
Freescale Semiconductor
Application Note

© 2010 Freescale Semiconductor, Inc. All rights reserved.

This application note provides information about the image
processing API for the i.MX platform. Image processing is a
form of signal processing. The input for image processing is
an image, such as a photograph or frame of video. The output
can be an image or a set of characteristics or parameters
related to the image. Most of the image processing
techniques treat the image as a two-dimensional signal and
applies the standard signal processing techniques to it.

Image processing usually refers to digital image processing.
However, optical and analog image processing are also
possible. The application note describes the general
techniques that apply to all types of image processing. The
source code is in ANSI C that makes the file portable
between any Operating System (OS).

Document Number: AN4042
Rev. 0, 05/2010

Contents
1. 24-Bit RGB Representation . 2
2. Raw Images . 2
3. Frame Buffer . 3
4. Writing the Frame Buffer . 4
5. Geometric Transformation . 5
6. Color Transformation . 10
7. Drawing on Screen in Windows® CE 15
8. Conclusion . 17
9. Revision History . 18

Image Processing API for the i.MX
Platform
by Multimedia Applications Division

Freescale Semiconductor, Inc.
Austin, TX

Image Processing API for the i.MX Platform, Rev. 0

2 Freescale Semiconductor

24-Bit RGB Representation

1 24-Bit RGB Representation
The RGB values encoded in 24 bits per pixel (bpp) are specified using three 8-bit unsigned integers
(0–255) that represent the intensities of red, green, and blue. This representation is the current mainstream
standard representation for the true color and common color interchange in image file formats, such as
JPEG or TIFF. The 24-bit RGB representation allows more than 16 million combinations. Therefore, some
system uses the term millions of colors for this mode. Most of these colors are visible to the human eye.

Figure 1 shows three fully saturated faces of a 24 bpp RGB cube, unfolded into a plane.
.

Figure 1. 24 bpp RGB Cube

2 Raw Images
A raw image file contains minimally processed data from the image sensor of a digital camera or an image
scanner. These files are termed as raw files because they are not processed and are ready to be printed or
used with a bitmap graphics editor. In general, an image is processed by a raw converter in a wide gamut
internal color space. Here, precise adjustments are made before converting the raw images to an RGB file
format, such as TIFF or JPEG for storage, printing or for further manipulation. These images are often
described as RAW image files (note capitalization), based on the erroneous belief that they represent a
single file format. All these files have .RAW as a common filename extension.

NOTE
Several raw image file formats are used in different models of digital
cameras.

Raw image files are sometimes called digital negatives, as they fulfill the same role as film negatives in
traditional chemical photography. The negative cannot be used as an image, but has all the information
needed to create an image. Likewise, the process of converting a raw image file into a viewable format is

Image Processing API for the i.MX Platform, Rev. 0

Freescale Semiconductor 3

Frame Buffer

called developing a raw image. This is in analogy with the film development process, which is used to
convert photographic film into viewable prints.

A raw image in C is represented as given below:

unsigned char raw_image[]={
0x00,0x3d,0x10,0x81,0x00,0x3d,0x10,0x81,0x45,
0x00,0x3d,0x10,0x81,0x00,0x3d,0x10,0x81,0x71,
0x00,0x3d,0x10,0x81,0x00,0x3d,0x10,0x81,0x22,
0x00,0x3d,0x10,0x81,0x00,0x3d,0x10,0x81,0x31
}

The above example can be interpreted as a 9 × 4 pixels image that uses 1 byte to represent the color palette.
Image can also be of 3 × 4 pixels with a color depth of 3 bytes (16,777,216 colors).

3 Frame Buffer
A frame buffer is a video output device that drives a video display from a memory buffer that contains a
complete frame of data. The information in the buffer consists of color values for every pixel (point that
can be displayed) on the screen. Color values are commonly stored in 1-bit monochrome, 4-bit pelletized,
8-bit pelletized, 16-bit high color, and 24-bit true color formats. An additional alpha channel is sometimes
used to retain the information about pixel transparency.

The total amount of memory required to drive the frame buffer depends on the resolution of the output
signal, color depth, and palette size.

Equation 1 shows the formula to calculate the size of the frame buffer.

frame buffer size (in bytes) = (pixels width) x (pixels height) x (number of colors per pixel) Eqn. 1

A frame buffer object can be created as shown below:

FrameBufferProperties fbp;

fbp.color_depth= RGB_24BITS;
fbp.height= 100;
fbp.width= 100;

FrameBuffer fb = NewFrameBuffer(&fbp);

where fbp is an instance of the FrameBufferProperties that is used to set the color depth, height, and width
of the frame buffer object. The NewFrameBuffer method allocates memory dynamically according to the
parameters in the FrameBufferProperties. It returns a pointer to the allocated memory.

The NewFrameBuffer function is given as follows:

uchar8* NewFrameBuffer(FrameBufferProperties* fbp)
{
uint32 size= sizeof(uchar8)*(fbp->color_depth)*(fbp->height)*(fbp->width);
return (unsigned char*)malloc(size);
}
DeleteFrameBuffer is a macro that frees the allocated memory.
#define DeleteFrameBuffer(instance) free(instance)

Image Processing API for the i.MX Platform, Rev. 0

4 Freescale Semiconductor

Writing the Frame Buffer

4 Writing the Frame Buffer
As the NewFrameBuffer method does not initialize the allocated memory due to the malloc function, the
SetFrameBufferBackground method is used to set a background color to the selected frame buffer.

The SetFrameBufferBackground takes the following format:

void SetFrameBufferBackground(FrameBuffer fb,FrameBufferProperties* fbp, uint32
background);

Example 1. SetFrameBufferBackground function

/*set fbp structure according to frame buffer properties*/
FrameBufferProperties fbp;

fbp.color_depth= RGB_24BITS;
fbp.height= 100;
fbp.width= 100;

/*set img structure according to raw image format*/
ImageProperties imgp;
imgp.color_depth= RGB_24BITS;
imgp.height= 16;
imgp.width= 16;

/*create two frame buffers*/
FrameBuffer fb = NewFrameBuffer(&fbp);
FrameBuffer ffb = NewFrameBuffer(&fbp);

/*set white color as background color*/
SetFrameBufferBackground(ffb,&fbp,0xffffff);

/*add a raw image to fb*/
/*consider that raw_img is already declared somewhere in code*/
AddRawImage(fb,&fbp,raw_img,&imgp,0,0);

/*HERE PASS THE ffb VARIABLE TO THE PLATFORM DEPENDENT DRAW METHOD OR DEVICE CONTEXT*/

/*release allocated memory*/
DeleteFrameBuffer(fb);
DeleteFrameBuffer(ffb);

The AddRawImage method copies a raw image on the selected frame buffer at the specified coordinates. It
compares the size of the final frame buffer against the size of the raw image using the
isFrameBufferSuitable method. This prevents the raw image from being copied completely.

The AddRawImage function takes the following format:

void AddRawImage(FrameBuffer fb, FrameBufferProperties* fbp, RawImage* img,
ImageProperties* imgp, int32 x, int32 y);

Example 2. AddRawImage function

/*set fbp structure according to frame buffer properties*/
FrameBufferProperties fbp;
fbp.color_depth= RGB_24BITS;
fbp.height= 100;
fbp.width= 100;

Image Processing API for the i.MX Platform, Rev. 0

Freescale Semiconductor 5

Geometric Transformation

/*set img structure according to raw image format*/
ImageProperties imgp;
imgp.color_depth= RGB_24BITS;
imgp.height= 16;
imgp.width= 16;

/*create two frame buffers*/
FrameBuffer fb = NewFrameBuffer(&fbp);
FrameBuffer ffb = NewFrameBuffer(&fbp);

/*add a raw image to fb*/
/*consider that raw_img is already declared somewhere in code*/
AddRawImage(fb,&fbp,raw_img,&imgp,0,0);

/*HERE PASS THE ffb VARIABLE TO THE PLATFORM DEPENDENT DRAW METHOD OR DEVICE CONTEXT*/

/*release allocated memory*/
DeleteFrameBuffer(fb);
DeleteFrameBuffer(ffb);

5 Geometric Transformation
Transformations form the fundamental part of computer graphics. Transformations are used to position the
objects, shape the objects, change the position of view, and change the perspective.

The four main types of transformations, which are performed in two-dimensions, are as follows:

• Translations

• Scaling

• Rotation

• Shearing

These basic transformations can be combined to form more complex transformations.

5.1 Translation
Translation with two-dimensional points is easy. The user only has to determine the distance that the object
should be moved and add those variables to the previous x and y co-ordinates, respectively.

Figure 2 shows the original and translated image.

Figure 2. Original and Translated Images

Image Processing API for the i.MX Platform, Rev. 0

6 Freescale Semiconductor

Geometric Transformation

The following gives an example for translation. Consider that the point (0,0) is on the upper left of the
screen. If (0,0) has to be in the middle of the screen, the translation coordinates should be ([image
height/2], [image width/2]).

The Translate function takes the following format:

void Translate(FrameBuffer tfb, FrameBuffer fb, FrameBufferProperties* fbp, int32 x,
int32 y);

where the five parameters of the method are as follows:

• Source frame buffer

• Final frame buffer

• Frame buffer properties

• Two-dimensional offset point in the x-axis

• Two-dimensional offset point in the y-axis

Example 3. Translate function

/*set fbp structure according to frame buffer properties*/
FrameBufferProperties fbp;

fbp.color_depth= RGB_24BITS;
fbp.height= 100;
fbp.width= 100;

/*set img structure according to raw image format*/
ImageProperties imgp;
imgp.color_depth= RGB_24BITS;
imgp.height= 16;
imgp.width= 16;

/*create two frame buffers*/
FrameBuffer fb = NewFrameBuffer(&fbp);
FrameBuffer ffb = NewFrameBuffer(&fbp);

/*add a raw image to fb*/
/*consider that raw_img is already declared somewhere in code*/
AddRawImage(fb,&fbp,raw_img,&imgp,0,0);

/*translate fb (20,20) coordenates and store it in ffb*/
Translate(ffb,fb,&fbp,20,20);

/*HERE PASS THE ffb VARIABLE TO THE PLATFORM DEPENDENT DRAW METHOD OR DEVICE CONTEXT*/

/*release allocated memory*/
DeleteFrameBuffer(fb);
DeleteFrameBuffer(ffb);

Image Processing API for the i.MX Platform, Rev. 0

Freescale Semiconductor 7

Geometric Transformation

5.2 Scaling
Zoom-in duplicates the pixels according to the scale parameter. Consider Figure 3 that shows a 4 × 4 pixels
image.

Figure 3. Zoom-in Original and Scaled Images

Using a scale parameter of 2, the scale method duplicates itself by two in both the axes. In Figure 3, the
black circles point out the duplicated pixels. Whereas, zoom-out takes only some pixels from the original
image and generates a new image based on the selected scale parameter.

For example, Figure 4 uses a scale parameter of 2 that takes only four samples of the original 4 × 4 pixels
image. Black circles indicate the copied pixels.

Figure 4. Zoom-out Original and Scaled Images

NOTE
This function is also dependent on the points that are centered around the
upper left of the screen.

The Scale function takes the following format:

void Scale(FrameBuffer tfb,FrameBuffer fb, FrameBufferProperties* fbp, int32 scale);

Example 4. Scale function

/*set fbp structure according to frame buffer properties*/
FrameBufferProperties fbp;

fbp.color_depth= RGB_24BITS;
fbp.height= 100;
fbp.width= 100;

Image Processing API for the i.MX Platform, Rev. 0

8 Freescale Semiconductor

Geometric Transformation

/*set img structure according to raw image format*/
ImageProperties imgp;
imgp.color_depth= RGB_24BITS;
imgp.height= 16;
imgp.width= 16;

/*create two frame buffers*/
FrameBuffer fb = NewFrameBuffer(&fbp);
FrameBuffer ffb = NewFrameBuffer(&fbp);

/*add a raw image to fb*/
/*consider that raw_img is already declared somewhere in code*/
AddRawImage(fb,&fbp,raw_img,&imgp,0,0);

/*zoom in fb by 2 and store it in ffb*/
Scale(ffb,fb,&fbp,2);

/*HERE PASS THE ffb VARIABLE TO THE PLATFORM DEPENDENT DRAW METHOD OR DEVICE CONTEXT*/

/*release allocated memory*/
DeleteFrameBuffer(fb);
DeleteFrameBuffer(ffb);

5.3 Rotation
All rigid body movements are either rotation or translation or combinations of the two. A rotation is simply
a progressive radial orientation to a common point. This common point lies within the axis of that motion.
The axis is 90º perpendicular to the plane of the motion. Mathematically, rotation is a rigid body movement
that has a fixed point, unlike the translational motion.

NOTE
This definition applies to rotations in two and three-dimensions (motion in
plane and space, respectively).

The Rotate function takes the following format:

void Rotate(FrameBuffer tfb, FrameBuffer fb, FrameBufferProperties* fbp, int32 angle);

Example 5. Rotate function

/*set fbp structure according to frame buffer properties*/
FrameBufferProperties fbp;

fbp.color_depth= RGB_24BITS;
fbp.height= 100;
fbp.width= 100;

/*set img structure according to raw image format*/
ImageProperties imgp;
imgp.color_depth= RGB_24BITS;
imgp.height= 16;
imgp.width= 16;

/*create two frame buffers*/
FrameBuffer fb = NewFrameBuffer(&fbp);
FrameBuffer ffb = NewFrameBuffer(&fbp);

Image Processing API for the i.MX Platform, Rev. 0

Freescale Semiconductor 9

Geometric Transformation

/*add a raw image to fb*/
/*Let's consider that raw_img is already declared somewhere in code*/
AddRawImage(fb,&fbp,raw_img,&imgp,0,0);

/*rotate fb 30 degrees and store it in ffb*/
Rotate(ffb,fb,&fbp,30);

/*HERE PASS THE ffb VARIABLE TO THE PLATFORM DEPENDENT DRAW METHOD OR DEVICE CONTEXT*/

/*release allocated memory*/
DeleteFrameBuffer(fb);
DeleteFrameBuffer(ffb);

5.4 Shearing
Shearing is a process of sliding the pixels progressively on an image in a direction parallel to the x or y axis.

Figure 5 shows x axis and y axis shearing.

Figure 5. x Axis and y Axis Shearing

The XShearing and YShearing functions take the following format:

void XShearing(FrameBuffer tfb, FrameBuffer fb, FrameBufferProperties* fbp, int32 x);

void YShearing(FrameBuffer tfb, FrameBuffer fb, FrameBufferProperties* fbp, int32 y);

Example 6. XShearing function

/*set fbp structure according to frame buffer properties*/
FrameBufferProperties fbp;

Image Processing API for the i.MX Platform, Rev. 0

10 Freescale Semiconductor

Color Transformation

fbp.color_depth= RGB_24BITS;
fbp.height= 100;
fbp.width= 100;

/*set img structure according to raw image format*/
ImageProperties imgp;
imgp.color_depth= RGB_24BITS;
imgp.height= 16;
imgp.width= 16;

/*create two frame buffers*/
FrameBuffer fb = NewFrameBuffer(&fbp);
FrameBuffer ffb = NewFrameBuffer(&fbp);

/*add a raw image to fb*/
/*consider that raw_img is already declared somewhere in code*/
AddRawImage(fb,&fbp,raw_img,&imgp,0,0);

/*shear fb and store it in ffb*/
XShearing(ffb,fb,&fbp,10);

/*HERE PASS THE ffb VARIABLE TO THE PLATFORM DEPENDENT DRAW METHOD OR DEVICE CONTEXT*/
/*release allocated memory*/
DeleteFrameBuffer(fb);
DeleteFrameBuffer(ffb);

6 Color Transformation
Digital color management requires translation of digital images between different representations or color
spaces. For example, the pixels in an image may encode the colors that are visible when the image is
displayed on a video monitor. At times, the details of the pixel transformation can be complex. Color is
important in setting the mood of images and video sequences. Hence, color transformation is one of the
most important features in photo editing or video postproduction tools. The ColorTransform function
allows user to compensate the pixel color for red, green or blue channel.

The ColorTransform function takes the following format:

void ColorTransform(FrameBuffer fb, FrameBufferProperties* fbp, ColorProperties* cp);

Example 7. ColorTransform function

/*set fbp structure according to frame buffer properties*/
FrameBufferProperties fbp;

fbp.color_depth= RGB_24BITS;
fbp.height= 100;
fbp.width= 100;

/*set img structure according to raw image format*/
ImageProperties imgp;
imgp.color_depth= RGB_24BITS;
imgp.height= 16;
imgp.width= 16;

/*create a frame buffer*/
FrameBuffer fb = NewFrameBuffer(&fbp);

Image Processing API for the i.MX Platform, Rev. 0

Freescale Semiconductor 11

Color Transformation

/*add a raw image to fb*/
/*consider that raw_img is already declared somewhere in code*/
AddRawImage(fb,&fbp,raw_img,&imgp,0,0);

ColorProperties cp;

cp.redMultiplier=1;
cp.redOffset=0;
cp.greenMultiplier=1;
cp.greenOffset=0;
cp.blueMultiplier=1;
cp.blueOffset=0;

/*apply color transformation*/
ColorTransform(fb,&fbp,&cp);

/*HERE PASS THE ffb VARIABLE TO THE PLATFORM DEPENDENT DRAW METHOD OR DEVICE CONTEXT*/

/*release allocated memory*/
DeleteFrameBuffer(fb);

6.1 Color to Grayscale
Grayscale images are the result of the intensity measurement of light at each pixel in a single band of the
electromagnetic spectrum (infrared, visible light, ultraviolet, and so on). In such cases, they are
monochromatic when only a given frequency is captured. Grayscale images can also be synthesized from
a full color image.

The intensity of a pixel is expressed within a given minimum and a maximum inclusive range. This range
is represented in an abstract way as a range from 0 (black) to 1 (white), with any fractional values in
between. This notation is used in academic papers, and it must be noted that this does not define black or
white in terms of colorimetry.

Figure 6 shows a grayscale palette.

Figure 6. Grayscale Palette

Though the grayscale can be computed through rational numbers, the image pixels are stored in binary
quantized form. Early gray scale monitors could show only up to 16 (4-bit) different shades. Today,
grayscale images (as photographs) intended for visual display (both on screen and printed) are commonly
stored with 8 bits per sampled pixel that allows 256 different intensities (that is, shades of gray) to be
recorded on a non-linear scale. The precision provided by this format is barely sufficient to avoid visible
banding artifacts and is convenient for programming, as a single pixel occupies only a single byte.

Whatever value is assigned to the pixel depth, the binary representations assumes the minimum value, 0
as black and maximum value (that is, 255 at 8 bpp, 65,535 at 16 bpp and so on) as white.

The GrayScale function takes the following format:

void GrayScale(FrameBuffer fb, FrameBufferProperties* fbp);

Image Processing API for the i.MX Platform, Rev. 0

12 Freescale Semiconductor

Color Transformation

Example 8. GrayScale function

/*set fbp structure according to frame buffer properties*/
FrameBufferProperties fbp;

fbp.color_depth= RGB_24BITS;
fbp.height= 100;
fbp.width= 100;

/*set img structure according to raw image format*/
ImageProperties imgp;
imgp.color_depth= RGB_24BITS;
imgp.height= 16;
imgp.width= 16;

/*create a frame buffer*/
FrameBuffer fb = NewFrameBuffer(&fbp);
/*add a raw image to fb*/
/*consider that raw_img is already declared somewhere in code*/
AddRawImage(fb,&fbp,raw_img,&imgp,0,0);

/*Convert fb to grayscale*/
GrayScale(fb,&fbp);

/*HERE PASS THE ffb VARIABLE TO THE PLATFORM DEPENDENT DRAW METHOD OR DEVICE CONTEXT*/

/*release allocated memory*/
DeleteFrameBuffer(fb);

6.2 Color Filtering
Color filters are necessary because some camera sensors detect light intensity with little or no wavelength
specificity. So, they are unable to separate the color information. The sensors are made of semiconductors,
and they conform to solid-state physics. The color filter filters the light by wavelength range, such that the
separate filtered intensities include information about the color of light. A demosaicing algorithm that is
tailored for each type of color filter then converts the raw image data captured by the image sensor to a full
color image (with intensities of all three primary colors represented in each pixel).

The ColorFilter function takes the following format:

void ColorFilter(FrameBuffer fb, FrameBufferProperties* fbp, ColorFilterProperties*
cfp);

Example 9. ColorFilter function

/*set fbp structure according to frame buffer properties*/
FrameBufferProperties fbp;

fbp.color_depth= RGB_24BITS;
fbp.height= 100;
fbp.width= 100;

/*set img structure according to raw image format*/
ImageProperties imgp;
imgp.color_depth= RGB_24BITS;
imgp.height= 16;

Image Processing API for the i.MX Platform, Rev. 0

Freescale Semiconductor 13

Color Transformation

imgp.width= 16;

/*create a frame buffer*/
FrameBuffer fb = NewFrameBuffer(&fbp);

/*add a raw image to fb*/
/*consider that raw_img is already declared somewhere in code*/
AddRawImage(fb,&fbp,raw_img,&imgp,0,0);
/*set cfp structure according to color filtering parameters*/
ColorFilterProperties cfp;

cfp.red_max=100;
cfp.red_min=0;

cfp.green_max=155;
cfp.green_min=20;

cfp.blue_max=240;
cfp.blue_min=10;

/*apply color filtering*/
ColorFilter(fb,&fbp,&cfp);

/*HERE PASS THE ffb VARIABLE TO THE PLATFORM DEPENDENT DRAW METHOD OR DEVICE CONTEXT*/
/*release allocated memory*/
DeleteFrameBuffer(fb);

6.3 Color Inversion
Color inversion causes a change to all the colors in an image. In case of RGB color model, the inverse
value is determined by subtracting the value of a color from the maximum color value. A numeric example
for color inversion is given below:

A pixel has the values R (red) = 55, G (green) = 128, and B (blue) = 233 in a color resolution of 255 (8-bit
color depth).

The inversion of this pixel is shown in Equation 2, Equation 3, and Equation 4:

R = 255 - 55 = 200 Eqn. 2

G = 255 - 128 = 127 Eqn. 3

B = 255 - 233 = 22 Eqn. 4

The Invert function takes the following format:

void Invert(FrameBuffer fb, FrameBufferProperties* fbp);

Example 10. Invert function

/*set fbp structure according to frame buffer properties*/
FrameBufferProperties fbp;

fbp.color_depth= RGB_24BITS;
fbp.height= 100;
fbp.width= 100;

Image Processing API for the i.MX Platform, Rev. 0

14 Freescale Semiconductor

Color Transformation

/*set img structure according to raw image format*/
ImageProperties imgp;
imgp.color_depth= RGB_24BITS;
imgp.height= 16;
imgp.width= 16;

/*create a frame buffer*/
FrameBuffer fb = NewFrameBuffer(&fbp);

/*add a raw image to fb*/
/*consider that raw_img is already declared somewhere in code*/
AddRawImage(fb,&fbp,raw_img,&imgp,0,0);

/*apply color inversion*/
Invert(fb,&fbp);

/*HERE PASS THE ffb VARIABLE TO THE PLATFORM DEPENDENT DRAW METHOD OR DEVICE CONTEXT*/

/*release allocated memory*/
DeleteFrameBuffer(fb);

6.4 Alpha Blending
Alpha compositing or alpha blending is the process of combining image with a background, to create an
appearance of partial transparency. Alpha blending is useful to render image elements in separate passes
and combine the resulting multiple two-dimensional images into a single final image. This process is
called compositing. Compositing is used extensively when combining computer rendered image elements
with live footage.

To combine the image elements correctly, it is necessary to keep an associated matte for each element. The
matte contains the coverage information (that is, the shape of the geometry being drawn) to distinguish
between the other parts of the image, where the geometry is actually drawn and other parts of the image
that are empty.

As an example, the over operator can be accomplished by applying the formula shown in Equation 5 to
each pixel value:

Value = (1 - α) Value0 + Value1 Eqn. 5

The value of α in the color code ranges from 0.0 to 1.0, where 0.0 represents a fully transparent color, and
1.0 represents a fully opaque color.

The AlphaBlending function takes the following format:

void AlphaBlending(FrameBuffer background, FrameBuffer fb, FrameBufferProperties* fbp,
uchar8 alpha);

Example 11. AlphaBlending function

/*set fbp structure according to frame buffer properties*/
FrameBufferProperties fbp;

fbp.color_depth= RGB_24BITS;
fbp.height= 100;
fbp.width= 100;

Image Processing API for the i.MX Platform, Rev. 0

Freescale Semiconductor 15

Drawing on Screen in Windows® CE

/*set img structure according to raw image format*/
ImageProperties imgp;
imgp.color_depth= RGB_24BITS;
imgp.height= 16;
imgp.width= 16;

/*create two frame buffers*/
FrameBuffer fb = NewFrameBuffer(&fbp);
FrameBuffer ffb = NewFrameBuffer(&fbp);

/*add a raw image to fb*/
/*consider that raw_img is already declared somewhere in code*/
AddRawImage(fb,&fbp,raw_img,&imgp,0,0);

/*add a raw image to ffb*/
/*consider that raw_img2 is already declared somewhere in code*/
AddRawImage(fb,&fbp,raw_img2,&imgp,0,0);

/*apply Alpha Blending*/
AlphaBlending(ffb,fb,&fbp,alpha_70);

/*HERE PASS THE ffb VARIABLE TO THE PLATFORM DEPENDENT DRAW METHOD OR DEVICE CONTEXT*/

/*release allocated memory*/
DeleteFrameBuffer(fb);
DeleteFrameBuffer(ffb);

7 Drawing on Screen in Windows® CE
The following sections explain the procedure to draw on the screen in Windows CE platform, which is
different from drawing in a Linux® platform. The image processing API delivers the processed frame
buffer to implement the frame in Linux. The user should be familiar with drawing on a Linux screen.
Though, Windows CE does not support full Win32 graphics API, the functions that the Windows CE
supports allow the developers to write full featured graphical applications. There is no workaround for the
features that the Windows CE does no support.

7.1 Painting Basics
Windows is divided into three main components:

• Kernel—handles the process and memory management

• User—handles windowing interface and controls

• Graphic device interface (GDI)—performs the low level drawing.

In Windows CE, the user and GDI are combined into the Graphic Windowing and Event subsystem
(GWE).

7.2 Valid and Invalid Regions
When an area of a window is exposed to the user, that area or region is marked as invalid. When there are
no messages in the application's message queue and the application's window contains an invalid region,

Image Processing API for the i.MX Platform, Rev. 0

16 Freescale Semiconductor

Drawing on Screen in Windows® CE

then the Windows sends a WM_PAINT message to the window. Any drawing performed in response to a
WM_PAINT message is couched in calls to BeginPaint and EndPaint.

BeginPaint performs the following actions:

1. BeginPaint hides the text entry cursor, if it is not displayed

2. A WM_NCPAINT message is sent directly to the default window procedure, if required

3. Acquires a device context that is clipped to the invalid region

4. Sends a WM_ERASEBACKGROUND message, if required to redraw the background

5. Returns a handle to the device context

7.3 Device Contexts
Device Context (DC) is a tool that the Windows uses to manage access to the display and printer. Windows
applications do not write directly onto the screen. Instead, they request a handle to a display DC for the
appropriate window and then by using the handle, they draw to the context of the device. Windows then
arbitrates and manages to get the pixels from the DC to the screen.

7.4 Windows CE Implementation
WinMain is the entry point. It must register a window class for the main window, create the window, and
provide a message loop to process the messages for the window. In this method, the user can add the
initialization code for the image processing API.

WinMain is prototyped as shown below:

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,LPTSTR lpCmdLine,int
nCmdShow);

The messages sent or posted to the main window are sent to the WndProc procedure. WndProc, like other
window procedures, is prototyped as shown below:

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam);

The function and their parameters are described as follows:

• LRESULT return type—is long and is entered in a way to provide a level of indirection between the
source code and machine.

• CALLBACK type definition—specifies the function as an external entry point into the EXE. This is
necessary as the Windows calls the procedure directly. The CALLBACK type definition varies
depending on the targeted version of the Windows. It typically indicates that the parameters are
pushed onto the stack in a right to left manner.

• HWND hWnd—is the window handle and is useful to define a specific instance of the window.

• UINT message—indicates the message being sent to the window. It is an unsigned integer containing
the message value.

• WPARAM wParam, LPARAM lParam—are used to pass message specific data to the window procedure.
In Windows CE, as in other Win32 operating systems, both the wParam and lParam parameters are
32 bits wide.

Image Processing API for the i.MX Platform, Rev. 0

Freescale Semiconductor 17

Conclusion

Example 12. A part of the WndProc procedure implementation

case WM_PAINT:

GetClientRect(hWnd,&rect);

hdc = BeginPaint(hWnd, &ps);

/*MY CODE STARTS HERE*/

/*it creates a memory device context (DC) compatible with the specified device*/
hdcMemory = CreateCompatibleDC(hdc);

/*it creates a bitmap with the specified width, height, and color format*/
hBmp = CreateBitmap(fbp.width,fbp.height,1,24,fb);

/*it selects an object into a specified device context. The new object replaces the
previous object of the same type. */
hOldSel= SelectObject(hdcMemory, hBmp);

/*The GetObject function retrieves information for the specified graphics object.*/
GetObject(hBmp, sizeof(BITMAP), &bmp);

/*This function transfers pixels from a specified source rectangle to a specified
destination rectangle*/
BitBlt(hdc,0,0,bmp.bmWidth,bmp.bmHeight,hdcMemory,0,0,SRCCOPY);

/*it selects an object into a specified device context*/
SelectObject(hdcMemory, hOldSel);

/*it draws text on the screen*/
DrawText(hdc,TEXT("TOUCH THE SCREEN TO START DEMO"),-1,&rect,DT_CENTER|DT_SINGLELINE);

/*it deletes device context handler*/
DeleteDC(hdc);

/*MY CODE ENDS HERE*/

EndPaint(hWnd, &ps);

break;

8 Conclusion
This application note helps to rapidly implement image processing to other software applications. The
image processing API supports only 24-bits color depth. However, other color depths, such as 8-bit or
16-bit can be implemented easily. The API is endianess dependent. However, a function can be used to
check for the endianness during the run-time. This way, the users can make their code more portable and
flexible. In some functions, fixed point is implemented instead of floating point to avoid processor
overhead. Since the API computes the image processing in a generic frame buffer, it can be used in
Windows, Linux or any other OS theoretically.

Image Processing API for the i.MX Platform, Rev. 0

18 Freescale Semiconductor

Revision History

9 Revision History
Table 1 provides a revision history for this application note.

Table 1. Document Revision History

Rev.
Number

Date Substantive Change(s)

0 05/2010 Initial release.

Image Processing API for the i.MX Platform, Rev. 0

Freescale Semiconductor 19

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: AN4042
Rev. 0
05/2010

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC,
StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc.
Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ, QUICC Engine, and VortiQa are
trademarks of Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners. ARM is the registered
trademark of ARM Limited.
© 2010 Freescale Semiconductor, Inc.

	Image Processing API for the i.MX Platform
	1 24-Bit RGB Representation
	Figure 1. 24 bpp RGB Cube

	2 Raw Images
	3 Frame Buffer
	4 Writing the Frame Buffer
	5 Geometric Transformation
	5.1 Translation
	Figure 2. Original and Translated Images

	5.2 Scaling
	Figure 3. Zoom-in Original and Scaled Images
	Figure 4. Zoom-out Original and Scaled Images

	5.3 Rotation
	5.4 Shearing
	Figure 5. x Axis and y Axis Shearing

	6 Color Transformation
	6.1 Color to Grayscale
	Figure 6. Grayscale Palette

	6.2 Color Filtering
	6.3 Color Inversion
	6.4 Alpha Blending

	7 Drawing on Screen in Windows® CE
	7.1 Painting Basics
	7.2 Valid and Invalid Regions
	7.3 Device Contexts
	7.4 Windows CE Implementation

	8 Conclusion
	9 Revision History
	Table 1. Document Revision History

