
Introduction to Assembly Language
Programming

Overview of Assembly Language

 Advantages:

 Disadvantages:

 Faster as compared to programs written using high-level languages

 Efficient memory usage

 Control down to bit level

× Need to know detail hardware implementation

× Not portable

× Slow to development and difficult to debug

 Basic components in assembly Language:

Instruction, Directive, Label, and Comment

8086/8088 Internal Organisation

T e m p o ra ry
R e g is te rs

A L U

F la g s

E U
C o n tro l

A H A L

B H B L

C H C L

D H D L

S P

B P

D I

B I

C S

D S

S S

E S

IO

In te rn a l
C o m m u n ic a t io n s

R e g is te rs

S U M M A T IO N

A d d re s s B u s 2 0 b its

D a ta B u s

B u s
C o n tro l

1 2 3 4

In s t ru c t io n Q u e u e

8 0 8 8
B u s

E U B IU

BIU Elements
• Instruction Queue: the next instructions or data can be fetched

from memory while the processor is executing the current
instruction
– The memory interface is slower than the processor execution time so

this speeds up overall performance

• Segment Registers:
– CS, DS, SS and ES are 16b registers

– Used with the 16b Base registers to generate the 20b address

– Allow the 8086/8088 to address 1MB of memory

– Changed under program control to point to different segments as a
program executes

• Instruction Pointer (IP) contains the Offset Address of the
next instruction, the distance in bytes from the address given
by the current CS register

8086/8088 20-bit Addresses

1 6 - b i t S e g n m e n t B a s e A d d r e s s 0 0 0 0

1 6 - b i t O f f s e t A d d r e s s

2 0 - b i t P h y s i c a l A d d r e s s

C S

I P

Exercise: 20-bit Addressing

1. CS contains 0A820h,IP contains 0CE24h.
 What is the resulting physical address?

2. CS contains 0B500h, IP contains 0024h.
What is the resulting physical address?

Example of Assembly Language Program

;NUMOFF.ASM: Turn NUM-LOCK indicator off.

 .MODEL SMALL

 .STACK

 .CODE

 .STARTUP

 MOV AX,40H ;set AX to 0040H

D1: MOV DS,AX ;load data segment with 0040H

 MOV SI,17H ;load SI with 0017H

 AND BYTE PTR [SI],0DFH ;clear NUM-LOCK bit

 .EXIT

 END

Comments

Assembly directive

Instructions

Assembly directive

Label

Instruction Format

 General Format of Instructions

Label: Opcode Operands ; Comment

 Label: It is optional. It provides a symbolic address that can be used in branch instructions

 Opcode: It specifies the type of instructions

 Operands: Instructions of 80x86 family can have one, two, or zero operand

 Comments: Only for programmers’ reference

 Machine Code Format

Opcode Operand1Mode Operand2

1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1MOV AL, BL

MOV
Register
mode

What is the Meaning of Addressing Modes?

 When a CPU executes an instruction, it needs to know where to get data
 and where to store results. Such information is specified in the operand
 fields of the instruction.

1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 MOV AL, BL

Opcode Mode Operand1 Operand2

 An operand can be:
— A datum
— A register location
— A memory location

 Addressing modes define how the CPU finds where to get data and
 where to store results

Immediate Addressing

 Data needed by the processor is contained in the instruction

For Example: move 7 to register AL

MOV AL, 7 AH

AL

7

Machine code of MOV AL, 7

1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1

7
AL

Indicate 8-bit data operation

Move an immediate datum to a register

Register Addressing

 Operands of the instruction are the names of internal register
 The processor gets data from the register locations specified by
 instruction operands

For Example: move the value of register BL to register AL

MOV AL, BL AH

BH

AL

BL

 If AX = 1000H and BX=A080H, after the execution of MOV AL, BL
 what are the new values of AX and BX?

In immediate and register addressing modes, the processor does not access memory.
Thus, the execution of such instructions are fast.

Direct Addressing

 The processor accesses a memory location
 The memory location is determined by the value of segment register DS
 and the displacement (offset) specified in the instruction operand field

DS × 10H + Displacement = Memory location

— Example: assume DS = 1000H, AX = 1234H

MOV [7000H], AX

AH AL

3412 17001H

17000H34

12

 DS: 1 0 0 0 _
+ Disp: 7 0 0 0

1 7 0 0 0

Register Indirect Addressing

 One of the registers BX, BP, SI, DI appears in the instruction operand
 field. Its value is used as the memory displacement value.

For Example: MOV DL, [SI]

 Memory address is calculated as following:

DS

SS

× 10H +

BX
SI
DI

BP

= Memory address

 If BX, SI, or DI appears in the instruction operand field, segment register DS
 is used in address calculation
 If BP appears in the instruction operand field, segment register SS is used in
 address calculation

Register Indirect Addressing

 Example 1: assume DS = 0800H, SI=2000H

MOV DL, [SI]

120A000H

DH DL
12

 DS: 0 8 0 0 _
+ SI: 2 0 0 0

0 A 0 0 0

 Example 2: assume SS = 0800H, BP=2000H, DL = 7

MOV [BP], DL

memory

Based Addressing

 The operand field of the instruction contains a base register (BX or BP)
 and an 8-bit (or 16-bit) constant (displacement)

For Example: MOV AX, [BX+4]

 Calculate memory address

DS

SS

× 10H + + Displacement = Memory address

 If BX appears in the instruction operand field, segment register DS
 is used in address calculation
 If BP appears in the instruction operand field, segment register SS
 is used in address calculation

BX

BP

What’s difference between register indirect addressing and based addressing?

Based Addressing

 Example 1: assume DS = 0100H, BX=0600H

MOV AX, [BX+4]

B001604H

AH AL
B0

 DS: 0 1 0 0 _
+ BX: 0 6 0 0
+ Disp.: 0 0 0 4

0 1 6 0 4

 Example 2: assume SS = 0A00H, BP=0012H, CH = ABH

MOV [BP-7], CH

01605H C0

C0

memory

Indexed Addressing

 The operand field of the instruction contains an index register (SI or DI)
 and an 8-bit (or 16-bit) constant (displacement)

For Example: MOV [DI-8], BL

 Calculate memory address

DS × 10H + + Displacement = Memory address

SI

DI

 Example: assume DS = 0200H, DI=0030H BL = 17H

MOV [DI-8], BL

 DS: 0 2 0 0 _
+ DI: 0 0 3 0
- Disp.: 0 0 0 8

0 2 0 2 8

BH BL
17

17 02028H

memory

Based Indexed Addressing

 The operand field of the instruction contains a base register (BX or BP)
 and an index register

For Example: MOV [BP] [SI], AH
MOV [BP+SI], AH

 Calculate memory address

DS

SS

× 10H + + {SI or DI} = Memory address

 If BX appears in the instruction operand field, segment register DS
 is used in address calculation
 If BP appears in the instruction operand field, segment register SS
 is used in address calculation

BX

BP

or

Based Indexed Addressing

 Example 1: assume SS = 2000H, BP=4000H, SI=0800H, AH=07H

MOV [BP] [SI], AH
AH AL

 SS: 2 0 0 0 _
+ BP: 4 0 0 0
+ SI.: 0 8 0 0

2 4 8 0 0

 Example 2: assume DS = 0B00H, BX=0112H, DI = 0003H, CH=ABH

MOV [BX+DI], CH

24800H 07

07

memory

Based Indexed with Displacement Addressing

 The operand field of the instruction contains a base register (BX or BP),
 an index register, and a displacement

For Example: MOV CL, [BX+DI+2080H]

 Calculate memory address

DS

SS

× 10H + + {SI or DI} + Disp. = Memory address

 If BX appears in the instruction operand field, segment register DS
 is used in address calculation
 If BP appears in the instruction operand field, segment register SS
 is used in address calculation

BX

BP

Based Indexed with Displacement Addressing

 Example 1: assume DS = 0300H, BX=1000H, DI=0010H

MOV CL, [BX+DI+2080H]
CH CL

 DS: 0 3 0 0 _
+ BX: 1 0 0 0
+ DI.: 0 0 1 0
+ Disp. 2 0 8 0

0 6 0 9 0

 Example 2: assume SS = 1100H, BP=0110H, SI = 000AH, CH=ABH

MOV [BP+SI+0010H], CH

06090H 20

memory

20

Instruction Types

 Data transfer instructions

 String instructions

 Arithmetic instructions

 Bit manipulation instructions

 Loop and jump instructions

 Subroutine and interrupt instructions

 Processor control instructions

An excellent website about 80x86 instruction set: http://www.penguin.cz/~literakl/intel/intel.html
Another good reference is in the tutorial of 8086 emulator

http://www.penguin.cz/~literakl/intel/intel.html

Addressing Modes

 Immediate addressing MOV AL, 12H

 Register addressing MOV AL, BL

 Direct addressing MOV [500H], AL

 Register Indirect addressing MOV DL, [SI]

 Based addressing MOV AX, [BX+4]

 Indexed addressing MOV [DI-8], BL

 Based indexed addressing MOV [BP+SI], AH

 Based indexed with displacement addressing MOV CL, [BX+DI+2]

Exceptions
 String addressing

 Port addressing (e.g. IN AL, 79H)

Addressing Modes Examples

Flag Register

 OF DF IF TF ZFSF AF PF CF

015

 Control Flags Status Flags

IF: Interrupt enable flag
DF: Direction flag
TF: Trap flag

CF: Carry flag
PF: Parity flag
AF: Auxiliary carry flag
ZF: Zero flag
SF: Sign flag
OF: Overflow flag

 Flag register contains information reflecting the current status of a
 microprocessor. It also contains information which controls the
 operation of the microprocessor.

Flags Commonly Tested During the Execution of
Instructions

 There are five flag bits that are commonly tested during the execution
 of instructions

 Sign Flag (Bit 7), SF: 0 for positive number and 1 for negative number

 Zero Flag (Bit 6), ZF: If the ALU output is 0, this bit is set (1); otherwise,
 it is 0

 Carry Flag (Bit 0), CF: It contains the carry generated during the execution

 Auxiliary Carry, AF: Depending on the width of ALU inputs, this flag
 (Bit 4) bit contains the carry generated at bit 3 (or, 7, 15)
 of the 8088 ALU

 Parity Flag (bit2), PF: It is set (1) if the output of the ALU has even number
 of ones; otherwise it is zero

Data Transfer Instructions

 MOV Destination, Source

— Move data from source to destination; e.g. MOV [DI+100H], AH

 For 80x86 family, directly moving data from one memory location to
 another memory location is not allowed

MOV [SI], [5000H]

 When the size of data is not clear, assembler directives are used

MOV [SI], 0

 BYTE PTR MOV BYTE PTR [SI], 12H
 WORD PTR MOV WORD PTR [SI], 12H
 DWORD PTR MOV DWORD PTR [SI], 12H

— It does not modify flags

 You can not move an immediate data to segment register by MOV

 MOV DS, 1234H

Instructions for Stack Operations

 What is a Stack ?
— A stack is a collection of memory locations. It always follows the rule of
 last-in-firs-out
— Generally, SS and SP are used to trace where is the latest date written into stack

 PUSH Source

— Push data (word) onto stack
— It does not modify flags
— For Example: PUSH AX (assume ax=1234H, SS=1000H, SP=2000H
 before PUSH AX)

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

??

??

??

??

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

??

12

34

??

SS:SP

SS:SP

Before PUSH AX, SP = 2000H After PUSH AX, SP = 1FFEH AX

12 34

 Decrementing the stack pointer during a push is a standard way of implementing stacks in hardware

Instructions for Stack Operations
 PUSHF

— Push the values of the flag register onto stack
— It does not modify flags

 POP Destination

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

EC

12

34

??

1000:2000

1000:1FFF

1000:1FFE

1000:1FFD

EC

12

34

??

SP

SP

Before POP, SP = 1FFEH After POP AX, SP = 2000H AX

12 34

— Pop word off stack
— It does not modify flags
— For example: POP AX

 POPF
— Pop word from the stack to the flag register
— It modifies all flags

Data Transfer Instructions

 SAHF

 LAHF

— Store data in AH to the low 8 bits of the flag register
— It modifies flags: AF, CF, PF, SF, ZF

— Copies bits 0-7 of the flags register into AH
— It does not modify flags

 LDS Destination Source

— Load 4-byte data (pointer) in memory to two 16-bit registers
— Source operand gives the memory location
— The first two bytes are copied to the register specified in the destination operand;
 the second two bytes are copied to register DS
— It does not modify flags

 LES Destination Source

— It is identical to LDS except that the second two bytes are copied to ES
— It does not modify flags

Data Transfer Instructions
 LEA Destination Source

— Transfers the offset address of source (must be a memory location) to the
 destination register
— It does not modify flags

 XCHG Destination Source

— It exchanges the content of destination and source
— One operand must be a microprocessor register, the other one can be a register
 or a memory location
— It does not modify flags

 XLAT

— Replace the data in AL with a data in a user defined look-up table
— BX stores the beginning address of the table
— At the beginning of the execution, the number in AL is used as the
 index of the look-up table
— It does not modify flags

String Instructions
 String is a collection of bytes, words, or long-words that can be up to 64KB
 in length

 String instructions can have at most two operands. One is referred to as source
 string and the other one is called destination string

— Source string must locate in Data Segment and SI register points to the current
 element of the source string
— Destination string must locate in Extra Segment and DI register points to the current
 element of the destination string

53

48

4F

50

50

45

S

H

O

P
P

52

E

R

0510:0000

0510:0001

0510:0002

0510:0003

0510:0004
0510:0005

0510:0006

53

48

4F

50

50

49

S

H

O

P
P

4E

I

N

02A8:2000

02A8:2001

02A8:2002

02A8:2003

02A8:2004
02A8:2005

02A8:2006

DS : SI ES : DI

Source String Destination String

Repeat Prefix Instructions
 REP String Instruction

— The prefix instruction makes the microprocessor repeatedly execute the string instruction
 until CX decrements to 0 (During the execution, CX is decreased by one when the string
 instruction is executed one time).

— For Example:

MOV CX, 5
REP MOVSB

By the above two instructions, the microprocessor will execute MOVSB 5 times.

— Execution flow of REP MOVSB::

While (CX!=0)
 {
 CX = CX –1;
 MOVSB;
 }

Check_CX: If CX!=0 Then
 CX = CX –1;
 MOVSB;
 goto Check_CX;
 end if

OR

Repeat Prefix Instructions
 REPZ String Instruction

— Repeat the execution of the string instruction until CX=0 or zero flag is clear

 REPNZ String Instruction

— Repeat the execution of the string instruction until CX=0 or zero flag is set

 REPE String Instruction

— Repeat the execution of the string instruction until CX=0 or zero flag is clear

 REPNE String Instruction

— Repeat the execution of the string instruction until CX=0 or zero flag is set

Direction Flag
 Direction Flag (DF) is used to control the way SI and DI are adjusted during the
 execution of a string instruction

— DF=0, SI and DI will auto-increment during the execution; otherwise, SI and DI
 auto-decrement

— Instruction to set DF: STD; Instruction to clear DF: CLD

— Example:

CLD
MOV CX, 5
REP MOVSB

At the beginning of execution,
DS=0510H and SI=0000H

53

48

4F

50

50

45

S

H

O

P
P

52

E

R

0510:0000

0510:0001

0510:0002

0510:0003

0510:0004
0510:0005

0510:0006

DS : SI

Source String

SI CX=5

SI CX=4

SI CX=3

SI CX=2

SI CX=1

SI CX=0

String Instructions
 MOVSB (MOVSW)

— Move byte (word) at memory location DS:SI to memory location ES:DI and
 update SI and DI according to DF and the width of the data being transferred
— It does not modify flags
—Example:

53

48

4F

50

50

45

S

H

O

P
P

52

E

R

0510:0000

0510:0001

0510:0002

0510:0003

0510:0004
0510:0005

0510:0006

0300:0100

DS : SI ES : DI

Source String Destination String

MOV AX, 0510H
MOV DS, AX
MOV SI, 0
MOV AX, 0300H
MOV ES, AX
MOV DI, 100H
CLD
MOV CX, 5
REP MOVSB

String Instructions
 CMPSB (CMPSW)

— Compare bytes (words) at memory locations DS:SI and ES:DI;
 update SI and DI according to DF and the width of the data being compared
— It modifies flags
—Example:

Assume: ES = 02A8H
DI = 2000H
DS = 0510H
SI = 0000H

CLD
MOV CX, 9
REPZ CMPSB

What’s the values of CX after
The execution?

53

48

4F

50

50

45

S

H

O

P
P

52

E

R

0510:0000

0510:0001

0510:0002

0510:0003

0510:0004
0510:0005

0510:0006

02A8:2000

DS : SI
ES : DI

Source String Destination String

02A8:2001

02A8:2002

02A8:2003

02A8:2004

02A8:2005
02A8:2006

53

48

4F

50

50

49

S

H

O

P
P

4E

I

N

String Instructions
 SCASB (SCASW)

— Move byte (word) in AL (AX) and at memory location ES:DI;
 update DI according to DF and the width of the data being compared
— It modifies flags

 LODSB (LODSW)

— Load byte (word) at memory location DS:SI to AL (AX);
 update SI according to DF and the width of the data being transferred
— It does not modify flags

 STOSB (STOSW)

— Store byte (word) at in AL (AX) to memory location ES:DI;
 update DI according to DF and the width of the data being transferred
— It does not modify flags

 Arithmetic Instructions

 ADD Destination, Source

— Destination + Source Destination
— Destination and Source operands can not be memory locations at the same time
— It modifies flags AF CF OF PF SF ZF

 ADC Destination, Source

— Destination + Source + Carry Flag Destination
— Destination and Source operands can not be memory locations at the same time
— It modifies flags AF CF OF PF SF ZF

 INC Destination
— Destination + 1 Destination
— It modifies flags AF OF PF SF ZF (Note CF will not be changed)

 DEC Destination
— Destination - 1 Destination

— It modifies flags AF OF PF SF ZF (Note CF will not be changed)

 Arithmetic Instructions

 SUB Destination, Source
— Destination - Source Destination
— Destination and Source operands can not be memory locations at the same time
— It modifies flags AF CF OF PF SF ZF

 SBB Destination, Source

— Destination - Source - Carry Flag Destination
— Destination and Source operands can not be memory locations at the same time
— It modifies flags AF CF OF PF SF ZF

 CMP Destination, Source

— Destination – Source (the result is not stored anywhere)
— Destination and Source operands can not be memory locations at the same time
— It modifies flags AF CF OF PF SF ZF (if ZF is set, destination = source)

 Arithmetic Instructions

 MUL Source

— Perform unsigned multiply operation
— If source operand is a byte, AX = AL * Source
— If source operand is a word, (DX AX) = AX * Source
— Source operands can not be an immediate data
— It modifies CF and OF (AF,PF,SF,ZF undefined)

 IMUL Source

— Perform signed binary multiply operation
— If source operand is a byte, AX = AL * Source
— If source operand is a word, (DX AX) = AX * Source
— Source operands can not be an immediate data
— It modifies CF and OF (AF,PF,SF,ZF undefined)

 Examples:
MOV AL, 20H
MOV CL, 80H
MUL CL

MOV AL, 20H
MOV CL, 80H
IMUL CL

 DIV Source

— Perform unsigned division operation
— If source operand is a byte, AL = AX / Source; AH = Remainder of AX / Source
— If source operand is a word, AX=(DX AX)/Source; DX=Remainder of (DX AX)/Source
— Source operands can not be an immediate data

 IDIV Source

 Examples:
MOV AX, 5
MOV BL, 2
DIV BL

MOV AL, -5
MOV BL, 2
IDIV BL

 Arithmetic Instructions

— Perform signed division operation
— If source operand is a byte, AL = AX / Source; AH = Remainder of AX / Source
— If source operand is a word, AX=(DX AX)/Source; DX=Remainder of (DX AX)/Source
— Source operands can not be an immediate data

 Arithmetic Instructions
 NEG Destination

— 0 – Destination Destination (the result is represented in 2’s complement)
— Destination can be a register or a memory location
— It modifies flags AF CF OF PF SF ZF

 CBW
— Extends a signed 8-bit number in AL to a signed 16-bit data and stores it into AX
— It does not modify flags

 CWD
— Extends a signed 16-bit number in AX to a signed 32-bit data and stores it into DX
 and AX. DX contains the most significant word
— It does not modify flags

 Other arithmetic instructions:

DAA, DAS, AAA, AAS, AAM, AAD

 Logical Instructions
 NOT Destination

— Inverts each bit of the destination operand
— Destination can be a register or a memory location
— It does not modify flags

 AND Destination, Source
— Performs logic AND operation for each bit of the destination and source; stores the
 result into destination
— Destination and source can not be both memory locations at the same time
— It modifies flags: CF OF PF SF ZF

 OR Destination, Source
— Performs logic OR operation for each bit of the destination and source; stores the
 result into destination
— Destination and source can not be both memory locations at the same time
— It modifies flags: CF OF PF SF ZF

 Logical Instructions

 XOR Destination, Source
— Performs logic XOR operation for each bit of the destination and source; stores the
 result into destination
— Destination and source can not be both memory locations at the same time
— It modifies flags: CF OF PF SF ZF

 TEST Destination, Source
— Performs logic AND operation for each bit of the destination and source
— Updates Flags depending on the result of AND operation
— Do not store the result of AND operation anywhere

Bit Manipulation Instructions

 SHL(SAL) Destination, Count
— Left shift destination bits; the number of bits shifted is given by operand Count
— During the shift operation, the MSB of the destination is shifted into CF and
 zero is shifted into the LSB of the destination
— Operand Count can be either an immediate data or register CL
— Destination can be a register or a memory location
— It modifies flags: CF OF PF SF ZF

CF 0

 SHR Destination, Count
— Right shift destination bits; the number of bits shifted is given by operand Count
— During the shift operation, the LSB of the destination is shifted into CF and
 zero is shifted into the MSB of the destination
— Operand Count can be either an immediate data or register CL
— Destination can be a register or a memory location
— It modifies flags: CF OF PF SF ZF

CF0 Destination

Destination

LSBMSB

LSBMSB

Bit Manipulation Instructions

 SAR Destination, Count

— Right shift destination bits; the number of bits shifted is given by operand Count
— The LSB of the destination is shifted into CF and the MSB of the destination remians
 the same
— Operand Count can be either an immediate data or register CL
— Destination can be a register or a memory location
— It modifies flags: CF PF SF ZF

CFDestination

LSBMSB

Bit Manipulation Instructions
 ROL Destination, Count

— Left shift destination bits; the number of bits shifted is given by operand Count
— The MSB of the destination is shifted into CF, it also goes to the LSB of the destination
— Operand Count can be either an immediate data or register CL
— Destination can be a register or a memory location
— It modifies flags: CF OF

CF Destination

 ROR Destination, Count
— Right shift destination bits; the number of bits shifted is given by operand Count
— The LSB of the destination is shifted into CF, it also goes to the MSB of the destination
— Operand Count can be either an immediate data or register CL
— Destination can be a register or a memory location
— It modifies flags: CF OF

CFDestination

LSBMSB

LSBMSB

Bit Manipulation Instructions
 RCL Destination, Count

— Left shift destination bits; the number of bits shifted is given by operand Count
— The MSB of the destination is shifted into CF; the old CF value goes to the LSB
 of the destination
— Operand Count can be either an immediate data or register CL
— Destination can be a register or a memory location
— It modifies flags: CF OF PF SF ZF

CF Destination

 RCR Destination, Count
— Right shift destination bits; the number of bits shifted is given by operand Count
— The LSB of the destination is shifted into CF, the old CF value goes to the MSB
 of the destination
— Operand Count can be either an immediate data or register CL
— Destination can be a register or a memory location
— It modifies flags: CF OF PF SF ZF

CFDestination

LSBMSB

LSBMSB

Program Transfer Instructions
 JMP Target

— Unconditional jump
— It moves microprocessor to execute another part of the program
— Target can be represented by a label, immediate data, registers, or memory locations
— It does not affect flags

 The execution of JMP instruction

JMP 1234H : 2000H

CS

IP

1234H

2000H

14340H
Next Instruction
Address

JMP

Current
instruction

Next
instruction

Jump

Program Transfer Instructions
 Intrasegment transfer v.s. Intersegment transfer

— Intrasegment transfer: the microprocessor jumps to an address within the same segment
— Intersegment transfer: the microprocessor jumps to an address in a difference segment
— Use assembler directive near and far to indicate the types of JMP instructions

— For intrasegment transfer, we can provide only new IP value in JMP instructions.
 For Example: JMP 1000H
— For intersegment transfer, we need provide both new CS and IP values in JMP instructions
 For Example: JMP 2000H : 1000H

 Direct Jump v.s. Indirect Jump
— Direct Jump: the target address is directly given in the instruction
— Indirect Jump: the target address is contained in a register or memory location

 Short Jump

— If the target address is within +127 or –128 bytes of the current instruction address,
 the jump is called a short jump
— For short jumps, instead of specifying the target address, we can specify the relative
 offset (the distance between the current address and the target address) in JMP instructions.

Program Transfer Instructions
 Conditional Jumps

 JZ: Label_1

— If ZF =1, jump to the target address labeled by Label_1; otherwise, do not jump

 JNZ: Label_1

— If ZF =0, jump to the target address labeled by Label_1; otherwise, do not jump

 Other Conditional Jumps

JNC JAE JNB JC JB JNAE JNG
JNE JE JNS JS JNO JO JNP
JPO JP JPE JA JBNE JBE JNA
JGE JNL JL JNGE JG JNLE JLE

 JCXZ: Label_1

— If CX =0, jump to the target address labeled by Label_1; otherwise, do not jump

Program Transfer Instructions
 LOOP Short_Label

— It is limited for short jump
— Execution Flow:

CX = CX –1
If CX != 0 Then
 JMP Short_Label
End IF

 LOOPE/LOOPZ Short_Label

CX = CX –1
If CX != 0 & ZF=1 Then
 JMP Short_Label
End IF

 LOOPNE/LOOPNZ Short_Label
CX = CX –1
If CX != 0 & ZF=0 Then
 JMP Short_Label
End IF

Processor Control Instructions

 CLC Clear carry flag

 STC Set carry flag

 CMC Complement carry flag

 CLD Clear direction flag

 STD Set direction flag

 CLI Clear interrupt-enable flag

 STI Set interrupt-enable flag

 HLT Halt microprocessor operation

 NOP No operation

 LOCK Lock Bus During Next Instruction

Subroutine Instructions

 A subroutine is a collection of instructions that can be called from
 one or more other locations within a program

 CALL Procedure-Name

• • •
MOV AL, 1
CALL M1
MOV BL, 3
• • •
M PROC
 MOV CL, 2
 RET
M ENDP

— Example

The order of execution:

MOV AL, 1
MOV CL, 2
MOV BL, 3

— Intersegment CALL: the subroutine is located in a different code segment
— Intrasegment CALL: the subroutine is located in the same code segment
— Use assembler directives far and near to distinguish intersegment and
 intrasegment CALL

Subroutine Instructions

 What does the microprocessor do when it encounters a CALL instruction?

1. Push the values of CS and IP (which specify the address of the instruction immediately
following the CALL instruction) into stack. If it is a intrasegment CALL, just push the
value of IP into stack.

2. Load the new values to CS and IP such that the next instruction that the microprocessor
will fetch is the first instruction of the subroutine

.model small
 0000 .code
 0000 B0 02 MOV AL, 2
 0002 E8 0002 CALL m1
 0005 B3 03 MOV BL, 3

 0007 m1 Proc
 0007 B7 05 MOV BH, 5
 0009 C3 RET
 000A m1 ENDP
 end

— Example:

12345H

Stack before
 CALL

What are in the stack
after the execution
of CALL?

How about if the
CALL is an intersegment
CALL?

11

Subroutine Instructions

 RET
— It lets the microprocessor exit from a subroutine
— If it is used in a FAR procedure, RET pops two words from the stack. The first one
 goes to IP register. The second one goes to CS register
— If it is used in a NEAR procedure, RET pops one word from stack to IP register

1234:2345 •••
1234:2348 CALL FAR PTR M1
1234:234D •••

 M1 PROC FAR
3456:0120 MOV AL, 0
 •••
 RET
 M1 ENDP

— Example:

01022

What data are pushed
into and popped from
the stack during the
execution of CALL
and RET?

Interrupt Instructions

 INT Interrupt-Type

— This instruction causes the microprocessor to execute an interrupt service routine.
 The Interrupt-Type is an immediate data (0-255) which specifies the type of interrupt
— It results in the following operations:

1. Push flag register into stack
2. Clear trace flag and interrupt-enable flag
3. Push CS and IP into stack
4. Load new CS and IP values from the interrupt vector table

— Example:

•••
1230:6789 INT 20H
•••

 After the execution of INT 20H, what are the data pushed into the stack?

EA62345H

Interrupt Instructions

 IRET
— It is used at the end of an interrupt service routine to make the microprocessor
 jump back to the instruction that immediately follows the INT instruction

•••
INT 20H
MOV AL, 0
•••

Interrupt service routine
MOV, AL, 0
•••
IRET

— It results in the following operations

1. Restore the original CS and IP values by popping them from stack
2. Restore the original flag register value by popping it from stack

Hardware and Software Interrupts

 An interrupt is an event that causes the processor to stop its current program
 execution and switch to performing an interrupt service routine.

 Hardware and Software Interrupts

— Hardware Interrupts are caused by proper inputs at NMI or INTR input pin

— Software Interrupts are caused by executing programs

 Interrupt Priority

— When multiple interrupts occur at the same time, the interrupt with the highest
 priority will be served

 Interrupt Type

— Interrupt type is used as the table index to search the address of interrupt service
 routine from the interrupt vector table

Interrupt Vector Table

••
••

•

Type-0

Type-1

Type-255

IP

CS

00000

003FFH

 Interrupt vector table is used to store the
 addresses of interrupt service routine

 Interrupt vector table contains 256 table
 entries. Each table entry takes 4 bytes;
 two bytes are for IP values and two bytes
 are for CS values

 Interrupt vector table locates at the reserved
 memory space from 00000H to 003FFH

— Example:

Assume that the interrupt service routine for
the type-40 interrupt is located at address
28000H. How do you write this address to
the vector table?

Interrupt Processing Sequence

1. Get Vector Number (get the interrupt type)
— Caused by NMI, it is type 2
— Caused by INTR, the type number will be fed to the processor through data bus
— Caused by executing INT instructions, the type number is given by the operand
— •••

2. Save Processor Information
1. Push flag register into stack
2. Clear trace flag and interrupt-enable flag
3. Push CS and IP into stack

3. Fetch New Instruction Pointer
— Load new CS and IP values from the instruction vector table

4. Execute interrupt service routine

5. Return from interrupt service routine
1. Pop flag register from stack
2. Pop CS and IP from stack

Interrupt Service Routine

 An Interrupt Service Routine (ISR) is a section code that take care of processing
 a specific interrupt

 Some ISRs also contain instructions that save and restore restore general purpose
 registers

— Example:

1234:00AE PUSH AX
 PUSH DX

 MOV AX, 5
 MUL BL
 MOV [DI], AX
 MOV [DI+2], DX

 POP DX
 POP AX

 IRET

Interrupt Vector Table

000A4

000A5

000A6

000A7

AE

00

34

12

INT ?

Storing Environment During Interrupt Processing

INT

Save flag and
return address

Read ISR address
from interrupt

vector table

Read return
address and

flag

User
Program

Done automatically
By the processor Interrupt

Service
routine

Save register

ISR body

Restore
register

IRET

Special Interrupts

 Divide-Error
— Type-0 interrupt. It has the highest interrupt priority

 Single-Step
— Type-1 interrupt. It is generated after each instruction if the trace flag is set

 NMI
— Type-2 interrupt

 Breakpoint
— Type-3 interrupt. It is used for debug purposes

 Overflow
— Type-4 interrupt. It is generated by INTO when the overflow flag is set

Interrupt Example
 An NMI Time Clock

120V
60Hz

Schmitt
trigger

NMI

8088

— ISR

NMITIME: DEC COUNT
 JNZ EXIT
 MOV COUNT, 60
 CALL FAR PTR ONESEC
EXIT: IRET

— Instructions for update
 Interrupt Vector Table

MOV COUNT, 60
PUSH DS
SUB AX, AX
MOV DS, AX
LEA AX, NMITIME
MOV [8], AX
MOV AX, CS
MOV [0AH], AX
POP DS

Hardware
Interface

8088 Pin Configuration

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

GND
A14
A13
A12
A11
A10
A9
A8

AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
NMI
INTR
CLK
GND

VCC
A15
A16 / S3
A17 / S4
A18 / S5
A19 / S6
SS0 (High)
MN / MX

RD
HOLD (RQ / GT0)
HLDA (RQ / GT1)
WR (LOCK)
IO / M (S2)
DT / R (S1)
DEN (S0)
ALE (QS0)
INTA (QS1)
TEST
READY
RESET

8088 Pin Description

 GND: 1 & 20 Both need to be connected to ground

 VCC: 21 VCC = 5V

 CLK: 19 Input 33% duty cycle

1/3*T2/3*T

 MN/MX: 33 Input High Minimum mode
 Low Maximum mode

 RESET: 21 Input Reset 8088

 Duration of logic high must be greater
 than 4*T
 After reset, 8088 fetches instructions
 starting from memory address FFFF0H

Pin Name Pin Number Direction Description

8088 Pin Description

Pin Name Pin Number Direction Description

 READY 22 Input Informs the processor that the selected memory
or I/O device is ready for a data transfer

8088 Selected memory
or I/O device

Data bus

READY READY

 wait for
 memory
or I/O ready

Start data transfer

8088 Pin Description

Pin Name Pin Number Direction Description

 HOLD 31 Input The execution of the processor is suspended
as long as HOLD is high

 HLDA 30 Output Acknowledges that the processor is suspended

8088

Memory

HOLD

HLDA
Device 2

Bus

 Procedure for Device 2 to use bus

 Drive the HOLD signal of 8088 high

 Wait for the HLDA signal of 8088
 becoming high

 Now, Device2 can send data to bus

8088 Pin Description
Pin Name Pin Number Direction Description

 NMI 17 Input Causes a non-maskable type-2 interrupt

 INTR 18 Input Indicates a maskable interrupt request

 INTA 24 Output Indicates that the processor has received an
INTR request and is beginning interrupt
processing

 NMI (non-maskable interrupt): a rising edge on NMI causes a type-2 interrupt

 INTR: logic high on INTR poses an interrupt request. However, this request can
 be masked by IF (Interrupt enable Flag). The type of interrupt caused by
 INTR is read from data bus

8088 External
device

Data bus

INTR

INTA

INTR

INTA

Data Bus Int. type

 INTA: control when the interrupt type should be loaded onto the data bus

8088 Pin Description
Pin Name Pin Number Direction Description

 ALE 25 Output Indicates the current data on 8088 address/data
bus are address

D Q

G

8088

A[19:8]

ALE

AD[7:0]

D[7:0]

A[7:0]

A[19:8]

D latches

Buffer

8088 Pin Description

Pin Name Pin Number Direction Description

 DEN 26 Output Disconnects data bus connection

 DT / R 27 Output Indicates the direction of data transfer

8088

AD[7:0]

Data
bus

D[7:0]

DEN

DT/R

DEN DT/ R

DEN DT/R

 1 X Disconnected
 0 0 To 8088
 0 1 From 8088

8088 Pin Description

Pin Name Pin Number Direction Description

 WR 29 Output Indicates that the processor is writing to memory
or I/O devices

 RD 32 Output

 IO/ M 28 Output

Indicates that the processor is reading from
memory or I/O devices

Indicates that the processor is accessing whether
memory (IO/M=0) or I/O devices (IO/M=1)

WR
RD

IO/M

8088

Memory

WE
OE
CSAddr.

Dec.

Addr.
Dec.

IO/M

WR or
RD I/O

8088 Pin Description

Pin Name Pin Number Direction Description

 AD[7:0] 9-16 I/O Address / Data bus

 A[19:8] 2-8, 35-39 Input Address bus

 LOCK 29 Input Lock output is used to lock peripherals off
the system. Activated by using the LOCK:
prefix on any instruction.

8284 Clock Generator

510

510

100K

10uF

+5V

Ready1
Ready2

RES

RDY1
RDY2

X1

X2

Ready

CLK

RESET RESET

CLK

Ready

8284 8088

 Generates 33% duty cycle clock signal
 Generates RESET signal
 Synchronizes ready signals from memory
 and I/O devices

Basic functions:
Clock generation.
RESET synchronization.
READY
synchronization.
Peripheral clock signal.

System Timing Diagrams

 T-State:
— One clock period is referred to as a T-State

T-State

— An operation takes an integer number of T-States

 CPU Bus Cycle:
— A bus cycle consists of 4 or more T-States

T1 T2 T3 T4

• Dump address on address bus.
• Issue a read (RD) and set M/ IO to 1.
• Wait for memory access cycle.

Memory Read Timing Diagrams

Memory Read Timing Diagrams

T1 T2 T3 T4

CLK

ALE

A[19:16] A[19:16] S3-S6

A[15:8] A[15:8]

AD[7:0] A[7:0] D[7:0]

IO/M

DT/R

DEN

RD

WR

A[15:8]

AD[7:0]

A[15:0]
Buffer

D latch

Trans
-ceiver

D[7:0]

DT/R

DEN

IO/M

WR

RD

8088

Memory

• Dump address on address bus.
• Dump data on data bus.
• Issue a write (WR) and set M/ IO to 1.

Memory Write Timing Diagrams

Memory Write Timing Diagrams

T1 T2 T3 T4

CLK

ALE

A[19:16] A[19:16] S3-S6

A[15:8] A[15:8]

AD[7:0] A[7:0] D[7:0]

IO/M

DT/R

DEN

RD

WR

A[15:8]

AD[7:0]

A[15:0]
Buffer

D latch

Trans
-ceiver

D[7:0]

DT/R

DEN

IO/M

WR

RD

8088

Memory

Bus Timing
During T 1 :
• The address is placed on the Address/Data bus.
• Control signals M/ IO , ALE and DT/ R specify memory or I/O, latch the

address onto the address bus and set the direction of data transfer on data
bus.

During T 2 :
• 8086 issues the RD or WR signal, DEN , and, for a write, the data.

• DEN enables the memory or I/O device to receive the data for writes and the 8086 to
receive the data for reads.

During T 3 :
• This cycle is provided to allow memory to access data.
• READY is sampled at the end of T 2 .

• If low, T 3 becomes a wait state.
• Otherwise, the data bus is sampled at the end of T 3 .

During T 4 :
• All bus signals are deactivated, in preparation for next bus cycle.
• Data is sampled for reads, writes occur for writes.

Bus Timing

Timing:
– Each BUS CYCLE on the 8086 equals four system clocking periods (T states).
– The clock rate is 5MHz , therefore one Bus Cycle is 800ns .
– The transfer rate is 1.25MHz .

Memory specs (memory access time) must match constraints of system timing.

For example, bus timing for a read operation shows almost 600ns are needed to

read data.
• However, memory must access faster due to setup times, e.g. Address setup and data

setup.
• This subtracts off about 150ns .
• Therefore, memory must access in at least 450ns minus another 30-40ns guard band for

buffers and decoders.
• 420ns DRAM required for the 8086.

10.6 System Time Diagrams - CPU Bus Cycle
T2 T3 TW T4

Read Cycle
(instruction fetch and memory operand read)

A8- A15

Address latches store the actual values

Memory Cycle (I/O cycle is similar but IO/M = 1)

S3- S6

Tri-state

A16 -A19

A0- A7

T1CLK

ALE

IO/M

A16 - A19

A8- A15

RD

AD0- AD7

DT/R

READY

DEN

Direction “READ” for the Data Buffer

Enables Data Buffer

WR

AD0- AD7

DT/R

Write Cycle (memory operand write)

A0- A7 D0- D7 (Data out)

DEN
Direction “READ” for the Data Buffer

Enables Data Buffer

Memory reads Data Bus

The slow device drives READY= 0
the µ P samples READY

(if 0 a WAIT state follows)

D0- D7 (Data in)

µ P reads Data
Bus

Interrupt Acknowledge Timing Diagrams

T1 T2 T3 T4

•••

•••

CLK

INTR

INTA

D[7:0] •••

8088 External
device

Data bus

INTR

INTA

 It takes one bus cycle to perform an interrupt acknowledge

 During T1, the process tri-states the address bus

 During T2, INTA is pulled low and remains low until it becomes inactive in T4

 The interrupting devices places an 8-bit interrupt type during INTA is active

Int. Type

HOLD/HLDA Timing Diagrams

T2 T3 T4

•••

•••

CLK

HOLD

8088

Memory

HOLD

HLDA
Device 2

Bus
HLDA

Hold State

 The processor will examine HOLD signal at every rising clock edge

 If HOLD=1, the processor will pull HLDA high at the end of T4 state (end of

 the execution of the current instruction) and suspend its normal operation

 If HOLD=0, the processor will pull down HLDA at the falling clock edge

 and resume its normal operation

Memory
Interface

11.3 Bus Buffering

8282

STB OE

D Q
 LE

Memory
Address
Decoder

Memory
Chip 1

Memory
Chip 2

Memory
Chip n

Data Bus

Address Bus

8286

OE T

8282

STB OE

D Q
 LE

RD
WR

IO/M

A16/S3-A19/S6

A8-A15

8088

AD0-AD7

ALE

DEN
DT/R

READY

74LS244

G1 G2

CE (Chip Enable) or
CS (Chip Select),
activate each chip

WR and RD
for each chip

some high Address
lines and IO/M

used to identify the
accessed chip

the decoder drives READY: provides enough access time for the selected chip

some low address lines identify
the internal accessed byte

(more for memory, few for I/O)

I/O
Address
Decoder

I/O
Chip 1

I/O
Chip 2

I/O
Chip m

Memory Chips

• The number of address pins is related to the number of memory
locations .
– Common sizes today are 1K to 256M locations. (10 and 28 address pins

are present.)
• The data pins are typically bi-directional in read-write memories.

– The number of data pins is related to the size of the memory location .
– For example, an 8-bit wide (byte-wide) memory device has 8 data pins.
– Catalog listing of 1K X 8 indicate a byte addressable 8K memory.

• Each memory device has at least one chip select (CS) or chip enable
(CE) or select (S) pin that enables the memory device.

• Each memory device has at least one control pin.
– For ROMs, an output enable (OE) or gate (G) is present.

• The OE pin enables and disables a set of tristate buffers.
– For RAMs, a read-write (R/W) or write enable (WE) and read enable

(OE) are present.
• For dual control pin devices, it must be hold true that both are not 0 at the

same time.

Memory Address Decoding

• The processor can usually address a memory space that is
much larger than the memory space covered by an individual
memory chip.

• In order to splice a memory device into the address space of
the processor, decoding is necessary.

• For example, the 8088 issues 20-bit addresses for a total of
1MB of memory address space.

• However, the BIOS on a 2716 EPROM has only 2KB of
memory and 11 address pins.

• A decoder can be used to decode the additional 9 address pins
and allow the EPROM to be placed in any 2KB section of the
1MB address space.

Memory Address Decoding

A0-A13

16KB
EPROM

chip
 OE

FFFFF

00000

Full address
decoding

Memory Map -

M/IO18A19AM/IO18A19A1CS ⋅⋅=++=

WR
RD

A19, A18 assigned to 00 =>
CS active for every address

from 00000 to 3FFFF
A18 = 0
A19 = 0

IO/M = 0
IO/M = 0 => Memory map

A0
...

A17
256KB
RAM
chipA18

A19
CS1’

MWTC
MRDC

The same Memory-map assignment

CS1
A18
A19
IO/M

A 7
B 6
C 5
 74LS138 4

3
E1 2
E2 1
E 0

A17
A18
A19

A14
A15
A16

A19 = 1, A18 = 0, A17 = 0
activate the decoder

A16, A15, A14 select
one EPROM chip

A14
A15
A16
A17
A18
A19

CS2

A19=A18=...=A14=1
select the EPROM

All the address lines used by the decoder or memory chip =>
each byte is uniquely addressed = full address decoding

FFFFF

3FFFF

00000

FFFFF
FC000

3FFFF

00000

FFFFF
FC000

83FFF
80000

3FFFF

00000

FFFFF
FC000

9FFFF
9C000
83FFF
80000

3FFFF

00000
8088 Memory Map

220 =
1,048,576
different

byte
addresses
= 1Mbyte

MRDC

A0
...

A17

256KB
RAM
chip

WR RD

A 256Kbyte = 218 RAM chip
has 18 address lines, A0 - A17

16KB
EPROM

chip

16KB
EPROM

chip

16KB
EPROM

chip

16KB
EPROM

chip

16KB
EPROM

chip

16KB
EPROM

chip

16KB
EPROM

chipCS4
CS5
CS6
CS7
CS8
CS9
CS10

16KB
EPROM

chip
 OECS3

A0-A13

Decoding Circuits

Memory Address Decoding

00000

FFFFF

30000

37FFF
32KB 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Addr[19:0]

These 5 address lines
are not changed. They
set the base address

These 15 address lines select
one of the 215 (32768) locations
inside the RAMs

Lowest address

Highest address

Addr[19]
Addr[18]
Addr[17]
Addr[16]
Addr[15]

IO/M

Addr[14:0]

CS

32KB

 Using Full memory addressing space

Can we design a decoder such that the first address
of the 32KB memory is 37124H?

 Design a 1MB memory system consisting of multiple memory chips

Memory Address Decoding

— Solution 1:

256KB 256KB 256KB 256KB

Addr[17:0]

Addr[18]

Addr[19]

IO/M

CS

CS CS CS CS

2-to-4
decoder

 Design a 1MB memory system consisting of multiple memory chips

— Solution 2:

256KB 256KB 256KB 256KB

Addr[19:2]

Addr[1]

Addr[0]

IO/M

CS

CS CS CS CS

2-to-4
decoder

Memory Address Decoding

 Design a 1MB memory system consisting of multiple memory chips

Memory Address Decoding

— Solution 3:

256KB 256KB 256KB 256KB

Addr[19:18]

Addr[17]

Addr[6]

IO/M

CS

CS CS CS CS

2-to-4
decoder

Addr[16:7]
Addr[5:0]

It is a bad design, but still works!

Memory Address Decoding

 Design a 1MB memory system consisting of multiple memory chips

— Solution 4:

256KB 256KB 512KB

CS CS CS

Addr[17:0]

Addr[18]
Addr[19]

IO/M
Addr[18]

Addr[19]
IO/M

Addr[18]

Addr[19]

IO/M

Memory Address Decoding

 Exercise Problem:

— A 64KB memory chip is used to build a memory system with the starting address of
 7000H. A block of memory locations in the memory chip are damaged.

64KB
0000H

3210H

3317H

FFFFH

Damaged block

70000H

73210H

73317H

7FFFFH

1M addressing space

73200H

733FFH

1M addressing space

Replace this block

Memory Address Decoding

CS

CS

A[19]
A[18]
A[17]
A[16]
IO/M

A[15]
A[14]
A[13]
A[12]
A[11]

A[10]
A[9]

64KB

512B

A[15:0]

A[8:0]

Memory Address Decoding

 Exercise Problem:

— A 2MB memory chip with a damaged block (from 0DCF12H to 103745H) is used to
 build a 1MB memory system for an 8088-based computer

000000H

1FFFFFH

0FFFFFH

103745H

0DCF12H

Damaged block

000000H

1FFFFFH

18FFFFH

07FFFFH

512K

512K

Use these
two

blocks

CS

A[20]

A[19:0]A[19:0]

A[19]

Memory Address Decoding

 Partial decoding
— Example:

 build a 32KB memory system by using four 8KB memory chips
 The starting address of the 32KB memory system is 30000H

30000H

32000H

34000H

36000H

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Chip #1

Chip #2

Chip #3

Chip #4

Low addr. of chip #1

high addr. of chip #1

Low addr. of chip #2

high addr. of chip #2

Low addr. of chip #3

high addr. of chip #3

Low addr. of chip #4

high addr. of chip #4

FFFFF

00000

Partial address
decoding

Memory Map -

WR
RD

A0
...

A15
64KB
RAM
chipA18

A19
CS1’

MWTC
MRDC

The same Memory-map assignment

CS1
A18
A19
IO/M

Some address lines not used by the decoder or memory chip
=> mirror images = partial address decoding

FFFFF

3FFFF

00000

FFFFF

3FFFF
30000
2FFFF
20000
1FFFF
10000
0FFFF
00000

FFFFF
FC000

7FFFF
7C000

3FFFF
30000
2FFFF
20000
1FFFF
10000
0FFFF
00000

8088 Memory Map

A0
...

A15

64KB
RAM
chip

WR RD

A 64Kbyte = 216 RAM chip has
16 address lines, A0 - A15

FFFFF
FC000

9FFFF
9C000

83FFF
80000
7FFFF
7C000

3FFFF
30000
2FFFF
20000
1FFFF
10000
0FFFF
00000

FFFFF
FC000

DFFFF
DC000

CF000
CC000

9FFFF
9C000

83FFF
80000
7FFFF
7C000

3FFFF
30000
2FFFF
20000
1FFFF
10000
0FFFF
00000

base
image

base
image

mirror
images

MRDC

A0-A13

16KB
EPROM

chip
 OE

A14
A15
A16
A17
A18

CS2

A18=...=A14=1
select the EPROM

mirror
image

base
image

mirror
image

A19, A18 assigned to 00 =>
CS active for every address

from 00000 to 3FFFF
A18 = 0
A19 = 0

IO/M = 0
IO/M = 0 => Memory map A16, A17 not used => four images for the same chip

16KB
EPROM

chip

16KB
EPROM

chip

16KB
EPROM

chip

16KB
EPROM

chip

16KB
EPROM

chip

16KB
EPROM

chip

16KB
EPROM

chipCS4
CS5
CS6
CS7
CS8
CS9
CS10

16KB
EPROM

chip
 OECS3

A0-A13

A 7
B 6
C 5
 74LS138 4

3
E1 2
E2 1
E 0

A17

A19

A14
A15
A16

A19 = 1, A17 = 0
activate the decoder

A16, A15, A14 select
one EPROM chip

Memory Address Decoding

— Implementation of partial decoding

Addr[12:0]

IO/M

CS

2-to-4
decoder

Addr[13]

Addr[14]

CS CS CS

8KB 8KB 8KB 8KB

 With the above decoding scheme, what happens if the processor accesses location
 02117H, 32117H, and 9A117H?
 If two 16KB memory chips are used to implement the 32KB memory system, what
 is the partial decoding circuit?
 What are the advantage and disadvantage of partial decoding circuits?

Generating Wait States

 Wait states are inserted into memory read or write cycles if slow memories
 are used in computer systems
Ready signal is used to indicate if wait states are needed

8088

memory

data

Address

decoder Delay
circuit

Ready

QD QD

clk

Readyclr clr

1. Static RAM (SRAM)

• Essentially uses flip-flops to store charge (transistor
circuit)

• As long as power is present, transistors do not lose charge
(no refresh)

• Very fast (no sense circuitry to drive nor charge depletion)
• Complex construction
• Large bit circuit
• Expensive
• Used for Cache RAM because of speed and no need for

large volume

Static RAM Structure

six transistors
 per bit

(flip flop)

“NOT”

1

1

0

0 0/1 = example

01

0

1

Static RAM Operation

• Transistor arrangement (flip flop) has 2 stable logic
states

• Write
1.signal bit line: High 1 Low 0

2.address line active “switch” flip flop to stable state
matching bit line

• Read
1.address line active

2.drive bit line to same state as flip flop

2. Dynamic RAM (DRAM)

• Bits stored as charge in capacitors
• Simpler construction
• Smaller per bit
• Less expensive
• Slower than SRAM
• Typical application is main memory
• Essentially analogue -- level of charge

determines value

Dynamic RAM Structure

one transistor and
one capacitor per bit

‘High’ Voltage at Y
allows current to flow
from X to Z or Z to XX

Y

Z

+

DRAM Operation

• Address line active

 transistor switch closed and current flows
• Write

1. data signal to bit line: High 1 Low 0

2. address line active transfers charge from bit line
to capacitor

• Read
1. address line active

2. transfer charge from capacitor to bit line (then to
amplifier)

3. capacitor charge must be restored !

SRAM v.s. DRAM

Static Random Access Memory
(SRAM)

Dynamic Random Access Memory
(DRAM)

Storage
element

Advantages
1. Fast
2. No refreshing operations

1. High density and less expensive

Disadvantages
1. Large silicon area
2. expensive

1. Slow
2. Require refreshing operations

Applications High speed memory applications,
Such as cache

Main memories in computer
systems

Typical 16 Mb DRAM (4M x 4)

2 k x 2 k = 4 M

RAS = Row Addr. Select
CAS = Column Addr. Select

WE = Write Enable
OE = Output Enable

nybble

Accessing DRAMs

 DRAM block diagram

Addr[7:0]

CAS

RAS Storage Array

Column decoder

R
ow

 deco der

Accessing DRAMs

 Address bus selection circuit

QD QD

CLK
set

QD

set set
Q

decoderaddress

IO/M

RAS
CAS

To DRAM
Row Address

Column Address

MUX

Accessing DRAMs

 Refreshing operations

— Because leakage current will destroy information stored on DRAM capacitors

 periodic refreshing operations are required for DRAM circuits

— During refreshing operation, DRAM circuit are not able to response processor’s

 request to perform read or write operations

— How to suspend memory operations?

— DRAM controllers are developed to take care DRAM refreshing operations

I/O System
Design

Overview of 8088 I/O System

 65,536 possible I/O ports

 Data transfer between ports and the processor is over data bus

 8088 uses address bus A[15:0] to locate an I/O port

 AL (or AX) is the processor register that takes input data (or provide
 output data)

I/O I/O I/O

Data bus

Address bus A[15:0]

AL

AX

8088

8088 Port Addressing Space

 Addressing Space

FFFF

0000

00F8

00FF

Accessed
directly by
instructions

Accessed
through
DX

 Accessing directly by instructions

IN AL, 80H
IN AX, 6H
OUT 3CH, AL
OUT 0A0H, AX

 Accessing through DX

IN AL, DX
IN AX, DX
OUT DX, AL
OUT DX, AX

Input Port Implementation

8088

Data Bus

Address bus
Decoder

InputGating
device

Other control
signals

— The outputs of the gating device are high impedance when the processor is not
 accessing the input port

— When the processor is accessing the input port, the gating device transfers input
 data to CPU data bus

— The decoding circuit controls when the gating device has high impedance output
 and when it transfers input data to data bus

Input Port Implementation

 Circuit Implementation

— Assume that the address of the input port is 9CH

Data bus Input data
Tri-state
buffer

CE

RD IO/M

A7
A6
A5
A4
A3
A2
A1
A0

Output Port Implementation

 Circuit Implementation

— Assume that the address of the output port is 9CH

Data bus Output dataLatch

CLK

WR IO/M

A7
A6
A5
A4
A3
A2
A1
A0

A Reconfigurable Port Decoder
1 Vcc

A3
A2

A1

A0

B3
B2

B1

B0

A=B

A=B

A3
A2

A1

A0

B3
B2

B1

B0

A=B

A=B

A7

A6
A5

A4

A3

A2
A1

A0

R

RD or WR

IO/M

Direct I/O v.s. Memory-Mapped I/O

Memory
addressing
space I/O

addressing
space

I/O

Memory addressing
space

00000

FFFFF

0000

FFFF

00000

FFFFF

Direct I/O
Memory-mapped I/O

 Direct I/O: I/O addresses are separated from memory address
— Advantage: Do not take memory addressing space
— Disadvantage: Use only AL or AX transferring data

 Memory-mapped I/O: I/O ports are treated as memory locations
— Advantage: Accessing I/O ports is like accessing memory locations
 Can use other instructions to access I/O ports
— Disadvantage: Take memory addressing space

Handshaking
• I/O devices are typically slower than the microprocessor.
• Handshaking is used to synchronize I/O with the

microprocessor.
– A device indicates that it is ready for a command or data (through

some I/O pin or port).
– The processor issues a command to the device, and the device

indicates it is busy (not ready).
– The I/O device finishes its task and indicates a ready condition,

and the cycle continues.

• There are two basic mechanisms for the processor to
service a device.
– Polling: Processor initiated. Device indicates it is ready by setting

some status bit and the processor periodically checks it.

– Interrupts: Device initiated. The act of setting a status bit causes an
interrupt, and the processor calls an ISR to service the device.

8255 Programmable Peripheral Interface

Data bus

8088

D[7:0]

A0
A1

RD
WR

RESET

CS

Control port

PA[7:0]

PB[7:0]

PC[7:0]

A7
A6
A5
A4
A3
A2

IO/M
A1 A0 Port

0 0
0 1
1 0
1 1

PA
PB
PC
Control

Programming 8255

 8255 has three operation modes: mode 0, mode 1, and mode 2

7 6 5 4 3 2 1 0 Command register

Mode
set
flag

0: disabled
1: enabled

Mode select
 A

00: mode 0
01: mode 1
1x: mode 2

Port A

0: out
1: in

Port C
(C4-C7)

0: out
1: in

Mode select
 B

0: mode 0
1: mode 1

Port B

0: out
1: in

Port C
(C0-C3)

0: out
1: in

Programming 8255

 Mode 0:

— Ports A, B, and C can be individually programmed as input or output ports
— Port C is divided into two 4-bit ports which are independent from each other

 Mode 1:

— Ports A and B are programmed as input or output ports
— Port C is used for handshaking

PA[7:0]

STBA

IBFA

INTRAPC3
PC5
PC4

PB[7:0]

STBB

IBFB

INTRBPC0
PC1
PC2

PC6, 7

8255

PA[7:0]

OBFA

ACKA

INTRAPC3
PC6
PC7

PB[7:0]

OBFB

ACKB

INTRBPC0
PC1
PC2

PC4, 5

8255

Programming 8255
 Mode 2:

— Port A is programmed to be bi-directional
— Port C is for handshaking
— Port B can be either input or output in mode 0 or mode 1

PA[7:0]

OBFA

ACKA

INTRA

PC4

PC6
PC7

STBA

IBFA

PC0

PC3
PC58255

PC0

PC0

PB[7:0]

In Out
In Out
In Out

Mode 0

STBB OBFB
IBFB ACKB

INTRB INTRB

Mode 1

1. Can you design a decoder for an 8255 chip such that its base address is 40H?
2. Write the instructions that set 8255 into mode 0, port A as input, port B as output,

PC0-PC3 as input, PC4-PC7 as output ?

Serial Data Transfer

 Asynchronous v.s. Synchronous
— Asynchronous transfer does not require clock signal. However, it transfers extra bits
 (start bits and stop bits) during data communication
— Synchronous transfer does not transfer extra bits. However, it requires clock signal

Frame

Start
bit B0 B1 B2 B3 B4 B5 B6

Parity
Stop bits

Asynchronous
Data transfer

Synchronous
Data transfer

clk

data

B0 B1 B2 B3 B4 B5

data

Baud (Baud is # of bits transmitted/sec, including start, stop, data and parity).

8251 USART Interface

A7
A6
A5
A4
A3
A2
A1

IO/M

D[7:0]

RD RD

WR WR
A0 C/D

CLK CLK
TxC

RxC

TxD

RxD

8251 RS232

Programming 8251

 8251 mode register

7 6 5 4 3 2 1 0 Mode register

Number of
Stop bits

00: invalid
01: 1 bit
10: 1.5 bits
11: 2 bits

Parity
0: odd
1: even

Parity enable
0: disable
1: enable

Character length

00: 5 bits
01: 6 bits
10: 7 bits
11: 8 bits

Baud Rate

00: Syn. Mode
01: x1 clock
10: x16 clock
11: x64 clock

Programming 8251

 8251 command register

EH IR RTS ER SBRK RxE DTR TxE command register

TxE: transmit enable
DTR: data terminal ready
RxE: receiver enable
SBPRK: send break character
ER: error reset
RTS: request to send
IR: internal reset
EH: enter hunt mode

Programming 8251

 8251 status register

DSR SYNDET FE OE PE TxEMPTY RxRDY TxRDY status register

TxRDY: transmit ready
RxRDY: receiver ready
TxEMPTY: transmitter empty
PE: parity error
OE: overrun error
FE: framing error
SYNDET: sync. character detected
DSR: data set ready

Simple Serial I/O Procedures

 Read

start

Check RxRDY

Is it logic 1?

Read data register*

end

Yes

No

* This clears RxRDY

 Write

start

Check TxRDY

Is it logic 1?

Write data register*

end

Yes

No

* This clears TxRDY

Errors

– Parity error: Received data has wrong error --
transmission bit flip due to noise.

– Framing error: Start and stop bits not in their proper
places.

• This usually results if the receiver is receiving data at the
incorrect baud rate.

– Overrun error: Data has overrun the internal receiver
FIFO buffer.

• Software is failing to read the data from the FIFO.

Programmable Timer 8254

8254 Programming

8254 Programming

• Each counter may be programmed with a count of
1 to FFFFH.
– Minimum count is 1 all modes except 2 and 3 with

minimum count of 2.

• Each counter has a program control word used to
select the way the counter operates.
– If two bytes are programmed, then the first byte (LSB)

stops the count, and the second byte (MSB) starts the
counter with the new count.

8254 Modes

• Mode 0: An events counter enabled with G.
– The output becomes a logic 0 when the control word is written and

remains there until N plus the number of programmed counts.

Mode 1: One-shot mode.
– The G input triggers the counter to output a 0 pulse for `count' clocks.
– Counter reloaded if G is pulsed again.

8254 Modes

• Mode 2: Counter generates a series of pulses 1 clock pulse wide.
– The seperation between pulses is determined by the count.
– The cycle is repeated until reprogrammed or G pin set to 0.

– Mode 3: Generates a continuous square-wave with G set to 1.
• If count is even, 50% duty cycle otherwise OUT is high 1 cycle longer.

8254 Modes

	PowerPoint Presentation
	Slide 2
	8086/8088 Internal Organisation
	BIU Elements
	8086/8088 20-bit Addresses
	Exercise: 20-bit Addressing
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Hardware Interface
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Memory Read Timing Diagrams
	Slide 79
	Slide 80
	Slide 81
	Bus Timing
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Memory Chips
	Memory Address Decoding
	Slide 91
	Slide 92
	Decoding Circuits
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	1. Static RAM (SRAM)
	Static RAM Structure
	Static RAM Operation
	2. Dynamic RAM (DRAM)
	Dynamic RAM Structure
	DRAM Operation
	Slide 112
	Typical 16 Mb DRAM (4M x 4)
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Handshaking
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Errors
	Programmable Timer 8254
	8254 Programming
	Slide 142
	8254 Modes
	Slide 144
	Slide 145

