
Implementation of Real-Time Distributed Discrete-
Event Execution with Fault Tolerance

Thomas Huining Feng
Edward A. Lee

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-133

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-133.html

November 8, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported in part by the the U. S. Army Research Office
(ARO #W911NF-07-2-0019), the National Science Foundation (#0720841
(CSR-CPS)), the State of California Micro Program, and the following
companies: Agilent, Bosch, DGIST, National Instruments, and Toyota.

Implementation of Real-Time Distributed Discrete-Event Execution with Fault
Tolerance

Thomas Huining Feng and Edward A. Lee
Center for Hybrid and Embedded Software Systems

Dept. of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720, USA
{tfeng, eal}@eecs.berkeley.edu

Abstract

We build on PTIDES, a programming model for dis-
tributed embedded systems that uses discrete-event (DE)
models as program specifications. PTIDES improves on
distributed DE execution by allowing more concurrent event
processing without backtracking.

This paper discusses the general execution strategy for
PTIDES, and provides two feasible implementations. This
execution strategy is then extended with tolerance for hard-
ware errors. We take a program transformation approach to
automatically enhance DE models with incremental check-
pointing and state recovery functionality. Our fault toler-
ance mechanism is lightweight and has low overhead. It
requires very little human intervention. We incorporate
this mechanism into PTIDES for efficient execution of fault-
tolerant real-time distributed DE systems.

1 Introduction

Large-scale distributed embedded systems are a mixture
of software components, hardware devices (such as sensors
and actuators), and networks. Examples include automo-
tive and avionics systems. From a high-level design per-
spective, the discrete-event (DE) models of these systems
consist of interconnected actors accepting inputs and pro-
ducing outputs via the connections between them. Follow-
ing DE semantics, the actors must process their input events
in the order of the model time associated with those events.
A strategy for executing distributed DE models must obey
this ordering of events across computers in a network.

Traditional conservative execution strategies for dis-
tributed DE models, such as the one proposed by Chandy
and Misra [4], require a computer to wait for events to
be present in all its input queues before it can decide the

next event to process. Optimistic approaches, such as Time
Warp, proposed by Jefferson [10], allow a computer to pro-
cess events without always making sure that the time order
is conformed to. When the system detects violation of time
order, the state of some actors needs to be recovered, and
events need to be processed again in the correct order. The
need for backtracking and the domino effect that backtrack-
ing may cause in a distributed system make it hard for the
optimistic approaches to be applied to embedded systems.

To address the problems of existing approaches, PTIDES
(Programming Temporally Integrated Distributed Embed-
ded Systems) has been proposed as a strategy for executing
distributed DE models. [15] By taking advantage of static
information about dependency between actors, the PTIDES
execution strategy reduces the unnecessary wait for input
events and improves concurrency without resorting to an
optimistic approach that has the need for backtracking.

In this paper we present our work on a fault-tolerant ex-
tension to PTIDES, which supports selective backtracking
for fault tolerance (not for performance gains, as in Time
Warp). It is based on a program transformation that auto-
matically enhances models with incremental checkpointing
and state recovery functionality [9]. This extra function-
ality makes it possible for the actors to recover state that
is invalidated by hardware errors. The difference between
the state recovery in our approach and that in optimistic ap-
proaches to distributed DE execution is that the former is
only performed in reaction to hardware errors, which are
rare in practice, while the latter is a requirement to remedy
the misordering of events in an optimistic execution.

Compared to other software fault tolerance techniques,
such as object serialization and Enterprise JavaBeans (EJB)
using a back-end database, the incremental checkpointing
that we developed is more suitable for real-time distributed
embedded systems for its low run-time overhead and small
memory footprint. The automatic program transformation

tool that we implemented also makes it easy to apply this
technique to preexisting programs that are not equipped
with fault-tolerant features.

The contribution of this paper is twofold. Firstly, we pro-
vide two feasible implementations for the general PTIDES
execution strategy, one resembling traditional conservative
strategies and one utilizing time-synchronized platforms
to provide better concurrency. Secondly, we extend the
PTIDES execution strategy with a fault-tolerant feature that
allows actors to automatically backtrack to previous state
when hardware errors occur.

The following sections are arranged as follows: in Sec-
tion 2, we motivate this work with a real-time distributed
image composition application. The PTIDES execution
strategy for DE is reviewed in Section 3, and then two feasi-
ble implementations are discussed. In Section 4, we present
our incremental backtracking mechanism. In Section 5, we
demonstrate the backtracking mechanism by extending the
image composition application with it. The merit of our ap-
proach is assessed in Section 6 with a comparison to related
work. Section 7 concludes the discussion.

2 A Real-Time Image Composition Applica-
tion

We motivate our work with the same experimental appli-
cation considered in [15]. 1 The functionality of this ap-
plication is to compose images periodically acquired from
distributed cameras in real time. In the physical setup, n
cameras are placed around a football field, all connected to
a central computer via Ethernet. Figure 1 shows the simpli-
fied DE model. (Actors are shown as boxes, and the links
between triangular ports represent communication channels
for events.) The upper part of the figure shows the actors
running on each camera. There are n identical copies of the
upper part in the model. The lower part shows the actors
running on the central computer.

The Command actor represents an input console that a
human operator can use to issue two kinds of parameterized
commands: “change frequency” that changes a camera’s
image-acquisition frequency, and “adjust zoom” that adjusts
a camera’s zoom. This actor assigns time tags to the com-
mands before it sends them as output events. The time tags
are in terms of model time (or virtual time), which are cho-
sen such that they equal to the physical time (or real time)
at which the commands are issued by the human operator.
The Delay actor receives those commands via the network,
and increases their time tags by a fixed amount. The De-
lay then immediately transmits the commands to the Route
actor, which routes them to the designated receivers. The

1This application is inspired by the “eye vision” project
(http://www.ri.cmu.edu/events/sb35/tksuperbowl.html) at CMU and
CBS Television.

Image
Processor

..
.

n copies

Queue

Command

..
.

Figure 1. The camera application in PTIDES

Clock accepts “change frequency” commands only, which
instruct it to change the frequency at which it produces trig-
gering events to its output. Each triggering event is also
sent back to the Clock itself to trigger the next triggering
event. The Merge actor merges the triggering events from
the Clock and the “adjust zoom” commands from the Route
in their time tag order, and sends them to the Queue. The
Queue temporarily stores the commands until the Device is
available to handle them. To handle a triggering event, the
Device invokes a function in the camera’s API (Application
Programming Interface) to take a picture. An image is re-
turned on success. To handle an “adjust zoom” command,
the Device adjusts the camera’s zoom by invoking another
function in the API, which returns a success flag after the
zoom is adjusted. If the operation in a functions fails, an
error code is returned that describes the problem. When ac-
quired, the images are sent back to the central computer via
the same network. The Image Processor composes the im-
ages from all the cameras that are acquired at the same time
to produce a composite view on the Display.

Two research challenges are highlighted in this prototyp-
ical application:

• Timing. A time tag is assigned to each event. The
Command actor can be viewed as a special kind of
sensor that receives external data. It associates with
its output events time tags equal to the current physi-
cal time. The Device actor and the Display actor are
actuators. The time tags of their input events repre-
sent the physical time at which those events should be
processed by the underlying hardware. Obviously, if
the events are received later than their time tags, then
the actuators will not be able to actuate the hardware
at the requested time, causing the problem of missing
deadlines. To address this problem, the PTIDES ex-
ecution strategy takes advantage of static information
about dependency between actors to reduce the unnec-
essary delay in traditional conservative strategies.

• Fault tolerance. Sensors and actuators may generate

errors. 2 We will not discuss the handling of those er-
rors, because it is application-specific. However, we
will examine how hardware errors may affect event
processing in software components. According to tra-
ditional conservative strategies, if the processing of an
event depends on the successful completion of a hard-
ware operation, then the actor cannot process the event
until the operation finishes. We provide better con-
currency by parallelizing the hardware operation and
event processing. In the rare case where errors occur,
the actor can recover its previous state with our back-
tracking mechanism.

3 Discrete Event Execution in PTIDES

A conservative strategy for executing distributed DE
models proposed by Chandy and Misra [4] requires a com-
puter to wait for events to be present in all its input queues
before it can decide the next event to be processed. Based
on the assumption that input queues receive events in time
tag order, the next event to be processed is the one with the
smallest time tag among the present events. The wait for
events to be present in all input queues incurs unnecessary
delay. An improvement is to have the computers generate
“null messages” [13] from time to time, which inform their
recipients to advance time even though there are no events
for them. However, the extra null messages themselves are
an overhead. Optimistic approaches, such as Time Warp
[10], allow computers to process events out of order. Un-
fortunately, they require backtracking. This on the one hand
complicates the implementation, and on the other hand pre-
vents their application to embedded systems involving hard-
ware devices that cannot backtrack once operations are per-
formed.

In this section we first review the PTIDES execution
strategy [15] for actor-oriented models. It improves upon
the conservative strategies and provides more concurrency.
We then outline two feasible implementations for PTIDES.

3.1 Relevant dependency

An actor α ∈ A, where A is the set of all actors in the
model, has a set of input ports Iα and a set of output ports
Oα. Without loss of generality, in this section, we shall
consider an actor’s internal state as output to an output port,
so we need not explicitly discuss internal state. We shall let
I =

⋃
α∈A Iα, O =

⋃
α∈A Oα, and P = I ∪O.

During execution, each event e is associated with a time
tag represented by tag(e) ∈ R+. It denotes the model time
at which e was produced. The events that an actor receives

2In the scope of this paper, we do not consider design errors in the
software. A future extension is to adapt our fault-tolerance technique to
software errors.

a
b

c

d

e

f

g

h

i

Figure 2. An example of minimum delay
δ(a,i) = min{δ(a,c)+δ(h,i), δ(a,b)+δ(e,f)+
k × δ(d,f) + δ(g,i)} (k ≥ 0)

should be processed semantically in non-decreasing order 3

of their time tags. In particular, if distinct events e1 and e2

are received by the same actor, and if they have influence
on the same output signal (i.e., the set of events output via
a port over time), then e1 must be processed prior to e2 if
tag(e1) < tag(e2).

Before execution, PTIDES performs static analysis to
obtain dependency information. The first step of comput-
ing dependency is to determine the minimum delay between
pairs of ports, represented by a function δ : P × P →
R+ ∪ {∞}. δ(p1, p2) is defined as the minimum differ-
ence between tag(e1) and tag(e2) for any event e1 at p1

and e2 at p2 that depends on e1. (We say e2 depends on e1

if at execution time, e2’s value or time tag may be totally
or partially determined by e1. We also say e1 influences
e2 if e2 depends on e1.) We shall let δ(p1, p2) = ∞ if the
events at p2 never depend on those at p1. Note that the delay
δ(p1, p2) is in terms of model time and does not depend on
the physical time that it takes for events at p1 to influence
events at p2.

Figure 2 shows the example of computing δ(a,i), as-
suming that the minimum delay within individual actors is
predefined, 4 and that the outputs of an actor always depend
on the most recent inputs at all input ports. By applying
min-plus algebra [1], δ(a,i) is computed as the minimum
delay of all the paths from a to i. A path from a to i is a se-
quence of ports [p1, p2, · · · , pn] such that p1 = a, pn = i,
and for every pk where 1 < k ≤ n, either pk is connected
to pk−1, or pk−1 and pk are input port and output port of
the same actor, respectively. The paths from a to i in this
example include [a, c, h, i] and [a, b, e, f, g, i]. Because
of the loop, there are an infinite number of paths, but these
two have the smallest delay. The delay of [a, c, h, i] is

3Normally, we enhance each time tag with an integer to break the tie
of events at the same model time, resulting in a time model known as
superdense time [12]. For the purposes of this paper, this enhancement
adds only complexity, so we omit it. Our results carry over trivially when
using superdense time.

4The minimum delay within actors can be predefined as part of the
actors’ behavioral interface, which is not discussed here.

computed by the sum of δ(a,c) and δ(h,i). The delay of
[a, b, e, f, g, i] is the sum of δ(a,b), δ(e,f) and δ(g,i).
(Direct connections do not cause any delay in model time.)
The minimum of these is the minimum delay from a to i.

We then partition I into a set of equivalence classes E =
{E1, E2, · · · , Ek} ⊆ 2I . Distinct input ports i1 ∈ I and i2 ∈
I are in the same equivalence class, traditionally denoted
by i1 ∼ i2, if and only if they belong to the same actor,
and there exists an output port o of that actor that satisfies
δ(i1, o) < ∞ and δ(i2, o) < ∞. Intuitively, if i1 ∼ i2,
the events that they receive may influence the same output
signal. Therefore, those events must be processed in the
order of their time tags. However, if i1 � i2, any event e1

at i1 and event e2 at i2 do not have influence on the same
output signal, so the order in which e1 and e2 are processed
is insignificant. To continue with the example in Figure 2,
{a}, {d,e} and {g,h} are equivalence classes in E.

The relevant dependency d : E × E → R+ ∪ {∞} is
defined as:

d(E1, E2) = min
i1∈E1,i2∈E2

{δ(i1, i2)}

For equivalence classes E1 ∈ E and E2 ∈ E, d(E1, E2) rep-
resents the minimum delay in model time that it takes for
any event at a port in E1 to influence an event at a port in E2.

3.2 Execution strategy

Before we discuss the execution strategy of PTIDES, one
more definition needs to be introduced. For actor α, let Eα

be the set of equivalence classes containing its input ports,
i.e., Eα = E∩ 2Iα . Let Eα be an arbitrary equivalence class
that ranges over Eα. A dependency cut (or simply a cut) for
Eα, denoted by CJEαK ⊆ E, is a minimal set of equivalence
classes that satisfies the following: for any p ∈ Eα and any
path ρ to p, there exist E ′ ∈ CJEαK, p′ ∈ E ′ and ρ′ being a
path from p′ to p, such that either ρ is a subpath of ρ′ or ρ′

is a subpath of ρ. (A subpath is a sequence of consecutive
ports in a path. It is also called a substring in the literature.)

For example, in Figure 2,
{
{a}

}
and

{
{g,h}

}
are both

cuts for equivalence class {g,h}.
{
{d,e}

}
is not, because

if we pick port h and path [c,h], then no port in
{
{d,e}

}
is on this path or on another path that backward-extends
this path.

{
{d,e}, {g,h}

}
is not a cut either, because it

is not minimal. (Minimality is a requirement for the effec-
tiveness of the PTIDES execution strategy, but redundant
equivalence classes lead to unnecessary tests for events at
the ports in those equivalence classes, and may compromise
concurrency if the unnecessary tests return false.)

During execution, an actor α decides whether to process
its input events by evaluating its time-advance function Tα :
Eα×R+×R+ → boolean. The first argument is an equiva-
lence class containing α’s input ports, the second argument

is a model time, and the third argument is a physical time in
a certain time unit. A true value for Tα(Eα, t, τ) means that
at physical time equal to or greater than τ , actor α will not
receive any event e at a port in Eα with tag(e) < t. Obvi-
ously, for any t′ < t, Tα(Eα, t, τ) ⇒ Tα(Eα, t′, τ), and for
any τ ′ > τ , Tα(Eα, t, τ) ⇒ Tα(Eα, t, τ ′).

The general strategy to evaluate Tα(Eα, t, τ) for model
time t and physical time τ can be summarized as follows:

Let CJEαK be an arbitrarily chosen cut for Eα.
Tα(Eα, t, τ) is true if for any E ′ ∈ CJEαK, α has
received all the events at the ports in Eα that de-
pend on events at the ports in E ′ with time tags
smaller than t− d(E ′, Eα).

Various implementations can be devised from this general
strategy. These implementations differ in 1) how to choose
CJEαK and 2) how α decides whether it has received all the
events at the ports in Eα that depend on events at the ports
in E ′ with time tags smaller than t− d(E ′, Eα). Two imple-
mentations will be discussed in Section 3.3.

If Tα(Eα, t, τ) equals true, then at physical time equal
to or greater than τ , actor α will not receive events at the
ports in Eα with timestamps smaller than t. Therefore, α
can process the event at any port in Eα whose time tag is
smaller than or equal to t and is the smallest among the
time tags of the available events at the ports in Eα.

3.3 Implementations

In Section 3.2 we have discussed a strategy for actor α
to decide whether it can process input events at the ports
in Eα with time tags smaller than or equal to model time
t. Here we sketch two feasible implementations for eval-
uating Tα(Eα, t, τ), where τ is the physical time at which
the evaluation is performed. We will start with a particular
implementation that turns out to be similar to the strategy
proposed by Chandy and Misra [4]. We will then improve
it to achieve better concurrency.

1. Recall that a decision about the choice of CJEαK needs
to be made when developing an implementation. In
this particular implementation, we shall always choose
CJEαK to be {Eα}. ({Eα} trivially satisfies the condi-
tions for a cut.) The equivalence class E ′ ∈ CJEαK to
be tested is thus Eα itself. Since d(Eα, Eα) = 0, the
expression t − d(Eα, Eα) is equal to t. Therefore, the
strategy is equivalent to testing whether actor α has
received all events at the ports in Eα with time tags
smaller than t.

This implementation resembles the strategy by Chandy
and Misra. The difference is that this one requires α
to wait for events to be available at all the ports in
Eα ⊆ Iα, while Chandy and Misra’s requires it to wait

for events to be available at all the ports in Iα. (Our
previous assumption that an actor’s output events al-
ways depend on the most recent input events at its in-
put ports actually equates Eα with Iα, and makes this
implementation equivalent to the strategy by Chandy
and Misra.)

2. An improvement on the above implementation is in-
spired by time-synchronized distributed platforms that
are made available by recent distributed clock synchro-
nization protocols. In particular, computers in our ex-
perimental environment are equipped with clocks syn-
chronized with the IEEE 1588 protocol [7]. The syn-
chronization error of those clocks is bounded, and the
network delay is also bounded.

Each computer in our system receives external inputs
from other computers or the sensor actors running on
it. (Actors that receive data from the disk can also be
considered as sensor actors.) Since the inputs from
sensor actors can be regarded as inputs from computers
in the external environment, without loss of generality,
the following discussion focuses on computers that re-
ceive inputs solely from other computers.

This implementation has two prerequisites. The first
one is that the cut CJEαK for Eα is chosen as the bound-
ary between the computer that α runs on and other
computers. More formally, the equivalence classes
in CJEαK consist of input ports that belong to actors
on the same computer with α, and are connected to
output ports that belong to actors on other computers.
For example, in Figure 1, the input ports of the Image
Processor on the central computer comprise an equiv-
alence class of input ports that are connected to the
output ports belonging to the actors on other comput-
ers (in this case, the cameras). This prerequisite can be
easily met by creating additional actors that receive in-
puts from other computers and relay those inputs to the
original actors on the same computer. In this way, only
the additional actors receive inputs from other com-
puters, so the cut defined with the equivalence classes
containing their input ports satisfies the prerequisite.
In practice, these additional actors need not be actu-
ally created in the model.

The second prerequisite is that for any event e sent
from another computer to the computer that α runs
on, tag(e) is always greater than or equal to the phys-
ical time at which e is output. With this, we can use
the sender’s current physical time as a lower bound
of the time tags of all future events that it sends out.
In our approach, this prerequisite is met by analyz-
ing the maximum real-time delay between actors’ in-
put ports and output ports, and making sure that the
events across computers be sent before the physical

time reaches the time tags of those events. One can
think of this prerequisite as a hard real-time constraint
about deadlines that the system must meet. (Refer to
[6] for a discussion on a precise timed (PRET) machine
that provides underlying support for this real-time re-
quirement.)

Based on the above facts and prerequisites,
Tα(Eα, t, τ), where t is a model time that actor
α intends to advance to in order to process input
events, and τ is the current physical time measured on
α’s computer, can be evaluated as follows:

Tα(Eα, t, τ) is true if for any E ′ ∈ CJEαK and
any actor β whose output ports are connected
to the ports in E ′, τ ≥ t − d(E ′, Eα) + δβ,α,
where δβ,α is the maximum delay of the net-
work connection from β to α.

At physical time τ , due to the bounded network delay,
the ports in E ′ have received all events that β outputs
before physical time τ − δβ,α. (Here, β must be on
another computer due to the first prerequisite about the
cut on the computer boundary.) The second prereq-
uisite relates this physical time to model time, so the
ports in E ′ have received all events from β with time
tags smaller than τ −δβ,α. If τ −δβ,α ≥ t−d(E ′, Eα),
or equivalently τ ≥ t − d(E ′, Eα) + δβ,α, then the
ports in E ′ have received all events from β with time
tags less than t−d(E ′, Eα). If this is true for any equiv-
alence class E ′ and any actor β that outputs events to
the ports in E ′, then we can apply the execution strat-
egy described in Section 3.2 to determine Tα(Eα, t, τ)
to be true. We can thus allow α to process the event at
any port in E with the smallest time tag that is also less
than t.

The cost of evaluating Tα(Eα, t, τ) is low because all
d(E ′, Eα) and δβ,α are known statically. Actor α only
needs to compare its physical time τ with a set of ex-
pressions in the form of t − d(E ′, Eα) + δβ,α, whose
values can be easily computed.

3.4 Execution with errors

According to the execution strategy in Section 3.2, for α
to decide whether it can process event e with tag(e) ≤ t
at an input port in Eα, CJEαK is chosen according to the
implementation, and for any E ′ ∈ CJEαK, α must have re-
ceived all the events at the ports in Eα that depend on events
at the ports in E ′ with time tags smaller than t − d(E ′, Eα).
We prefer d(E ′, Eα) for each E ′ to be a large positive num-
ber, because this allows α to process events earlier. How-
ever, when hardware errors are considered, d(E ′, Eα) may
become 0.

Command

Buy SmartDraw!- purchased copies print this

document without a watermark .

Visit www.smartdraw.com or call 1-800-768-3729.

a. Flows of events

Command

Buy SmartDraw!- purchased copies print this

document without a watermark .

Visit www.smartdraw.com or call 1-800-768-3729.

b. Flows of events and backward flows of hardware errors

Figure 3. Actor communication

Figure 3 shows the communication between the Com-
mand actor and any of the n Clock actors in our application.
The Clock repeatedly schedules its future activity accord-
ing to the current frequency. When it receives a “change
frequency” command, it cancels the imminent schedule and
makes a new schedule. If the new frequency is too small,
the clock refuses to reschedule because the real-time delay
on event processing does not allow it to actuate the down-
stream Device actor on time. In this case, it sends back an
error event to its predecessor (the Route actor). Otherwise,
it sends back a success event instead.

An error event carries the same time tag as that of the
command that caused the error. Because it may receive
an error event, the Route actor cannot perform any further
computation after it sends a command to the Clock actor un-
til it receives a success event or an error event (unless it can
determine that the potential error does not affect its com-
putation result or internal state, which is not true for the
general-purpose Route actor). Furthermore, on receiving an
error event, the Route actor is not capable of handling it. It
has to send it back to the Delay actor, which in turn sends
the error back to the Command actor for handling. As a re-
sult, like the Route actor, the Command and the Delay can-
not perform further computation until they receive either a
success event or an error event.

This lack of concurrency is because the minimum de-
lay δ between these actors’ command input ports and error
event output ports is 0. The relevant dependency between
the equivalence classes containing these ports, computed
with δ, is also 0. We will revisit this problem in Section
5, and provide a solution with backtracking.

4 Backtracking Based on Incremental
Checkpointing and State Recovery

In this section, we discuss a backtracking mechanism [9]
that can be incorporated into PTIDES as an extension. It al-

lows general-purpose actors to perform computation with-
out always waiting for success events or error events. If
errors occur during the hardware operations, the state of the
actors can be recovered with the backtracking mechanism.

In our model execution framework (Ptolemy II [3]), ac-
tors are either atomic ones or composite ones. Atomic ac-
tors are defined as classes in the Java programming lan-
guage. Composite actors are hierarchical composition of
actors (atomic or composite).

At the beginning of an execution, atomic actors are in-
stantiated from their classes. State may be stored in the in-
stances’ fields. We call the atomic actors that maintain state
stateful actors.

We have implemented a program transformer to en-
hance stateful actors’ source code with incremental check-
point functionality, which the actors can use to backtrack to
their previous state. The transformation preserves the ac-
tors’ behavior perceivable from the execution result. For
most general-purpose actors, this transformation is fully
automatic and requires no human intervention. For ac-
tors that store state in special forms such as files in a net-
work file system, the actor designers can customize the in-
cremental checkpointing with extra manually written func-
tions. The incremental checkpointing functionality incurs
low run-time overhead, which will be analyzed at the end
of this section.

The discussion here focuses on the Java programming
language and the state stored in non-static fields. However,
similar techniques can be applied to other programming lan-
guages, and our approach can be easily extended to support
state stored elsewhere, such as that in local variables, static
fields, and files on disks.

4.1 Recording state changes

The program transformer generates extra code in the ac-
tors’ classes to keep track of state changes. This code can
be enabled or disabled at run time. When it is enabled, a
handler is invoked in place of any state change. It stores the
old state in a record object in memory before the change is
made. The record objects can be used to restore the state
later.

Two sources of state changes are captured by the han-
dlers: assignments and routines in external libraries. As-
signments can be detected by a search in the actor classes’
abstract syntax trees (AST’s). These AST’s are obtained
from a Java parser, and a type resolver annotates them with
type information. The transformer replaces each assign-
ment with an invocation of a handler. For calls to routines
in external libraries that potentially change the state, such
as put() in class Hashtable and arraycopy() in
System, substitution methods are generated to record the
state before performing the change. For example, for the

int s;
void f(int i) {

s = i;
}

a. Before Transformation
int s;
void f(int i) {

// s = i;
$ASSIGN$s(i);

}
int $ASSIGN$s(int newS) {

... // Record the current value of field s
return s = newS;

}
b. After Transformation

Table 1. Transformation of integer assign-
ment

put() method in Hashtable, a new Hashtable class
is generated, which provides a modified put() method.
This put() method stores the old value associated with
the affected key in a record object, and then performs the
same change as the original put() method. The trans-
former then changes the type of the instance to the new
Hashtable class, so that the modified put() method is
called instead of the one in Java’s standard library. This
transformation, as well as the generation of the modified
Hashtable class, is fully automatic.

Table 1 shows an example of transforming an integer as-
signment. $ASSIGN$s() is the handler generated to sub-
stitute the assignment to field s. It allocates a record object
in memory, and stores the current value of field s in it. The
record objects for s are linked and ordered by their creation
time. (The code for recording the value in a newly created
record object is omitted because it add unnecessary compli-
cation to our discussion.)

Besides primitive data, the state of objects and arrays
can also be recorded. An example is provided in Table 2.
An observation about the handlers is that the time taken to
record an old value is constant, whether the field assigned
to is primitive or not. [9] This time is spent on allocating
the record object and storing the the old primitive value or
the old object or array reference in it.

4.2 Checkpoint management

A checkpoint is an execution point of an actor with state
associated with it. We assume that no state is shared be-
tween actors. This is a fair assumption for actor-oriented
models, in which actors exchange information by means of
events sent or received via output ports and input ports, re-
spectively. We provide a small yet sufficient set of meth-
ods for the actors to manage their checkpoints. For most

Object ref;
String[][] table;
void f() {

// ref = new Object();
$ASSIGN$ref(new Object());
// table = new String[5][];
$ASSIGN$table(new String[5][]);
// table[0] = new String[5];
$ASSIGN$table(0, new String[5]);
// table[0][0] = "message";
$ASSIGN$table(0, 0, "message");
...

}
Object $ASSIGN$ref(Object newRef) {

... // Record the reference in ref
return ref = newRef;

}
String[][] $ASSIGN$table(String[][] newTable) {

... // Record the reference in table
return table = newTable;

}
String[] $ASSIGN$table(int index0,

String[] element) {
... // Record the reference in table[index0]
return table[index0] = element;

}
String $ASSIGN$table(int index0, int index1,

String element) {
... // Record the value in

// table[index0][index1]
return table[index0][index1] = element;

}

Table 2. Transformation of object assignment
and array assignment

general-purpose actors, this checkpoint management is also
automatic.

The checkpoint() method in the library that we pro-
vide can be invoked to create a checkpoint. It returns a long
value as a unique checkpoint handle. After checkpoint cre-
ation, the assignment handlers are enabled to record state
changes. Later, the actor can backtrack to the checkpoint by
invoking rollback() with the checkpoint handle as pa-
rameter. An actor can maintain multiple checkpoints at the
same time, and it can roll back to any of those checkpoints.
When an actor decides that it will not backtrack to a check-
point, it invokes the discard() method with the check-
point handle to free the memory consumed by the record
objects. References to those record objects will be lost, and
the Java garbage collector will later collect the memory for
reuse.

Our backtracking mechanism is implemented specially
for applications in which run-time performance is impor-
tant. The checkpoint() method incurs a small constant
cost in time and in memory. It marks the current execution
point with a unique long integer number without actually
storing any state. The state is stored incrementally with as-

signments. There is a constant run-time cost for each as-
signment. Assuming that assignments are performed uni-
formly during the execution, the handlers slow down the
execution at a fixed rate that can be statically analyzed to ex-
tract real-time properties. rollback() and discard()
have O(cv) complexity, where c is the maximum number
of checkpoints that coexist at any time, and v is the number
of assignable memory locations (e.g., integer fields, object
references, array elements, etc).

5 Enhanced Camera Application

We now apply the backtracking mechanism to the image
composition application. The backtracking mechanism pro-
vides fault tolerance at the software level without requiring
a redesign of most actors in our actor library.

We will consider the Delay, Route, Merge, Queue and
Image Processor actors in this application to be general-
purpose. They have no knowledge about the meaning of er-
ror events or how to handle them. We will not discuss state
recovery of other actors that interact with hardware or the
human operator, because that depends on the specific oper-
ations provided by the API. For example, the Command ac-
tor in our application was considered a sensor. It may keep
a history of previous commands. Checkpoints of this actor
correspond to the indices in the history. To recover state
with a checkpoint, the Command actor may simply restore
the history to the specified index, and delete the subsequent
commands. Another example is the Display actor, consid-
ered as an actuator. It can not backtrack because the display
of erroneous data cannot revert. One way to deal with this is
to allocate a large enough buffer to store composed images,
which are shown on the display device only when the actor
is sure that the data used to compose them are valid.

In the following discussion, we will focus on general-
purpose actors. In general, the computation on those actors
depends on the successful completion of hardware com-
mands in the downstream actuators. On receiving an error
event, the default behavior of those actors is to recover their
state to the point before the event pertaining to the problem-
atic command was processed, and to relay the error event
back to their predecessors.

5.1 Processing error events

We will use the Image Processor actor as an example
to discuss the processing of error events in general-purpose
actors.

The Image Processor actor composes the images ac-
quired at the same time from the n cameras. It is a state-
ful actor because historical data about past images (up to a
certain time) may be used in the current composition. Due

to temporary loss of network connections, camera malfunc-
tion, or failure to focus, the Image Processor may not re-
ceive all the n images on occasions, and some of the re-
ceived images may be corrupted. We assume there is a way
for the Image Processor to detect lost or corrupted images.
A simple example is that if it does not receive data of a
partially transmitted image for a threshold, it considers the
connection lost, and the partial image corrupted.

A question to ask is when the Image Processor can start
to compose the images. If the composition starts at the
time when the Image Processor begins to receive image data
from any camera, and if during the composition some im-
ages are found to be corrupted, then the changes made on
the historical data are invalidated and the historical data can-
not be used any more. However, if the composition starts
when all the n images are either received intact or found
corrupted, then it may be too late the Display actor to pro-
duce real-time display, because image composition takes a
considerable amount of time.

This problem is similar to the one we have seen in Sec-
tion 3.4. We let Image Processor be actor α here. Let e1

be an event at i1 ∈ Iα that represents the start of transfer-
ring an image, which later becomes corrupted. Let e2 be an
error event at i2 ∈ Iα that represents the detection of the
corruption. tag(e1) = tag(e2) because e2 invalidates any
computation performed after e1. i1 and i2 are in the same
equivalence class because they both have influence on α’s
output signal (the set of composed images). Let this equiv-
alence class be Eα. Since e2 originates from the Device ac-
tors and does not depend any other event, the only path to i2
is [i2]. Therefore, the only CJEαK that α can choose is {Eα}.
As we have seen, this choice of CJEαK makes the PTIDES
execution strategy equivalent to Chandy and Misra’s con-
servative strategy. α has to pessimistically wait for e2 (or
a success event at port i2 instead) in order to process any
event with a time tag greater than tag(e1).

With backtracking, the Image Processor can perform
composition based on partially received data after it cre-
ates a checkpoint. Changes can be made on the histori-
cal data. The old values of the changed data are automati-
cally recorded without extra programming. In the rare case
where image corruption is detected, the Image Processor in-
vokes rollback() to recover its previous state, and then
restarts the composition with fewer images. In the major-
ity of cases, image transfer and composition are performed
in parallel and are both successful. Even in the rare case
where composition has to be restarted, the time to finish the
composition is similar to the time taken by traditional con-
servative strategies, not considering the part of composition
that can be reused after state recovery.

Image
Processor

Queue

..
.Command

Figure 4. The camera application enhanced
with error channels

5.2 Error channels and cancellation mes-
sages

Figure 4 shows the model enhanced with error chan-
nels. Device and Clock are the actors that generate error
events. The errors propagate via error channels to other ac-
tors, which may further relay them. Errors stop propagating
until they are properly handled. (For loss of connections be-
tween the n Device actors and the Image Processor, we shall
consider that the Image Processor “receives” an error event
from a Device if it has not received data from that Device
for a certain timeout.)

In the static analysis of relevant dependency before ex-
ecution, the error channels are deliberately ignored, and so
are the error events that travel via those channels. Hence,
the static analysis for relevant dependency is not affected by
hardware errors. The Image Processor can choose a CJEαK
different from {Eα}. For example, it can choose the set
containing n equivalence classes, each of which consists of
an input port of a distinct Delay actor. Using the second
implementation in Section 3.3, the Image Processor can de-
cide whether it can process input events by comparing the
physical time of the central computer to the expressions in-
volving the relevant dependency between those equivalence
classes and {Eα}.

At run time, hardware errors are automatically handled
by general-purpose actors. An actor creates a checkpoint
every time it starts to process an event. To continue with
the example of Image Processor, every time it starts to re-
ceive images from the cameras, it creates a checkpoint and
proceeds with the image composition without waiting. This
checkpoint will be useful when it receives an error event
(e.g., a one corresponding to the loss of a network connec-
tion). At that time, it recovers its state by backtracking to
the checkpoint. Note that the checkpoint management func-
tionality itself is not subject to backtracking, so it can main-
tain the list of events that have been received after the check-
point creation. Those events may need to be re-processed

after state recovery.
As a result of state recovery, an actor may generate can-

cellation messages to other actors. This is because some of
the events that it previously sent to those actors become in-
valid. Like error events, the cancellation messages are sent
via the error channels, and they are not considered in the
static analysis.

Cancellation messages in distributed systems have been
studied by previous research. For example, a cancellation
mechanism for Time Warp is described in [5]. Cascading
failure, also known as domino effect [14], must be avoided.
This problem is due to the fact that the cost of checkpoint
creation in the prior work is high, so it is not practical to
create a checkpoint every time an event is to be processed.
As a consequence, to cancel a previously processed event e,
an actor may backtrack to a model time earlier than tag(e).
It may then cancel its output e′ earlier than e. For the actor
that received e′ to cancel it, some outputs of that actor ear-
lier than tag(e′) may also need to be canceled for the same
reason. If this goes on, in the extreme case, the whole dis-
tributed system backtracks to very far in its past, or even to
its initial state.

In our backtracking mechanism, checkpoint creation is
an inexpensive operation that an actor can always perform
before it processes an event. To cancel the processing of
an event, the actor backtracks to the checkpoint created
right before that event was processed. This assures that the
domino effect does not happen.

6 Assessment and Related Work

Our backtracking mechanism has low performance over-
head and small memory footprint. It is best suited for appli-
cations with real-time requirements. If assignments are dis-
tributed uniformly in the execution, the extra state record-
ing slows down the applications at a fixed rate. This makes
it easy to infer real-time properties based on the real-time
properties of the non-backtracking version of the applica-
tions. Since error events are rare, the rollback operation
does not cause significant performance penalty. Neverthe-
less, for time-critical applications that require strict confor-
mance to real-time constraints, the time consumed by roll-
back still needs to be carefully considered. Fortunately, the
cost can be analyzed with the maximum number of coex-
isting checkpoints (1 in many actors) and the number of
assignable locations.

In contrast to rollback, the discard operation is expected
to be performed more frequently because of the limited
amount of memory. The O(cv) complexity may not be
acceptable for some real-time applications. As a feasible
improvement, result of the research on real-time garbage
collection can be utilized, e.g. the incremental garbage col-
lection (GC) technique in [2]. With incremental GC, the ac-

tors can free the record objects when the processors are less
loaded, avoiding noticeable slowdown of event processing.

Compared to the traditional conservative strategy [4]
[13], PTIDES takes advantage of the provable minimum
delay to process events more eagerly, making actors more
responsive to incoming events. Compared to optimistic
strategies [10] [5], PTIDES requires much less backtrack-
ing, which is needed only when hardware errors occur. Op-
timistic strategies require backtracking to deal with time
faults. The extra cost and the unanalyzable nature of time
faults sometimes outbid the gain of optimistic event pro-
cessing.

Various techniques exist for software fault tolerance [8].
We find that some of them do not satisfy the requirement
of real-time applications, while the others require too much
human intervention and are not flexible enough. For ex-
ample, serialization at checkpoint creation makes it neces-
sary to pause the applications for a considerable amount of
time. It cannot be used when real-time performance is a
critical concern. The incremental checkpointing technique
described in [11] requires the programmers (in our case,
designers of atomic actors) to provide auxiliary methods,
which are an extra burden and a source of bugs. It is also
hard to maintain these methods as the code evolves. Our
backtracking mechanism does not have these limitations.
The programmers only maintain the original copy of the
code, which has no backtracking functionality. When the
code is updated, transformation is applied with a tool to
generate a new backtracking version. This process can be
incorporated into an unattended build system. No human
intervention is needed for most general-purpose actors.

7 Conclusion

We develop PTIDES for the execution of real-time dis-
tributed discrete-event embedded systems. A lightweight
backtracking mechanism based on program transformation
is incorporated into PTIDES as an extension. It provides
better concurrency for event processing, because the actors
need not always wait for success events or error events from
the hardware. In the rare case where the hardware cannot
complete the operations successfully and error events are
produced, the actors automatically backtrack to their previ-
ous state. Our backtracking mechanism has low overhead
in execution time and memory resource. It smoothly slows
down the execution, making it possible to prove real-time
properties of the applications.

Acknowledgment

This work was supported in part by the the U. S. Army
Research Office (ARO #W911NF-07-2-0019), the National

Science Foundation (#0720841 (CSR-CPS)), the State of
California Micro Program, and the following companies:
Agilent, Bosch, DGIST, National Instruments, and Toyota.

References

[1] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Syn-
chronization and Linearity: An Algebra for Discrete Event
Systems. Wiley, New York, 1992.

[2] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time
garbage collector with low overhead and consistent uti-
lization. In POPL ’03: Proceedings of the 30th ACM
SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 285–298, New Orleans, Louisiana,
USA, 2003. ACM Press.

[3] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and
H. Zheng. Ptolemy II - heterogeneous concurrent modeling
and design in Java. Technical Report UCB/EECS-2007-7,
EECS Department, University of California, Berkeley, Jan
2007.

[4] K. M. Chandy and J. Misra. Distributed simulation: A
case study in design and verification of distributed programs.
IEEE Transaction on Software Engineering, 5(5), 1979.

[5] M. Chetlur and P. A. Wilsey. Causality representation and
cancellation mechanism in time warp simulations. In PADS
’01: Proceedings of the fifteenth workshop on Parallel and
distributed simulation, pages 165–172, Washington, DC,
USA, 2001. IEEE Computer Society.

[6] S. Edwards and E. A. Lee. The case for the precision timed
(PRET) machine. Technical Report UCB/EECS-2006-149,
EECS Department, University of California, Berkeley, Nov
2006.

[7] J. Eidson and K. Lee. IEEE 1588 standard for a precision
clock synchronization protocol for networked measurement
and control systems. In Sensors for Industry Conference,
2002. 2nd ISA/IEEE, pages 98–105, Nov 2002.

[8] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. John-
son. A survey of rollback-recovery protocols in message-
passing systems. ACM Comput. Surv., 34(3):375–408, 2002.

[9] T. H. Feng and E. A. Lee. Incremental checkpointing with
application to distributed discrete event simulation. In WSC
’06: Proceedings of the 38th conference on Winter sim-
ulation, pages 1004–1011. Winter Simulation Conference,
2006.

[10] D. R. Jefferson. Virtual time. ACM Transactions on Pro-
gramming Languages and Systems, 7(3):404–425, 1985.

[11] J. L. Lawall and G. Muller. Efficient incremental check-
pointing of Java programs. In Proceedings of the Interna-
tional Conference on Dependable Systems and Networks,
pages 61–70, New York, NY, USA, 2000. IEEE.

[12] Z. Manna and A. Pnueli. Verifying hybrid systems. In
Hybrid Systems, pages 4–35, London, UK, 1993. Springer-
Verlag.

[13] J. Misra. Distributed discrete-event simulation. ACM Com-
puting Surveys, 18(1):39–65, 1986.

[14] B. Randell. System structure for software fault tolerance.
In Proceedings of the international conference on Reliable
software, pages 437–449, New York, NY, USA, 1975. ACM
Press.

[15] Y. Zhao, J. Liu, and E. A. Lee. A programming model for
time-synchronized distributed real-time systems. In Pro-
ceedings of the 13th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS 07), pages 259–
268, Bellevue, WA, USA, Apr 2007.

