\#. mathelaureate.com

IGCSE - Extended Mathematics

Content:

- Reflection (M): Reflect simple plane figures in horizontal or vertical lines;
- Rotation (R): Rotate simple plane figures about the origin, vertices or midpoints of edges of the figures, through multiples of 90°;
- Enlargement (E) : Construct given translations and enlargements of simple plane figures;
- Shear (H) \&Stretch (S)
- Their combinations (if $M(a)=b$ and $R(b)=c$ the notation $R M(a)=c$ will be used;
- Invariants under these transformations may be assumed.) Identify and give precise descriptions of transformations connecting given figures.
- Describe transformations using co-ordinates and matrices (singular matrices are excluded).

Transformation:

$>$ The word" transform "means "to change." In geometry, a transformation changes the position of a shape on a coordinate plane. That means a shape is moving from one place to another.
$>$ The original shape of the object is called the pre-image and the final shape and position of the object is the image under the transformation.

Isometry : Isometric transformation is a transformation that preserves congruence. In other words, a transformation in which the image and pre-image have the same side lengths and angle measurements. The following transformations maintain their mathematical congruence Reflection (Flip) ,Translation (Slide), Rotation (Turn).

M. mathelaureate.com

\prod_{5} mathelaureate.com

M. mathelaureate.com

6. Rotation	90 degrees clock wise rotation	
$\left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right]$	This transformation matrix rotates the point matrix 90 degrees clockwise. When multiplying by this matrix, the point matrix is rotated 90 degrees clockwise around $(0,0)$.	$\left[\begin{array}{ll} 0 & 1 \\ -1 & 0 \end{array}\right]\left[\begin{array}{l} 4 \\ 3 \end{array}\right]=\left[\begin{array}{c} (4 \times 0)+(3 \times 1) \\ (4 x-1)+(3 x 0) \end{array}\right]=\left[\begin{array}{c} 3 \\ -4 \end{array}\right]$
7. Rotation	Anti-clockwise rotation 90 degrees	
$\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$	This transformation matrix rotates the point matrix 90 degrees anti-clockwise. When multiplying by this matrix, the point matrix is rotated 90 degrees anti-clockwise around $(0,0)$.	$\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}4 \\ 3\end{array}\right]\left[\begin{array}{c}(4 \times 0)+(3 \times 1) \\ (4 \mathrm{x}-1)+(3 \mathrm{x} 0)\end{array}\right]=\left[\begin{array}{c}-3 \\ 4\end{array}\right]$
8. Reflection	Reflection in the line $y=-x$	
$\left[\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right]$	$\begin{array}{l}\text { Thi: } \\ \begin{array}{l}\text { refl } \\ \text { ren } \\ \text { by } \\ \text { the } \\ \text { ord }\end{array} \\ \text { orn }\end{array}$	$\left[\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right]\left[\begin{array}{l} 4 \\ 3 \end{array}\right]=\left[\begin{array}{c} (4 \mathrm{x} 0)+(3 \mathrm{x} 1) \\ (4 \mathrm{x}-1)+(3 \mathrm{x} 0) \end{array}\right]=\left[\begin{array}{c} -3 \\ -4 \end{array}\right]$

M. mathelaureate.com

M. mathelaureate.com

M. mathelaureate.com

13. Streatch	Vertical axis stretch	
$\left(\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right)$	Stretch, scale factor k parallel to the y -axis	
14. Shear	Shear parallel to the x-axis	
$\left(\begin{array}{ll} 1 & k \\ 0 & 1 \end{array}\right)$	The matrix corresponds to a shear parallel to the x-axis. Points on the x-axis do not move, whilst points on the line $y=1$ are translated k units to the right.	

M. mathelaureate.com

15. Shear	Shear parallel to y axis	
$\left(\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right)$	The matrix corresponds to a shear parallel to the y-axis. Points on the y-axis do not move, whilst points on the line $\mathrm{x}=1$ are translated k units up.	

