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As biomass becomes more integrated into our energy feedstocks, the ability to predict its combustion
enthalpies from routine data such as carbon, ash, and moisture content enables rapid decisions about
utilization. The present work constructs a novel artificial neural network model with a 3-3-1 tangent
sigmoid architecture to predict biomasses’ higher heating values from only their proximate analyses,
requiring minimal specificity as compared to models based on elemental composition. The model pre-
sented has a considerably higher correlation coefficient (0.963) and lower root mean square (0.375),
mean absolute (0.328), and mean bias errors (0.010) than other models presented in the literature which,
at least when applied to the present data set, tend to under-predict the combustion enthalpy.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

As our society ponders the consequences of global climate
change and decreasing fossil fuel resources, researchers worldwide
are searching for renewable fuels that are economically viable,
technologically feasible, and environmentally sustainable. The last
of these qualifications – sustainability – has evolved to include
developing fuels from raw materials that are locally sourced to
avoid long-range transport; that do not compete with land and
water used for food and fiber production; and that reduce net
greenhouse gas emissions (Singh et al., 2011). As a result, the
potential for biomass to serve as a sustainable supply of energy
has become a major research topic all over the world.

However, the design of new systems that integrate electricity,
heat and transport fuels from biomass, biomass and geothermal
sources (Malik et al., 2015) and biomass conversions with CO2 cap-
ture and utilization (Sharifzadeh et al., 2015) require knowledge of
the fundamental characteristics of the biomass, especially its
higher heating value (HHV). Such properties are critical to the
design and operation of biomass combustion systems (Ghugare
et al., 2014). Furthermore, to determine the conversion efficiency
of the biological or thermochemical conversion of biomass to
energy, the potential energy content of biomass must be known
(McKendry, 2002). The HHV of a fuel is equal to the amount of heat
released when a unit mass of the fuel is burnt completely, account-
ing for the enthalpy of condensation of liquid water as a combus-
tion product under standard conditions. Fuels with higher HHVs
will have the highest possible energy output (Xu and Yuan, 2015).

The HHV of a candidate biomass fuel can be experimentally
evaluated using an adiabatic oxygen bomb calorimeter, a simple
and accurate measurement of the changes between a reactant
and products’ enthalpy. Despite its simplicity, it may not always
be feasible to analyze the HHV experimentally (Callejón-Ferre
et al., 2014). There are many models that correlate the elemental
composition (C, H, N, O, S) of solid fuels and the HHV, including
coal (Mason and Gandhi, 1983); municipal solid waste
(Kathiravale et al., 2003), and more recently, biomass (Erol et al.,
2010; Friedl et al., 2005; Nhuchhen and Salam, 2012; Shen et al.,
2010). However, elemental analysis can be costly and time
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consuming, such that researchers are turning towards empirical
methods to predict the HHV of solid fuels such as biomass using
proximate analysis data alone (Cordero et al., 2001; Parikh et al.,
2005). Such mathematical models are based on the weight per-
centages (wt.%) of moisture, volatile matter (VM), fixed carbon
(FC) and ash of the solid fuel.

Artificial neural network (ANN) modeling is an emerging tool
for the description of biodiesel stability, centane number and con-
version rates based on fuel properties (Filho et al., 2015; Ramadhas
et al., 2006), and to predict how fuel and fuel blends behave in
thermal conversion scenarios (De et al., 2007; Guo et al., 2001).
ANNs have been used quite broadly to model experimental results
across the scientific literature, from modeling treatment of water
pollutants (Maurya et al., 2014), to pattern recognition in chro-
matographic spectra for food analysis and genomic and proteomic
sequences (Almeida, 2002; Chen et al., 2008) to process systems
modeling such as mycelial fermentation processes, product com-
positions after distillations, and predictive failure control (Willis
et al., 1991). These mathematical tools are so widely applied
because of their inherent versatility in connecting single process-
ing elements – known as nodes or neurons – in parallel computa-
tion to both process and represent knowledge (Basheer and
Hajmeer, 2000). These neurons are combined in a nonlinear trans-
fer function to yield a final result in terms of weights and biases
(Vani et al., 2015). ANNs have the ability to learn mathematical
models through experience – learning from the functionality of
the network – without the need to explicitly determine the math-
ematical relationships that tie together the nodes’ interrelated
solutions. The Artificial Neural Network is thus not a programmed
model, but rather a trained system based on empirical data (Buratti
et al., 2014). Empirical models constructed from artificial neural
networks are increasingly used because of their predictive capabil-
ity and accuracy, even for small datasets.

There are a handful of examples in the literature of researchers
using ANNs to predict the HHV of solid fuels. For example,
Mesroghli et al. (2009) employed a nonlinear ANN model for esti-
mation of the HHV of coals. Channiwala and Parikh (2002) pro-
posed a unified correlation to predict HHV from elemental
analysis of fuels in the solid, liquid and gas phases, from fossil
and biomass sources, and raw, char, and residue-derived fuels.
Using seven nonlinear models, Patel et al. (2007) estimated the
HHV of coals. Friedl et al. (2005) used a set of 122 plant material
samples to develop regression models to predict HHV from the bio-
mass’ elemental compositions. Likewise, Ghugare et al. (2014)
focused on predicted HHV of solid biomasses via a multilayer per-
ceptron neural network as well as genetic programming-based
models, with ultimate analysis an essential part of their
correlations.

Such prediction methodologies, while accurately representing
HHV, often rely on the ultimate or ultimate plus proximate analy-
ses of the raw fuels. Oftentimes, the ultimate analysis is not avail-
able. Conversely, the proximate analysis of a solid fuel, including
moisture (M), volatile matter (VM), ash (A) and fixed carbon (FC),
is easily determined (Callejón-Ferre et al., 2014), and considerably
more cost and time effective than ultimate analyses. In addition,
the ability to ‘‘design” a fuel or fuel mixture could be significantly
improved by being able to quickly predict the HHV based on such
simple factors as moisture, volatile matter, fixed carbon, and ash.
For example, Haykiri-Acma et al. (2015) demonstrated that the fuel
segregation in biomass-coal blends can be reduced or eliminated
by carbonization of the biomass, increasing the HHV and heating
density. Similarly, Goldfarb and Liu (2013) found that HHV is lin-
early related to the percent, by mass, of torrefied biomass in a mix-
ture with coal. Thus, the ability to swiftly predict the HHV of a fuel
– or fuel mixture – could inform decisions about pre-processing of
coal based on volatile and fixed matter targets.
The present study is focused on the development of a correla-
tion for predicting the HHV of solid fuels from only their proximate
analyses to remove the need for time-consuming and expensive
ultimate analyses in making such predictions. Building off of the
success of previous models to use proximate analyses to predict
elemental composition, and elemental composition to predict
HHV, the present work demonstrates the possibility of using prox-
imate analyses to directly predict HHV. In this paper, a new
approach using artificial neural networks modeling is proposed,
developed, and analyzed for forecasting errors. 131 published data
points of higher heating values for biomasses ranging from
10.14 MJ/kg to 21.78 MJ/kg are used to develop the model. The
model was validated using experimentally determined higher
heating values of biomass, and the correlations are compared to
other published correlations.

2. Materials and methods

2.1. Collection of data

Proximate analyses results and HHVs collected from the litera-
ture for various types of biomass species are presented in Table 1.
The biomasses represented in the database vary from agricultural
wastes (e.g. rice husk and corn straw) to forest residue (e.g. willow
and oak wood) to sewage sludge. For all 131 biomass samples in
the training set, the volatile matter (VM), FC (fixed carbon) con-
tents, and HHV were within 60–90 wt.%, 35–55 wt.% and 14–
23 MJ/kg, respectively. This dataset represents one of the most
diverse biomass sources used for HHV modeling in the literature,
to date.

2.2. Artificial neural network architecture and evaluation

To model complex systems, artificial neural networks (ANN) use
interconnected mathematical ‘‘neurons,” or ‘‘nodes,” to create a
structure. The input signals – of varying intensity and strength –
feed through the neuron, and combine to form a net input into
another neuron. The output layer, equal to the number of depen-
dent variables, is calculated by weight and bias associated with
connections among neurons. ANNs are organized into layers of
an l-m-n structure with l neutrons at the input layer (number of
model inputs), m neurons at the hidden layer (in this case, exper-
imentally optimized) and n neurons in the output (depending on
desired outputs) (Giri et al., 2011). The hidden node calculates
the weighted sum of all the inputs, Wji, or the interconnection of
the ith node of the first layer to the jth node of the second layer.
The sum of the modified signals is then transformed via a nonlinear
transfer function, f(net), to determine the node’s output. In this
study we probe both tangential and logistic sigmoid transfer func-
tions for f(net).

The sigmoid transfer function is a bounded, monotonic, non-
decreasing, S-curve of a nonlinear response (Giri et al., 2011). For
any variable x, it takes the form:

f ðxÞ ¼ 1
1þ e�x

ð1Þ

The tangential sigmoid transfer function assumes the form:

f ðxÞ ¼ 2
1þ e�2x � 1 ð2Þ

In this study, ANN modeling was performed using Matlab 7.9.0
mathematical software using the ANN toolbox. To train the model,
the proximate analysis databases were partitioned in training and
test sets using an 67:33 train:test ratio. Accordingly, the dataset for
the proximate analysis-based modeling contained 88 training, and
43 test data points, the latter of which were used for validation of



Table 1
Proximate and HHV literature values used in ANN model construction.

Biomass materials Proximate Analysis (% by wt. dry basis) Measured HHV (Mj/kg) Reference

FCa VMb ASH

Sludge C5 5.96 42.25 51.79 10.14 Thipkhunthod et al. (2005)
Sludge C4 4.05 47.58 48.37 11.02 Thipkhunthod et al. (2005)
Sludge H3 6.47 47.68 45.86 12.39 Thipkhunthod et al. (2005)
Sludge C3 6.99 49.98 43.03 12.56 Thipkhunthod et al. (2005)
Sludge H2 6.84 52.57 40.60 12.77 Thipkhunthod et al. (2005)
Sludge C2 6.73 51.24 42.03 13.18 Thipkhunthod et al. (2005)
Sludge H1 5.14 55.47 39.39 13.34 Thipkhunthod et al. (2005)
Sludge C1 8.61 53.01 38.38 13.92 Thipkhunthod et al. (2005)
Coal sample 30.00 30.00 40.00 14.77 Parikh et al. (2005)
Water hyacinth 1.90 87.30 10.80 14.81 Parikh et al. (2005)
Rice hulls 15.80 63.60 20.60 14.89 Nhuchhen and Salam (2012)
Tobacco leaf 11.20 72.60 17.20 15.00 Demirbas� (1997)
Rice straw 15.86 65.47 18.67 15.09 Yin (2011)
Mentha Piperita 7.50 79.00 13.50 15.15 Parikh et al. (2005)
Eucatlyptus bark 15.30 65.70 19.00 15.20 Parikh et al. (2005)
Rice husk bran 19.53 61.83 18.64 15.29 Channiwala and Parikh (2002)
Spire-mint 11.80 70.10 18.10 15.53 Parikh et al. (2005)
Rice straw (ground) 16.20 68.30 15.50 15.61 Parikh et al. (2005)
Rice husk patni-23 14.90 69.30 15.80 15.67 Channiwala and Parikh (2002)
Cotton stalks 19.90 62.90 17.20 15.83 Channiwala and Parikh (2002)
Sun flower stalk and stover 5.17 85.85 8.98 15.87 Küçükbayrak et al. (1991)
Bamboo dust 9.30 74.20 16.50 15.89 Parikh et al. (2005)
Cotton shells 16.90 68.50 14.60 16.38 Parikh et al. (2005)
Sludge sample 1 9.80 60.70 29.50 16.60 Thipkhunthod et al. (2005)
Rapeseed 5.60 86.27 8.13 16.61 Küçükbayrak et al. (1991)
Pine wood 15.70 73.60 11.30 16.64 Parikh et al. (2005)
Sludge sample 4 9.70 59.30 31.00 16.80 Thipkhunthod et al. (2005)
Wheat straw 23.50 63.00 13.50 17.00 Demirbas� (1997)
Hybrid poplar 6.87 89.69 3.44 17.14 Küçükbayrak et al. (1991)
Potato peel 9.56 84.15 6.29 17.18 Küçükbayrak et al. (1991)
Sugar cane straw 14.60 76.20 9.20 17.19 Suárez et al. (2000)
Sugarcane 14.95 73.78 11.27 17.33 Nhuchhen and Salam (2012)
Bagasse 14.95 73.78 11.27 17.33 Channiwala and Parikh (2002)
Wheat straw 11.70 80.60 7.70 17.36 Parikh et al. (2005)
Sudan Grass 18.60 72.75 8.65 17.39 Parikh et al. (2005)
Sugar cane leaves 14.90 77.40 7.70 17.41 Parikh et al. (2005)
Cotton cake 11.58 83.65 4.77 17.50 Küçükbayrak et al. (1991)
Wheat straw 19.80 71.30 8.90 17.51 Nhuchhen and Salam (2012)
Sour cheery stone 14.10 80.85 5.05 17.59 Küçükbayrak et al. (1991)
Bamboo stick waste 47.70 12.70 39.60 17.66 Parikh et al. (2005)
Corn straw 19.19 73.15 7.65 17.68 Masiá et al. (2007)
Sugarcane bagasse 13.30 81.50 5.20 17.70 Munir et al. (2009)
Streeter tall wheatgrass 18.20 73.80 8.00 17.90 Nhuchhen and Salam (2012)
Eucalyptus log 8.05 82.78 0.37 17.99 Nhuchhen and Salam (2012)
Millet straw 16.45 78.28 5.27 18.05 Channiwala and Parikh (2002)
Ash tree 14.12 80.13 5.75 18.06 Küçükbayrak et al. (1991)
Streeter switch grass 17.70 76.50 5.80 18.06 Nhuchhen and Salam (2012)
Streeter intermediate wheatgrass 17.90 74.40 7.80 18.08 Nhuchhen and Salam (2012)
Bagasse 11.90 86.30 1.80 18.17 Parikh et al. (2005)
RDF 14.31 81.22 4.48 18.19 Nhuchhen and Salam (2012)
Cotton stalk 22.43 70.89 6.68 18.26 Nhuchhen and Salam (2012)
Soybean cake 16.00 76.86 7.14 18.30 Küçükbayrak et al. (1991)
Rape straw 17.81 76.54 4.65 18.34 Masiá et al. (2007)
Carrington switch grass 18.70 76.60 4.80 18.45 Nhuchhen and Salam (2012)
Casuarina equisetifolia leaf 16.46 73.50 3.93 18.48 Sugumaran and Seshadri (2009)
Apricot bagasse 15.80 80.31 3.89 18.56 Küçükbayrak et al. (1991)
Peanut shell 13.40 84.90 1.70 18.60 Bonelli et al. (2003)
Chaparral wood 18.68 75.19 6.13 18.61 Channiwala and Parikh (2002)
Eucalyptus 21.30 75.35 3.35 18.64 Parikh et al. (2005)
Alfalfa stems 15.81 78.92 5.27 18.67 Jenkins et al. (1998)
Olive twigs 10.73 88.25 1.02 18.70 Jiménez and González (1991)
Sugarcane bagasse 13.15 83.66 3.20 18.73 Channiwala and Parikh (2002)
Casurina wood 19.58 78.58 1.83 18.77 Channiwala and Parikh (2002)
Corncob 18.54 80.10 1.36 18.77 Parikh et al. (2005)
Corn cob 16.80 82.10 1.10 18.80 Parikh et al. (2005)
Apricot stone 17.83 81.13 1.04 18.80 Küçükbayrak et al. (1991)
Almond hulls 20.07 73.80 6.13 18.89 Jenkins et al. (1998)
Wheat straw 24.00 69.60 6.40 18.91 Parikh et al. (2005)
Walnut shell 16.94 79.17 3.89 18.91 Küçükbayrak et al. (1991)
Industrial waste (stalla) 20.10 75.10 4.80 18.93 Parikh et al. (2005)
Tan Oak 9.20 90.60 0.20 18.93 Parikh et al. (2005)
Ply wood 15.77 82.14 2.09 18.96 Channiwala and Parikh (2002)
Canyon live Oak 11.30 88.20 0.50 18.98 Parikh et al. (2005)
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Table 1 (continued)

Biomass materials Proximate Analysis (% by wt. dry basis) Measured HHV (Mj/kg) Reference

FCa VMb ASH

Olive husk 26.10 70.30 3.60 19.00 Demirbas� (1997)
Miscanthus pellet 17.40 80.21 2.37 19.00 Nhuchhen and Salam (2012)
Cornelian cherry stone 23.80 73.54 2.96 19.02 Küçükbayrak et al. (1991)
Hybrid poplar 12.49 84.81 2.70 19.02 Jenkins et al. (1998)
Cabernet Sauvignon 19.20 78.63 2.17 19.03 Parikh et al. (2005)
Cotton shells briquettes 17.10 77.80 5.10 19.06 Parikh et al. (2005)
Eucalyptus stalk 12.20 87.30 0.50 19.10 Parikh et al. (2005)
Esparto plant 16.80 80.50 2.20 19.10 Debdoubi et al. (2005)
Oak wood (large branch) 16.18 81.75 2.07 19.17 Miranda et al. (2009)
Oak wood (small branch) 18.50 77.45 4.05 19.20 Miranda et al. (2009)
Alabama Oak wood waste 21.90 74.70 3.30 19.23 Parikh et al. (2005)
Eucalyptus globulus wood 17.30 81.60 1.10 19.23 Channiwala and Parikh (2002)
Oak wood (medium branch) 16.18 80.82 3.00 19.24 Miranda et al. (2009)
Pistachio shell 16.84 82.03 1.13 19.26 Parikh et al. (2005)
Miscalthus (elephanta grass) 12.40 87.20 0.40 19.30 Parikh et al. (2005)
Red alder 12.50 87.10 0.40 19.30 Nhuchhen and Salam (2012)
Eucalyptus-Grandis 16.93 82.55 0.52 19.35 Parikh et al. (2005)
Poplar 16.35 82.32 1.33 19.38 Nhuchhen and Salam (2012)
White oak 17.20 81.28 1.52 19.42 Nhuchhen and Salam (2012)
Eucalyptus camaldulensis 17.82 81.42 0.76 19.42 Nhuchhen and Salam (2012)
Peach Pit 19.80 79.10 1.10 19.42 Parikh et al. (2005)
Coconut stem 23.10 74.40 2.50 19.44 Parikh et al. (2005)
Almond shells 20.71 76.00 3.29 19.49 Yin (2011)
Forest residue 20.00 79.80 0.20 19.50 Vamvuka et al. (2003)
Madrone 12.00 87.80 0.20 19.51 Nhuchhen and Salam (2012)
Peach stone 20.79 78.16 1.05 19.52 Küçükbayrak et al. (1991)
Willow wood 16.07 82.22 1.71 19.59 Jenkins et al. (1998)
Coconut shell powder 20.58 79.07 0.35 19.68 Parikh et al. (2005)
Fresh subabul wood 15.20 83.60 1.12 19.70 Channiwala and Parikh (2002)
Black locust 18.26 80.94 0.80 19.71 Nhuchhen and Salam (2012)
Ply wood 21.80 74.20 4.00 19.72 Parikh et al. (2005)
Subabul wood 18.52 81.02 1.20 19.78 Parikh et al. (2005)
Shea meal 28.70 66.30 5.00 19.80 Munir et al. (2009)
Coffee husk 19.10 78.50 2.40 19.80 Suárez et al. (2000)
Black walnut pruning 18.56 80.69 0.78 19.83 Nhuchhen and Salam (2012)
Tea bush 21.80 76.50 1.70 19.84 Parikh et al. (2005)
Olive kernel 24.25 73.62 2.13 19.90 Vamvuka et al. (2003)
Wood Chips 23.50 76.40 0.10 19.92 Parikh et al. (2005)
Almond shell 18.40 80.50 1.10 19.92 Cordero et al. (2001)
White Fir 16.58 83.17 0.25 19.95 Parikh et al. (2005)
Walnut 20.80 78.50 0.70 19.97 Parikh et al. (2005)
Softwood 28.10 70.00 1.70 20.00 Demirbas� (1997)
Akhrot shell 18.78 79.98 1.20 20.01 Channiwala and Parikh (2002)
Almond 21.54 76.83 1.63 20.01 Parikh et al. (2005)
Ponderosa pine 17.17 82.54 0.29 20.02 Nhuchhen and Salam (2012)
B-wood 21.62 76.53 1.85 20.05 Yin (2011)
Coconut coir 29.70 66.58 3.72 20.05 Parikh et al. (2005)
Es 17.90 82.00 0.10 20.08 Cordero et al. (2001)
Spruce wood 28.30 70.20 1.50 20.10 Demirbas� (1997)
Pine needles 26.12 72.38 1.50 20.12 Nhuchhen and Salam (2012)
Walnuts shells 21.16 78.28 0.56 20.18 Nhuchhen and Salam (2012)
Wood bark 31.80 66.60 1.60 20.50 Demirbas� (1997)
Coconut shell 22.10 77.19 0.71 20.50 Channiwala and Parikh (2002)
Ceder cones 28.10 70.40 1.50 21.10 Parikh et al. (2005)
Olive kernel shell 36.10 60.50 3.30 21.40 Demirbas� and Ilten (2004)
Olive cake 34.60 62.10 2.80 21.60 Demirbas� and Ilten (2004)
Loblolly Pine 33.90 65.70 0.40 21.77 Parikh et al. (2005)
Loblolly pine bark 33.90 54.70 0.40 21.78 Nhuchhen and Salam (2012)

a Fixed Carbon.
b Volatile Matter.
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the model. Defining the number of neurons in the hidden layer is a
field of study unto itself, based on an equilibrium between conver-
gence and generalization that insures accuracy without increasing
complexity unnecessarily. Kolmogorov’s Mapping Neural Network
Existence Theorem suggests that with the hidden layer should
have 2l + 1 neurons (Gupta et al., 2004), whereas the Rule of
Thumb suggests that the number of hidden neurons, m, is a func-
tion of the number of training samples, Ntrain (Principe et al., 2000):

m ¼ Ntrain

10
� l

� �
1

lþ nþ 1
ð3Þ
In this paper, the number of neurons in the hidden layer was
calculated by trial and error to minimize mean square error of
the models. The trial and error approach, as will be shown, led to
some models with architectures too large to be practical according
to such rules of thumb. However, the model ‘‘fits” to lower level,
more suitable architectures, were actually superior; this is dis-
cussed in the Section 3.

To insure a homogeneous distribution of data (to select the
training versus testing sets) data were put in increasing order of
HHV, and every 3rd dataset was selected for testing. To prevent
overtraining of the ANN, when preliminary results showed a con-
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stant MSE after a given iteration number; this iteration was
selected as the stop criteria and added into the MATLAB code.
Fig. 1 is a schematic representation of the architecture of the mul-
tilayer ANN used in this investigation

The ANN models were evaluated using the root mean square
error (RMSE) between actual and predicted measurements as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðHi � Hi;modelÞ2
vuut ð4Þ

where H is the higher heating value of a given biomass and its
model prediction, respectively, and N is the number of observations.
The mean absolute error (MAE) was calculated as:

MAE ¼ 1
N

XN
i¼1

jHi � Hi;modelj ð5Þ

and the mean bias error (MBE) as:

MBE ¼ 1
N

XN
i¼1

ðHi � Hi;modelÞ ð6Þ
3. Results and discussion

Artificial neural network modeling is a sophisticated tool to
enable the scientist to understand multiple, nonlinear contribu-
tions of a set of properties or variables on a determinant variable.
To gauge the appropriateness of linear or nonlinear relationships
for biomass HHV prediction, individual constituents of the proxi-
mate analyses were plotted against the corresponding HHVs. As
shown in Fig. 2, there exists at best a loosely linear relationship
between the HHV and percentages of carbon, fixed carbon, and
ash, but not satisfactory for any meaningful HHV predictions. It
is thus inferred that linear models may not represent the most
appropriate solution to accurately predict biomass HHV. As such,
we actively pursue nonlinear models. Of course, the complexity
in this situation is in determining the exact form the proximate
analysis-based nonlinear empirical model to predict biomass
HHV should take. This challenge can be overcome using artificial
intelligence based data-driven modeling in the form of ANNs.
Fig. 1. Schematic representation of ANN using proxim
3.1. ANN model for HHV prediction

This study probed the applicability of 78 different ANN models
with various network structures using both tangent and logistic
sigmoid hidden layer transfer functions, all with linear output lay-
ers. Model performance was evaluated by considering the root
mean squared error (RMS), mean bias error (MBE) and mean abso-
lute error (MAE) and via correlation coefficients between predicted
and actual HHV values. Overall, 15 of the 78 tested models had
RMSE less than 0.500; these models are presented in Table 2 (all
78 models presented in the Supplemental Information.) Of these,
12 had correlation coefficients greater than 0.93, with only 2
greater than 0.91 (ANN 13, 24). ANN 13, a 3-3-1 tangent sigmoid
model, had a lower RMSE (0.375 vs. 0.392), lower MBE (0.328 vs.
0.344) and lower MAE (0.010 vs. 0.016), and a considerably smaller
network structure than ANN 24, with a 3-20-1 structure. ANN 13
relies on a set of three tangent sigmoid equations with inputs of
FC, VM and Ash composition as the first layer. The second also
has three tangent sigmoid equations that use the results of the first
node as inputs into this layer. Finally, the third layer uses the
numerical results of the three second layer equations to determine
HHV. The coefficients and equations of each node are provided in
the Supplemental Information. Examining Fig. 3, the ANN pre-
dicted versus measured HHV plots, there is minimal bias in the
model’s prediction. Residual errors appear to both under and
over-predict HHV values at similar rates. Such an architecture is
in general agreement with ANN Rules of Thumb for the total num-
ber of hidden layer notes as calculated by Eq. (3), which would sug-
gest, with three input layers and 131 data points for training, a 3-
(2.42)-1 architecture.

One might expect the ability to model HHVs using only proxi-
mate analysis to be hampered by lack of specificity in terms of ele-
mental composition. Certainly breaking C–C vs. C–H bonds yield
different quantities of energy that on the outset might not be cap-
tured by a proximate analysis prediction. However, the success of
the present ANN model using only proximate analysis to predict
HHV is underscored by the previously demonstrated ability to pre-
dict elemental composition from proximate analysis as presented
by Parikh et al. (2007). Their model was able to predict elemental
composition for a variety of biomass materials for C, H and O with
ate analysis data to predict HHV of solid fuels.



Fig. 2. Relationships between HHV and individual constituents of proximate
analyses.
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less than 5% average absolute error. As such, we might expect that
if proximate analysis can ‘‘back predict” elemental composition, it
is suitable for predicting the HHV resulting from the breaking of
these bonds.
Table 2
Selected ANN models with RMSE less than 0.500 (all model results available in Suppleme

Model name Network Transfer functions

Hidden layer Output l

ANN13 3-3-1 Tangent Sigmoid Linear
ANN24 3-20-1 Logistic Sigmoid Linear
ANN8 7-1 Logistic Sigmoid Linear
ANN38 5-20-1 Logistic Sigmoid Linear
ANN25 3-25-1 Tangent Sigmoid Linear
ANN6 5-1 Logistic Sigmoid Linear
ANN16 3-5-1 Logistic Sigmoid Linear
ANN36 5-15-1 Logistic Sigmoid Linear
ANN5 5-1 Tangent Sigmoid Linear
ANN14 3-3-1 Logistic Sigmoid Linear
ANN27 3-30-1 Tangent Sigmoid Linear
ANN43 7-7-1 Tangent Sigmoid Linear
ANN45 7-10-1 Tangent Sigmoid Linear
ANN23 3-20-1 Tangent Sigmoid Linear
ANN42 5-30-1 Logistic Sigmoid Linear
3.2. Comparison of ANN model to prior literature models predicting
HHV

In Fig. 3, the predicted versus actual HHV values from the ANN
13 model proposed here are compared alongside four models
available in the literature that use varying methods to predict
HHV. From these plots, we can see that the ANN13 model has
the highest correlation coefficients and best predictive capability.
This is underscored by the considerably higher errors as presented
in Table 3 for other models’ predictions. The Ghugare et al. (2014)
model shows the best predictive capabilities of the four models
investigated, with the highest correlation coefficient (0.934) and
lowest RMSE and MAE (0.508 and 0.285, respectively). However,
this model has a tendency to under-predict the HHVs, as seen by
an MBE of �0.119.

In the various models available in the literature to predict
HHV from proximate and/or ultimate analyses, one feature that
limits their widespread applicability is the range of biomasses
used to either determine correlations or train a model. For
example, Yin (2011) generated an empirical correlation for the
prediction of HHV from both proximate and ultimate analyses
of biomass with a mean absolute error of less than 5%. How-
ever, their data set comprised biomasses that were predomi-
nantly nut/seed shells, fruit stones, straws/grasses, and wood.
However, Nhuchhen and Salam (2012) expanded a data set to
include a variety of agricultural wastes, food waste, and sludge
samples, as we have done in the present work. Given the
greater variety of the biomass represented by Nhuchhen and
Salam (2012), it is not surprising that their correlations based
on linear relationships between proximate analysis and HHV
suffered mean absolute errors of at least 9% and higher, and
absolute bias errors of up to 4.5%. Their study proposed 20
new correlations between FC, VM, and Ash to predict HHV,
however they are linear functions of two and/or three of these
biomass descriptors, and as we previously demonstrated in
Fig. 2, the relationships among these variables is not expected
to be linear. However, this study used a ‘‘propose and test”
method, where each correlation was proposed and correspond-
ing coefficients calculated, then errors determined. In the pre-
sent study, rather than propose and test correlations using
such a brute force method, we turned to computational model-
ing to train a neural network model to provide a new correla-
tion with improved predictive capabilities over models
previously available in the literature.
ntal Information).

ayer RMSE MAE MBE CC

0.375 0.328 0.010 0.963
0.392 0.344 �0.016 0.962
0.439 0.369 �0.064 0.958
0.413 0.352 0.054 0.953
0.419 0.347 �0.003 0.953
0.416 0.353 �0.041 0.952
0.451 0.367 �0.075 0.950
0.454 0.382 0.015 0.944
0.471 0.413 �0.025 0.939
0.484 0.411 �0.041 0.938
0.479 0.411 �0.046 0.936
0.413 0.159 �0.065 0.749
0.334 0.181 0.007 0.724
0.419 0.201 �0.037 0.636
0.470 0.264 �0.069 0.466



Fig. 3. Plots of calculated HHVs from test and training data using different models a) ANN13 (this study) b) Parikh et al. (2005) c) Nhuchhen and Salam (2012) d) Nhuchhen
and Salam (2012) e) Ghugare et al. (2014).
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Table 3
Results of ANN13 as compared to published literature models for biomass training and testing set.

Model Training Set Testing Set

aRMSE bMAE cMBE dCC aRMSE bMAE cMBE dCC

ANN13 (this study) 0,219 0,121 �0,022 0,976 0,375 0,328 0,010 0,963
Parikh et al. (2005) 1,043 0,502 0,359 0,891 1,000 0,780 0,446 0,845
Nhuchhen and Salam (2012) 1,431 0,679 �0,354 0,456 1,260 0,997 0,012 0,698
Nhuchhen and Salam (2012) 0,997 0,464 �0,016 0,810 0,675 0,548 �0,098 0,880
Ghugare et al. (2014) 0,508 0,285 �0,119 0,934 0,539 0,426 �0,036 0,928

a Root Mean Squared Error.
b Mean Absolute Error.
c Mean Bias Error.
d Correlation Coefficient.
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4. Conclusion

The ability to accurately predict the higher heating value of car-
bonaceous biomasses from knowledge of proximate analysis alone
could help transform the way we select biomass feedstocks, and
their blends, for renewable fuel applications. In this work, we used
a dataset of 131 biomass samples to build an artificial neural net-
work model to predict HHV based only on fixed carbon, volatile
carbon, moisture and ash contents. The resulting model is a 3-3-
1 tangent sigmoid model with a higher correlation coefficient
and lower root mean square, mean absolute, and mean bias errors
than other correlations presently available in the literature.
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