log(window(GDP, start = c(1962, 1), end = c(2012, 4))),

model = "trend",
lag.max = 2))

#>
#> ###############################################
#> # Elliot, Rothenberg and Stock Unit Root Test #
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#> ###############################################
#>
#> Test of type DF-GLS
#> detrending of series with intercept and trend
#>
#>
#> Call:
#> lm(formula = dfgls.form, data = data.dfgls)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -0.025739 -0.004054 0.000017 0.004619 0.033620
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> yd.lag -0.01213 0.01012 -1.199 0.23207
#> yd.diff.lag1 0.28583 0.07002 4.082 6.47e-05 ***
#> yd.diff.lag2 0.19320 0.07058 2.737 0.00676 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.007807 on 198 degrees of freedom
#> Multiple R-squared: 0.1504, Adjusted R-squared: 0.1376
#> F-statistic: 11.69 on 3 and 198 DF, p-value: 4.392e-07
#>
#>
#> Value of test-statistic is: -1.1987
#>
#> Critical values of DF-GLS are:
#> 1pct 5pct 10pct
#> critical values -3.48 -2.89 -2.57

The summary of the test shows that the test statistic is about −1.2. The the
10% critical value for the DF-GLS test is −2.57. This is, however, not the
appropriate critical value for the ADF test when an intercept and a time trend
are included in the Dickey-Fuller regression: the asymptotic distributions of
both test statistics differ and so do their critical values!

The test is left-sided so we cannot reject the null hypothesis that U.S. inflation
is nonstationary, using the DF-GLS test.
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16.3 Cointegration

Key Concept 16.5
Cointegration

When Xt and Yt are I(1) and if there is a θ such that Yt − θXt

is I(0), Xt and Yt are cointegrated. Put differently, cointegration
of Xt and Yt means that Xt and Yt have the same or a common
stochastic trend and that this trend can be eliminated by taking a
specific difference of the series such that the resulting series is stationary.

R functions for cointegration analysis are implemented in the package
urca.

As an example, reconsider the the relation between short- and long-term interest
rates by the example of U.S. 3-month treasury bills, U.S. 10-years treasury bonds
and the spread in their interest rates which have been introduced in Chapter
14.4. The next code chunk shows how to reproduce Figure 16.2 of the book.

# reproduce Figure 16.2 of the book

# plot both interest series
plot(merge(as.zoo(TB3MS), as.zoo(TB10YS)),

plot.type = "single",
lty = c(2, 1),
lwd = 2,
xlab = "Date",
ylab = "Percent per annum",
ylim = c(-5, 17),
main = "Interest Rates")

# add the term spread series
lines(as.zoo(TSpread),

col = "steelblue",
lwd = 2,
xlab = "Date",
ylab = "Percent per annum",
main = "Term Spread")

# shade the term spread
polygon(c(time(TB3MS), rev(time(TB3MS))),

c(TB10YS, rev(TB3MS)),
col = alpha("steelblue", alpha = 0.3),
border = NA)
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# add horizontal line add 0
abline(0, 0)

# add a legend
legend("topright",

legend = c("TB3MS", "TB10YS", "Term Spread"),
col = c("black", "black", "steelblue"),
lwd = c(2, 2, 2),
lty = c(2, 1, 1))
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The plot suggests that long-term and short-term interest rates are cointegrated:
both interest series seem to have the same long-run behavior. They share a
common stochastic trend. The term spread, which is obtained by taking the
difference between long-term and short-term interest rates, seems to be sta-
tionary. In fact, the expectations theory of the term structure suggests the
cointegrating coefficient θ to be 1. This is consistent with the visual result.

Testing for Cointegration

Following Key Concept 16.5, it seems natural to construct a test for cointegra-
tion of two series in the following manner: if two series Xt and Yt are cointe-
grated, the series obtained by taking the difference Yt−θXt must be stationary.
If the series are not cointegrated, Yt− θXt is nonstationary. This is an assump-
tion that can be tested using a unit root test. We have to distinguish between
two cases:

1. θ is known.
Knowledge of θ enables us to compute differences zt = Yt − θXt so that
Dickey-Fuller and DF-GLS unit root tests can be applied to zt. For these
tests, the critical values are the critical values of the ADF or DF-GLS test.
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2. θ is unknown.
If θ is unknown, it must be estimated before the unit root test can be
applied. This is done by estimating the regression

Yt = α+ θXt + zt

using OLS (this is refered to as the first-stage regression). Then, a Dickey-
Fuller test is used for testing the hypothesis that zt is a nonstationary
series. This is known as the Engle-Granger Augmented Dickey-Fuller test
for cointegration (or EG-ADF test) after Engle and Granger (1987). The
critical values for this test are special as the associated null distribution is
nonnormal and depends on the number of I(1) variables used as regressors
in the first stage regression. You may look them up in Table 16.2 of the
book. When there are only two presumably cointegrated variables (and
thus a single I(1) variable is used in the first stage OLS regression) the
critical values for the levels 10%, 5% and 1% are −3.12, −3.41 and −3.96.

Application to Interest Rates

As has been mentioned above, the theory of the term structure suggests that
long-term and short-term interest rates are cointegrated with a cointegration
coefficient of θ = 1. In the previous section we have seen that there is visual
evidence for this conjecture since the spread of 10-year and 3-month interest
rates looks stationary.

We continue by using formal tests (the ADF and the DF-GLS test) to see
whether the individual interest rate series are integrated and if their difference
is stationary (for now, we assume that θ = 1 is known). Both is conveniently
done by using the functions ur.df() for computation of the ADF test and
ur.ers for conducting the DF-GLS test. Following the book we use data from
1962:Q1 to 2012:Q4 and employ models that include a drift term. We set the
maximum lag order to 6 and use the AIC for selection of the optimal lag length.

# test for nonstationarity of 3-month treasury bills using ADF test
ur.df(window(TB3MS, c(1962, 1), c(2012, 4)),

lags = 6,
selectlags = "AIC",
type = "drift")

#>
#> ###############################################################
#> # Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
#> ###############################################################
#>
#> The value of the test statistic is: -2.1004 2.2385

# test for nonstationarity of 10-years treasury bonds using ADF test
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ur.df(window(TB10YS, c(1962, 1), c(2012, 4)),
lags = 6,
selectlags = "AIC",
type = "drift")

#>
#> ###############################################################
#> # Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
#> ###############################################################
#>
#> The value of the test statistic is: -1.0079 0.5501

# test for nonstationarity of 3-month treasury bills using DF-GLS test
ur.ers(window(TB3MS, c(1962, 1), c(2012, 4)),

model = "constant",
lag.max = 6)

#>
#> ###############################################################
#> # Elliot, Rothenberg and Stock Unit Root / Cointegration Test #
#> ###############################################################
#>
#> The value of the test statistic is: -1.8042

# test for nonstationarity of 10-years treasury bonds using DF-GLS test
ur.ers(window(TB10YS, c(1962, 1), c(2012, 4)),

model = "constant",
lag.max = 6)

#>
#> ###############################################################
#> # Elliot, Rothenberg and Stock Unit Root / Cointegration Test #
#> ###############################################################
#>
#> The value of the test statistic is: -0.942

The corresponding 10% critical value for both tests is −2.57 so we cannot reject
the null hypotheses of nonstationary for either series, even at the 10% level of
significance.1 We conclude that it is plausible to model both interest rate series
as I(1).

Next, we apply the ADF and the DF-GLS test to test for nonstationarity of
the term spread series, which means we test for non-cointegration of long- and
short-term interest rates.

1Note: ur.df() reports two test statistics when there is a drift in the ADF regression.
The first of which (the one we are interested in here) is the t-statistic for the test that the
coefficient on the first lag of the series is 0. The second one is the t-statistic for the hypothesis
test that the drift term equals 0.
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# test if term spread is stationairy (cointegration of interest rates) using ADF
ur.df(window(TB10YS, c(1962, 1), c(2012, 4)) - window(TB3MS, c(1962, 1), c(2012 ,4)),

lags = 6,
selectlags = "AIC",
type = "drift")

#>
#> ###############################################################
#> # Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
#> ###############################################################
#>
#> The value of the test statistic is: -3.9308 7.7362

# test if term spread is stationairy (cointegration of interest rates) using DF-GLS test
ur.ers(window(TB10YS, c(1962, 1), c(2012, 4)) - window(TB3MS, c(1962, 1), c(2012, 4)),

model = "constant",
lag.max = 6)

#>
#> ###############################################################
#> # Elliot, Rothenberg and Stock Unit Root / Cointegration Test #
#> ###############################################################
#>
#> The value of the test statistic is: -3.8576

Table 16.1 summarizes the results.

Table 16.1: ADF and DF-GLS Test Statistics for Interest Rate
Series

Series ADF Test Statistic DF-GLS Test Statistic
TB3MS −2.10 −1.80
TB10YS −1.01 −0.94
TB10YS - TB3MS −3.93 −3.86

Both tests reject the hypothesis of nonstationarity of the term spread series at
the 1% level of significance, which is strong evidence in favor of the hypothesis
that the term spread is stationary, implying cointegration of long- and short-
term interest rates.

Since theory suggests that θ = 1, there is no need to estimate θ so it is not
necessary to use the EG-ADF test which allows θ to be unknown. However,
since it is instructive to do so, we follow the book and compute this test statistic.
The first-stage OLS regression is

TB10Y St = β0 + β1TB3MSt + zt.
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# estimate first-stage regression of EG-ADF test
FS_EGADF <- dynlm(window(TB10YS, c(1962, 1), c(2012, 4)) ~ window(TB3MS, c(1962, 1), c(2012, 4)))
FS_EGADF
#>
#> Time series regression with "ts" data:
#> Start = 1962(1), End = 2012(4)
#>
#> Call:
#> dynlm(formula = window(TB10YS, c(1962, 1), c(2012, 4)) ~ window(TB3MS,
#> c(1962, 1), c(2012, 4)))
#>
#> Coefficients:
#> (Intercept) window(TB3MS, c(1962, 1), c(2012, 4))
#> 2.4642 0.8147

Thus we have

̂TB10Y St = 2.46 + 0.81 · TB3MSt,

where θ̂ = 0.81. Next, we take the residual series {ẑt} and compute the ADF
test statistic.

# compute the residuals
z_hat <- resid(FS_EGADF)

# compute the ADF test statistic
ur.df(z_hat, lags = 6, type = "none", selectlags = "AIC")
#>
#> ###############################################################
#> # Augmented Dickey-Fuller Test Unit Root / Cointegration Test #
#> ###############################################################
#>
#> The value of the test statistic is: -3.1935

The test statistic is −3.19 which is smaller than the 10% critical value but
larger than the 5% critical value (see Table 16.2 of the book). Thus, the null
hypothesis of no cointegration can be rejected at the 10% level but not at the
5% level. This indicates lower power of the EG-ADF test due to the estimation
of θ: when θ = 1 is the correct value, we expect the power of the ADF test for
a unit root in the residuals series ẑ = TB10Y S − TB3MS to be higher than
when some estimate θ̂ is used.

A Vector Error Correction Model for TB10Y St and TB3MS If two
I(1) time series Xt and Yt are cointegrated, their differences are stationary and
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can be modeled in a VAR which is augmented by the regressor Yt−1 − θXt−1.
This is called a vector error correction model (VECM) and Yt − θXt is called
the error correction term. Lagged values of the error correction term are useful
for predicting ∆Xt and/or ∆Yt.

A VECM can be used to model the two interest rates considered in the previous
sections. Following the book we specify the VECM to include two lags of both
series as regressors and choose θ = 1, as theory suggests (see above).

TB10YS <- window(TB10YS, c(1962, 1), c(2012 ,4))
TB3MS <- window(TB3MS, c(1962, 1), c(2012, 4))

# set up error correction term
VECM_ECT <- TB10YS - TB3MS

# estimate both equations of the VECM using 'dynlm()'
VECM_EQ1 <- dynlm(d(TB10YS) ~ L(d(TB3MS), 1:2) + L(d(TB10YS), 1:2) + L(VECM_ECT))
VECM_EQ2 <- dynlm(d(TB3MS) ~ L(d(TB3MS), 1:2) + L(d(TB10YS), 1:2) + L(VECM_ECT))

# rename regressors for better readability
names(VECM_EQ1$coefficients) <- c("Intercept", "D_TB3MS_l1", "D_TB3MS_l2",

"D_TB10YS_l1", "D_TB10YS_l2", "ect_l1")
names(VECM_EQ2$coefficients) <- names(VECM_EQ1$coefficients)

# coefficient summaries using HAC standard errors
coeftest(VECM_EQ1, vcov. = NeweyWest(VECM_EQ1, prewhite = F, adjust = T))
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> Intercept 0.1227089 0.0551419 2.2253 0.027205 *
#> D_TB3MS_l1 -0.0016601 0.0727060 -0.0228 0.981807
#> D_TB3MS_l2 -0.0680845 0.0435059 -1.5649 0.119216
#> D_TB10YS_l1 0.2264878 0.0957071 2.3665 0.018939 *
#> D_TB10YS_l2 -0.0734486 0.0703476 -1.0441 0.297740
#> ect_l1 -0.0878871 0.0285644 -3.0768 0.002393 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coeftest(VECM_EQ2, vcov. = NeweyWest(VECM_EQ2, prewhite = F, adjust = T))
#>
#> t test of coefficients:
#>
#> Estimate Std. Error t value Pr(>|t|)
#> Intercept -0.060746 0.107937 -0.5628 0.57422
#> D_TB3MS_l1 0.240003 0.111611 2.1504 0.03276 *
#> D_TB3MS_l2 -0.155883 0.153845 -1.0132 0.31220
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#> D_TB10YS_l1 0.113740 0.125571 0.9058 0.36617
#> D_TB10YS_l2 -0.147519 0.112630 -1.3098 0.19182
#> ect_l1 0.031506 0.050519 0.6236 0.53359
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Thus the two estimated equations of the VECM are

̂∆TB3MSt = − 0.06
(0.11)

+ 0.24
(0.11)

∆TB3MSt−1 − 0.16
(0.15)

∆TB3MSt−2

+ 0.11
(0.13)

∆TB10Y St−1 − 0.15
(0.11)

∆TB10Y St−2 + 0.03
(0.05)

ECTt−1

̂∆TB10Y St = 0.12
(0.06)

− 0.00
(0.07)

∆TB3MSt−1 − 0.07
(0.04)

∆TB3MSt−2

+ 0.23
(0.10)

∆TB10Y St−1 − 0.07
(0.07)

∆TB10Y St−2 − 0.09
(0.03)

ECTt−1.

The output produced by coeftest() shows that there is little evidence that
lagged values of the differenced interest series are useful for prediction. This
finding is more pronounced for the equation of the differenced series of the
3-month treasury bill rate, where the error correction term (the lagged term
spread) is not significantly different from zero at any common level of signif-
icance. However, for the differenced 10-years treasury bonds rate the error
correction term is statistically significant at 1% with an estimate of −0.09. This
can be interpreted as follows: although both interest rates are nonstationary,
their conintegrating relationship allows to predict the change in the 10-years
treasury bonds rate using the VECM. In particular, the negative estimate of
the coefficient on the error correction term indicates that there will be a nega-
tive change in the next period’s 10-years treasury bonds rate when the 10-years
treasury bonds rate is unusually high relative to the 3-month treasury bill rate
in the current period.

16.4 Volatility Clustering and Autoregressive
Conditional Heteroskedasticity

Financial time series often exhibit a behavior that is known as volatility cluster-
ing: the volatility changes over time and its degree shows a tendency to persist,
i.e., there are periods of low volatility and periods where volatility is high.
Econometricians call this autoregressive conditional heteroskedasticity. Condi-
tional heteroskedasticity is an interesting property because it can be exploited
for forecasting the variance of future periods.

As an example, we consider daily changes in the Whilshire 5000 stock index.
The data is available for download at the Federal Reserve Economic Data Base.

https://fred.stlouisfed.org/series/WILL5000INDFC
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For consistency with the book we download data from 1989-29-12 to 2013-12-31
(choosing this somewhat larger time span is necessary since later on we will be
working with daily changes of the series).

The following code chunk shows how to format the data and how to reproduce
Figure 16.3 of the book.

# import data on the Wilshire 5000 index
W5000 <- read.csv2("data/Wilshire5000.csv",

stringsAsFactors = F,
header = T,
sep = ",",
na.strings = ".")

# transform the columns
W5000$DATE <- as.Date(W5000$DATE)
W5000$WILL5000INDFC <- as.numeric(W5000$WILL5000INDFC)

# remove NAs
W5000 <- na.omit(W5000)

# compute daily percentage changes
W5000_PC <- data.frame("Date" = W5000$DATE,

"Value" = as.numeric(Delt(W5000$WILL5000INDFC) * 100))
W5000_PC <- na.omit(W5000_PC)

# plot percentage changes
plot(W5000_PC,

ylab = "Percent",
main = "Daily Percentage Changes",
type="l",
col = "steelblue",
lwd = 0.5)

# add horizontal line at y = 0
abline(0, 0)

The series of daily percentage changes in the Wilshire index seems to randomly
fluctuate around zero, meaning there is little autocorrelation. This is confirmed
by a plot of the sample autocorrelation function.

# plot sample autocorrelation of daily percentage changes
acf(W5000_PC$Value, main = "Wilshire 5000 Series")

In Figure 16.2 we see that autocorrelations are rather weak so that it is difficult
to predict future outcomes using, e.g., an AR model.
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Figure 16.1: Daily Percentage Returns in the Wilshire 5000 Indrx

However, there is visual evidence in 16.1 that the series of returns exhibits
conditional heteroskedasticity since we observe volatility clustering. For some
applications it is useful to measure and forecast these patterns. This can be
done using models which assume that the volatility can be described by an
autoregressive process.

ARCH and GARCH Models

Consider
Yt = β0 + β1Yt−1 + γ1Xt−1 + ut,

an ADL(1,1) regression model. The econometrician Robert Engle (1982) pro-
posed to model σ2

t = V ar(ut|ut−1, ut−2, . . .), the conditional variance of the
error ut given its past, by an order p distributed lag model,

σ2
t = α0 + α1u

2
t−1 + α2u

2
t−2 + · · ·+ αpu

2
t−p, (16.1)

called the autoregressive conditional heteroskedasticity (ARCH) model of order
p, or short ARCH(p).2 We assume α0 > 0 and α1, . . . , αp ≥ 0 to ensure a
positive variance σ2

t > 0. The general idea is apparent from the model structure:
positive coefficients α0, α1, . . . , αp imply that recent large squared errors lead to
a large variance, and thus large squared errors, in the current period.

The generalized ARCH (GARCH) model, developed by Tim Bollerslev (1986),
is an extension of the ARCH model, where σ2

t is allowed to depend on its own
lags and lags of the squared error term. The GARCH(p,q) model is given by

σ2
t = α0 + α1u

2
t−1 + α2u

2
t−2 + · · ·+ αpu

2
t−p + φ1σ

2
t−1 + · · ·+ φpσ

2
t−q. (16.2)

2Although we introduce the ARCH model as a component in an ADL(1,1) model, it can
be used for modelling the conditional zero-mean error term of any time series model.
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Figure 16.2: Autocorrelation in Daily Price Changes of W5000 Index

The GARCH model is an ADL(p,q) model and thus can provide more parsimo-
nious parameterizations than the ARCH model (see the discussion in Appendix
15.2 of the book).

Application to Stock Price Volatility

Maximum likelihood estimates of ARCH and GARCH models are efficient and
have normal distributions in large samples, such that the usual methods for
conducting inference about the unknown parameters can be applied. The R
package fGarch is a collection of functions for analyzing and modelling the het-
eroskedastic behavior in time series models. The following application repro-
duces the results presented in Chapter 16.5 of the book by means of the function
garchFit(). This function is somewhat sophisticated. It allows for different
specifications of the optimization procedure, different error distributions and
much more (use ?GarchFit for a detailed description of the arguments). In
particular, the reported standard errors reported by garchFit() are robust.

The GARCH(1,1) model of daily changes in the Wilshire 5000 index we estimate
is given by

Rt =β0 + ut , ut ∼ N (0, σ2
t ), (16.3)

σ2
t =α0 + α1u

2
t−1 + φ1σ

2
t−1 (16.4)

where Rt is the percentage change in period t. β0, α0, α1 and φ1 are unknown
coefficients and ut is an error term with conditional mean zero. We do not
include any lagged predictors in the equation of Rt because the daily changes in
the Wilshire 5000 index reflect daily stock returns which are essentially unpre-
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dictable. Note that ut is assumed to be normally distributed and the variance
σ2
t depends on t as it follows the GARCH(1,1) recursion (16.4).

It is straightforward to estimate this model using garchFit().

# estimate GARCH(1,1) model of daily percentage changes
GARCH_Wilshire <- garchFit(data = W5000_PC$Value, trace = F)

We obtain

R̂t = 0.068
(0.010)

, (16.5)

σ̂2
t = 0.011

(0.002)
+ 0.081

(0.007)
u2
t−1 + 0.909

(0.008)
σ2
t−1, (16.6)

so the coefficients on u2
t−1 and σ2

t−1 are statistically significant at any common
level of significance. One can show that the persistence of movements in σ2

t is
determined by the sum of both coefficients, which is 0.99 here. This indicates
that movements in the conditional variance are highly persistent, implying long-
lasting periods of high volatility which is consistent with the visual evidence for
volatility clustering presented above.

The estimated conditional variance σ̂2
t can be computed by plugging the

residuals from (16.5) into equation (16.6). This is performed automatically
by garchFit(), so to obtain the estimated conditional standard deviations
σ̂t we only have to read out the values from GARCH_Wilshire by appending
\@sigma.t.

Using the σ̂t we plot bands of ± one conditional standard deviation along with
deviations of the series of daily percentage changes in the Wilshire 5000 index
from its mean. The following code chunk reproduces Figure 16.4 of the book.

# compute deviations of the percentage changes from their mean
dev_mean_W5000_PC <- W5000_PC$Value - GARCH_Wilshire@fit$coef[1]

# plot deviation of percentage changes from mean
plot(W5000_PC$Date, dev_mean_W5000_PC,

type = "l",
col = "steelblue",
ylab = "Percent",
xlab = "Date",
main = "Estimated Bands of +- One Conditional Standard Deviation",
lwd = 0.2)

# add horizontal line at y = 0
abline(0, 0)

# add GARCH(1,1) confidence bands (one standard deviation) to the plot
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lines(W5000_PC$Date,
GARCH_Wilshire@fit$coef[1] + GARCH_Wilshire@sigma.t,
col = "darkred",
lwd = 0.5)

lines(W5000_PC$Date,
GARCH_Wilshire@fit$coef[1] - GARCH_Wilshire@sigma.t,
col = "darkred",
lwd = 0.5)
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The bands of the estimated conditional standard deviations track the observed
heteroskedasticity in the series of daily changes of the Wilshire 5000 index quite
well. This is useful for quantifying the time-varying volatility and the resulting
risk for investors holding stocks summarized by the index. Furthermore, this
GARCH model may also be used to produce forecast intervals whose widths
depend on the volatility of the most recent periods.

Summary

• We have discussed how vector autoregressions are conveniently estimated
and used for forecasting in R by means of functions from the vars package.

• The package urca supplies advanced methods for unit root and cointegra-
tion analysis like the DF-GLS and the EG-ADF tests. In an application
we have found evidence that 3-months and 10-year interest rates have a
common stochastic trend (that is, they are cointegrated) and thus can be
modeled using a vector error correction model.

• Furthermore, we have introduced the concept of volatility clustering and
demonstrated how the function garchFit() from the package fGarch can
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be employed to estimate a GARCH(1,1) model of the conditional het-
eroskedasticity inherent to returns of the Wilshire 5000 stock index.
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