
https://www.halvorsen.blog	

https://www.halvorsen.blog/documents/technology/database/	 	

	

	

	

	

Introduction	to	Database	
Systems	

Hans-Petter	Halvorsen	

	

	

	

Introduction	to	Database	
Systems	

	

Hans-Petter	Halvorsen	

Copyright	©	2017	
	

E-Mail:	hans.p.halvorsen@usn.no	 	

Web:	https://www.halvorsen.blog	 	

	

https://www.halvorsen.blog	

	

	

Preface	
This	document	explains	the	basic	concepts	of	a	database	system	and	how	to	communicate	
with	a	database	system.	

The	main	focus	in	this	document	is	on	relational	databases	and	Microsoft	SQL	Server.	

	

For	more	information	about	Databases,	visit	my	Blog:	 	

https://www.halvorsen.blog	

	

Some	text	in	this	document	is	based	on	text	from	www.wikipedia.org.	

	

	

iv	

	

Table	of	Contents	
Preface	..	3	

Table	of	Contents	...	iv	

1	 Database	Systems	...	1	

1.1	 RDBMS	Components	..	1	

1.2	 Data	warehouse	...	2	

1.3	 Relational	Database	..	2	

1.4	 Real-time	databases	...	2	

1.5	 NoSQL	Databases	..	3	

1.6	 Database	Management	Systems	..	3	

1.7	 MDAC	..	4	

1.7.1	 ODBC	..	4	

1.7.2	 OLE	DB	...	4	

1.7.3	 ADO	(ActiveX	Data	Objects)	...	4	

2	 Relational	Databases	...	5	

2.1	 Tables	...	5	

2.2	 Unique	Keys	and	Primary	Key	...	6	

2.3	 Foreign	Key	...	7	

2.4	 Views	..	8	

2.5	 Functions	..	8	

2.6	 Stored	Procedures	..	9	

2.7	 Triggers	...	9	

3	 Structured	Query	Language	(SQL)	...	10	

v	 	 Table	of	Contents	

Tutorial: Introduction to Database Systems

3.1	 Queries	...	10	

3.2	 Data	Manipulation	..	11	

3.3	 Data	Definition	...	12	

3.4	 Data	Types	..	13	

3.4.1	 Character	Strings	..	13	

3.4.2	 Bit	Strings	...	13	

3.4.3	 Numbers	..	13	

3.4.4	 Date	and	Time	..	13	

4	 Database	Modelling	..	14	

4.1	 ER	Diagram	...	14	

4.2	 Microsoft	Visio	..	15	

4.3	 ERwin	..	17	

5	 Microsoft	SQL	Server	...	19	

5.1	 Introduction	..	19	

5.2	 SQL	Server	Express	...	19	

5.3	 SQL	Server	Management	Studio	...	20	

5.4	 Create	a	New	Database	..	20	

5.5	 Backup/Restore	..	22	

6	 Microsoft	Office	Access	...	24	

6.1	 Introduction	..	24	

6.2	 Example	Database	..	24	

7	 Creating	and	Using	Tables	...	27	

8	 Creating	and	Using	Views	..	30	

9	 Creating	and	using	Stored	Procedures	..	31	

10	 Creating	and	Using	Triggers	..	33	

11	 Creating	and	Using	Functions	..	35	

vi	 	 Table	of	Contents	

Tutorial: Introduction to Database Systems

	

	

1	

		

1 Database	Systems	
A	database	is	an	integrated	collection	of	logically	related	records	or	files	consolidated	into	a	
common	pool	that	provides	data	for	one	or	more	multiple	uses.	

One	way	of	classifying	databases	involves	the	type	of	content,	for	example:	bibliographic,	
full-text,	numeric,	and	image.	Other	classification	methods	start	from	examining	database	
models	or	database	architectures.	

The	data	in	a	database	is	organized	according	to	a	database	model.	The	relational	model	is	
the	most	common.	

A	Database	Management	System	(DBMS)	consists	of	software	that	organizes	the	storage	of	
data.	A	DBMS	controls	the	creation,	maintenance,	and	use	of	the	database	storage	
structures	of	organizations	and	of	their	end	users.	It	allows	organizations	to	place	control	of	
organization-wide	database	development	in	the	hands	of	Database	Administrators	(DBAs)	
and	other	specialists.	In	large	systems,	a	DBMS	allows	users	and	other	software	to	store	and	
retrieve	data	in	a	structured	way.	

Database	management	systems	are	usually	categorized	according	to	the	database	model	
that	they	support,	such	as	the	network,	relational	or	object	model.	The	model	tends	to	
determine	the	query	languages	that	are	available	to	access	the	database.	One	commonly	
used	query	language	for	the	relational	database	is	SQL,	although	SQL	syntax	and	function	
can	vary	from	one	DBMS	to	another.	A	great	deal	of	the	internal	engineering	of	a	DBMS	is	
independent	of	the	data	model,	and	is	concerned	with	managing	factors	such	as	
performance,	concurrency,	integrity,	and	recovery	from	hardware	failures.	In	these	areas	
there	are	large	differences	between	products.	

1.1 RDBMS	Components	
A	Relational	Database	Management	System	(DBMS)	consists	of	the	following	components:	

• Interface	drivers	-	A	user	or	application	program	initiates	either	schema	modification	
or	content	modification.	These	drivers	are	built	on	top	of	SQL.	They	provide	methods	
to	prepare	statements,	execute	statements,	fetch	results,	etc.	An	important	example	
is	the	ODBC	driver.	 	

2	 	 Database	Systems	 	

Tutorial: Introduction to Database Systems

• SQL	engine	-	This	component	interprets	and	executes	the	SQL	query.	It	comprises	
three	major	components	(compiler,	optimizer,	and	execution	engine).	 	

• Transaction	engine	-	Transactions	are	sequences	of	operations	that	read	or	write	
database	elements,	which	are	grouped	together.	 	

• Relational	engine	-	Relational	objects	such	as	Table,	Index,	and	Referential	integrity	
constraints	are	implemented	in	this	component.	 	

• Storage	engine	-	This	component	stores	and	retrieves	data	records.	It	also	provides	a	
mechanism	to	store	metadata	and	control	information	such	as	undo	logs,	redo	logs,	
lock	tables,	etc.	

1.2 Data	warehouse	
A	data	warehouse	stores	data	from	current	and	previous	years	—	data	extracted	from	the	
various	operational	databases	of	an	organization.	It	becomes	the	central	source	of	data	that	
has	been	screened,	edited,	standardized	and	integrated	so	that	it	can	be	used	by	managers	
and	other	end-user	professionals	throughout	an	organization.	

1.3 Relational	Database	
A	relational	database	matches	data	using	common	characteristics	found	within	the	data	set.	
The	resulting	groups	of	data	are	organized	and	are	much	easier	for	people	to	understand.	

For	example,	a	data	set	containing	all	the	real-estate	transactions	in	a	town	can	be	grouped	
by	the	year	the	transaction	occurred;	or	it	can	be	grouped	by	the	sale	price	of	the	
transaction;	or	it	can	be	grouped	by	the	buyer's	last	name;	and	so	on.	

Such	a	grouping	uses	the	relational	model	(a	technical	term	for	this	is	schema).	Hence,	such	
a	database	is	called	a	"relational	database."	

The	software	used	to	do	this	grouping	is	called	a	relational	database	management	system.	
The	term	"relational	database"	often	refers	to	this	type	of	software.	

Relational	databases	are	currently	the	predominant	choice	in	storing	financial	records,	
manufacturing	and	logistical	information,	personnel	data	and	much	more.	

Strictly,	a	relational	database	is	a	collection	of	relations	(frequently	called	tables).	

1.4 Real-time	databases	

3	 	 Database	Systems	 	

Tutorial: Introduction to Database Systems

A	real-time	database	is	a	processing	system	designed	to	handle	workloads	whose	state	may	
change	constantly.	This	differs	from	traditional	databases	containing	persistent	data,	mostly	
unaffected	by	time.	For	example,	a	stock	market	changes	rapidly	and	dynamically.	Real-time	
processing	means	that	a	transaction	is	processed	fast	enough	for	the	result	to	come	back	
and	be	acted	on	right	away.	Real-time	databases	are	useful	for	accounting,	banking,	law,	
medical	records,	multi-media,	process	control,	reservation	systems,	and	scientific	data	
analysis.	As	computers	increase	in	power	and	can	store	more	data,	real-time	databases	
become	integrated	into	society	and	are	employed	in	many	applications	

1.5 NoSQL	Databases	
The	next	generation	of	database	systems	is	known	as	NoSQL	databases	and	document-
oriented	databases.	NoSQL	databases	are	often	very	fast,	do	not	require	fixed	table	
schemas.	

Examples	of	NoSQL	systems:	MongoDB	and	Oracle	NoSQL	Database.	

	

1.6 Database	Management	Systems	
There	are	Database	Management	Systems	(DBMS),	such	as:	

• Microsoft	SQL	Server	
• Oracle	
• Sybase	
• dBase	
• Microsoft	Access	
• MySQL	from	Sun	Microsystems	(Oracle)	
• DB2	from	IBM	
• etc.	

This	document	will	focus	on	Microsoft	Access	and	Microsoft	SQL	Server.	

4	 	 Database	Systems	 	

Tutorial: Introduction to Database Systems

1.7 MDAC	
The	Microsoft	Data	Access	Components	(MDAC)	is	the	framework	that	makes	it	possible	to	
connect	and	communicate	with	the	database.	MDAC	includes	the	following	components:	

• ODBC	(Open	Database	Connectivity)	
• OLE	DB	
• ADO	(ActiveX	Data	Objects)	 	

MDAC	also	installs	several	data	providers	you	can	use	to	open	a	connection	to	a	specific	data	
source,	such	as	an	MS	Access	database.	

1.7.1 ODBC	

Open	Database	Connectivity	(ODBC)	is	a	native	interface	that	is	accessed	through	a	
programming	language	that	can	make	calls	into	a	native	library.	In	MDAC	this	interface	is	
defined	as	a	DLL.	A	separate	module	or	driver	is	needed	for	each	database	that	must	be	
accessed.	 	

1.7.2 OLE	DB	

OLE	allows	MDAC	applications	access	to	different	types	of	data	stores	in	a	uniform	manner.	
Microsoft	has	used	this	technology	to	separate	the	application	from	the	data	store	that	it	
needs	to	access.	This	was	done	because	different	applications	need	access	to	different	types	
and	sources	of	data,	and	do	not	necessarily	need	to	know	how	to	access	technology-specific	
functionality.	The	technology	is	conceptually	divided	into	consumers	and	providers.	The	
consumers	are	the	applications	that	need	access	to	the	data,	and	the	provider	is	the	
software	component	that	exposes	an	OLE	DB	interface	through	the	use	of	the	Component	
Object	Model	(or	COM).	

1.7.3 ADO	(ActiveX	Data	Objects)	 	

ActiveX	Data	Objects	(ADO)	is	a	high	level	programming	interface	to	OLE	DB.	It	uses	a	
hierarchical	object	model	to	allow	applications	to	programmatically	create,	retrieve,	update	
and	delete	data	from	sources	supported	by	OLE	DB.	ADO	consists	of	a	series	of	hierarchical	
COM-based	objects	and	collections,	an	object	that	acts	as	a	container	of	many	other	objects.	
A	programmer	can	directly	access	ADO	objects	to	manipulate	data,	or	can	send	an	SQL	query	
to	the	database	via	several	ADO	mechanisms.	

	

5	

		

2 Relational	Databases	
A	relational	database	matches	data	using	common	characteristics	found	within	the	data	set.	
The	resulting	groups	of	data	are	organized	and	are	much	easier	for	people	to	understand.	

For	example,	a	data	set	containing	all	the	real-estate	transactions	in	a	town	can	be	grouped	
by	the	year	the	transaction	occurred;	or	it	can	be	grouped	by	the	sale	price	of	the	
transaction;	or	it	can	be	grouped	by	the	buyer's	last	name;	and	so	on.	

Such	a	grouping	uses	the	relational	model	(a	technical	term	for	this	is	schema).	Hence,	such	
a	database	is	called	a	"relational	database."	

The	software	used	to	do	this	grouping	is	called	a	relational	database	management	system.	
The	term	"relational	database"	often	refers	to	this	type	of	software.	

Relational	databases	are	currently	the	predominant	choice	in	storing	financial	records,	
manufacturing	and	logistical	information,	personnel	data	and	much	more.	

2.1 Tables	
The	basic	units	in	a	database	are	tables	and	the	relationship	between	them.	Strictly,	a	
relational	database	is	a	collection	of	relations	(frequently	called	tables).	

Below	we	see	how	a	relationship	between	two	tables	are	defined	using	Primary	Keys	and	
Foreign	Keys.	

	

6	 	 Relational	Databases	 	

Tutorial: Introduction to Database Systems

2.2 Unique	Keys	and	Primary	Key	
In	relational	database	design,	a	unique	key	or	primary	key	is	a	candidate	key	to	uniquely	
identify	each	row	in	a	table.	A	unique	key	or	primary	key	comprises	a	single	column	or	set	of	
columns.	No	two	distinct	rows	in	a	table	can	have	the	same	value	(or	combination	of	values)	
in	those	columns.	Depending	on	its	design,	a	table	may	have	arbitrarily	many	unique	keys	
but	at	most	one	primary	key.	

A	unique	key	must	uniquely	identify	all	possible	rows	that	exist	in	a	table	and	not	only	the	
currently	existing	rows.	Examples	of	unique	keys	are	Social	Security	numbers	or	ISBNs.	 	

A	primary	key	is	a	special	case	of	unique	keys.	The	major	difference	is	that	for	unique	keys	
the	implicit	NOT	NULL	constraint	is	not	automatically	enforced,	while	for	primary	keys	it	is	
enforced.	Thus,	the	values	in	unique	key	columns	may	or	may	not	be	NULL.	Another	
difference	is	that	primary	keys	must	be	defined	using	another	syntax.	

Primary	keys	are	defined	with	the	following	syntax:	

CREATE TABLE table_name
(
 id_col INT,
 col2 CHARACTER VARYING(20),
 ...
 CONSTRAINT tab_pk PRIMARY KEY(id_col),
 ...
)

If	the	primary	key	consists	only	of	a	single	column,	the	column	can	be	marked	as	such	using	
the	following	syntax:	

CREATE TABLE table_name
(
 id_col INT PRIMARY KEY,
 col2 CHARACTER VARYING(20),
 ...
)

The	definition	of	unique	keys	is	syntactically	very	similar	to	primary	keys.	

Likewise,	unique	keys	can	be	defined	as	part	of	the	CREATE	TABLE	SQL	statement.	

CREATE TABLE table_name
(
 id_col INT,
 col2 CHARACTER VARYING(20),
 key_col SMALLINT,
 ...
 CONSTRAINT key_unique UNIQUE(key_col),
 ...
)

Or	if	the	unique	key	consists	only	of	a	single	column,	the	column	can	be	marked	as	such	
using	the	following	syntax:	

CREATE TABLE table_name
(

7	 	 Relational	Databases	 	

Tutorial: Introduction to Database Systems

 id_col INT PRIMARY KEY,
 col2 CHARACTER VARYING(20),
 ...
 key_col SMALLINT UNIQUE,
 ...
)

2.3 Foreign	Key	
In	the	context	of	relational	databases,	a	foreign	key	is	a	referential	constraint	between	two	
tables.	The	foreign	key	identifies	a	column	or	a	set	of	columns	in	one	table	that	refers	to	a	
column	or	set	of	columns	in	another	table.	The	columns	in	the	referencing	table	must	be	the	
primary	key	or	other	candidate	key	in	the	referenced	table.	The	values	in	one	row	of	the	
referencing	columns	must	occur	in	a	single	row	in	the	referenced	table.	Thus,	a	row	in	the	
referencing	table	cannot	contain	values	that	don't	exist	in	the	referenced	table.	This	way	
references	can	be	made	to	link	information	together	and	it	is	an	essential	part	of	database	
normalization.	Multiple	rows	in	the	referencing	table	may	refer	to	the	same	row	in	the	
referenced	table.	Most	of	the	time,	it	reflects	the	one	(master	table,	or	referenced	table)	to	
many	(child	table,	or	referencing	table)	relationship.	

The	referencing	and	referenced	table	may	be	the	same	table,	i.e.	the	foreign	key	refers	back	
to	the	same	table.	Such	a	foreign	key	is	known	as	self-referencing	or	recursive	foreign	key.	

A	table	may	have	multiple	foreign	keys,	and	each	foreign	key	can	have	a	different	referenced	
table.	Each	foreign	key	is	enforced	independently	by	the	database	system.	Therefore,	
cascading	relationships	between	tables	can	be	established	using	foreign	keys.	
	

Improper	foreign	key/primary	key	relationships	or	not	enforcing	those	relationships	are	
often	the	source	of	many	database	and	data	modeling	problems.	

Foreign	keys	can	be	defined	as	part	of	the	CREATE	TABLE	SQL	statement.	

CREATE TABLE table_name
(
 id INTEGER PRIMARY KEY,
 col2 CHARACTER VARYING(20),
 col3 INTEGER,
 ...
 CONSTRAINT col3_fk FOREIGN KEY(col3)
 REFERENCES other_table(key_col),
 ...
)

If	the	foreign	key	is	a	single	column	only,	the	column	can	be	marked	as	such	using	the	
following	syntax:	

CREATE TABLE table_name
(
 id INTEGER PRIMARY KEY,
 col2 CHARACTER VARYING(20),
 col3 INTEGER REFERENCES other_table(column_name),

8	 	 Relational	Databases	 	

Tutorial: Introduction to Database Systems

 ...
)

2.4 Views	
In	database	theory,	a	view	consists	of	a	stored	query	accessible	as	a	virtual	table	composed	
of	the	result	set	of	a	query.	Unlike	ordinary	tables	in	a	relational	database,	a	view	does	not	
form	part	of	the	physical	schema:	it	is	a	dynamic,	virtual	table	computed	or	collated	from	
data	in	the	database.	Changing	the	data	in	a	table	alters	the	data	shown	in	subsequent	
invocations	of	the	view.	

Views	can	provide	advantages	over	tables:	

• Views	can	represent	a	subset	of	the	data	contained	in	a	table	 	
• Views	can	join	and	simplify	multiple	tables	into	a	single	virtual	table	 	
• Views	can	act	as	aggregated	tables,	where	the	database	engine	aggregates	data	

(sum,	average	etc)	and	presents	the	calculated	results	as	part	of	the	data	 	
• Views	can	hide	the	complexity	of	data;	for	example	a	view	could	appear	as	Sales2000	

or	Sales2001,	transparently	partitioning	the	actual	underlying	table	 	
• Views	take	very	little	space	to	store;	the	database	contains	only	the	definition	of	a	

view,	not	a	copy	of	all	the	data	it	presents	 	
• Views	can	limit	the	degree	of	exposure	of	a	table	or	tables	to	the	outer	world	

Syntax:	

CREATE VIEW <ViewName>
AS
…

2.5 Functions	
In	SQL	databases,	a	user-defined	function	provides	a	mechanism	for	extending	the	
functionality	of	the	database	server	by	adding	a	function	that	can	be	evaluated	in	SQL	
statements.	The	SQL	standard	distinguishes	between	scalar	and	table	functions.	A	scalar	
function	returns	only	a	single	value	(or	NULL),	whereas	a	table	function	returns	a	(relational)	
table	comprising	zero	or	more	rows,	each	row	with	one	or	more	columns.	

User-defined	functions	in	SQL	are	declared	using	the	CREATE	FUNCTION	statement.	

Syntax:	

CREATE FUNCTION <FunctionName>
 (@Parameter1 <datatype>,
 @ Parameter2 <datatype>,
 …)

9	 	 Relational	Databases	 	

Tutorial: Introduction to Database Systems

RETURNS <datatype>
AS
…

2.6 Stored	Procedures	
A	stored	procedure	is	executable	code	that	is	associated	with,	and	generally	stored	in,	the	
database.	Stored	procedures	usually	collect	and	customize	common	operations,	like	
inserting	a	tuple	into	a	relation,	gathering	statistical	information	about	usage	patterns,	or	
encapsulating	complex	business	logic	and	calculations.	Frequently	they	are	used	as	an	
application	programming	interface	(API)	for	security	or	simplicity.	

Stored	procedures	are	not	part	of	the	relational	database	model,	but	all	commercial	
implementations	include	them.	

Stored	procedures	are	called	or	used	with	the	following	syntax:	

CALL procedure(…)

or	

EXECUTE procedure(…)

Stored	procedures	can	return	result	sets,	i.e.	the	results	of	a	SELECT	statement.	Such	result	
sets	can	be	processed	using	cursors	by	other	stored	procedures	by	associating	a	result	set	
locator,	or	by	applications.	Stored	procedures	may	also	contain	declared	variables	for	
processing	data	and	cursors	that	allow	it	to	loop	through	multiple	rows	in	a	table.	The	
standard	Structured	Query	Language	provides	IF,	WHILE,	LOOP,	REPEAT,	CASE	statements,	
and	more.	Stored	procedures	can	receive	variables,	return	results	or	modify	variables	and	
return	them,	depending	on	how	and	where	the	variable	is	declared.	

2.7 Triggers	
A	database	trigger	is	procedural	code	that	is	automatically	executed	in	response	to	certain	
events	on	a	particular	table	or	view	in	a	database.	The	trigger	is	mostly	used	for	keeping	the	
integrity	of	the	information	on	the	database.	For	example,	when	a	new	record	(representing	
a	new	worker)	added	to	the	employees	table,	new	records	should	be	created	also	in	the	
tables	of	the	taxes,	vacations,	and	salaries.	

The	syntax	is	as	follows:	

CREATE TRIGGER <TriggerName> ON <TableName>
FOR INSERT, UPDATE, DELETE
AS
…

	

10	

	

3 Structured	Query	Language	
(SQL)	

SQL	(Structured	Query	Language)	is	a	database	computer	language	designed	for	managing	
data	in	relational	database	management	systems	(RDBMS).	

This	document	gives	only	a	very	brief	overview	of	SQL,	for	more	in-depth	overview	of	SQL.	
Please	refer	to	the	tutorial	“Structured	Query	Language”	located	on	my	web	site:	

https://www.halvorsen.blog	

3.1 Queries	
The	most	common	operation	in	SQL	is	the	query,	which	is	performed	with	the	declarative	
SELECT	statement.	SELECT	retrieves	data	from	one	or	more	tables,	or	expressions.	Standard	
SELECT	statements	have	no	persistent	effects	on	the	database.	

Queries	allow	the	user	to	describe	desired	data,	leaving	the	database	management	system	
(DBMS)	responsible	for	planning,	optimizing,	and	performing	the	physical	operations	
necessary	to	produce	that	result	as	it	chooses.	

A	query	includes	a	list	of	columns	to	be	included	in	the	final	result	immediately	following	the	
SELECT	keyword.	An	asterisk	("*")	can	also	be	used	to	specify	that	the	query	should	return	all	
columns	of	the	queried	tables.	SELECT	is	the	most	complex	statement	in	SQL,	with	optional	
keywords	and	clauses	that	include:	

• The	FROM	clause	which	indicates	the	table(s)	from	which	data	is	to	be	retrieved.	The	
FROM	clause	can	include	optional	JOIN	subclauses	to	specify	the	rules	for	joining	
tables.	 	

• The	WHERE	clause	includes	a	comparison	predicate,	which	restricts	the	rows	
returned	by	the	query.	The	WHERE	clause	eliminates	all	rows	from	the	result	set	for	
which	the	comparison	predicate	does	not	evaluate	to	True.	 	

• The	GROUP	BY	clause	is	used	to	project	rows	having	common	values	into	a	smaller	
set	of	rows.	GROUP	BY	is	often	used	in	conjunction	with	SQL	aggregation	functions	or	

11	 	 Structured	Query	Language	(SQL)	 	

Tutorial: Introduction to Database Systems

to	eliminate	duplicate	rows	from	a	result	set.	The	WHERE	clause	is	applied	before	the	
GROUP	BY	clause.	 	

• The	HAVING	clause	includes	a	predicate	used	to	filter	rows	resulting	from	the	GROUP	
BY	clause.	Because	it	acts	on	the	results	of	the	GROUP	BY	clause,	aggregation	
functions	can	be	used	in	the	HAVING	clause	predicate.	 	

• The	ORDER	BY	clause	identifies	which	columns	are	used	to	sort	the	resulting	data,	
and	in	which	direction	they	should	be	sorted	(options	are	ascending	or	descending).	
Without	an	ORDER	BY	clause,	the	order	of	rows	returned	by	an	SQL	query	is	
undefined.	

	 	

Example:	

The	following	is	an	example	of	a	SELECT	query	that	returns	a	list	of	expensive	books.	The	
query	retrieves	all	rows	from	the	Book	table	in	which	the	price	column	contains	a	value	
greater	than	100.00.	The	result	is	sorted	in	ascending	order	by	title.	The	asterisk	(*)	in	the	
select	list	indicates	that	all	columns	of	the	Book	table	should	be	included	in	the	result	set.	

SELECT *
FROM Book
WHERE price > 100.00
ORDER BY title;

The	example	below	demonstrates	a	query	of	multiple	tables,	grouping,	and	aggregation,	by	
returning	a	list	of	books	and	the	number	of	authors	associated	with	each	book.	

SELECT Book.title,count(*) AS Authors
FROM Book
JOIN Book_author ON Book.isbn = Book_author.isbn
GROUP BY Book.title

[End	of	Example]	

3.2 Data	Manipulation	
The	Data	Manipulation	Language	(DML)	is	the	subset	of	SQL	used	to	add,	update	and	delete	
data.	

The	acronym	CRUD	refers	to	all	of	the	major	functions	that	need	to	be	implemented	in	a	
relational	database	application	to	consider	it	complete.	Each	letter	in	the	acronym	can	be	
mapped	to	a	standard	SQL	statement:	

Operation	 SQL	

Create	 INSERT	 	

12	 	 Structured	Query	Language	(SQL)	 	

Tutorial: Introduction to Database Systems

Read	(Retrieve)	 SELECT	 	

Update	 UPDATE	 	

Delete	(Destroy)	 DELETE	

Example:	

INSERT:	

INSERT	adds	rows	to	an	existing	table,	e.g.,:	 	

INSERT INTO My_table field1, field2, field3)
VALUES ('test', 'N', NULL)

UPDATE:	

UPDATE	modifies	a	set	of	existing	table	rows,	e.g.,:	 	

UPDATE My_table
SET field1 = 'updated value'
WHERE field2 = 'N'

DELETE:	

DELETE	removes	existing	rows	from	a	table,	e.g.,:	 	

DELETE FROM My_table
WHERE field2 = 'N'

[End	of	Example]	

3.3 Data	Definition	
The	Data	Definition	Language	(DDL)	manages	table	and	index	structure.	The	most	basic	
items	of	DDL	are	the	CREATE,	ALTER,	RENAME	and	DROP	statements:	

• CREATE	creates	an	object	(a	table,	for	example)	in	the	database.	 	
• DROP	deletes	an	object	in	the	database,	usually	irretrievably.	 	
• ALTER	modifies	the	structure	an	existing	object	in	various	ways—for	example,	adding	

a	column	to	an	existing	table.	 	

Example:	

CREATE:	

Create	a	Database	Table:	

CREATE TABLE My_table
(
 my_field1 INT,

13	 	 Structured	Query	Language	(SQL)	 	

Tutorial: Introduction to Database Systems

 my_field2 VARCHAR(50),
 my_field3 DATE NOT NULL,
 PRIMARY KEY (my_field1)
)

[End	of	Example]	

3.4 Data	Types	
Each	column	in	an	SQL	table	declares	the	type(s)	that	column	may	contain.	ANSI	SQL	
includes	the	following	data	types.	

3.4.1 Character	Strings	

• CHARACTER(n)	or	CHAR(n)	—	fixed-width	n-character	string,	padded	with	spaces	as	
needed	 	

• CHARACTER	VARYING(n)	or	VARCHAR(n)	—	variable-width	string	with	a	maximum	
size	of	n	characters	 	

• NATIONAL	CHARACTER(n)	or	NCHAR(n)	—	fixed	width	string	supporting	an	
international	character	set	 	

• NATIONAL	CHARACTER	VARYING(n)	or	NVARCHAR(n)	—	variable-width	NCHAR	string	 	

3.4.2 Bit	Strings	

• BIT(n)	—	an	array	of	n	bits	 	
• BIT	VARYING(n)	—	an	array	of	up	to	n	bits	 	

3.4.3 Numbers	

• INTEGER	and	SMALLINT	 	
• FLOAT,	REAL	and	DOUBLE	PRECISION	 	
• NUMERIC(precision,	scale)	or	DECIMAL(precision,	scale)	 	

3.4.4 Date	and	Time	

• DATE	 	
• TIME	 	
• TIMESTAMP	 	
• INTERVAL	

	

14	

	

4 Database	Modelling	

4.1 ER	Diagram	
In	software	engineering,	an	Entity-Relationship	Model	(ERM)	is	an	abstract	and	conceptual	
representation	of	data.	Entity-relationship	modeling	is	a	database	modeling	method,	used	to	
produce	a	type	of	conceptual	schema	or	semantic	data	model	of	a	system,	often	a	relational	
database,	and	its	requirements	in	a	top-down	fashion.	

Diagrams	created	using	this	process	are	called	entity-relationship	diagrams,	or	ER	diagrams	
or	ERDs	for	short.	

	

There	are	many	ER	diagramming	tools.	Some	of	the	proprietary	ER	diagramming	tools	are	
ERwin,	Enterprise	Architect	and	Microsoft	Visio.	 	

Microsoft	SQL	Server	has	also	a	built-in	tool	for	creating	Database	Diagrams.	

15	 	 Database	Modelling	 	

Tutorial: Introduction to Database Systems

	

4.2 Microsoft	Visio	
Microsoft	Visio	is	a	diagramming	program	for	creating	different	kinds	of	diagrams.	Visio	have	
a	template	for	creating	Database	Model	Diagrams.	

	

	

16	 	 Database	Modelling	 	

Tutorial: Introduction to Database Systems

In	the	Database	menu	Visio	offers	lots	of	functionality	regarding	your	database	model.	

	

	

“Reverse	Engineering”	is	the	opposite	procedure,	i.e.,	extraction	of	a	database	schema	from	
an	existing	database	into	a	database	model	in	Microsoft	Visio.	

Example:	Database	Diagram	

Create	the	following	tables	in	an	ER	Diagram	using	MS	Visio.	

• CUSTOMER	
o CustomerId	(PK)	
o FirstName	
o LastName	
o Address	
o Phone	
o PostCode	
o PostAddress	

• PRODUCT	
o ProductId	(PK)	
o ProductName	
o ProductDescription	
o Price	
o ProductCode	

• ORDER	
o OrderId	(PK)	
o OrderNumber	
o OrderDescription	

17	 	 Database	Modelling	 	

Tutorial: Introduction to Database Systems

o CustomerId	(FK)	
• ORDER_DETAIL	

o OrderDetailId	(PK)	
o OrderId	(FK)	
o ProductId	(FK)	

The	Database	Diagram	becomes:	

	

[End	of	Example]	

4.3 ERwin	
ERwin	is	a	professional	database	modelling	tool.	A	Community	edition	is	also	available	for	
free.	The	Community	edition	is	limited	to	work	with	max	25	objects.	

Below	we	see	an	example	created	in	Erwin.	

With	Erwin	and	other	professional	database	modelling	tools	you	can	directly	import	the	
database	model	into	the	database	system	such	as	SQL	Server,	MySQL,	etc.	

18	 	 Database	Modelling	 	

Tutorial: Introduction to Database Systems

	

	

	

19	

	

5 Microsoft	SQL	Server	

5.1 Introduction	
Microsoft	SQL	Server	is	a	relational	model	database	server	produced	by	Microsoft.	Its	
primary	query	languages	are	T-SQL	and	ANSI	SQL.	

The	latest	version	is	Microsoft	SQL	Server	2014.	

Microsoft	SQL	Server	homepage:	www.microsoft.com/sqlserver	

The	Microsoft	SQL	Server	comes	in	different	versions,	such	as:	

• SQL	Server	Developer	Edition	
• SQL	Server	Enterprise	Edition	
• SQL	Server	Web	Edition	
• SQL	Server	Express	Edition	
• Etc.	

The	SQL	Server	Express	Edition	is	a	freely-downloadable	and	-distributable	version.	

5.2 SQL	Server	Express	
The	SQL	Server	Express	Edition	is	a	freely-downloadable	and	-distributable	version.	

However,	the	Express	edition	has	a	number	of	technical	restrictions	which	make	it	
undesirable	for	large-scale	deployments,	including:	

• Maximum	database	size	of	4	GB	per.	The	4	GB	limit	applies	per	database	(log	files	
excluded);	but	in	some	scenarios	users	can	access	more	data	through	the	use	of	
multiple	interconnected	databases.	 	

• Single	physical	CPU,	multiple	cores	 	
• 1	GB	of	RAM	(runs	on	any	size	RAM	system,	but	uses	only	1	GB)	

SQL	Server	Express	offers	a	GUI	tools	for	database	management	in	a	separate	download	and	
installation	package,	called	SQL	Server	Management	Studio	Express.	

	

20	 	 Microsoft	SQL	Server	 	

Tutorial: Introduction to Database Systems

5.3 SQL	Server	Management	Studio	
SQL	Server	Management	Studio	is	a	GUI	tool	included	with	SQL	Server	for	configuring,	
managing,	and	administering	all	components	within	Microsoft	SQL	Server.	The	tool	includes	
both	script	editors	and	graphical	tools	that	work	with	objects	and	features	of	the	server.	As	
mentioned	earlier,	version	of	SQL	Server	Management	Studio	is	also	available	for	SQL	Server	
Express	Edition,	for	which	it	is	known	as	SQL	Server	Management	Studio	Express.	

A	central	feature	of	SQL	Server	Management	Studio	is	the	Object	Explorer,	which	allows	the	
user	to	browse,	select,	and	act	upon	any	of	the	objects	within	the	server.	It	can	be	used	to	
visually	observe	and	analyze	query	plans	and	optimize	the	database	performance,	among	
others.	SQL	Server	Management	Studio	can	also	be	used	to	create	a	new	database,	alter	any	
existing	database	schema	by	adding	or	modifying	tables	and	indexes,	or	analyze	
performance.	It	includes	the	query	windows	which	provide	a	GUI	based	interface	to	write	
and	execute	queries.	

	

5.4 Create	a	New	Database	
It	is	quite	simple	to	create	a	new	database	in	Microsoft	SQL	Server.	Just	right-click	on	the	
“Databases”	node	and	select	“New	Database…”	

21	 	 Microsoft	SQL	Server	 	

Tutorial: Introduction to Database Systems

	

	

There	are	lots	of	settings	you	may	set	regarding	your	database,	but	the	only	information	you	
must	fill	in	is	the	name	of	your	database:	

22	 	 Microsoft	SQL	Server	 	

Tutorial: Introduction to Database Systems

	

5.5 Backup/Restore	
Database	Backup	and	Restore:	

	

	

23	 	 Microsoft	SQL	Server	 	

Tutorial: Introduction to Database Systems

	

	

	

	

24	

	

6 Microsoft	Office	Access	

6.1 Introduction	
Microsoft	Office	Access,	previously	known	as	Microsoft	Access,	is	a	relational	database	
management	system	from	Microsoft	that	combines	the	relational	Microsoft	Jet	Database	
Engine	with	a	graphical	user	interface	and	software	development	tools.	It	is	a	member	of	the	
Microsoft	Office	suite	of	applications	and	is	included	in	the	Professional	and	higher	versions	
for	Windows.	Access	stores	data	in	its	own	format	based	on	the	Access	Jet	Database	Engine.	

Microsoft	Access	is	used	by	programmers	and	non-programmers	to	create	their	own	simple	
database	solutions.	

Microsoft	Access	is	a	file	server-based	database.	Unlike	client-server	relational	database	
management	systems	(RDBMS),	e.g.,	Microsoft	SQL	Server,	Microsoft	Access	does	not	
implement	database	triggers,	stored	procedures,	or	transaction	logging.	All	database	tables,	
queries,	forms,	reports,	macros,	and	modules	are	stored	in	the	Access	Jet	database	as	a	
single	file.	This	makes	Microsoft	Access	useful	in	small	applications,	teaching,	etc.	because	it	
is	easy	to	move	from	one	computer	to	another.	

6.2 Example	Database	
I	will	present	an	example	database	in	Microsoft	Access	2007	which	will	be	used	in	some	of	
the	examples	and	exercises	in	this	document.	

The	database	consists	of	the	following	tables:	

• CUSTOMER	
o CustomerId	(PK)	
o FirstName	
o LastName	
o Address	
o Phone	
o PostCode	
o PostAddress	

• PRODUCT	

25	 	 Microsoft	Office	Access	 	

Tutorial: Introduction to Database Systems

o ProductId	(PK)	
o ProductName	
o ProductDescription	
o Price	
o ProductCode	

• ORDER	
o OrderId	(PK)	
o OrderNumber	
o OrderDescription	
o CustomerId	(FK)	

• ORDER_DETAIL	
o OrderDetailId	(PK)	
o OrderId	(FK)	
o ProductId	(FK)	

	

	

	

ODBC	Connection:	

Administrative	Tools	→	Data	Sources	(ODBC)	

26	 	 Microsoft	Office	Access	 	

Tutorial: Introduction to Database Systems

	

	

	

	

	

	

	

	

27	

	

7 Creating	and	Using	Tables	
The	SQL	syntax	for	creating	a	Table	is	as	follows:	

CREATE TABLE <TableName>
(
<ColumnName> <datatype>
…
)

The	SQL	syntax	for	inserting	Data	into	a	Table	is	as	follows:	

INSERT INTO <TableName> (<Column1>, <Column2>, …)
VALUES(<Data for Column1>, <Data for Column2>, …)

	

Example:	Insert	Data	into	Tables	

We	will	insert	some	data	into	our	tables:	

	

	

The	following	SQL	Query	inserts	some	example	data	into	these	tables:	

--CUSTOMER
INSERT INTO [CUSTOMER] ([FirstName],[LastName],[Address],[Phone],[PostCode],[PostAddress])
VALUES ('Per', 'Nilsen', 'Vipeveien 12', '12345678', '1234', 'Porsgrunn')
GO

28	 	 Creating	and	Using	Tables	 	

Tutorial: Introduction to Database Systems

INSERT INTO [CUSTOMER] ([FirstName],[LastName],[Address],[Phone],[PostCode],[PostAddress])
VALUES ('Tor', 'Hansen', 'Vipeveien 15', '77775678', '4455', 'Bergen')
GO
INSERT INTO [CUSTOMER] ([FirstName],[LastName],[Address],[Phone],[PostCode],[PostAddress])
VALUES ('Arne', 'Nilsen', 'Vipeveien 17', '12345778', '4434', 'Porsgrunn')
GO

--PRODUCT
INSERT INTO [PRODUCT] ([ProductName],[ProductDescription],[Price],[ProductCode]) VALUES
('Product A', 'This is product A', 1000, 'A-1234')
GO
INSERT INTO [PRODUCT] ([ProductName],[ProductDescription],[Price],[ProductCode]) VALUES
('Product B', 'This is product B', 1000, 'B-1234')
GO
INSERT INTO [PRODUCT] ([ProductName],[ProductDescription],[Price],[ProductCode]) VALUES
('Product C', 'This is product C', 1000, 'C-1234')
GO

--ORDER
INSERT INTO [ORDER] ([OrderNumber],[OrderDescription],[CustomerId]) VALUES ('10001', 'This is
Order 10001', 1)
GO
INSERT INTO [ORDER] ([OrderNumber],[OrderDescription],[CustomerId]) VALUES ('10002', 'This is
Order 10002', 2)
GO
INSERT INTO [ORDER] ([OrderNumber],[OrderDescription],[CustomerId]) VALUES ('10003', 'This is
Order 10003', 3)
GO

--ORDER_DETAIL
INSERT INTO [ORDER_DETAIL] ([OrderId],[ProductId]) VALUES (1, 1)
GO
INSERT INTO [ORDER_DETAIL] ([OrderId],[ProductId]) VALUES (1, 2)
GO
INSERT INTO [ORDER_DETAIL] ([OrderId],[ProductId]) VALUES (1, 3)
GO
INSERT INTO [ORDER_DETAIL] ([OrderId],[ProductId]) VALUES (2, 1)
GO
INSERT INTO [ORDER_DETAIL] ([OrderId],[ProductId]) VALUES (2, 2)
GO
INSERT INTO [ORDER_DETAIL] ([OrderId],[ProductId]) VALUES (3, 3)
GO
INSERT INTO [ORDER_DETAIL] ([OrderId],[ProductId]) VALUES (3, 1)
GO
INSERT INTO [ORDER_DETAIL] ([OrderId],[ProductId]) VALUES (3, 2)
GO
INSERT INTO [ORDER_DETAIL] ([OrderId],[ProductId]) VALUES (3, 3)
GO

Executing	the	following	Queries	then	gives:	

select * from CUSTOMER

	

	

select * from PRODUCT

29	 	 Creating	and	Using	Tables	 	

Tutorial: Introduction to Database Systems

	

	

select * from [ORDER]

	

	

select * from ORDER_DETAIL

	

[End	of	Example]	

	

	

30	

	

8 Creating	and	Using	Views	
In	database	theory,	a	view	consists	of	a	stored	query	accessible	as	a	virtual	table	composed	
of	the	result	set	of	a	query.	Unlike	ordinary	tables	in	a	relational	database,	a	view	does	not	
form	part	of	the	physical	schema:	it	is	a	dynamic,	virtual	table	computed	or	collated	from	
data	in	the	database.	Changing	the	data	in	a	table	alters	the	data	shown	in	subsequent	
invocations	of	the	view.	

Views	can	provide	advantages	over	tables:	

• Views	can	represent	a	subset	of	the	data	contained	in	a	table	 	
• Views	can	join	and	simplify	multiple	tables	into	a	single	virtual	table	 	
• Views	can	act	as	aggregated	tables,	where	the	database	engine	aggregates	data	

(sum,	average	etc)	and	presents	the	calculated	results	as	part	of	the	data	 	
• Views	can	hide	the	complexity	of	data;	for	example	a	view	could	appear	as	Sales2000	

or	Sales2001,	transparently	partitioning	the	actual	underlying	table	 	
• Views	take	very	little	space	to	store;	the	database	contains	only	the	definition	of	a	

view,	not	a	copy	of	all	the	data	it	presents	 	
• Depending	on	the	SQL	engine	used,	views	can	provide	extra	security	 	
• Views	can	limit	the	degree	of	exposure	of	a	table	or	tables	to	the	outer	world	 	

Just	as	functions	(in	programming)	can	provide	abstraction,	so	database	users	can	create	
abstraction	by	using	views.	In	another	parallel	with	functions,	database	users	can	manipulate	
nested	views,	thus	one	view	can	aggregate	data	from	other	views.	 	

Syntax:	

CREATE VIEW <ViewName>
AS
…

	

	

	

	

31	

	

9 Creating	and	using	Stored	
Procedures	

A	stored	procedure	is	a	subroutine	available	to	applications	accessing	a	relational	database	
system.	Typical	uses	for	stored	procedures	include	data	validation	(integrated	into	the	
database)	or	access	control	mechanisms.	Furthermore,	stored	procedures	are	used	to	
consolidate	and	centralize	logic	that	was	originally	implemented	in	applications.	Large	or	
complex	processing	that	might	require	the	execution	of	several	SQL	statements	is	moved	
into	stored	procedures,	and	all	applications	call	the	procedures	only.	

A	stored	procedure	is	a	precompiled	collection	of	SQL	statements	and	optional	control-of-
flow	statements,	similar	to	a	macro.	Each	database	and	data	provider	supports	stored	
procedures	differently.	Stored	procedures	offer	the	following	benefits	to	your	database	
applications:	

Performance—Stored	Procedures	are	usually	more	efficient	and	faster	than	regular	SQL	
queries	because	SQL	statements	are	parsed	for	syntactical	accuracy	and	precompiled	by	the	
DBMS	when	the	stored	procedure	is	created.	Also,	combining	a	large	number	of	SQL	
statements	with	conditional	logic	and	parameters	into	a	stored	procedure	allows	the	
procedures	to	perform	queries,	make	decisions,	and	return	results	without	extra	trips	to	the	
database	server.	

Maintainability—Stored	Procedures	isolate	the	lower-level	database	structure	from	the	
application.	As	long	as	the	table	names,	column	names,	parameter	names,	and	types	do	not	
change	from	what	is	stated	in	the	stored	procedure,	you	do	not	need	to	modify	the	
procedure	when	changes	are	made	to	the	database	schema.	Stored	procedures	are	also	a	
way	to	support	modular	SQL	programming	because	after	you	create	a	procedure,	you	and	
other	users	can	reuse	that	procedure	without	knowing	the	details	of	the	tables	involved.	

Security—When	creating	tables	in	a	database,	the	Database	Administrator	can	set	EXECUTE	
permissions	on	stored	procedures	without	granting	SELECT,	INSERT,	UPDATE,	and	DELETE	
permissions	to	users.	Therefore,	the	data	in	these	tables	is	protected	from	users	who	are	not	
using	the	stored	procedures.	

	

32	 	 Creating	and	using	Stored	Procedures	 	

Tutorial: Introduction to Database Systems

Stored	procedures	are	similar	to	user-defined	functions.	The	major	difference	is	that	
functions	can	be	used	like	any	other	expression	within	SQL	statements,	whereas	stored	
procedures	must	be	invoked	using	the	CALL	statement.	

The	syntax	for	creating	a	Stored	Procedure	is	as	follows:	

CREATE PROCEDURE <ProcedureName>
@<Parameter1> <datatype>
…

Example:	

Create	a	Stored	Procedure:	

This	Procedure	gets	Customer	Data	based	on	a	specific	Order	Number.	

IF EXISTS (SELECT name
 FROM sysobjects
 WHERE name = 'sp_CustomerOrders'
 AND type = 'P')
 DROP PROCEDURE sp_CustomerOrders
GO

CREATE PROCEDURE sp_CustomerOrders
@OrderNumber varchar(50)

AS

/*---
Last Updated Date: 2009.11.03
Last Updated By: hans.pr.halvorsen@hit.no
Description: Get Customer Information from a specific Order Number
---*/
SET NOCOUNT ON

declare @CustomerId int

select @CustomerId = CustomerId from [ORDER] where OrderNumber = @OrderNumber

select CustomerId, FirstName, LastName, [Address], Phone from CUSTOMER where
CustomerId=@CustomerId

SET NOCOUNT OFF
Og

Using	a	Stored	Procedure:	

Using	the	Stored	procedure	like	this	

exec sp_CustomerOrders '10002'

This	gives	the	following	result:	

	

[End	of	Example]	

	

33	

	

10 Creating	and	Using	
Triggers	

A	database	trigger	is	procedural	code	that	is	automatically	executed	in	response	to	certain	
events	on	a	particular	table	or	view	in	a	database.	The	trigger	is	mostly	used	for	keeping	the	
integrity	of	the	information	on	the	database.	For	example,	when	a	new	record	(representing	
a	new	worker)	added	to	the	employees	table,	new	records	should	be	created	also	in	the	
tables	of	the	taxes,	vacations,	and	salaries.	

Triggers	are	commonly	used	to:	

• prevent	changes	(e.g.	prevent	an	invoice	from	being	changed	after	it's	been	mailed	
out)	 	

• log	changes	(e.g.	keep	a	copy	of	the	old	data)	 	
• audit	changes	(e.g.	keep	a	log	of	the	users	and	roles	involved	in	changes)	 	
• enhance	changes	(e.g.	ensure	that	every	change	to	a	record	is	time-stamped	by	the	

server's	clock,	not	the	client's)	 	
• enforce	business	rules	(e.g.	require	that	every	invoice	have	at	least	one	line	item)	 	
• execute	business	rules	(e.g.	notify	a	manager	every	time	an	employee's	bank	account	

number	changes)	 	
• replicate	data	(e.g.	store	a	record	of	every	change,	to	be	shipped	to	another	database	

later)	 	
• enhance	performance	(e.g.	update	the	account	balance	after	every	detail	transaction,	

for	faster	queries)	 	

The	major	features	of	database	triggers,	and	their	effects,	are:	

• do	not	accept	parameters	or	arguments	(but	may	store	affected-data	in	temporary	
tables)	 	

• cannot	perform	commit	or	rollback	operations	because	they	are	part	of	the	triggering	
SQL	statement	 	

• can	cancel	a	requested	operation	 	
• can	cause	mutating	table	errors,	if	they	are	poorly	written.	

	

34	 	 Creating	and	using	Stored	Procedures	 	

Tutorial: Introduction to Database Systems

Microsoft	SQL	Server	supports	triggers	either	after	or	instead	of	an	insert,	update,	or	delete	
operation.	

Syntax:	

CREATE TRIGGER <TriggerName> ON <TableName>
FOR INSERT, UPDATE, DELETE
AS
…

	

	

	

35	

	

11 Creating	and	Using	
Functions	

In	SQL	databases,	a	user-defined	function	provides	a	mechanism	for	extending	the	
functionality	of	the	database	server	by	adding	a	function	that	can	be	evaluated	in	SQL	
statements.	The	SQL	standard	distinguishes	between	scalar	and	table	functions.	A	scalar	
function	returns	only	a	single	value	(or	NULL),	whereas	a	table	function	returns	a	(relational)	
table	comprising	zero	or	more	rows,	each	row	with	one	or	more	columns.	

Stored	Procedures	vs.	Functions:	

• Only	functions	can	return	a	value	(using	the	RETURN	keyword).	 	
• Stored	procedures	can	use	RETURN	keyword	but	without	any	value	being	passed[1]	 	
• Functions	could	be	used	in	SELECT	statements,	provided	they	don’t	do	any	data	

manipulation	and	also	should	not	have	any	OUT	or	IN	OUT	parameters.	 	
• Functions	must	return	a	value,	but	for	stored	procedures	this	is	not	compulsory.	 	
• A	function	can	have	only	IN	parameters,	while	stored	procedures	may	have	OUT	or	IN	

OUT	parameters.	 	
• A	function	is	a	subprogram	written	to	perform	certain	computations	and	return	a	

single	value.	 	
• A	stored	procedure	is	a	subprogram	written	to	perform	a	set	of	actions,	and	can	

return	multiple	values	using	the	OUT	parameter	or	return	no	value	at	all.	

User-defined	functions	in	SQL	are	declared	using	the	CREATE	FUNCTION	statement.	

Syntax:	

CREATE FUNCTION <FunctionName>
 (@Parameter1 <datatype>,
 @ Parameter2 <datatype>,
 …)

RETURNS <datatype>
AS
…

	 	

	

	

	

	

Introduction	to	Database	
Systems	

	

Hans-Petter	Halvorsen	

Copyright	©	2017	
	

E-Mail:	hans.p.halvorsen@usn.no	 	

Web:	https://www.halvorsen.blog	 	

	

https://www.halvorsen.blog	 	

