
344 IEEWACM TRANSACTIONS ON NEJ’WORJONG, VOL. 1, NO. 3, JUNE 1993

A Generalized Processor Sharing Approach
to Flow Control in Integrated Services

Networks: The Single-Node Case
Abhay K. Parekh, Member, IEEE, and Robert G. Gallager, Fellow, IEEE

Abstruet-The problem of allocating network resources to the
users of an integrated services network is investigated in the
context of rate-based flow control. The network is assumed to be
a virtual circuiq comection-based packet network. We show that
the use of Generalized processor Sharing (GPS), when combined
with Leaky Bucket admission control, allows the network to
make a wide range of worst-case performance guarantees on
throughput and delay. The scheme is flexible in that d~erent
users may be given widely different performance guarantees,
and is efilcient in that each of the servers is work conserving.
We present a practicat packet-by-packet service discipline, PGPS
(first proposed by Deme5 Shenker, and Keshav [7] under the
name of Weighted Fair Queueing), that closely approximates
GPS. This altows us to relate ressdta for GPS to the packet-by-
packet scheme in a precise manner.

In this paper, the performance of a single-server GPS system is
analyzed exactty from the standpoint of worst-case packet delay
and burstiness when the sources are constrained by leaky buckets.
The worst-case sewdon backlogs are also determined. In the sequel
to this paper, these results are extended to arbitrary topology
networks with multiple nodes.

I. INTRODUCTION

‘fltis pttper and its sequel [17] focus on a central problem
in the control of congestion in high-speed integrated services
networks. Traditionally, the flexibility of data networks has
been triided off with the performance guarantees given to
its users. For example, the telephone network provides good
performance guarantees but poor flexibility, while packet

switched networks are more flexible but only provide margittal
performance guarantees. Integrated services networks must
~arry a wide r~nge of tfaffic t~pes and still be able to provide

performance guarantees to real-time sessions such as voice
and video. We will investigate art approach to reconcile these
apparently conflicting demands when the short-term demand
for link usage frequently exceeds the usable capacity.

We propose the combined use of a packet service discipline
based on Generalized Processor Sharing and Leaky Bucket

Manuscript nxeived June 1992; revised Febmary and April 1992;approved
by IEHYACM TRANSACTIONSONNETWORSUNGEditor MosheSidi.This paper
was presented in put at IEEE INFOCOM ’92. Tk research of A. Parekh
was psrtfy funded by a ~lnton Hayes Fellowship and a Center for Intelligent

ControlSystemsFellowship.The researchof R. Gallager was funded by the
Nationrd Science Foundation under 8802991-NCR and by the Army Research
Officeunder DAAL03-86-K-0171.

A. K. Parekh is with the JBM T. J. WatsonResearch Center, Yorktown
Heights, NY 10598.

R. G. Gstlager’s is with the Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology, Cambridge, MA.

IEEE Log Number9211033.

rate control to provide flexible, efficient, and fair use of the

links. Neither Generalized Processing Sharing, nor its packet-
based version, POPS, are new. Generalized Processor Sharing
is a natural generalization of uniform processor sharing [14],
and the packet-based version (while developed independently
by us) was first proposed in [7] under the name of Weighted
Fair Queueing. Our contribution is to suggest the use of PGPS
in the context of integrated services networks and to combine
this mechanism with Leaky Bucket admission control in order

to provide performance guarantees in a flexible environment.

A major part of our work is to analyze networks of arbitrary
topology using these specialized servers, and to show how
the analysis leads to implementable schemes for guaranteeing
worst-case packet delay. In this paper, however, we will
restrict our attention to sessions at a single node, and postpone
the analysis of arbitrary topologies to the sequel.

Our approach can be described as a strategy for rate-based
flow control. Under rate-based schemes, a source’s traffic is
parametrized by a set of statistics such as average rate, max-
imum rate, and burstiness, and is assigned a vector of vahtes

corresponding to these parameters. The user also requests
a certain quality of service that might be characterized, for
example, by tolerance to worst-case or average delay, The
network checks to see if a new source can be accommodated
and, if so, takes actions (such as reserving transmission links
or switching capacity) to ensure the quality of service desired.
Once a source begins sending traffic, the network ensures that
the agreed-upon values of traffic parameters are not violated.

Our analysis will concentrate on providing guarantees on

throughput and worst-case packet delay. While packet delay
in the network can be expressed as the sum of the processing,
queueing, transmission, and propagation delays, we will focus
exclusively on how to limit queueing delay.

We will assume that rate admission control is done through

leaky buckets [20]. An importaht advantage of using leaky
buckets is that this allows us to separate the packet delay into
two components: delay in the leaky bucket and delay in the
network. The first of these components is independent of the

other active sessions, and can be estimated by the user if the
statistical characterization of the incoming data is sufficiently
simple (see [1, Sect. 6.3] for an example). The traffic entering
the network has been “shaped” by the leaky bucket in a
manner that can be succinctly characterized (we will do this
in Section V), and so the network can upper bound the seeond

component of packet delay through this characterization. lltis

1063-6692/93$03.00 @ 1993 IEEE

PAREKH AND GALLAGER: PROCESSOR SHARING APPROACH TO FLOW CONTROL 345

upper bound is independent of the statistics of the incomirsg

data, which is helpful in the usual case where these statistics
are either complex or unknown. A similar approach to the

analysis of interconnection networks has been taken by Cruz
[5], From this point on, we will not consider the delay in the
leaky bucket.

Generalized Processor Sharing (GPS) is defined and ex-
plained in Section Il. In Section 111, we present the packet-
based scheme, PGPS, and show that it closely approximates
GPS. Results obtained in this section allow us to translate
session delay and buffer requirement bounds derived for a

GPS server system to a PGPS server system. We propose

a virtual time implementation of PGPS in the next section.
Then, PGPS is compared to weighted round robin, virtual
clock multiplexing [21], and stop-and-go queueing [9]–[11].

Having established PGPS as a desirable multiplexing
scheme, we turn our attention to the rate enforcement function
in Section V. The Leaky Bucket is described and proposed as
a desirable strategy for admission control. We then proceed
with an analysis, in Sections VI–VIII, of a single GPS server

system in which the sessions are constrained by leaky buckets,
The results obtained here are crucial in the analysis of arbitrary

topology and multiple node networks, which we will present
in the sequel to this paper,

H. GPS MULTIPLEXING

The choice of an appropriate service discipline at the nodes
of the network is key to providing effective flow control.
A good scheme should allow the network to treat users

differently, in accordance with their desired quality of service.
However, this jiexibiliry should not compromise the fairness
of the scheme, i.e., a few classes of users should not be able to
degrade service to other classes, to the extent that performance
guarantees are violated. Also, if one assumes that the demand
for high bandwidth services is likely to keep pace with the
increase in usable link bandwidth, time and frequency multi-
plexing are too wasteful of the network resources to be con-
sidered candidate multiplexing disciplines. Finally, the service
discipline must be analyzable so that performance guarantees
can be made in the first place. We now present a flow-based

multiplexing discipline called Generalized Processor Sharing
that is efficient, flexible, and analyzable, and that therefore
seems very appropriate for integrated services networks. How-

ever, it has the significant drawback of not transmitting packets
as entities. In Section III, we will present a packet-based
multiplexing discipline that is an excellent approximation to
GPS even when the packets are of variable length.

A Generalized Processor Sharing (GPS) server is work

conserving and operates at a fixed rate T. By work conserving,
we mean that the server must be busy if there are packets
waiting in the system. It is characterized by positive real
numbers 41. qbz... .. @,v. Let s, (7. t) be the amount of session
i traffic served in an interval (T-.t]. A session is backlogged at
time t if a positive amount of that session’s traffic is queued
at time t. Then. a GPS server is defined as one for which

(1)

for any session z that is continuously backlogged in the interval
(7, t].

Summing over all sessions j:

3

and session i is guaranteed a rate of

g,= &7’. (2)

GPS is an attractive multiplexing scheme for a number of

reasons:
●

●

●

●

Fig.

Define r, to be the session i average rate. Then, as long
as r, S g~, the session can be guaranteed a throughput of
pi independent of the demands of the other sessions. In
addition to this throughput guarantee, a session i backlog
will always be cleared at a rate ~ g,.
The delay of an arriving session i bit can be bounded as

a function of the session i queue length, independent of
the queues and arrivals of the other sessions. Schemes

such as FCFS, LCFS, and Strict F%ority do not have this
property.
By varying the @i’s, we have the flexibility of treating the
sessions in a variety of different ways. For example, when
all @,’s are equal, the system reduces to uniform processor
sharing. As long as the combined average rate of the
sessions is less than r, any assignment of positive ~i’s
yields a stable system. For example, a high-b~ndwidth

delay-insensitive session i can be assigned gi muctt less
than its average rate, thus allowing for better treatment
of the other sessions.
Most importantly, it is possible to make worst-case net-
work queueing delay guarantees when the sources are
constrained by leaky buckets. We will present our results
on this later. Thus, GPS is particularly attractive for
sessions sending real-time traffic such as voice and video.

1 illustrates generalized processor sharing. Variable-length

packets arrive from both sessions on infinite capacity links and
appear as impulses to the system. For i = 1,2, let Ai(O, t) be
the amount of session i traffic that arrives at the system in
the interval (0, t] and, similarly, let Si(O. t) be the amount
of session i traffic that is served in the interval (O, t]. We
assume that the server works at rate 1. When 41 = +2 and
both sessions are backlogged, they are each served at rate ~
(e.g., interval [1. 6]). When 201 = @Z and both sessions are
backlogged, session 1 is served at rate ~ and session 2 at rate
~. Notice how increasing the relative weight of 42 leads to
better treatment of that session in terms of both backlog and

delay. The delay to session 2 goes down by one time unit, and
the delay to session 1 goes up by one time unit. Also, notice
that under both choices of @i, the system is empty at time 13
since the server is work conserving under GPS.

It should be clear from the example that the delays expe-
rienced by a session’s packets can be reduced by increasing
the value of @ for that session. This reduction, though, may
be at the expense of a corresponding increase in delay for
packets from the other sessions. Fig. 2 demonstrates that this

346 IEEWACM TRANSACTfON5ONNETWORKfNG, VOL. I, NO. 3, Jw 1993

TABLE I
How GPS AND POPS COMPAREFOR THE EXAMPLE IN FIG. 1.

Session 1 Session 2

packet Arrival 1 2 3 11 0 5 9

information Size 1 1 2 2 3 2 2

41= 42 GPS 3 5 9 13 5 9 11

PGPS 4 5 7 13 3 9 11

241 = 42 GPS 4 5 9 13 4 8 11

PGPS 4 5 9 13 3 7 11

The lower portion of the table gives the packet departure times under both schemes.

asai!xd 3micQ_2

&rd2d4
picketu= puketsize

I 34

-- -

1 .J
,

I I I I I I 1
2 46 8 10 12 14 ‘ire’ ‘%rm-ze

Fig. 1. An example of generalized processor sharing.

may not be the case when the better-treated session is steady.
Thus, when combined with appropriate rate enforcement, the
flexibility of GPS multiplexing can be used effectively to

control packet delay.

III. A PACKET-BY-PACKETTRANSMISSIONSCHEME–POPS

A problem with GPS is that it is an idealized discipline
that does not transmit packets as entities. It assumes that the
server can serve multiple sessions simultaneously and that
the traftic is infinitely divisible. In this section, we present
a simple packet-by-packet transmission scheme that is an

excellent approximation to GPS even when the packets are
of variable length. Our idea is identical to the one used in [7].
We will adopt the convention that a packet has arrived only
afier its last bit has arrived.
Let FP be the time at which packet p will depart (finish

service) under Generalized Processor Sharing. Then, a very
good approximation of GPS would be a work-conserving

&+l

‘k. ‘kind

‘&e‘&m
10 2a

Fig. 2, The effect of increasing o, for a steady session i].

scheme that serves packets in increasing order of FP. Now,
suppose that the server beeomes free at time r. The next
packet to depart under GPS may not have arrived at time -r
and, since the server has no knowledge of when this packet
will arrive, there is no way for the server to be both work
conserving and serve the packets in increasing order of FP.
The server picks the first packet that would complete service

in the GPS simulation if no additional packets were to arrive
after time T. Let us call this scheme PGPS for packet-by-
packet Generalized Processor Sharing. As stated earlier, this
mechanism was originally called Weighted Fair Queueing [7].

Table I shows how PGPS performs for the example in Fig. 1.
Notice that when ~1 = 42, the first packet to complete

service under GPS is the session 1 packet that arrives at time
1. However, the POPS server is forced to begin serving the
long session 2 packet at time O since there are no other packets
in the system at that time. Thus, the session 1 packet arriving

at time 1 departs the system at time 4, i.e., 1 time unit later
than it would depart under GPS.

A natural issue to examine at this point is how much later
packets may depart the system under POPS relative to GPS.
First, we present a useful property of GPS systems.

Lemma I: Let p and p’ be packets in a GPS system at time
~, and suppose that packet p completes service before packet

PAREXH AND GALLAGER: PROCESSOR SHARING APPROACH ?O FLOW CONTROL 347

p’ if there are no arrivals after time ~. Then, packet p will also
complete service before packet p’ for any pattern of arrivals
after time r.

Proc$ The sessions to which packets p and p’ belong are

both backlogged from time r until one completes transmission.
By (1), the ratio of the service received by these sessions is

independent of future arrivals. ❑

A consequence of this lemma is that if PGPS schedules
a packet p at time ~ kfore another packet p’ that is also
backlogged at time ~, then in the simulated GPS system,
packet p cannot leave later than packet p’. Thus, the only
packets that are delayed more in PGPS are those that arrive
too late to be transmitted in their GPS order. Intuitively, this
means that only the packets that have a small delay under GPS

are delayed more under PGPS.

Now let FP be the time at which packet p departs under

PGPS. We show that
Theorem 1: For all packets p,

where L~u is the maximum packet length and r is the rate
of the server.

Proojl Since both GPS and PGPS are work-conserving

disciplines, their busy periods coincide, i.e., the GPS server is
in a busy period iff the PGPS server is in a busy period. Hence,
it suffices to prove the result for each busy period. Consider
any busy period and let the time that it begins be time zero. Let
p~ be the kth packet in the busy period to depart under PGPS,
and let k hgth be Lk. Also, let t~ be the time that p/c departs
under PGPS and Uk be the time that pk departs under GPS.
Finally, let a~ be the time that pk tives. We now show that

for k = 1,2, Let m be the largest integer that satisfies both
O<rnsk- landu,,, >uk. Thus,

ll.~>uk~ul form< i<k. (3)

Then, packet pm is transmitted before packets p~+l pk
under PGPS but after all these packets under GPS. If no such
integer m exists, then set m = O. Now, for the case m > 0,
packet pm begins transmission at t~ – ~; so, from Lemma 1,

L.
min{a~+l, W} > tm – -y. (4)

Since pm+I.pk_l tiVe after t~ – ~ and depart befOre
pk does under GPS,

1 L~
uk~#Lk+Lk_l+L&z+ ...+L~+l)+t~–~

If m = O, then pk _ ~,..., pl all leave the GPS server before
pk does, and SO

Uk >tk. •1

Note that if fv maximum-size packets leave simultaneously
in the reference system, they can be served in arbitrary order
in the packet-based system. Thus, F“ – FP 2 (IV – 1) ~
even if the referenqe system is tracked perfectly.

bt S1(T, t) ~d SI(7, t) be the amount of session i traffic (in
bits, not packets) served under GPS and PGPS in the interval

[T,t].

Theorem 2: For all times ~ and sessions i:

Si(O, ~) – Sa(O, ~) s L~aX.

Proof The slope of Si alternates between r when a
session i packet is being transmitted, and O when session i is
not being served. Since the slope of Si also obeys these limits,
the difference Si (O, t) – Si (O, t) reaches its maximal value
when session z packets begin transmission under PGPS. Let t

be some such time, and let L be the length of the packet going
into service. Then, the packet completes transmission at time
t + ~. Let ~ be the time at which the given packet completes
transmission under GPS. Then, since session i packets are
served in the same order under both schemes,

S1(O,~) = Sa(O, t+ ~).

From Theorem 1,

T>(~+L)–& (5)
T T

+ Si(O, t + L-:m”) < Si(o, t+:) (6)

= Si(O, t) + L. (7)

Since the slope of S1 is at most T, the theorem follows. ❑

Let Q~(-r) and Q,(t) be the session i backlog (in units of
traffic) at time T under PGPS and GPS, respective y. Then, it
immediately follows from Theorem 2 that

Codlav 1: For all times 7 and sessions i

oz(o,~) - Qi(O, T) < L~aX.

Theorem 1 generalizes the result shown for the uniform
processing case by Greenberg and Madras [12]. Notice that

●

●

●

Theorem I and Corollary I can be used to translate
bounds on GPS worst-case packet delay and backlog to
corresponding bounds on PGPS.

Variable packet lengths are easily handled by PGPS. This
is not true of weighted round robin.
The results derived so far can be applied to pro-
vide an alternative solution to a problem studied
in [4],[19],[2],[8],[3]: There are N input links to a
multiplexer; the peak rate of the ith link is Ci, and the
rate of the multiplexer is C ~ ~~=1 Cl. Since up to

L max bits from a packet may be queued from any link

before the packet has “arrived,” at least Lmax bits of
buffer must be allocated to each link. In fact, in [3] it
is shown that at least 2L~aX bits are required, and that
a class of buffer policies called Least Time to Reach
Bound (LTRB) meets this bound. It is easy to design
a PGPS policy that meets this bound as well: Setting

@i = Ci, it is clear that the resulting GPS server ensures

348 IEEWACM TRANSACTIONS ON NETWORKING, VOL. 1, NO. 3, JUNE 1993

that no more than L~= bits are ever queued at any link.

The bound of Corollary 1 guarantees that no more than
2L~m bits need to be allocated per link under POPS.
In fact, if Li is the maximum allowable packet size for
link Z, then the bound on the link i buffer requirement is
Li+Lm=. Further, various generalizations of the problem
can be solved: For example, suppose the link speeds are
arbitrary, but no more than /i(t) + Titbits can arrive on
link i in any interval of length t (for each i). Then, if
xi ~i < C, setting q$ = ~i for each i yields a PGPS

service discipline for which the buffer requirement is
L max + m~~~o(fi(t) – r~t) bits for each link i.

● There is no constant c > 0 such that

S~(O, t) – S1(0, t) < CL~U (8)

holds for all sessions i over all patterns of arrivals. To see
t,his, let K=[c+2j, f#~=K, ~z =...= ~N=land

fix all packets sizes at Lma. At time zero, K – 1 session

1 packets arrive and one packet arrives from each of the
other sessions. No more packets arrive after time zero.
Denote the K – lat session 1 packet to depart GPS (and

‘~l(IV+K-1)~,PGPS) as packet p. Then, FP = —

and Si(O, Fp) = ~L~U for i = 2, IV. Thus, the
first K – 1 packets to depart the GPS system are the
session 1 packets, and packet p leaves POPS at time
(K - 1)*. Consequently,

S1(O, (K - 1)%) = (K – l)L~aX

and

SI(O, (K – 1) +_zq = K(K – l)Lm=

N-K+l “

This yields

&(O, (K – 1) %) - S1(O, (K- l)=)

= (K- l) LmU(l - ~_; +l). (9)

For any given K, the RHS of (9) can be made to approach
(K - l)L~a arbitrarily closely by increasing iV.

A. Wtual i’lme Implementation of PGPS

In this section, we will use the concept of Wtual Time
to track the progress of GPS that will lead to a practical
implementation of POPS. Our interpretation of virtual time
generalizes the innovative one considered in [7] for uniform
processor sharing. In the following, we assume that the server

when the server is idle. Consider any busy period, and let the

time that it begins be time zero. Then, V(t) evolves as follows:

v(o) = o

V(tj-1 + T) = V(tj-1) +
Ei:, +i ‘

T ~ tj –tj–l, j =2,3, ... (lo)

The rate of change of V, namely av$~+’), is
~’ ‘d

each backlogged session i receives service at rate @iWqj+r) .

Thus, V can be interpreted as increasing at the marginal rate
at which backlogged sessions receive service.

Now suppose that the kth session i packet arrives at time
a! and has length L$. Then, denote the virtual times at
which this packet begins and completes service as S,~ and
F}, respectively. Defining F’) = O for all i, we have

S$ = max{Ff-l, V(a~)}

(11)

There are three attractive properties of the virtual time
interpretation from the standpoint of implementation. First, the
virtual time finishing times can be determined at the packet
arrival time. Second, the packets are served in order of virtual
time finishing time. Finally, we need only update virtual time
when there are events in the GPS system. However, the price
to be paid for these advantages is some overhead in keeping

track of sets Bj, which is essential in the updating of virtual
time.

Define Next(t) to be the real time at which the next packet
will depart the GPS system after time t if there are no more
arrivals after time t.Thus, the next virtual time update after
t will be performed at Nezt(t) if there are no arrivals in the
interval [t, Next (t)]. Now, suppose a packet arrives at some
time t (let it be the jth event) and that the time of the event
just prior to t is I- (if there is no prior event, i.e., if the packet
is the first arrival in a busy period, then set ~ = O). Then, since
the set of busy sessions is fixed between events, V(t) may be
computed from (10) and the packet stamped with its virtual
time finishing time. Next (t)is the real time corresponding to
the smallest virtual time packet finishing time at time t. This
real time may be computed from (10) since the set of busy
sessions, B~, remains fixed over the interval [t,Next(t)]: Let
~~in be the smallest virtual time finishing time of a packet in
the system at time t. Then, from (10)

Next(t) – t

‘M’” = ‘(t)+ Zi.B, di

works at rate 1.
Denote as an m each arrival and departure from the GPS

- Next(t) = t+ (Fmin – V(t)) ~ ~i.

server, and let t j be the time at which the jth event occurs
iEB,

(simultaneous events are ordered arbitrarily). Let the time of Given this mechanism for updating virtual time, POPS

the first arrival of a busy period be denoted as tl = O. Now is defined as follows: When a packet arrives, virtual time

observe that, for each j = 2,3, ..., the set of sessions that are is updated and the packet is stamped with its virtual time

busy in the interval (tj-l, tj) is fixed, and we may denote this finishing time. The server is work conserving and serves

set as Bj. Wturd time V(t) is defined to be zero for all times packets in an increasing order of timestamp.

PAREKH AND GALLAGER: PROCESSOR SHARING APPROACH ?0 FLOW CONTROL 349

IV. COMPARINGPOPS TO OTHER SCHEMES

Under weighted round robin, every session i has an integer
weight wi associated with it. The server polls the sessions

according a precomputed sequence in an attempt to serve ses-
sion 2 at a rate of fi. If an ernpt y buffer is encountered, the

server moves to the next session in the order instantaneously.
When an arriving session i packet just misses its slot in
a frame, it cannot be transmitted before the next session i
slot. If the system is heavily loaded in the sense that almost

every slot is utilized, the packet may have to wait almost N

slot times to be served, where N is the number of sessions

sharing the server. Since POPS approximates GPS to within

one packet transmission time regardless of the arrival patterns,
it is immune to such effects. POPS also handles variable-length
packets in a much more systematic fashion than does weighted
round robin. However, if N or the packet sizes are small, then
it is possible to approximate GPS well by weighted round
robin. Hahne [13] has analyzed round robin in the context of

providing fair rates to users of networks that utilize hop-by-hop
window flow control.

Zhang proposes an interesting scheme called virtual clock

multit)lexing [21], %-tual clock multiplexing allows a guaran-

teed rate and (average) delay for each session, independent of
the behavior of other sessions. However, if a session produces
a large burst of data, even while the system is lightly loaded,
that session can be “punished” much later when the other
sessions become active. Under PGPS, the delay of a session

i packet can be bounded in terms of the session i queue size

seen by that packet upon arrival, even in the absence of any

rate control. This enables sessions to take advantage of lightly
loaded network conditions. We illustrate this difference with

a numerical example:
Suppose there are two sessions that submit fixed-size pack-

ets of one unit each. The rate of the server is one, and the
packet arrival rate is ~ for each session. Starting at time
zero, 1000 session 1 packets begin to arrive at a rate of
1 packet/second. No session 2 packets arrive in the interval
[0900) but, at time 900,450 session 2 packets begin to arrive

at a rate of one packetkecond. Now if the sessions are to be

treated equally, the virtual clock for each session will tick at a
rate of ~, and the PGPS weight assignment will be 41 = oz.
Since both disciplines are work conserving, they will serve
session 1 continuously in the interval [0900).

At time 900-, there are no packets in queue from either
session; the session 1 virtual clock will read 1800 and the

session 2 virtual clock will read 900. The 450 session 2
packets that begin arriving at this time will be stamped
900902904,.....1798, while the 100 session 1 packets that

arrive after time 900 will be stamped 1800.1804,....1998.
Thus, all of the session 2 packets will be served under Virtual
Clock before any of the session 1 packets are served. The
session 1 packets are being punished since the session used
the server exclusively in the interval [0900). Note, however,
that this exclusive use of the server was no? at the expense of
any session 2 packets. Under PGPS, the sessions are served in
round robin fashion from time 900 on, which results in much
less delay to the session 1 packets.

The lack of a punishment feature is an attractive aspect

of PGPS since, in our scheme, the admission of packets is
regulated at the network periphery through leaky buckets and

it does not seem necessag to punish users at the internal nodes

as well. Note, however, that in this example PGPS guarantees a
throughput of ~ to each session even in the absence of access
control.

Stop-and-Go Cheueing is proposed in [9]-[11] and is based
on a network-wide time slot structure. It has two advantages
over our approach: it provides better jitter control and is prob-
ably easier to implement. A finite number of connection types

are defined, where a type g connection is characterized by a
fixed frame size of Tg. Since each connection must conform

to a predestined connection type, the scheme is somewhat less
flexible than PGPS. The admission policy under which delay
and buffer size guarantees can be made is that no more than
riTg bits may be submitted during any type g frame. If sessions

1,2,...,N are served by a server of capacity 1, it is stipulated

that ~~~1 r, S 1, where the sum is only taken over the real-
time sessions. The delay guarantees grow linearly with Tg, so
in order to provide low delay one has to use a small slot size.

The service discipline is not work conserving and is such that
each packet may be delayed up to 2Tg time units, even when
there is only one active session at the server. Observe that for
a single-session PGPS system in which the peak rate does not
exceed the rate of the server, each arriving packet is served
immediately upon arrival. Also, since it is work conserving,
PGPS will provide better average delay than stop-and-go for

a given access control scheme.
It is clear that ~i is the average rate at which the source i can

send data over a single slot. The relationship between delay
and slot size may force Stop-and-Go to allocate bandwidth by
peak to satisfy delay -senstive sessions. This may also happen
under PGPS, but not to the same degree. To see this, consider
an on/off periodic source that fluctuates between values C – f
and O. (As usual, f is small.) The on period is equal to the
off period, say they are B seconds in duration. We assume
that B is large. Clearly, the average rate of this session is
0.5(C – f). We are interested in providing this session low

delay under Stop-and-Go and PGPS. To do this, one has to
pick a slot size smaller than B, which forces r = C – f. The
remaining capacity of the server that can be allocated is c.
Under PGPS, we allocate a large value of @ to the session
to bring its delay down to the desired level; however, now
the remaining capacity that can be allocated is 0.5(C + c).
Now observe that if there is a second on/off session with
identical on and off periods as the first sesision, but which
is relatively less delay sensitive, then PGPS can carry both
sessions (since the combined sustainable rate is less than C)
whereas Stop-and-Go cannot.

V. LEAKY BUCKET

Fig. 3 depicts the Leaky Bucket scheme [20] that we will
use to describe the traffic that enters the network. Tokens or
permits are generated at a fixed rate, p, and packets can be
released into the network only after removing the required
number of tokens from the token bucket. There is no bound

350 IEEIYACM TRANSACTIONS ON NETWORKING, VOL. 1, NO. 3, JUNE 1993

,.~ Tokens enter at rate pi.-

I-JC;titS

Buffer 1>
‘===+=+”o—Rate < Ci

/

.=> Aa(~)q

Incoming (Bursty) ‘lh.fIic
To the network

F]g. 3. A Leaky Bucket.

I)JJ
Bucket Empty - Ai(O, t)

u; + Ki(t
L

.“
,.’

/

,’H z~--K1(t)

t
/’ ----’ ,0”

,~’’l~(b) = Ui ,4 Z’--

-“ :i~) , ‘ Bucket mu
,0’

u~ ,0’
.’

._ slope = P;/
.0”

Fig. 4. A,(t) and l,(t).

on the number of packets that can be buffered, but the token
bucket contains at most a bits worth of tokens. In addition to
securing the required number of tokens, the traffic is fuxther
constrained to leave the bucket at a maximum rate of C > p.

The constraint imposed by the leaky bucket is as follows: If
Ai (~, t) is the amount of session i flow that leaves the leaky
bucket and enters the network in time interval (I-, t], then

for every session i. We say that session i conforms to

(ai,p~,C’i), or Ai * (uijgIi,ci).

This model for incoming traffic is essentially identical to
the one recently proposed by Cruz [5], [6], and it has also
been used in various forms to represent the inflow of parts
into manufacturing systems by Kumar [18], [15]. The arrival
constraint is attractive since it restricts the traffic in terms of
average sustainable rate (p), peak rate (C), and burstiness (o
and C). Fig. 4 shows how a fairly bursty source might be
characterized using the constraints.

Represent Ai(O, t) as in Fig. 4. Let there be ii(t) bits worth
of tokens in the session i token bucket at time t. We assume
that the session starts out with a full bucket of tokens. If Ki(t)
is the total number of tokens accepted at the session i bucket in

the interval (O,t](itdoes not include the full bucket of tokens

that session i starts out with, and does not include amiving
tokens that find the bucket full), then

~i(t) = o~>~t{Ai(O,~) + ~i(t - T)}.
-—

(13)

Thus, for all T S t

Ki(t) – K;(T)< fli(t – T). (14)

4
fm,t) S,(o,t)

Ai(O,r) -

+ L! t >

Fig. 5. At(O, t), St(O, t), Qi(t) ~d Dl(t)

We may now express 11(t) as

/i(t)= ~i+ Ki(t) – Ai(O, t). (15)

From (15) and (14), we obtain the useful inequality

VI. ANALYSIS

In this section, we analyze the worst-case performance of
single-node GPS systems for sessions that operate under Leaky
Bucket constraints, i.e., the session traffic constrained as in
(12).

There are N sessions, and the only assumptions we make
about the incoming traffic are that Ai N (~i, pi, Ci) for
~ = 1,2, N and that the system is empty before time zero.
The server is work conserving (i.e., it is never idle if there is
work in the system), and operates at the fixed rate of 1.

Let Si (r, t) be the amount of session i traffic served
in the interval (-T,t].Note that Si (O, t) is continuous and
nondecreasing for all t (see Fig. 5). The session i backlog

at time ~ is defined to be

Qi(T) = Ai(OjT) - S2(0, T).

The session i delay at time T is denoted by Di (~), and is
the amount of time that it would take for the session i backlog
to clear if no session i bits were to arrive after time r. Thus,

Di(~) = inf{t ~ ~ : Si(0)t) = Ai(O, ~)} – T. (17)

From Fig. 5, we see that Di(~) is the horizontal distance

between curves Ai (O, t) and Si (O, t) at the ordinate value of
Ai(Ol T).

Clearly, Di (T) depends on the arrival functions Al, AN.
We are interested in computing the maximum delay over all
time, and over all arrival functions that are consistent with
(12). Let D: be the maximum delay for session i. Then.

D: = max max Di(~).
(Al,.,..,A~) r20

Similarly, we define the maximum backlog for session i, Q;:

The problem we will solve in the following sections is:
Given @l,. ... q$~ for a GPS server of rate 1 and given

(~j,%,cj), j = 1,..., N, what are D: and Q: for every

PAREKH AND GALLAGER PROCESSOR SHARING APPROACH ?0 FLOW CONTROL 351

session i? We will also be able to characterize the burstiness of
the output traffic for every session i, which will be especially
useful in our analysis of GPS networks in the sequel.

A. Definitions and Preliminary Results

We introduce definitions and derive inequalities that are
helpful in our analysis. Some of these notions are general
enough to be used in the analysis of any work-conserving
service discipline (that operates on sources that are Leaky
Bucket constrained).

Given Al,4N, let a; be defined for each session i and

time 7 z O as

where ll(T) is defined in (15). Thus, u; is the sum of the
number of tokens left in the bucket and the session backlog
at the server at time ~. If Ci = oa, we can think of o; as
the maximum amount of session i backlog at time ~+ over all
arrival functions that are identical to A 1, AN up to time ~.

Observe that m! = ~i and

Q*(T) =0+ o~ < o~. (19)

Recall (16)

Substituting for 1: and 1: from (18)

Qi(T)+ A(T.~) - Qi(~)SO{ - d + Pi(t- T). (20)

Now notice that

Si(T. t) = ~2(T) + Ai(~, t) – Qi(t). (21)

Combining (20) and (21), we establish the following useful
result:

Lemma 2: For every session i, T < t:

Define a system busy period to be a maximal interval B
such that for any T, t E B, T < t:

~Si(T.t) = t-7_.
i=l

Since the system is work conserving, if B = [tl, t2], then

~;~~ Qi(~l)= Xfll Qi(~2)= 0.
Lemnm 3: When ~, p, < 1, the length of a system busy

period is at most -

Proof Suppose [tl, t2] is a system busy period. By
assumption,

Thus,

~Ai(tl.t2) = ~Si(t1,t2) = t2 -tl.
2=1 1=1

Substituting from (12) and rearranging terms:

•1
A simple consequence of this lemma is that all system busy

periods are bounded. Since session delay is bounded by the
length of the largest possible system busy period, the session
delays are bounded as well. Thus, the interval B is finite

whenever ~~=1 pi < 1 and may be infinite otherwise.
We end this section with some comments valid only for

the GPS system: Let a session i busy period be a maximal
interval Bi contained in a single system busy period, such
that for all ~, t E Bi:

Si(T, t) >fij42, N
sj(T, ~)– @j’ ‘ ‘ “’ “ (23)

Notice that it is possible for a session to have zero backlog

during its busy period. However, if Q~(T) >0 then ~ must be
in a session i busy period at time ~. We have already shown

in (2) that
Lemma: For every interval [T, t] that is in a session i buq

period

Si(T, t) ~ (t – T)
di

X:=l % “

Notice that when O = @i for all i, the service guarantee
reduces to

B. Greedy Sessions

Session i is defined to be greedy stating at time T if

Ai(~, i?)= min{cz(t – ~),~1(~) + (t – T)pl}, fOr all t ~ ~.
(24)

In terms of the Leaky Bucket, this means that the session uses
as many tokens as possible (i.e., sends at maximum possible
rate) for all times z T. At time ~, session i has li (-r) tokens left
in the bucket, but it is constr~ined to send traffic at a maximum

rate of C’l. Thus, it takes + time units to deplete the tokens
in the bucket. After this, the rate will be limited by the token

arrival rate ~:.
Define A; as an arrival function that is greedy starting at

time ~ (see Fig. 6). From inspection of the figure [and from

352 IEEE/ACM TRANSACI’JONS ON NETWORKING, VOL. 1, NO. 3, JUNE 1993

h

U; .

~t

Fig. 6. A session i arrival function ttsat is greedy from time T.

(24)], we see that if a system busy period starts at time zero,
then

A~(O, t) a A(O, t), VA - (oa, pa, Ca), t 20.

The major tesult in this section is the following:
Theorem 3: Suppose that Cj ? r for every session j,

where r is the rate of a GPS server. Then, for every session

i, D; and Q; are achieved (not necessarily at the same
time) when every session is greedy starting at time zero, the
beginning of a system busy period.

This is an intuitively pleasing and satisfying result. It seems
reasonable that if a session sends as much traffic as possible at
all times, it is going to impede the progress of packets arriving
from the other sessions. Notice, however, that we are claiming
a worst-case result, which implies that it is never more harmful
for a subset of the sessions to “save up” their bursts and to
transmit them at a time greater than zero.

While there are many examples of service disciplines for
which this “all-greedy regime” does not maximize delay,
the amount of work required to establish Theorem 3 is still
somewhat surprising. Our approach is to prove the theorem
for the case when C’i = cc for all i—this implies that the
links carrying traffic to the server have infinite capacity. This

is the easiest case tq visualize since we do not havp to worry
about the input links. Further, it bounds the performance of
the finite link speed case since any session can “simulate” a
finite speed input link by sending packets at a finite rate over
the link. After we have understood the infinite capacity case,
it will be shown that a simple extension in the analysis yields
the result for finite link capacities as well.

C. Generalized Processor Sharing with Infinite
homing Link Capacities

When rdl input link speeds are infinite, the arrivat constraint
(12) is modified to

Ai(~, t) < Oi +~i(t–~), VO < ~ S ~, (25)

for every session i. We say that session i conforms to (m~,Pa)
or Ai w (~i, pi). Further, we stipulate that ~i pi < 1 to
ensure stability.

By relaxing our constraint, we allow step or jump arrivals,
which create discontinuities in the arrival functions Ai. Our
conception will be to treat the Ai as lefi-continuous functions
(i.e., continuous from the left). Thus, a session i impulse of

size A at time O yields Qi(0) = O and Qi(O+) = A. Note also

that ii(0) = ~i, where li (T) is the maximum amount of session
i traffic that could arrive at time ~+ without violating (25).
When session i is greedy from time ~, the infinite capacity
assumption ensures that ii(t) = O for all t > T. Thus, (16)
reduces to

Note also that if the session is greedy after time ~, la(t) = O
for any t > T.

Defining a: as before (from 18), we see that it is equal to
Qi(~+) when session i is greedy starting at time r.

An all-greedy GPS system: Theorem 3 suggests that we
should examine the dynamics of a system in which all the
sessions are greedy starting at time O, the beginning of a system
busy period. This is illustrated in Fig. 7.

From (26), we know that

and let us assume, for clarity of exposition, that ~i > 0 for

all i.
Define el as the first time at which one of the sessions, say

L(1), ends its busy period. Then, in the interval [0, cl], each
session z is in a busy period (since we assumed that ~i > 0
for all i) and is served at rate ~. Since session L(1) is

greedy after O, it follows thatz’=’~’

where i = L(l). (We will show that such a session must exist
in Lemma 5.) Now each session j still in a busy period will
be served at rate

(1 - pL(l))#j

~:=1 ok - +L(l)

until a
period.

time e2 when another session, L(2), ends its busy
Similarly, for each k:

(1 - ~;::~~(~))di ,k = 1 Z,..., v’vz= ~(~)
pL(k) ~

x:=, #j - z;:: #L(j) ‘ ‘ “

(27)
As shown in Fig. 7, the slopes of the various segments that

comprise S~(O, t) are s;, s;, From (27)

(1 - z;=: p~(~))di ,k = 12, L(z)
s; =

X7=1 ~~ - ~~~1 @U~) ‘ “

[t can be seen that {s;}, k = 1,2,..., L(z) forms an increasing

sequence.

PAREKH AND GALLAGER: PROCESSOR SHARING APPROACH TO FLOW CONTROL 353

traffic

A,(O, t)

u,

t)TCI el ?3 e4 e5

time t

Fig. 7. Session i arrivals and departures isfteri). the beginning of a system
busy perind.

Note that:

.

●

✎

✎

We only require that

0< c1 < P2 5 . ..< e.%,.

allowing for several r, to be equal.
We only care about I < c~(I ~ since the session i buffer

is always empty after this time.
Session L(i) has exactly one busy period-the interval
[(),~’,],

r,Y is the maximum busy period length, i.e., it meets the
bound of Lemwa 3,

Any ordering of the sessions that meets (27) is known as

a feasible ordering. Thus, sessions 1. N follow a feasible

ordering if and only if

lzmmo S; At least one feasible ordering exists if ~~=1 P, <

1,
Prooj By contradiction, suppose there exists art index i,

1 ~ i s N such that we can label the first i – I sessions of
a feasible ordering {1. .. . i – 1} but (28) does not hold for

any of the remaining sessions when h == i, Then, denoting
L,.-l = {lli – 1}, we have for every session k @ L,-l:

Summing over all such k, we have:

which is a contradiction, since we assumed that ~fl= ~pJ < 1.

Thus, no such index i can exist and the lemma is proven. ❑

In general, there are many feasible orderings possible, but
the one that comes into play at time O depends on the o, ‘s.
For example. if p = pJ and @J= @,..j = 1.2,N. then

there are N! different feasible orderings, Similarly, there are
N! different feasible orderings if pi = 4, for all i. To simplify
the notation, let us assume that the sessions are labeled so that

traflic

I

o
c1 .2 .3 e, C5

The ●tn..l (unction. are x.led m that . .mverul wrvi.< curve, S(O, f), can k dr.w.

After hrn. c,, w-ion t hao ● backlogof ser. until the end .{ the tpkem busy PWIA.
which u al time e,. The vert,ul di.t.nce betweentheddwd curvec.rmspnnd,n’-
-i.. t and S(O,,) i. ~Q, (r), while the horiso.td d,.tacc Yi.l& D,(r)jut - it
doesin F,g.re 8

Fig, 8. The dynamics of an all-greedy GPS system

j = L(j) for j = 1,2, N. Then, for any two sessions i.j
indexed greater than k we can define a “universal slope” Sk

by:

This allows us to describe the behavior of all sessions in
a single figure as is depicted in Fig. 8. Under the all-
greedy regime, the function V(t) (described in Section III-

A) corresponds exactly to the universal service curve S(0, t)
shown in Fig. 8. It is worth noting that the virtual time function
V(t) captures this notion of generalized service for arbitrary

arrival functions.
In the remainder of this section, we will prove a tight lower

bound on the amount of service a session receives when it is in
a busy period: Recall that, for a given set of arrival functions
A = {A1 A.v}. .4T = {A; , AL} is the set such that
for every session k, A:(O, s) = Ak((). s) for .$ E [0. T) and
session k is greedy starting at time T.

Lzmnfa 6: Assume that session i is in a busy period in the

interval [T. t]. Then,
i) For any subset M of rIL sessions, 1 5 m 5 N and any
time / > T:

ii) Under AT, there exists a subset of the sessions, Aft, for
every t > T such that equality holds in (29).

Pro@ For compactness of notation, let d,, = $. VZ.,;.

i) From (22),

for all j. Also, since the interval [T. t] is in a session i busy
period:

Thus,

354

Since the system is in a busy period, the server serves
exactly t – ~ units of traffic in the interval [T, t]. Thus,

t– ~ ~ ~min{aj +pj(t –’r),@jiLSi(~,~)}
j=l

*t–T< ~a; +Pj(t– T)+~#jisi(T, t)
j~M jEM

for any subset of sessions M. Rearranging the terms yields
(29).

ii) Since all sessions are greedy after ~ under A“, every
sessionj will have a session busy period that begins at ~ and
lasts up to some time ej. As we showed in the discussion

leading up to Fig. 8, Qj(t) = O for all t ~ ej. The system
busy period ends at time e* = ma,xj ej. Define

M’={j:ej> t}.

By the definition of GPS, we know that session j c A@

receives exactly #ji Si (~, t) units of service in the interval
(~, t]. A session k is not in M’ only if e~ < t, so we must
have Qk(t) = O. Thus, for

sk(T, t) =

and equality is achieved in

D. An Important Inequality

k @ Mt,

0; +pk(t – 7),

(29).

In the previous section, we examined the behavior of the

GPS system when the sessions are greedy. Here, we prove an
important inequality that holds for any arrival functions that

conform to the arrival constraints (25).

Theorem 4: Let 1,..., N be a feasible ordering. Then, for
any time t and session p:

e“@”k
k=l k=l

We want to show that at the beginning of a session p busy
period, the collective burstiness of sessions 1,..., p will never
be more than what it was at time O. The interesting aspect of
this theorem is that it holds for every feasible ordering of the
sessions. When ~j = p and @j = @ for every j, it says that
the collective burstiness of any subset of sessions is no less
than what it was at the beginning of the system busy period.

The following three lemmas are used to prove the theorem.
The first says (essentially) that if session p is served at a
rate smaller than its average ratepP during a session p busy
period, then the sessions indexed lower than p will be served

correspondingly higher than their average rates. Note that this
lemma is true even when the sessions are not greedy.

Lemma 7: Let 1,..., N be a feasible ordering, and suppose

that session p is busy in the interval [~, t]. Further, define z
to satisfy

Sp(r, t) = pp(t – T) – s (30)

IEEWACM TRANSACTIONS ON NETWOR3UNG, VOL. 1, NO. 3, JUNE 1993

Then,

p–1 p–1

~sk(T,t) > ~(t ‘T)Pk +x(1 + j$+l:). (31)
k=l k=l

Proofi For compactness of notation, let ~aj = &, Vi, j.

Now because of the feasible ordering,

l%us,

SP(T, t) < (t – T)

(X5$i)-x ’32)

Also, Sj(T, t) < @jpSp(T, ~) for all j. Thus,

j=p j =p

Using (32),

Since [T, t] is in a system busy period,

j =p j=l

Thus,

p–1 p–1

(t- T)-~Sj(T, t)<(t-T)(&~ Pj)-&q$P
j=l j=l j =p

p–1 p–1 N

*~sj(T,t)>(~–T)~Pj+~(l+ ~ djp)

j=l j=l j=p+l

since #pp = 1. ❑

Lemma 8: Let 1,..., N be a feasible ordering, and suppose
that session p is busy in the interval [~, t]. Then, if SP(T, t) ~
~p(t – T):

~ &(T, t) > (t - T) ~pk (33)
k=l k=l

Proofi Let

Sp(T, t) = pp(t – T) – Z

z z O. Then, from (31), we are done since z ~~=p+l &

~ o. d

Lemma 9: Let 1,..., N be a feasible ordering, and suppose
that session p is busy in the interval [-r,t].Then,if S’P(T, ~) <

f3p(~ – T):

P P

k=l k= I

PAREKH AND GALLAGER: PROCESSOR SHARING APPROACH TO FLOW CONTROL 355

Proof From Lemma 2, for every k,

0; +pk(t –T) – Sk(-f,t) ~ 0:.

Summing over k and substituting from (33), we have the result.

If we choose r to be the beginning of a session p busy

period, then Lemma 9 says that if SP(~. t) s pP (t – T) then

u–l D–1

(34)
k=l k=]

c1

Now we will prove Theorem 4.

Proof (of Theorem 4): We proceed by induction on the
index of session p.

Basis: p = 1. Define ~ to be the last time at or before t
such that Q1 (~) = O. Then, session 1 is in a busy period in
the interval [~, t], and we have

The second inequality follows since session 1 is first in a

feasible order, implying that PI < ~. From Lemma 2,
~,.=, ~k

This shows the basis.
Inductive Step: Assume the hypothesis for 1,2, p – 1 and

show it for p. Observe that if Q1(t) = O for any session z then
u: ~ Di. NOW consider two cases:

Case 1: u; s OP: By the induction hypothesis:

Thus,

P P

i=l i=]

Case 2: a: > Op: Session p must be in a session p busy period
at time t, so let T be the time at which this busy period begins.
Also, from (22): Sp(~, t) < pP(t – ~). Applying (34):

where, in the last inequality, we have used the induction

hypothesis. n

Proof of the Main Result

In this section, we will use Lemma 6 and Theorem 4 to
prove ~eoremm 3 for infinite capacity incoming links.

Let Al, ..,. A,v be the set of arrival functions in which all
the sessions are greedy from time O, the beginning of a system
busy period. For every session p, let SP(~. t), and fip(t) be the

session ZJservice and delav functions under A. We first show

Lemma 10: Suppose that time t is contained in a session p

busy period that begins at time ~: Then

Sp((), t – T) < SP(~, t). (36)

Proof Define f3 as the set of sessions that are busy at

time t – ~ under ~. From Lemma 6:

Since the order in which the sessions become inactive is a
feasible ordering, Theorem 4 asserts that:

(t - T - ~i~~(”t + Pl(t - ‘)))@i
sp(T. t) >

Ejet34’-J

= St((),t – T),

(from Lemma 6) and (36) is shown. ❑

Lemma 11: For every session i, D; and Q; are achieved
(not necessarily at the same time) when every session is greedy
starting at time zero, the beginning of a system busy period.

Proof We first show that the session z backlog is max-

imized under A: Consider any set of arrival functions A =
{Al,..., AN} that conforms to (25), and suppose that for a

session i busy period that begins at time ~:

Qi(~*) = ~>~Qz(~)
—

From Lemma 10,

3~(0, t* – ~, < S1(~, t*),

Also,

Ai(~, t*) s mz+~i(t–~) = AZ(O. t* –~).

Thus,

Ai(O. t* – ~) – Si(O. t* – ~) z Ai(~. t*) – SZ(~. t*)

i.e.,

Qi(t’ -~) > Qi(t*).

The case for delay is similar: Consider any set of arrival

functions .4 = {Al, A.v } that conforms to (25); for a
session z busy period that begins at time ~, let t* be the
smallest time in that busy period such that:

Di(t*) = ~~~ Di(t).

From the definition of delay in (17):

Ai(~, t*) - Si(~lt* + Di(t”)) = O.

Letus denote d: = t“ – ~. From Lemma 10,

Sl(O,U!~ + Di(t*)) s SZ(~.t* + Di(t”))

and, since o, z cr~:

Ai(O$d~) ~ Ai(~. t*).

356

Thus,

~i(old~)

Ai(T, T + t“’ – Si(Tlt* + Di(t”)) = O

* bj(~) > D~(t*).

Thus, we have shown Theorem 3 for infinite capacity
incoming links. •1

VII. GENERALIZEDPROCESSOR
SHARING WITH FJNrTE LINK SPEEDS

In the infinite link capacity case, we were able to take

advantage of the fact that a session could use up all of its
outstanding tokens instantaneously. In this section, we include

the maximum rate constraint, i.e., for every session i, the
incoming session traffic can arrive at a maximum rate of
C’i z 1. Although this can be established rigorously [16], it is
not hard to see that Theorem 3 still holds: Consider a given set
of arrival functions for which there is no peak rate constraint.
Now consider the intervals over which a particular session
i is backlogged when the arrivals reach the server through
(a) infinite capacity input links and (b) input links such that
1 < Cj fOr all ~ and ck < m for at least one session k.
Since the server cannot serve any session at a rate of greater

than 1, the set of intervals over which session z is backlogged
.. is identical for the two cases. This argument holds for every

session in the system, implying that the session service curves
are identical for cases (a) and (b). Thus, Lemma 10 continues
to hold, and Theorem 3 can be established easily from this fact.
We have not been able to show that Theorem 3 holds when
Cj <1 for some sessions j, but delay bounds calculated for
the case C3 = 1 (or Cj = m) apply to such systems since
any link of capacity 1 (or 00) can simulate a link of capacity
less than 1.

VIII. THE OUTPUT BURSTJNESSu~t

In this section, we focus on determining, for every session
i, the least quantity o~ut such that

Si - (C:ut, Pi, ~)

where r is the rate of the server. This definition of output

burstiness is due to Cruz [5]. (To see that this is the best
possible characterization of the output process, consider the
case in which session i is the only active session and is
greedy from time zero. Then, a peak service rate of ~ and
a maximum sustainable average rate of P1 are both achieved.)
By characterizing S’i in this manner, we can begin to analyze

networks of servers, which is the focus of the sequel to this

paper. Fortunately, there is a convenient relationship between
@Ut and Q;:

Lemma 12: If Cj z r for every session j, where r is the
rate of the server, then for each session i:

r$t = Q:.

IEEIYACM TRANSACt’tONS ON NETWORKING, VOL. 1, NO. 3, JUNE 1993

Proos First, consider the case Ci = cm. Suppose that Q;

is achieved at some time t*,and session z continues to send
traffic at rate Pi after t*. Further, for each j # i, let tj be the

time of arrival of the last session j bit to be served before time
t*.Then, Q; is also achieved at t*when the arrival functions
of all sessions ~ # i are truncated at tj,i.e., Aj (tj, t) = O,
j # i. In this case, all other session queues are empty at time

t“ and, beginning at time t“, the server will exclusively serve.
session i at rate 1 for & units of time, after which session
i will be served at rate pz. Thus,

Si(t*, t) = min{t – t*, Q~ +pi(t* – t)}, Vt > t*.

From this, we have

Cl:”t ~Q~.

We now show that the reverse inequality holds as well: For
any T 5 t:

Si(T, t) = Ai(~, t) + Qi(T) – Qi(~)

< i: +Pi(t – T) +Qi(T) – Qi(~)

= a; – Qi(t) +~i(t –T)

(since C~ = m.) This implies that

Oyt s O; –Qi(t) s U; S QJ.

Thus,

O:ut = Q~.

NOW suppose that Ci E [r, m). Since the traffic observed
under the all-greedy regime is indistinguishable from a system
in which all incoming links have infinite capacity, we must
have o~”t = Q; in this case as well. •1

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

REFERENCES

D. Bertsekas and R. Gallager, Da?a Networks, Englewood Cliffs, NJ:
Prentice Hall, 1991.
A. Birman, P. C, Chang, J. S. C, Chen, and R. Guenn, “Buffer sizing
in an LSDN frame relay switch,” Tech. Rep. RC 14386, IBM Res., Aug.
1989.
A. Birman, H. R. Gail, S. L. Hantler, Z. Rosberg, and M. Sidi, “An
optimal frolicy for buffer systems,” Tech. Rep, RC 16 641, IBM Res.,
Mar. 1991.
I. Cidon, L Gopal, G. Grover, and M. Sidi, “Real time packet switching:
A performance analysis,’’lll% J. SelecL Areas Crrmmurr., vol. SAC-6,
pp. 1576-1586, 1988.
R. L. Cruz, “A calcuhrs for network delay, Pti 1: Network elements in
isolation,’’IEEE Trans. hrforrn. Theory, vol. 37, pp. 1I4-131, 1991.

“A calculus for network delay, Part II: Network anafysis,” IEEE
= ‘Inform. Theory, vol. 37, pp. 132-141, 1991.
A, Demers, S. Keshav, and S. Shenkar, “Analysis and simulation of a
fair queueing algorithm,” Inremet. Res. and &per., vol. 1, 1990.
H. R. Gail, G. Grover, R. Guerin, S. L. Hantler, Z. Rosberg, and M.
Sidi, “Buffer size requirements under longest queue first,” Tech. Rep.
RC14 486, IBM Res., Jan. 1991.
S. J. Golestani, “Congestion-free transmission of real-time traffic in
packet networks, “ in Prvc. lEEE lNFOCOM ‘W, San Fransisco, CA,
1990, pp. 527-536.

“A framing strategy for connection managmetrt,”in Proc.
iiZiOMM 90, 1990.

“Duration-limited statistical multiplexing of delay sensitive
= ~rrpacket networks,” in PIVC. IEEE lNFOCOM ’91, 1991.
A. C. Greenberg and N. Madras, “How fair is fair queueing?~ L ACM,
vol. 3, 1992.
E. Hahne, “Round robin scheduling for fair flow contsol,” Ph.D. thesis,
Dept. Elect. Eng. and Comput. Sci., M.I.T., Dec. 1986.

PAREKH AND GALLAGER: PROCESSOR SHARING APPROACH TO FLOW CONTROL 357

[14]

[15]

[16]

[171

[18]

[19]

[20]

[21]

L. KJeinroek, Queueing Systems Vol. 2: Compurer Applications. New
York: Wiley, 1976.
C. Lu and P. R, Kumar, “Distributed scheduling based on due dates and
buffer prioritization,” Tech. Rep., Univ. of Illinois, 1990.
A. K. Parekh, “A generalized processor sharing apmaeh to flow control
in integrated services networks,” Ph.D. thesis, Dept. of Elect. Eng. and
Comput. Sci., M.I.T., Feb. 1992.
A, K, Parekh and R. G. Gallager, “A genersdized processor sharing

approach to flow’ control-’Tbe multiple node case,” Tech. Rep.W%,
Lab. for Inform. and Decision Syst,, M. I.T., 1991,
J. R. Perkins and P. R. Kumar, “Stable distributed real-time scheduling
of flexible mamrfacturing systems,”’ IEEE Trans. AM. Contr., vol. AC-34,
pp. 139-148, 1989.
G. Sasaki, “Input buffer requirements for round robin polling systems,”
in Proc. Ailerron Con~ Commun., Corur., and Corrrput., 1989.
J. Turner, “New directions in communications, or Which way to the
information age?,” lEEE Commun. Mug., vol. 24, pp. 8-15, 1986.
L. Zhang, “A new architecture for packet switching network protocols,”
Ph.D. thesis, Dept. Elect. Eng. and Comput. Sci., ‘M.LT., Aug. 1989.

Abbay K. Parekb(M’92)received the B.E.S. de-
gree in mathematical sciences from Johns Hopkins
University, the SM. degree in operations research
from the Sloan School of Management, and the
Ph.D. degree in electrical engineering and computer
science from the Massachusetts Institute of Tech-
nology in 1992.

He was involved in private network design as
a Member of Technical Staff at AT&T Bell Lab-
oratrrries from 1985 to 1987. From February to
June 1992, he was a Postdoctoral Fellow at the

Laboratory for Computer Science at M. I. T.,where he was associated with the
Advanced Network Architecture Group. In October 1992, he joined the High
Performance Computing and Communications Group at IBM as a Scientific
Staff Member. His current research interests are in application-driven quality
of service for integrated smwices networks, and in distributed protocols for
global client-server computing. While a student at M. I. T.,he was a Vhrton
Hayes Fellow and a Center for intelligent Control Fellow. A paper from
his Ph.D. dissertation, jointly authored with Prof. Robert Gallager, won the
INFGCOM ’93 best paper award.

Robert G. Gailager (S’58-M’61-F’68) received
tbe B. S.E.E. degree in eleetricsd engineering from
the University of Pennsylvania in 1953, and the
S.M. and SC.D, degrees in electrical engineering
from the Maasaehusetts Institute of Technology in
1957 and 1960, respectively,

Following two years at Bell Telephone Labo-
ratories and two years in tbe U.S. SignaJ Corps,
he has been at M.I.T. since 1956. He is currently
the Fujitsu Professor of Electrical Engineering and
Co-Dkctor of the Laboratory for lnfomration and

Decision Systems. His early work was on information t&ory, and his textbook
lnfornration Theory and Reliable Communication (New York: Wiley, 1%8) is
still widely used. Later research focused on data networks. fla~a Nerwork!
(Englewood Cliffs, NJ: Prentice Hall, 1992), coauthored with D. Bertsekas,
helps provide a conceptual foundation for tbk field. Recent interests include
multiaccess information theory, radio networks, and all-optical networks. He
has been a consultant at Codex Motorola since its formation in 1%2. He was
on the IEEE Information Theory Society’s Board of Governors from 1%5
to 1970 and 1979 to 1988, and was its presi&nt in 1971. He was elected
a member of the National Academy of Engineering in 1979 and a membsr
of the National Academy of Sciences in 1992. He was the recipient of the
IEEE Medal of Honor in 1990, awarded for fundamental contributions to
communications codhrg techniques.

