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Introduction and motivation
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Introduction

» Electromagnetic (EM) side-channel attacks

— Possible when EM leakage differs between key-dependent operations
— Inthis presentation: CEMA attack on AES

— Uses Pearson correlation as metric to compare leakage vs. hypothesis key

1. (Attacker sends plaintext to encrypt).

2. Victim inadvertently leaks EM
radiation during computations.

>
3. Attacker simulates leakage for each possible value of a single
byte of the key, and correlates these with actual measurements.

The key byte value with the highest correlation is selected.
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Introduction: CEMA attack

- For n,,, encryption measurements I+ of key byte s:
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Motivation

* Recent advances in machine learning and deep learning

— Outperform classical methods for pattern recognition in other domains [1]
—  Can we apply this to SCA to improve leakage detection in noisy, high-dimensional signals?

—  Already some promising results in recent related works [2,3,4]
A
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Motivation

 Previous works: CNN classification of fixed set of classes
Output of CNN is probability distribution for the (inter.) value of a key byte

—  Optimized using average cross entropy loss to match true probability distribution
—  Typically: attack 1 key byte and predict probability of (intermediate) value (256 classes)
Alternatively: predict probability of key byte Hamming weight (9 classes)

—  Then, to attack entire key: train multiple networks
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Contributions in our work

« “Correlation Optimization” approach

Inspired by recent works related to face recognition [5]
|dea is to not use classification, but learn representation / encoding of the

signal that is correlated with the true leakage value
—  Optimized using “correlation loss function” (a.k.a. cosine proximity)

This encoding consists of only one value per key byte
—  Number of outputs reduced by factor 9 (HW classification) or 256 (byte classification)
—  Trivial to learn model for entire key instead of just 1 byte
—  However, we do need to perform a standard CEMA attack on the outputs
Fortunately, this is fast since we only need to attack 16 points for a 16-byte key

« Methodology to remove alignment requirement

By applying correlation optimization in the frequency domain
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Correlation Optimization

- Example for one byte of the key and 5 traces
~ Suppose the true HW values of sbox(ps @ kg )are: [5.6.7.5.1]

5 input
traces <

gk‘. Yk

L(Tk,yx) =1 — —
|Gkl - lyell + €

5 output encodings after training:
[0.2059 0.3877 0.5690 0.2057-0.4889] or scaled e.g.

[20.59 38.77 56.90 20.57 -48.89]

~

—

-> Both have correlation 0.9999 with the true Hamming Weights
-> ‘“Useless” points of the input traces are discarded
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Removing the trace alighment requirement

- Simple networks such as MLPs are sensitive to feature

translations

— = Use magnitude / power spectrum of Fourier transform as features
— Similar idea applied in DEMA context by Tiu et al. [6]

« Why does this work?

— Demo:; https://research.edm.uhasselt.be/probyns/fft phase.html
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Results
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Results

» Two experiments

— Comparison to SCAnet-based model on ASCAD dataset (protected AES)

— Attack noisy, unaligned Arduino traces recorded with SDR (unprotected AES)
— Measured at our research lab

— Also released to public domain

» Outperforms previous deep learning models (8-layer CNN)
using only a very simple architecture (2-layer MLP)

> |UHASSELT | EDM | £ \Ar O i romsesn

nnnnnnnnnnnnnnnnnn




ASCAD dataset
» Introduced by Prouff et al. in [2]

- AES protected against first-order side-channel attacks

50,000 training / 10,000 test traces of 700 samples,
collected at 2 GS/s from ATMega8515

— ASCAD: time-aligned traces in preprocessing step
— ASCAD_desync50: desynced traces with maximum jitter of 50 samples
— ASCAD_desync100: desynced traces with maximum jitter of 100 samples
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ASCAD experiment (time domain)

Regular CEMA

1-layer MLP

2-layer MLP
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For the aligned traces (blue line), there is a clear
.
improvement over regular CEMA. However, MLPs are very
og 0 . . .
sensitive to misaligned traces (orange and green lines).
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ASCAD experiment (frequency domain)

Regular CEMA 1-layer MLP 2-layer MLP
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Surprising
result

Using frequency-domain features, the 2-layer MLP finds the
correct key in ~1,000 traces for each of the ASCAD datasets

»» [UHASSELT | EDM | £ \Ar O i romsesn

Opening new horizons




ASCAD experiment (comparison to previous work)
2-layer MLP best_cnn model from previous work [2]
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Arduino Duemilanove + SDR experiment
- USRP B210 and TBPS01 + TBWAZ2 to capture EM traces

— Training set: 51,200 traces of uniform random key encryptions
— Validation set: 32,768 traces of fixed-key encryptions

— Sample rate of 8 MS/s

— No preprocessing / alignment
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Attack against Arduino Duemilanove (unprotected AES)

250 1 —— rank - 0.0175
- confidence Note: no 10-fold
L 0.0150 cross-validation
. applied as in
r0.0125 previous figures
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Correct key found in ~22,000 traces using frequency-domain

2-layer MLP model.
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Conclusions and future work
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Conclusions

We've demonstrated the usage of ML as a means for
feature extraction (encodings) rather than classification

Features are extracted by optimizing the correlation loss

On the ASCAD dataset, we achieve better performance
despite using only a shallow MLP architecture

Alignment issues can be resolved by operating in the
frequency domain

All code and data is open source:

https://github.com/rpp0/correlation-optimization-paper
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https://github.com/rpp0/correlation-optimization-paper

Future work
» Siamese networks — triplet loss (see [5])

 Applications to other crypto algorithms

- Improvements to existing benchmark datasets
— ASCAD uses fixed key (fortunately variable masking values)

- Implement state-of-the-art architectures from CV domain
— For example: ResNets
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Questions?

pieter.robyns@uhasselt.be
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Reproducing best_cnn results
« Complete retrain of best_cnn model
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+  For desync50 and desync100 results are identical. Small difference (~500-1,000 traces)
for desyncO — could be due to lesser number of training examples used (45,000)*?
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Reproducing best_cnn results
+ ASCAD paper code (Github): no validation set used

— When added: validation loss actually increases over time — it overfits!
—  However, rank still decreases in both cases below

— Possible reason: multiple labels should actually be 1 since only HW leaks?

cross-entropy loss used in ASCAD paper

1.0 A

correlation loss used in our work
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