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MATFORSK has a long tradition in chemometrics, starting in the late 70’s
with multivariate calibration in NIR applications, and some years later
multivariate analysis of sensory data was started up. Today, the group of
chemometrics and statistics consists of about 10 persons divided among
research scientists and Ph.D. students. More info can be found at 

http://www.matforsk.no/web/statchem.nsf
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Guest editorial

In a recent review in Trends in Biotechnology it is
claimed: “Too often, data mining activities are
simply large-scale applications of poorly
understood methods to poorly understood data”.
Well, what is data mining anyway? A quick search
on the Internet revealed that many companies
within data mining rely on methods such as cluster
analysis, factor analysis, neural networks, decision
trees. Interestingly enough, regression is often not
mentioned. It is because this term generates bad
vibrations among the “data miners” and their
customers? 

For two years now, I have work with
chemometrics at MATFORSK; Norwegian Food
Research Institute. The applications span from
bioinformatics to analysis of consumer related data
in a variety of different projects, and it involves
planning experiments, sampling from biological
systems and analysis of considerable amounts of
data, often in blocks, from measurements on raw
materials, processes and products. The
contributions in this issue cover some aspects
regarding the role of chemometricians as
“information extractors” in the era of vast amounts
of data. 

What is the role of the chemometrician today? –
and what is a chemometrician? I am inclined to
support the view that “chemometrics is what
chemometricians do” (see also Jerry Workman’s
contribution in this issue). At MATFORSK we
often work with sensory analysis in food research,
and why should we refrain from analyzing
accompanying data from questionnaires related to
consumer’s preferences, attitudes, eating habits
etc.?  As sound users of statistical methods, we
should initiate proper use of them also in other
fields of science. Now is the time to apply
versatile methods that we have found to be apt for
huge data sets in chemistry to other fields, like
genetic data. I think that chemometricians can
contribute greatly within data mining, being it
bioinformatics or CRM. Many variables, relatively
few objects, missing data, outliers and many
responses are situations we are used to handle
within chemometrics. The use of resampling/sub-
sampling methods to make models on some
representative sets of objects is another issue that
fits into chemometric thinking.

All the best for the new chemometric year - and
may your data be with you!

Frank Westad
MATFORSK
frank.westad@matforsk.no

Listserv changes

The University of Maryland is terminating the
IBM VM/CMS computer known as
umdd.umd.edu.  This means, among other things,
that Listserv lists will be moved to a new
computer. The ICS-L Listserv list (subscriptions
and list archives) has been moved. All postings
should now be sent to:

            ics-l@listserv.umd.edu
      (NOT  ics-l@umdd.umd.edu)

Listserv administrative mail (subscribe, unsub-
scribe, changesubscription options, etc.) should be
sent to:

           listserv@listserv.umd.edu
     (NOT  listserv@umdd.umd.edu)

Note that mail from the list is now sent through
LISTSERV.UMD.EDU, instead of UMDD.UMD.
EDU. If you filter your messages based on the
email address on the TO: line or REPLY-TO: line,
you may need to modify your filters for this list.

The new server (operating on a Unix system) is the
current version of the Listserv system, much
newer than the version we were able to use on the
UMDD system.  One of the nice new features for
us is a web interface to the Listserv server.  The
Listserv server "home page" may be accessed at:

      http://www.listserv.umd.edu

The web interface for this list may be accessed at:
  http://www.listserv.umd.edu/archives/ics-l.html
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Chemometrics in a Network
Economy

Jerry Workman, Jr.

Kimberly-Clark Corp., Analytical Science and
Technology Group, West Research and
Engineering, 2100 Winchester Road, Neenah,
Wisconsin 54956 U.S.A.

This paper is an excerpt of a presentation made at
the Fourth International Conference on
Environmetrics and Chemometrics, Las Vegas
USA September 2000. For a more complete
discussion please refer to the paper, “The State of
Multivariate Thinking for Scientists in Industry:
1980-2000,” to be published in Chemometrics and
Intelligent Laboratory Systems 2001.

1. Introduction

Chemometrics has enjoyed tremendous success in
the areas related to calibration of spectrometers
and spectroscopy-based measurements.
Chemometric-based spectrometers have been
widely applied for process monitoring and quality
assurance. However, chemometrics has the
potential to revolutionize the very intellectual
roots of problem solving. Are there barriers to a
more rapid proliferation of chemometric based
thinking, particularly in industry? What are the
potential effects of chemometrics technology and
the New Network Economy (NNE), or simply the
network economy, working in concert? Who will
be the winners in the race for faster, better,
cheaper systems and products? These questions
are discussed briefly in terms of the principles of
the network economy and in the promise of
chemometrics for industry. What then is the state
of chemometrics in modern industry? Several
powerful principles are derived from an evaluation
of the network economy and chemometrics which
could allow chemometrics to proliferate much
more rapidly as a key general problem solving
tool.

In chemistry, one’s ideas, however beautiful,
logical, elegant, imaginative…are simply without
value unless they are actually applicable to the one

physical environment we have; in short, they are
only good if they work. – R. B. Woodward

Relating the theme of chemometrics to a busy
technical community

Twenty years after the term chemometrics was
freshly “minted,” by Bruce Kowalski and Svante
Wold, the chemometrics community still seems to
be searching for a universal definition and a clear
identity. This paper begins by examining several
definitions for chemometrics, the clarity of these
definitions, and the message communicated to the
industrial community.

"Chemometrics is what chemometricians do."
Anon.

"Chemometrics has been defined as the
application of mathematical and statistical
methods to chemical measurements [1]."  

"Chemometrics is the chemical discipline that uses
mathematical and statistical methods for the
obtention in the optimal way of relevant
information on material systems [2]." 

"Chemometrics developments and the
accompanying realization of these developments
as computer software provide the means to convert
raw data into information, information into
knowledge and finally knowledge into intelligence
[3]." 

"Analytical chemistry has been called a science
without a theory. Some say that the theories and
principles of analytical chemistry have been
handed down from other branches of science.
Developments in chemometrics that are beginning
to effect instrument design and specify the limits
of analysis are shaping the foundation for this
science....research in chemometrics will contribute
to the design of new types of instruments, generate
optimal experiments that yield maximum
information, and catalog and solve calibration and
signal resolution problems. All this while
quantitatively specifying the limitations of each
instrument as well as the quality of the data it
generates [4]." 

"Chemometrics, the application of statistical and
mathematical methods to chemistry...[5]" 
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"Chemometrics is the discipline concerned with
the application of statistical and mathematical
methods, as well as those methods based on
mathematical logic, to chemistry [6-9]." 

"Chemometrics can generally be described as the
application of mathematical and statistical
methods to (1) improve chemical measurement
processes, and (2) extract more useful information
from chemical and physical measurement data
[10]." 

"Chemometrics is an approach to analytical and
measurement science based on the idea of indirect
observation. Measurements related to the chemical
composition of a substance are taken, and the
value of a property of interest is inferred from
them through some mathematical relation [11]." 

“Chemometrics (this is an international definition)
is the chemical discipline that uses mathematical
and statistical methods,  (a) to design or select
optimal measurement procedures and experiments;
and (b) to provide maximum chemical information
by analyzing chemical data [12].” 

From these definitions we are left with a few
nearly irrefutable facts: chemometrics involves
chemistry and math….most probably data, and
possibly sensors and measurements of processes. 

Whatever the clear and present definition of
chemometrics is, the industrial understanding of it
is that it is complicated, it requires computers and
that it could possibly be beneficial. However we
are not exactly certain how or why it would be an
advantage to use chemometrics. The fact is that
chemometrics allows us to take off the shelf data,
which many institutions have been generating ad
infinitum, and “wring it out” to remove all the
information content. This information can further
be scrutinized to obtain real knowledge of
processes and measurements. Knowledge for
optimized and new products, processes,
intellectual property estates, at reduced cost. 

Chemometrics is so often linked with Process
Analytical Chemistry, again defined by Kowalski
“as the discovery and development of new and
sophisticated analytical methods for use in-line as
an integral part of automated chemical processes
[13].” Some have said that process analytical
chemistry is 90% hardware and 10%
chemometrics. To an engineer that quantitative

statement means one may be able to do without it.
What we have then is a process – we make
measurements – we collect data – we use
chemometrics to obtain information – we review
the information and attain real knowledge. If
chemometrics is difficult to clearly define and
communicate, what are its advantages and
disadvantages?

2. Advantages of chemometrics

What, then are the clear advantages of
chemometrics? 
(1) Chemometrics provides speed in obtaining

real-time information from data; 
(2) It allows high quality information to be

extracted from less resolved data. 
(3) It provides clear information resolution and

discrimination power when applied to second,
third, and possibly higher-order data. 

(4) It provides methodology for cloning sensors –
for making one sensor take data “precisely“ as
another sensor. 

(5) It provides diagnostics for the integrity and
probability that the information it derives is
accurate. 

(6) It promises to improve measurements. 
(7) It improves knowledge of existing processes.
(8) It has very low capital requirements – it’s

cheap.

In summary, it provides the promise of faster,
cheaper, better information with known integrity.
In addition, it is common sense to know that math
is cheaper than physics – that computer programs
that can solve problems that traditionally have
required extensive hardware developments and
advances; it represents a superior approach.  We
see then, that intelligence can replace physical and
material solutions, much as the digital chip
replaces the mechanical clock works. This is an
important theme to further develop.

Recent reviews describing the remarkable
proliferation of near infrared, infrared, and Raman
chemometrics-based analyzers for use in process
analysis are given in reference [14]. The
references found in this review and many others
cite several thousand cases where chemometrics
was applied to calibration of sensors to analyze
complex chemical mixtures and used for on-line or
at-line analysis. Without chemometrics most, if
not all, of these applications would not have been
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possible. In fact, multivariate calibration is
commonly accepted for process, research, and
quality use applications throughout the world of
spectroscopy.    
     

3. Disadvantages of chemometrics

The perceived disadvantage of chemometrics is
that there is widespread ignorance about what it is
and what it can realistically accomplish. The
notion that ‘many people talk about chemometrics,
but there are relatively few actually using it for
daily activities and major problem solving in
industrial situations.’ This science is considered
too complex for the average technician and
analyst. The mathematics can be misinterpreted as
esoteric and not relevant. And most important for
industry, there are a dismal lack of official
practices and methods associated with
chemometrics. 

Chemometrics requires a change in one’s approach
to problem solving from univariate to multivariate
thinking; since we live in an essentially
multivariate context. From pondering over
spreadsheets to actually analyzing the data for its
full information content.  The old scientific
method is passing away; a new scientific method is
arising from its ashes. A new method requiring not
a thought ritual, but rather a method involving
many inexpensive measurements, possibly a few
simulations, and chemometric analysis. The new
method looks at all the data from a multivariate
approach, whereas the old method requires the
scientist’s assumed powers of observation, from a
univariate standpoint, to be the key data processor.

The Old Scientific Method (used for hundreds of
years)
(1) Stating the problem
(2) Forming the hypothesis 
(3) Observing and Experimenting 
(4) Interpreting Data (traditionally univariate –

pondering stage)
(5) Drawing Conclusions 

The New Scientific Method (for routine problem
solving)
(1) Measure a process (any chemical phenomenon

or process)
(2) Analyze the Data (multivariate analysis)
(3) Iterate if necessary
(4) Create and test model

(5) Develop fundamental multivariate under-
standing of the process 

Industry relies on approved and accepted methods
which can easily be defended in a court of law.
The implementation of methods must involve a
minimum of risk to the user and to the
organization sponsoring the user. Historically,
most NIR papers use Ordinary Least Squares to
compare predicted NIR results against laboratory
results. However, some regulatory groups have
questioned the use of least squares and associated
multivariate calibration for analytical methods
involved with product release or compliance. 
 

4. Lessons for chemometrics from the network
economy

Rules of the NETWORK ECONOMY [15]

     To start, let’s look at two provocative
statements relating to the network economy: “Give
it away and it becomes priceless…keep it for
yourself and it becomes worthless, ” and “One fax
machine is worthless, two are extremely valuable,
many are priceless….” In the network economy
increased complexity is the friend of confusion
and chaos. The average person remembers 7 � 2
objects per human byte and the modes of
communication provide multi-channel competition
for any concept. Among other means of
communication, there is mobile connection
commerce, Internet commerce, direct print,
television, radio, telephone and fax commerce, and
direct human contact. Concepts must then be
clearly formulated and communicated to have any
meaningful impact. 

To be fast and first requires risk taking, risk by
definition has a high failure rate. The lesson is to
expend energy reducing the cost of risk, not the
rate of risk. One must make it more expensive to
be slow than wrong. So what are the laws of the
network economy? 

(1) The world is moving toward connectedness
(2) Services become more valuable the more

plentiful they are
(3) Networked systems grow exponentially
(4) Success becomes infectious
(5) Value explodes with membership
(6) Cost goes down the better and more valuable

the services are
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(7) The more of something given free the more
valuable it becomes - wealth feeds off
ubiquity

(8) Allegiances move away from organizations
and toward networks

(9) Devolution is essential – grassroots and
bottoms-up (users) are in control

(10) A move from atoms to bits – smaller, smarter
electronic systems over mechanical solutions

(11) Sustainable disequilibrium – constant change
is the order of things

(12) Find the right task, not how to do the wrong
task better. 

Assumption to knowledge ratio causes more
problems than ever before: (1) In the network
economy, experience can be your worst enemy – it
can lie to you about today’s reality, (2)
technologies must maximize learning rate while
minimizing cost, (3) technological approaches
must reduce the cost of failure, not the rate of
failure. In summary, you can fail often if you fail
cheaply. Human attention is one of the key
resource problems in the network economy,
making clear communications one of the key
aspects of successful attention getting. 

5. Summary: Calibration is not all that
chemometrics has to offer

Calibration of infrared and near infrared
spectrometers has been far and away the most
noted use of chemometrics in industry. But is this
the best and most desirable use of this powerful
technology? Do industrial managers get excited
about calibrating a sensor using a new optimized
technique, or in answering the question as to
whether PLS is better than PCR in this or that
case? I think not. In fact the sensors are all
supposed to make some measurement using all
those optics and electronics in the box -  and that
is that! Most chemometric books discuss mostly
the aspects of calibration with a few miscellaneous
applications. Examples [16-17] are adequate to
demonstrate this principle. 

Now industry may be missing something, and with
all deference to the authors of these texts, but this
material is still uncodified (esoteric) and
undiffused (not distributed for general
consumption) and it looks like through
chemometrics one mostly has tools for calibration
– some for quantitative analysis, some for
qualitative. Analysis techniques using the various

forms of multivariate analysis and pattern
recognition techniques are certainly available.
What else is there? How about codifying the
concept of applying the principles of multivariate
thinking to every possible problem that suffers
from  “univariatism.” Chemometric tools would be
most powerful if used for discovery of principles
where multivariate data is available to study
important variables in processes and product
performance, where understanding cause and
effect leads to product improvements. 

In conclusion, eight basic, but powerful principles
might be derived from the network economy that
relate to chemometrics:
(1) The commodity most lacking in today’s

network economy is human attention
(2) Value = Utility + Ubiquity
(3) A clear powerful message with results receives

attention and communicates utility
(4) The easiest way to get the world using

chemometrics is to solve their most urgent
problems using the most parsimonious
solutions

(5) Give these solution for free over the internet
(6) Once the value is noticed the techniques will

proliferate more rapidly
(7) Then make more advanced tools and

instruction available for solving data problems
through standard commercial solutions

(8) Make web-based data and enhanced
algorithms available for everyone (i.e.,
network the global PC community into
chemometric – and multivariate - thinking).

The chemometrician is thus encouraged to apply
multivariate thinking as a new means to routine
problem solving for calibration and discovery. By
applying multivariate problem solving approaches
to both analysis and discovery an improvement in
both the depth of discovery and the speed of
discovery is possible. Solve urgent problems first
using the simplest approach. Offer solutions to
those who will cooperate in a network of
discovery to provide ubiquity and synergy.
Develop special tools and approaches to discovery
that will lead to faster and more insightful work. 
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Genetic Algorithms in Feature
Selection

Riccardo Leardi

Department of Pharmaceutical and Food
Chemistry and Technology. University of Genova,

Italy

1. Introduction

Since their presentation by Holland in 1975, the
Genetic Algorithms (GA) have attracted a lot of
curiosity. The goal (trying to simulate the
evolutionary process of a living species) and
jargon (using typical biological terms such as
“gene”, “chromosome”, “mutation” and “cross-
over” in the description of an algorithm) of GAs
have helped to create something like an aura of
mystery around them.

In that period, the main limitation to the real
development of GAs in terms of applicability was
the fact that the huge amounts of computation
required by them could not be handled
satisfactorily by the computers then available. For
almost 20 years this has been the main problem for
those who would have liked to apply them to their
problems but did not have the possibility of
accessing a suitable computer: for “common size”
problems a mainframe would have been required,
while for complex problems the computation time
would have been too long even with the most
powerful computers.

Since the beginning of the 1990s this major
problem has been progressively removed, and
nowadays every personal computer can be used to
apply GA to easy/moderate-scale problems, while
the mainframes allow one to tackle very complex
problems such as those typical of molecular
modelling. This is the reason why, after a first
period in which the interest of the scientific
community was focused mainly on the theory
itself, the number of papers reporting applications
of GAs to real problems and the number of
scientists and of disciplines using them have been
growing exponentially.

In 1993, the Journal “Science” 1 published a paper
that gave a general presentation of genetic
algorithms, some mathematical analysis about how
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GAs work and how best to use them, and some
applications in modelling several natural
evolutionary systems, including immune systems.
In 1995 an article in “Nature” 2 described a
problem of molecular dynamics that had been
successfully solved by a GA where conventional
techniques had failed.

Several tutorials about GAs have been published
in journals devoted to different research fields. As
examples we cite those by Lucasius and Kateman
3-6, Hibbert 7, Shaffer and Small 8, Wehrens and
Buydens 9 and Luke 10. The set-up of the structure
of a GA is a very critical point, and a guide
leading to a good architecture is highly beneficial.
Wehrens et al. 11-12 proposed a set of quality
criteria to evaluate the performance of a GA,
considering not only the best solutions suggested
by the algorithm, but also the repeatability of the
optimization and the coverage of the search space.

GAs have found widespread application in several
fields involving regression problems. One of the
most important steps in a calibration is the
selection of the relevant variables. The size of the
search domain (with v variables, 2v-1
combinations are possible) and the presence of
many local optima make GA one of the suggested
methods. It is interesting to notice that several
authors have published papers about feature
selection by GAs, each of them using a different
GA structure, sometimes rather far from the
“standard” algorithm. This demonstrates the need
to modify the algorithm according to the
peculiarities of the problem to be solved. In the
case of feature selection a chromosome is made by
a very high number of genes (as many as the
variables), each of them being just 1 bit long (0 =
variable absent, 1 = variable present). Leardi et al.
13 use a simulated data set to show that a GA can
always find the global maximum of a simple
problem, in a time much shorter than the time
required by a full search. Lucasius et al. 14 showed
that a GA generally performs better than simulated
annealing and stepwise regression; on the other
hand, Hörchner et al. 15 demonstrated that
simulated annealing can give the same results.
Wise et al. also developed their GA for feature
selection 16-17. 

Wallet et al. 18 solve the problem of selecting a
minimal model which correctly predicts the
response by applying a GA using a two-criteria
population management scheme.

Broadhurst et al. 19 applied GAs to pyrolisis mass
spectrometry, with the goal of determining the
optimal subset of variables to give the best
possible prediction or determining the optimal
subset of variables to produce a model with a
predictive ability higher than or equal to a given
value (both in MLR and in PLS models).

The method proposed by Bangalore et al. 20 leads
to the selection of wavelengths and to the
definition of the PLS model size. To do that, a
“model size” gene taking on the integer value
corresponding to the number of latent variables to
be used in building the calibration model is added
to the genes coding the presence or absence of
each variable in the model.

Jouan-Rimbaud et al. 21 successfully applied a GA
to a problem of wavelength selection for MLR
calibration, while Arcos et al. 22 obtained a set of
wavelengths able to perform a PLS calibration of
mixtures of indomethacin and acemethacin, in
spite of the fact that the two compounds have
almost identical spectra.

A more complex optimization was performed by
Shaffer and Small 23. They apply a GA to the NIR
analysis of glucose in biological matrices,
optimizing at the same time five important
variables: the position and width of the bandpass
filter, the starting and ending points of the spectral
range submitted to the PLS regression, and the
number of latent variables employed in the
calibration model.

In spectroscopic infrared imaging applied to
discriminate between different materials, the
selection of a limited number of spectroscopic
wavelengths guaranteeing the optimal
discrimination makes the acquisition and
processing time much faster. This goal has been
achieved by using GA by Van den Broek et al. 24.
Depczynski et al. 25 devised a method for
multicomponent analysis by near infrared
spectrometry by combining wavelet coefficient
regression with a GA.

One of the main problems when applying feature
selection to spectroscopical data is that the
solution is often given by wavelengths scattered
throughout the spectrum, instead of spectral
regions as the solution given by spectroscopist.
This problem has been tackled by Leardi 26, who
modified its previous algorithm in order to force it
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as much as possible toward the selection of
contiguous wavelengths, in such a way that the
final model can be more easily accepted also by
spectroscopists. Although spectral data sets are the
most common field of application of GAs for
feature selection, owing to the very large search
domain, also in the case of non-spectral variables
some good results can be obtained, as reported by
Aishima et al. 27.

Overfitting is the greatest risk when applying GAs
to feature selection. This aspect has been taken
into account especially by Leardi 28-29, Leardi and
Lupiáñez González 30 and Jouan-Rimbaud et al. 31.

The ever-increasing number of papers in which
GAs are applied to very different fields of
chemistry and chemometrics shows the
effectiveness and validity of this technique. The
advantage of GAs over the “classical” techniques
becomes greater the greater the complexity of the
problem, especially owing to the good balance
between exploration and exploitation. The results
obtained by a GA can be highly improved after
“hybridization” with a standard technique,
typically having a very poor exploration ability
and a very high exploitation potential. This allows
one to define with great precision the global
optimum, whose location has been effectively
found by the GA. It is anyway to be highlighted
that it is not possible to define a “best” GA
architecture to be used in all applications, since the
optimal structure is extremely problem-dependent.
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1. Introduction

The need for effective and safe methods for data
analysis is increasingly important. Instrumentation
and data collecting system generate huge amount of
data. Examples are 2D or 3D analytical instruments,
high-throughput screening, microarray, QSAR and
imaging. 

The parsimony principle [1] goes back several
centuries. In a scientific context, a model with few
parameters is to be preferred to other possible models
if their interpretations and predictive abilities are
similar. Various approaches exist for finding
parsimonious models. A typical situation is some kind
of best subset approach, which is discussed below in
more detail. Another approach is to compress the
original data, and estimate models on coefficients
from the compressed representation of the data with
methods such as splines and wavelets. This is useful
both for storage and analysis of the data. Yet another
approach to parsimony is to work with multiway,
multiblock or multi-domain methods [2][3]. In this
text we will not pursue this further, but focus on the
task of finding relevant variables regardless if they
are original or derived variables. It is also relevant to
mention the newly developed o-PLSR [4] in this
context. Another important issue that will not be dealt
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with in this text is preprocessing of data, e.g. some
kind of signal correction. 

2. Some views on multivariate modelling

A vital aspect in all kinds of models is to estimate
uncertainties for the model parameters. Since the truth
is seldom known in empirical modelling, the
uncertainties have to be estimated from a sample of
the system or process under observation. Suffice for
now the discussion about what is a
training/calibration set and (independent) test set in
terms of validation, let us assume that the objective is
to make a model from the available data. Then, later,
we might want to see if the observed system/process
has changed over time or is behaving differently at
another location and with other equipment. I think it
is fair to say that model validation in one way or
another is one of the important contributions from
chemometricians in multivariate modelling. This
should not be interpreted as we claim chemometrics
“invented” model validation such as cross validation
(CV), but it is an inherent part of most chemometric
software packages.  

Uncertainties may be estimated from resampling
methods such as jackknifing (JK) and bootstrapping
(BS). Jackknifing is closely connected to CV, the
difference lies in whether the models with all objects
or the mean of all individual models from the
resampling should be regarded as the “reference”.
Since we are applying resampling for specific
practical purposes such as variable selection, we feel
it is more natural to look upon the model on all
objects as the “reference”. According to studies by
Efron [5], the difference between these two is of order
1/N2, N being the number of objects. 

Bootstrapping can be performed in various ways. The
original approach was to resample from a population
sample numerous times with replacement. From the
theory, this will include 63% of the objects in one
bootstrap sample. Another approach is to make a
preliminary model, e.g. y = Xb + �, and then draw
individual pairs (x,�) randomly and generate new
objects. Both these procedures are typically repeated
500 times. The results below are based on BS on
original data.

Cross validation is intuitive in terms of stability of a
model, formulated as the question “How is the model
changing compared to the full model when some of
the objects are taken out?” If then the model changes
considerably, this deserves more detailed

investigation as to why this occurred. This question is
only common sense, but to quote Efron [5]:  “Good
simple ideas, of which the jackknife (JK) is a prime
example, are our most precious intellectual
commodity, so there is no need to apologize for the
easy mathematical level”.

How good are our estimates? Results from situations
where the “truth” in terms of ANOVA is available
show that both BS and JK estimates are close to
ANOVA. Since JK has an aspect of validation, these
estimates tend to be more conservative. An example
is shown in Table 1 for the data set “Helicopter”
taken from the literature [5]. The data are from a
central composite design with four design variables
and a blocking variable.

Table 1. Results for the Helicopter data

Variable ANOVA JK PC1 BS PC1
Block 0.613 0.671 0.583

Wing Area 0.960 0.970 0.962
Wing ratio 0.005 0.024 0.004
Body width 0.880 0.913 0.888
Body length 0.001 0.008 0.001

Variable selection in PCA

Variable selection is often thought of in a regression
context, where one or more response variables (Y) are
to be modeled by a set of predictor variables (X).
However, the importance of finding the relevant
variables is also vital in exploratory data analysis
tools such as PCA, and for cluster analysis for that
matter. In a recent review article about biotechnology
it is claimed that “finding the few genes that are most
responsible for the observed patterns in the data is a
well-studied, but still unsolved, statistical problem”. 

We believe that jackknifing in PCA has a potential to
solve some aspects of this “problem”. It has now been
applied on many different types of data. Below is an
example from microbiology, where 26 bacteria have
been tested to determine if they have the ability to
ferment 28 different sugars, represented as binary
data. PCA was employed, three PCs were found to be
relevant. Significant variables on either or both PC 1
& 2 are marked as stars in Figure 1. 
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Figure 1 Loadings with significant variables marked

Although some of the variables have high negative
loadings on PC2, they were found not to be
significant. The reason is that these variables have the
ability to ferment all sugars except one. The JK
estimate thus warns us that the correlation between
these variables and this PC is due to one object only;
this is a way to assess the stability of the model. For
data arising from experimental designs, the results so
far show that significance variables found from JK
estimates correspond well with Analysis of Effects
from ANOVA.

Variable selection in regression

The majority of applications in variable selection
concerns regression. Some of the most common
methods for variable selection are:

� Stepwise approaches
� Genetic algorithms
� Methods based on uncertainty estimates (e.g. JK

or BS).

There is a distinction between finding a model with
good fit for a few variables, e.g. 3-7, and a model with
all non-relevant variables removed. The JK and BS
based approaches allow for removing all the non-
relevant variables, but you are not restricted from
taking out predictor variables because some of them
are highly correlated. This of course is tied to the fact
that most models do not have the best predictive nor
interpretation abilities at full numerical rank. While
we often see that JK uncertainty estimates from PLSR
are higher than OLS estimates for full rank models,
this is not contradictory to the general principle that
the coefficients themselves are smaller for PLSR

(“PLSR shrinks”). When the validation indicates that
the optimal number of components is << numerical
rank, then we deliberately want the estimates to be
conservative for the OLS solution when employing
e.g. cross validation. 

Genetic algorithms have been shown to yield good
results in a lot of different applications (see R.
Leardi’s contribution), but they require tuning of a
number of parameters and they still are quite
computer intensive for data with thousands of
variables. An initial step where the non-relevant
variables are removed by t-tests based on JK
estimates of uncertainties will reduce the complexity.

The stepwise methods have a general problem in that
relevant variables are never to be included because
similar information is described by other variables,
especially when the selection of variables is based on
full rank models without proper validation. It is worth
mentioning that this situation arises even when there
are no numerical problems of matrix inversion due to
collinearity. This is not to say that stepwise
approaches do not give good models or predictions,
for a small number of variables, typically 3-8, but one
should monitor the performance with respect to the
model rank.

The term “rank” with respect to a multivariate model
deserves some comments, as “rank” has various
facets:

1. The numerical rank. This rank is the one based
on numerical computations, e.g. the number of
components that can be computed without
singularity problems.

2. The statistical rank. The important issue is here
to find the optimal rank from a statistical
criterion, preferably based on some proper
validation method.

3. The application specific rank. This judgement is
typically a combination of background
knowledge, prediction ability, model complexity,
and interpretation aspects. In most situations, this
rank is lower than the statistical rank, i. e. the
data-analyst tends to be more conservative. 

Comparison of thousands, not to say millions of
models to find THE best one may sound intriguing,
but some questions arise in this context:

1. What is the stop criterion of not to
include/exclude variables and/or components?
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2. How do we judge if one model is better than
another?

Variable selection by employing individual t-tests
based on uncertainties estimated by jackknifing/CV
and bootstrapping is not error-free. There is a danger
to keep variables although they should have been
removed or to overlook variables. Repeated random
cross validation, e.g. 100 times, might be useful to see
how many times a variable is included in the model.
Another alternative is cross model validation [7][8].
Also, repeating the procedure iteratively helps in
removing the non-relevant variables, as shown in [9].
This will in most cases also make it easier to assess
the correct rank of the model.

Should JK or BS be employed? As the results in
Table 2 indicate, the JK seems to be a more
conservative method, and it has an inherent model
validation. A study on the beer data reported in [9],
showed that the BS estimates were smaller than JK,
but thereby found a higher number of significant
variables in the noise part of the spectrum. Table 2
shows the results when predicting 20 test samples.
The results from calibration (not shown) were almost
identical, but the JK approach gives significantly
better prediction of the test samples. 

Table 2: Results from modelling of beer data

Iter #var/PC 
JK

RMSEP 
JK

#var/PC
BS

RMSEP 
BS

0 0 2.44 0 2.44
1 926/6 0.74 926/5 0.72
2 162/6 0.20 375/6 0.58
3 90/9 0.20 300/8 0.44
4 16/7 0.20 237/8 0.46

It is a general experience that when a best subset
model of e.g. five variables is the objective, many
models will have more or less the same predictive
ability.

In our pursuit of finding the best prediction (or
classification) model based on variable selection, the
ability to interpret the underlying structure might be
distorted in the final model. It might seem illogical to
discard variables we carefully have been
observing/collecting. One alternative is to have two
models: 

1. One model with all variables where new
samples are projected in the score plot, leverage
and residuals can be interpreted etc.

2. One model for optimal classification/ prediction
ability.

Instead of removing the non-significant variables, it is
possible to down-weigh them with a factor of e.g. 10-4

so that their (numerical) influence in the model
becomes small. Then, visualize them in the
correlation loadings plot [10], which shows the
correlation between the original variables and the
components. This measure is invariant to how the
variables were weighted during modelling. We end up
with a model that has good predictive ability and at
the same time all the variables can be interpreted.

3. Conclusions

The principle of parsimony has shown to be a fruitful
approach in terms of variable selection to remove
non-relevant variables. Jack-knifing is a conservative
and less computer-intensive alternative to
bootstrapping for estimates of parameter uncertainties
in multivariate models. The list of variables sorted by
significance is a good starting point for Genetic
Algorithms and stepwise methods. Whenever variable
selection in some form is employed, model validation
is essential.
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1. Abstract

A retention time alignment preprocessing
algorithm is presented that objectively corrects for
run-to-run retention time variation on both
separation dimensions of comprehensive two-
dimensional (2-D) separations prior to application
of chemometric data analysis algorithms.  The
alignment algorithm is easy to apply and robust.
Thus, data from 2-D separation techniques such as
comprehensive 2-D gas chromatography (GC x
GC), liquid chromatography/liquid
chromatography (LC x LC) and liquid
chromatography/capillary electropho-resis (LC x
CE) can be readily analyzed by various
chemometric methods to increase chemical
analysis capabilities. Complex samples can be
more effectively studied.

2. Introduction

Comprehensive 2-D separations are ideally suited
for the analysis of complex samples, and are
emerging as powerful tools for chemical analysis
[1-11].  Even with a large peak capacity, the
probability of peak overlap in 2-D separations can
be quite severe, especially for highly complex
samples.  Peak overlap becomes even more likely
if one desires to speed up the analysis by designing
a given separation method to provide a reduction
in the run time.  Thus, traditional methods of
chromatographic and electrophoretic data analysis,
such as peak height and peak area measurements,
become less effective as the analyst moves into the
realm of high-speed chemical analysis.  The
limitations brought upon by the likelihood of peak
overlap can be overcome, to a large extent, by the

implementation of appropriate chemometric
methods.  Essentially, chemometric methods will
effectively enhance the resolving power of 2-D
separation methods.  

The Generalized Rank Annihilation Method
(GRAM) is a chemometric method that resolves
and quantifies overlapped peaks in common
between sample and standard runs.  Several papers
cover the development of the GRAM algorithm in
detail [12-14].  The specific requirements for
GRAM analysis of comprehensive 2-D separations
have been reported [1].  In order to use GRAM,
the data comprising the peaks due to analytes and
interferences present in the sample and standard
must be bilinear or approximately bilinear.  A
bilinear peak is a 2-D peak that can be
mathematically represented by the vector product
of its elution profiles along each column
separation axis, producing a data matrix.
Generally, a bilinear peak in a contour plot
appears as an elliptical (or circular) zone that has
its major and minor axes aligned with the two
separation axes. Contour plots from published GC
x GC, LC x LC, and LC x CE papers depict 2-D
peaks that appear bilinear [1-4, 8-11].  Using
sample and standard matrices of data for sections
of the 2-D separations that contain the analyte(s)
of interest, GRAM calculates the pure elution
profiles of overlapped 2-D peaks.  Each 2-D peak
can then be individually reconstructed using its
respective two separation elution profiles.  In
addition, GRAM provides the concentrations for
analytes in the sample relative to in the standard.
The standard can be simply prepared using the
original sample by the standard addition method
[2].  

Not all comprehensive 2-D separation techniques
provide bilinear data.  In particular, temperature
programming simultaneously on both columns in
GC x GC will not produce bilinear data.  For this
reason we have been developing a high-speed
valve-based comprehensive GC x GC that has
independently controlled temperature
programming of both columns so the first column
can be temperature programmed while the second
column can be held isothermal at a desired
temperature.  

In order to use bilinear chemometric methods such
as GRAM, the unwanted shifting of a 2-D peak's
retention time(s) or migration time(s) between
sample and standard runs must be objectively
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corrected.  Indeed, run-to-run retention time
shifting has been a severe impediment to the use of
chemometric methods on data collected from
separation techniques.  We have addressed the
retention time alignment problem, and have
previously developed an objective rank-based
alignment method to correct retention time shifts
along one time axis [15].  Rank alignment has
been critically developed and successfully applied
to GC x GC separations that need peak alignment
on the first column time axis only [2-4].  Recently,
we have now modified our alignment method to
determine and correct the run-to-run peak shifting
along both separation time axes.  Here we report
our initial findings.  Correction of retention time
shifting on both separation dimensions broadens
the scope considerably for the use of chemometric
methods, since most 2-D separation techniques
produce run-to-run shifting on both dimensions
that is significant and detrimental to chemometric
applications, if not corrected.  

3. Experimental

The original alignment method applies an iterative
routine to determine the peak shift (along one time
axis) between the 2-D peaks in common between a
calibration standard data matrix, N, and
"unknown" sample data matrix, M.  In most cases
the data matrices M and N that are being analyzed
are small regions of separation data matrices
which contain overlapping peaks.  Regions of the
2-D separation data matrices in which the peaks
are resolved are analyzed using standard peak
height or volume methods. 

The iterative alignment approach is based on the
fact that the augmented data matrix [M|N], has a
minimum rank when the 2-D peaks are aligned
along the time axis in question.  Hence, the
alignment method shifts the 2-D peaks in M
relative to N along the first column time axis until
the resulting matrix [M|N] achieves a minimum
rank.  The alignment method uses the secondary
eigenvalues from the singular value decomposition
of [M|N] to find the peak shift correction
associated with a minimum rank.   Once the
correct peak shift between M and N is determined,
M can be aligned to N. This approach works fine
for 2-D separations that have highly reproducible
retention times along the second dimension time
axis, such as is the case for most GC x GC data.
Building upon our previous work, for 2-D

separations that require shift corrections along
both time axes, we report an alignment method
that can be used to determine and correct the peak
shifts along both time axes.  By applying the
original alignment method on the augmented
matrix [M|N] and then subsequently on the

augmented matrix 
M
N

�

��
�

��
, peak shifts occurring

along both time axes can be independently and
successively corrected.  In this work we have
taken 2-D data collected from a GC x GC and have
simulated 2-D data from other separation
techniques by randomly adding retention time
shifting that is consistent with reported precision
from recent reports for LC x CE [10, 11].  We
report how this improved algorithm corrects both
dimensions in an independent, step-wise fashion. 

4. Results and Discussion

In Figure 1 is shown the representative 2-D
separation data for a four component mixture.
Five replicate runs of the four component mixture
served as sample runs.  Next, a standard addition
was made to the sample and run five times for the
standard runs (not shown for brevity).  In Figure 2
is shown the application of the improved
alignment
algorithm to the five paired combinations of
sample/standard runs.  Note that in Figure 2 each
data trace depicts one boundary contour line
demarcating the peak boundaries for one run as in
Figure 1.  As shown in Figure 2, the improved
alignment algorithm successfully shifted the five
replicate 2-D sample runs in both dimensions.
Subsequent GRAM analysis was very successful. 
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Figure 1.  2-D data obtained from
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Figure 2.  (A)  Overlaid contour boundary plots (data as in 
Figure 1) from 5 runs, illustrating retention time variation 
on both dimensions.  (B) After alignment along column 1 
axis. (C) The 5 runs after alignment along column 2 axis.
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on both dimensions.  (B) After alignment along column 1 
axis. (C) The 5 runs after alignment along column 2 axis.
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Chemometric Movies Coming To
a Theatre Near You

In our continuous effort to spread the word about
the unbearable lightness of chemometrics, the
Chemometric Society has plans to re-make classic
moves in chemometric versions. These are among
the movies we expect to appear on screen this
year: 

� ”SIMCAsablanca” starring Nouna & Svante 

� ”For a few loadings more” starring Harald
Martens 

� “Honey I shrunk the regression coefficients”
starring Sijmen de Jong 

� ”Things to do at SSC7 when you’re drunk”
starring ….* 

* fill in whatever name you find appropriate
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