
2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2594172, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, MONTH YEAR 1

Cost-Aware Multimedia Data Allocation for
Heterogeneous Memory Using Genetic

Algorithm in Cloud Computing
Keke Gai, Student Member, IEEE, Meikang Qiu, Member, IEEE, Hui Zhao Student Member, IEEE

Abstract—Recent expansions of Internet-of-Things (IoT) applying cloud computing have been growing at a phenomenal rate.
As one of the developments, heterogeneous cloud computing has enabled a variety of cloud-based infrastructure solutions, such
as multimedia big data. Numerous prior researches have explored the optimizations of on-premise heterogeneous memories.
However, the heterogeneous cloud memories are facing constraints due to the performance limitations and cost concerns caused
by the hardware distributions and manipulative mechanisms. Assigning data tasks to distributed memories with various capacities
is a combinatorial NP-hard problem. This paper focuses on this issue and proposes a novel approach, Cost-Aware Heterogeneous
Cloud Memory Model (CAHCM), aiming to provision a high performance cloud-based heterogeneous memory service offerings.
The main algorithm supporting CAHCM is Dynamic Data Allocation Advance (2DA) Algorithm that uses genetic programming
to determine the data allocations on the cloud-based memories. In our proposed approach, we consider a set of crucial factors
impacting the performance of the cloud memories, such as communication costs, data move operating costs, energy performance,
and time constraints. Finally, we implement experimental evaluations to examine our proposed model. The experimental results
have shown that our approach is adoptable and feasible for being a cost-aware cloud-based solution.

Index Terms—Cloud computing, genetic algorithm, heterogeneous memory, data allocation, multimedia big data

�

1 INTRODUCTION

The advance of cloud computing has motivated a variety of

explorations in information retrieval for big data informatics

in recent years. Heterogeneous clouds are considered a fun-

damental solution for the performance optimizations within

different operating environments when the data processing

task becomes a challenge in multimedia big data [1], [2].The

growing demands of multimedia big data have driven the

increasing amount of cloud-based applications in Internet-of-
Things (IoT). Combining heterogeneous embedded systems

with cloud-oriented services can enable various advantages

in multimedia big data. Currently, cloud-based memories are

mostly deployed in a non-distributive manner on the cloud

side [3]. This deployment causes a number of limitations, such

as overloading energy, additional communications, and lower

performance resource allocation mechanism, which restricts the

implementations of the cloud-based heterogeneous memories

[4]–[6]. This paper concentrates on this issue and proposes an

• K. Gai is with the Department of Computer Science, Pace University,
New York, NY 10038, USA, kg71231w@pace.edu.

• M. Qiu (Corresponding author) is with the Department of Computer
Science, Pace University, New York, NY 10038, USA, mqiu@pace.edu.

• H. Zhao is with Software School, Henan University, Kaifeng, Henan,
475000, China, zhh@henu.edu.cn

• This work is supported by NSF CNS-1457506 and NSF CNS-1359557.

Manuscript received October XX, 2015

innovative data allocation approach for minimizing total costs

of the distributed heterogeneous memories in cloud systems.

Contemporary cloud infrastructure deployments mainly

mitigate data processing and storage to the clouds [7]. Central
Processing Units (CPU) and memories offering processing

services are hosted by individual cloud vendors. This type of

deployment can meet the processing and analysis demands for

those smaller sized data [8]–[10]. The incontinuous or peri-

odically changeable implementations of the big data-oriented

usage have caused bottlenecks for constructing firm perfor-

mances [11]. For example, some data processing tasks are

tightly associated with the industrial trends or operations, such

as annual accounting and auditing [12], [13]. Therefore, a

flexible approach meeting dynamic usage switches has become

an urgent requirement in high performance multimedia big data.

Moreover, another challenge is that deploying distributed

memories in clouds is still facing a few restrictions [14], [15].

Allocating data to multiple cloud-based memories results in

obstacles due to the diverse impact factors and parameters [16].

The divergent configurations and varied capabilities can limit

the entire system’s performance since a naive task separation is

inefficient to fully operate heterogeneous memories. It implies

that minimizing the entire cost of using cloud memories is

restricted by multiple dimensional constraint conditions.

To address the main challenge, we propose a novel approach

entitled Cost-Aware Heterogeneous Cloud Memory (CAHCM)

Model, which aims to achieve a reduced data processing time



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2594172, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, MONTH YEAR 2

Fig. 1. The architecture of cloud-based heterogeneous memories using data allocation techniques in big data

through heterogeneous cloud memories for efficient Memory-
as-a-Service (MaaS). The costs can be any expenditures dur-

ing the operations, such as energy, time, and communication

sources [17], [18]. Fig. 1 represents the architecture of cloud-

based heterogeneous memory in which our proposed model

will be applied. The operating principle of the proposed model

is using genetic algorithm to minimize the processing costs

via mapping data processing capabilities for different datasets

inputs. The operating flow is based on the distributed parallel

computations in heterogeneous memories located in various

cloud vendors. The task assignments are completed by a data

allocation operation in which tasks are assigned to cloud mem-

ories based on the mapping of the memory capabilities to the

input data.

For supporting the proposed model, we propose an algo-

rithm, Dynamic Data Allocation Advance (2DA) Algorithm,

which is designed to obtain the minimum total costs using

genetic algorithm. Implementing 2DA enables a dynamic data

allocation to heterogeneous cloud memories with varied capac-

ities. We consider a group of crucial factors that can impact

on the costs when using cloud-based distributed heterogeneous

memories, such as communication costs, data move operating

costs, energy performance, and time constraints. The target of

the proposed algorithm is to provide data allocation mechanism

gaining the minimum computing costs.

The significance of this research is that the findings intro-

duce a new approach for solving big data problems that request

the scaled up capability memories deployed in clouds. Using

our proposed scheme can facilitate a high performance of the

efficiency in generating solutions to data allocations, which is

a NP-hard problem. The main contributions of our research

mainly include three aspects:

1) We venture to solve the cost optimization problem

on heterogeneous memories in a polynomial time,

which is a NP-hard problem. The outcomes are opti-

mal solutions under certain constraints and suboptimal

solutions with non-constraint.

2) The proposed model is an attempt in using heteroge-

neous cloud memories to solve multimedia big data

problems by dynamically allocate data to various cloud

resources.

3) We produce an approach that can be used to increase

the entire usage rate of the cloud infrastructure along

with the enhancement of the computation capability,

which is also an approach for generating an optimized

data processing mechanism in cloud-based multimedia

data processing.

The remainder of the paper is organized by the follows.

Section 2 reviews recent academic works in the relative fields.

Next, we express a motivational example concerning the ap-

plication of the proposed model in a simple implementation

scenario in Section 3. Furthermore, main concepts and the

proposed model statements are given in Section 4. Moreover, in

Section 5, we provide detailed descriptions about the proposed

algorithm. In addition, experimental evaluations are stated in

Section 6, which configures the experimental settings and

exhibits some experimental findings. Finally, we conclude the

research in Section 7.

2 RELATED WORK

This section has reviewed two crucial aspects related to our

research, including multimedia big data and cloud resource

management for multimedia in cloud computing. Investigations

in these two hemispheres are theoretical supports for our

research background.

2.1 Multimedia Big Data
Multimedia big data is a new technical term describing big

data mechanisms applied in the multimedia field. We focus on

the computation workload dimension even though a few other

concentrations have been addressed by the prior researches.

First, the high performance-oriented data mining is one

research direction in multimedia big data. One research was

explored to prove that social images shared on cloud-based

multimedia had a high level of similarities when users are

socially connected [19], [20]. This research was an attempt

of using multimedia to further expand the outcomes of big

sized data mining. Next, data-oriented scheduling was also



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2594172, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, MONTH YEAR 3

an alternative for enhancing the computation capability by

applying resource scheduling algorithms [21], [22]. However,

the computation workloads were not considered in this research,

which was the main bottleneck for increasing the performance

of the multimedia big data. Most data mining techniques can

be directly used in multimedia big data field [23]. But the

processing efficiency was a challenging issue due to the data

size feature of the multimedia.

To address this challenge, a variety of preprocessing tech-

niques have been examined by recent researches as well.

One data preprocessing operation was configured in wireless

multimedia sensor networks by deleting those data that have

less impact on the results [24]. Computing the data having

higher-level weights can obtain approximate solutions [25].

Some other data mining uses time series the determine the

weights of the data by predictions [26]. However, this approach

highly depends on the fault tolerance rate. The approach cannot

ensure the accuracy if the rate is well configured even though

the computation workload is reduced. Our work focuses on

producing an innovative data allocation method for improving

efficiency without reducing workloads.

Moreover, the feature selection was a research direction

that could be used to eliminate those data with less data

mining values. For example, an approach was proposed to use

different constraints for re-ranking the image features [27]. This

technique was also combined with Web services [23]. Despite

many advantages of feature selections, this type of solutions is

still attached to the software side. The computation speed was

not increased, such that the balance of computation workload

and outcome quality is still the critical part in this research

direction. Our work targets at increasing the computation speed

by optimizing the method of data allocations.

Therefore, most previous research work has addressed the

software improvement for multimedia big data rather than the

hardware side. Our research focuses on using cloud-based

memories by deploying distributed heterogeneous computing

resources.

2.2 Resource Management for Multimedia in Cloud
Computing

Computing resources on cloud computing are deployed in a dis-

tributive manner. The approach of maximizing cloud resources

has been explored by recent researches in different perspectives.

First, interconnecting various clouds has become a popular

research topic in cloud computing. The relations between nodes

in cloud computing are considered as one of the crucial aspects

in increasing the entire system’s performance [28], such as in

Internet of Things (IoT). Prior researches have addressed a few

dimensions increasing the system’s performance. One of the

crucial aspects in cost-aware approaches was saving energy

by applying scheduling algorithms on Virtual Machines (VMs)

[29], [30]. This type of optimizations mainly depends on the

availability of the parameters for mapping cost requirements.

Our proposed approach also requires a few parameters for the

purpose of resource management, such as the amount of data

reads and writes.

Moreover, from the perspective of security and forensics,

resource management in cloud computing is considered an

option of maximizing the security level by applying multiple

constraints via VMs [31], [32]. Combining various inspection

approaches on multiple VMs can increase the threat detection

capability [33]. Correspondingly, the cost of the implemen-

tations will become greater while the amount of VMs in-

creases [34]. The optimizations usually address the provisions

of the heterogenous computing from distributed resources [35].

However, solving the resource management problem is still

challenging when the number of the parameters or variables

grows. It results in the difficulties of gain an adaptable solution

that can be completed in a polynomial time. In the perspective,

our research proposes an adaptive method that can ensure a

high-efficiency of resource management method generations.

Furthermore, cloud task scheduling was also a research

direction in resource management for big data. One recent opti-

mization dimension was using iterative ordinal optimizations

to adapt dynamic workloads in cloud computing [36]. This

research aimed to gain sub-optimal scheduling solutions by

optimizing each iteration. Meanwhile, some other scheduling

optimizations focused on reducing the latency and constraints

caused by bandwidths and data diversity [37]. A similar re-

search focusing on reducing data transfer workloads used data

partition techniques for optimizations. However, most prior

researches did not consider implementing heterogeneous cloud

computing such that the potential optimizations were ignored.

Therefore, in our research, we concentrated on a crucial

research dimension that had rarely been addressed by the

prior researches. Applying the heterogeneous memory in cloud

computing is an approach to increase cloud service efficiency

and its challenge is data allocations to diverse memories. The

target addressed by our research is producing a method that can

efficiently produce data allocation plans with minimum costs.

3 MOTIVATIONAL EXAMPLE

We give a motivational example for clarifying the operational

processes of CAHCM in this section. Assume that there are

four cloud vendors offering MaaS with different performances,

namely M1, M2, M3, and M4. Table 1 displays the costs for

different cloud memory operations.

As shown in Table 1, we consider four main costs that

include Read (R), Write (W), Communications (C), and Move
(MV). R and W refer to the operation costs of reading and

writing data. C means the costs happened to communication

processes through the Internet. MV represents the costs taken

place at the occasions when switching from one memory vendor

to another set. β is a criterion for memory limits. There are

two working modes based on βs, including a normal working

status and an over limit status. Table 2 represents different

performance critical points for different cloud memory limits.

According to Table 2, cloud memories have different mem-

ory service offerings. For example, M1 has a critical capability



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2594172, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, MONTH YEAR 4

TABLE 1
The costs for different cloud memory operations. Four types of

memories are M1, M2, M3, and M4; parameter (PAR) β represents
the performance critical points; main costs derive from four aspects,

including Read, Write, Communications (Com.), and Move.

Operations PAR M1 M2 M3 M4

Read (R)
β1 4 2 1 50
β2 500 500 500 500

Write (W)
β1 6 4 2 50
β2 500 500 500 500

Comm. (C) - 10 10 10 10

Move (MV)

M1 0 4 6 40
M2 3 0 5 40
M3 2 3 0 40
M4 40 40 40 0

TABLE 2
Performance critical points for different cloud memory limits and the

number of memories.

M1 M2 M3 M4

β1 (GB) <4 <3.2 <3.5 <4
β2 (GB) �4 �3.2 �3.5 �4

Number of Memories 2 2 3 3

point at 4 GB, which means the performance will be dramati-

cally diminish when the input dataset is larger than 4 GB. The

example configuration is that there are 2 M1, 2 M2, 3 M3, and

3 M4. Moreover, Table 3 represents the number of memory

accesses and data sizes. There are 6 input data, including A,

B, C, D, E, F, and G as well as their corresponded sizes. For

instance, Data A are required to read 7 times and write 6 times

and the data size is 2.35 GB.

TABLE 3
The number of memory accesses and data sizes

Data Reads Writes Sizes (GB)
A 7 6 2.35
B 6 3 2.70
C 8 6 3.30
D 1 1 3.63
E 3 1 2.76
F 6 6 2.06
G 2 3 3.36

Assume that the initialized data allocations are A → M2,

B → M2, C → M4, D → M2, E → M3, F → M4, and

G → M3. The costs of allocating each data to memory units

are given in Table 4. This table is called B Table, which is used

to mapping all the costs for all potential activities of the data.

The mapped the costs and the number of accesses match

the conditions of our proposed model. Thus, we remap the data

that are shown in Table 5. The remapping table is named as D
Table, which is used to generate optimized memory selections

based on the data from B Table. There are two steps in the

remapping process. First, we sort the data in an ascending order

by summing up the number of Read and Write. For example, A
is 13 deriving from (7+6), which is shown in the table. The next

TABLE 4
B Table: The costs of allocating each data to different memory units

considering β.

Data M1 M2 M3 M4

A 77 48 34 700
B 55 34 27 500
C 118 7050 70 710
D 23 1010 1015 150
E 30 23 15 250
F 110 86 68 610
G 38 2513 18 300

step is sorting the cost by the memory index number for each

data. We assign an index number to each memory by 1 → M1,

2 → M2, 3 → M3, and 4 → M4. We sort the index for each

data according to the costs of the data allocations given in Table

4. According to the memory availability, we always select the

lowest costs first, from the left side to the right side in the table.

For example, in Table 4, the data allocation costs for data A are

respectively 77 (M1), 48 (M2), 34 (M3), and 700 (M4). The

sorted order for A is M3, M2, M1, and M4 in Table 5.

TABLE 5
D Table: Sorted memory indices deriving from Table 4

C M3 (70) M1 (118) M4 (710) M2 (7050)
A M3 (34) M2 (48) M1 (77) M4 (700)
F M3 (68) M2 (86) M1 (110) M4 (610)
B M3 (27) M2 (34) M1 (55) M4 (500)
G M3 (18) M1 (38) M4 (300) M2 (2513)
E M3 (15) M2 (23) M1 (30) M4 (250)
D M1 (23) M4 (150) M2 (1010) M3 (1015)

Based on the remapping, we select memories for each data,

which starts with the top of the table to the bottom. According

to the memory availability, we always select the lowest cost

from the available memories, from the left to right shown in

Table 5. Furthermore, an adjustment will be made after a cal-

culation of the proposed genetic algorithm. In this motivational

example, using our proposed approach can generate an optimal

solution as A → M3, B → M2, C → M3, D → M1,

E → M2, F → M3 and G → M1 with the total cost

290. Compare with First-In-First-Out (FIFO) algorithm, our

approach reduces 96.5% cost in this case. Compare with Greedy

algorithm, our approach can reduce 3.7% cost in this example.

4 CONCEPTS AND THE PROPOSED MODEL

We demonstrate the proposed model and define the main con-

cepts used in the model in this section. The operating principle

of the model is given along with the proof in this section.

4.1 Execution Model and Definition
The execution model is based on the architecture represented

in Fig. 1. Before the data are assigned to cloud memories,

the entire input data need to be partitioned, which have been

addressed by the prior researches [38]–[40]. In our proposed



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2594172, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, MONTH YEAR 5

model, we assume that the data partitions are processed, after

which the information of data operations in each cloud memory

is gained. The task addressed by the proposed CAHCM is to

execute data allocations for minimizing the total costs.

Definition 1. Cost Optimization Problem on Heterogeneous
Memories (COPHM): Given the initial status of input data
and the cloud-based heterogeneous memories’ capacities, in-
cluding the number of data, the number of Read and Write

accesses, the number of memories and availabilities, the costs
of Read and Write for each memory, the costs of the Move

between memories, critical points of the memories. The aimed
problem is to find out the data allocation solution optimally
minimizing the total cost.

The inputs are the initial data allocations as well as memo-

ries’ availabilities, capacities, and costs. Align with the problem

definition, main inputs include the number of data, the required

Read and Write access amounts, available memories’ number

as well as the costs for Read, Write, and the Move between

memories, the initial locations of the data, data sizes, and

critical points for each memory. The output is a data allocation

scheme based on the available cloud memories provisioning the

optimal solution for minimizing total costs.

Moreover, the crucial component of CAHCM is that the

task assignments to heterogeneous memories offered by distinct

cloud vendors based on the memories’ availabilities, costs,

and capabilities. Compare with the traditional on-premises

memories, the cloud memories system provides a manageable

data allocation platform, which allows tasks to be assigned to a

distributed memory system. The capacities of the heterogeneous

memories in cloud computing can be varying, which depends

on the offerings of cloud providers. In our model, the task as-

signment process mainly includes two steps, which are mapping

costs and task assignments. Fig. 2 represents an operation flow

model of CAHCM model.

Fig. 2. Operation flow model of Cost-Aware heterogeneous cloud
memory model

According to Fig. 2, at the first step, the costs are mapped

mainly deriving from three categories of information. The

Memory Availability refers to the availabilities of the memo-

ries, which may include amount, time, connection status, and

locations, The Memories Costs is the consumption information

corresponding to each available memory and the corresponding

table in Section 3 is Table 1. Other Costs means the costs

caused from other computing resources except the costs de-

riving from memories or operations between memories, such

as transmission losses. For example, a Move cost is one of

the costs that need to be considered. In addition, the data

allocation plan is generated at the second step, which is mainly

supported by our proposed algorithm, 2DA algorithm. Two sub-

tasks form this step. First, an initial plan is created by using

Greedy algorithm. Second, an improved data allocation plan

is created by implementing the genetic algorithm, such that

the task assignment may be adjusted. The following section

provides the problem statement.

4.2 Problem Statement
The calculations of the total cost need to consider the cloud

memories’ capabilities [5]. The limits are determined by β that

maps the critical capability points for different memories, which

is aligned with COPHM problem defined by Definition 1 in

Section 4.1. To address the cost minimizations, we formulate

the cost calculation method shown in Eq. 2:

CTotal =
n∑

i=1

C(i)

=
n∑

i=1

(CR
i ×NR

i + CW
i ×NW

i + CMV
i + COther

i )

(1)

The total cost is a sum of all memories’ costs with four

types of costs. As shown in Eq. 2, CTotal refers to the total

cost. The sum of all memories’ costs is
∑n

i=1 C(i) showing

there are i memories operated in the data processing. CR
i

refers to the cost of Read and NR
i refers to the number of

the Read. Correspondingly, CW
i refers to the cost of Write

and NW
i refers to the number of the Write. CMV

i refers to

the cost of data moves and COther
i refers to other costs, such

as networking communications. The target of our proposed

approach is minimizing the value of CTotal.

Moreover, for comparing the costs, normally a traversing

search is required. Assume that there are m memories in total

and d data. P (m, d) = m!
(m−d)! where d � m. The minimum

cost can be found from a permutation of P(m, d). Using this

information, the heterogeneous memories can construct a few

bins such that each bin can refer to one memory. The volume

of bins are memories’ capacities, the items are input data, and

the values are costs of data operations. In addition, we consider

minimizing the total costs such that COPHM problem can be

reducible to Bin Packing Problem (BPP) that is a combinatorial

NP-hard problem [41], [42]. Therefore, COPHM problem is

also a NP-hard problem, BPP�pCOPHM.

Our proposed approach can gain optimal solutions within

the constraint conditions and suboptimal solutions under the

non-constraint environment.

4.3 Optimal Constraints for Genetic Algorithm
Our work has found that using Greedy algorithm could pro-

vide optimal solutions under certain constraints and subopti-

mal solutions in other situations. Being aware of the optimal

solution constraint is the critical component for achieving



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2594172, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, MONTH YEAR 6

optimal solutions. It means that an adjustment needs to be

done in order to improve the sub-optimal solution to being the

optimal solution. We present an approach of overcoming the

optimal solution constraint by applying genetic algorithm; thus,

our proposed CAHCM is designed to achieve a high rate of

producing optimal solutions. The proposed genetic algorithm is

designed by considering the optimal solution constraints, which

is represented in this section. The representation of the optimal

solution constraints are illustrated as follows.

∃ two memories M1 and M2, represented as M1 =

〈R1,W1〉 and M2 = 〈R2,W2〉. Ri refers to the Read cost and

Wi refers to the Write cost. Assume that there are two data, A

and B, need to be assigned, represented as A = 〈a1, b1〉 and

B = 〈a2, b2〉. ai is the access number of the Read and bi is the

number of the Write. We set (a1+ b1) > (a2+ b2), R1 > R2,

and W1 > W2. Therefore, data A have the selection priority

according to our approach. We consider data B the data having

lower selection priority than A, which locate at the right side of

A in D Table. The table mapping is represented in Table 6.

TABLE 6
Table mapping for the cost comparisons between data allocations

B Cb
2 Cb

1
A Ca

2 Ca
1

First, our approach uses Greedy algorithm to determine

the path Ca
2 → Cb

1 . Since there are only two memories, the

other path is Cb
2 + Ca

1 . Therefore, the crucial deterministic

comparison for the optimal solution requirement is shown in

Eq. 2, which shows a fundamental relation of obtaining an

optimal solution.

Cb
2 + Ca

1 � Cb
1 + Ca

2 ⇒ Ca
1 − Ca

2 � Cb
1 − Cb

2 (2)

In Eq. 2, Cj
i means the cost of using the i memory for data j.

We use MCi to present the sum of Move and Communication
costs. The mathematical expressions of Cj

i are given as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ca

1 = R1 × a1 +W1 × b1 +MC1

Ca
2 = R2 × a1 +W2 × b1 +MC2

Cb
1 = R1 × a2 +W1 × b2 +MC3

Cb
2 = R2 × a2 +W2 × b2 +MC4

Align with Eq. 2, we gain the following Eq. 3, which

represents the constraints for obtaining optimal solutions.{
(R1 −R2)(a1 − a2) + (w1 − w2)(b1 − b2) � MCtotal

MCtotal = MC2 +MC3 −MC1 −MC4

(3)

For satisfying the optimal solution requirements, we execute

Eq. 3 and consider three situations based on the comparisons

between variables a1 and a2 as well as variables b1 and b2. The

results are given in Eq. 4.

�R12�a12 +�W12�b12 � MCtotal (4)

Consider the practical scenario, we define the process of

data allocation as a P , in which there is a sorted data set.

For any adjacent data A and B, the path is represented as−−→
BA meaning the data allocation order from data B to A.

In any cases, ∀ four adjacent data allocations Ca
i , Ca

k , Ca
f ,

and Ca
j in D Table, ∃ Ca

i < Ca
k , Cb

f < Ca
j , and a path

a → b. For firming an optimal solution, it needs to ensure that

Ca
i + Cb

j − Cb
f − Ca

k � 0. The values of the data allocations

are: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ca

i = Ri × aR +Wi × aW +MCi

Cb
j = Rj × bR +Wj × bW +MCj

Cb
f = Rf × bR +Wf × bW +MCf

Ca
k = Rk × aR +Wk × aW +MCk

In the expression, Ri refers to the Read cost for memory i,
aR refers to the Read access number for data A, Wi refers

to the Write cost for memory i, and aW refers to the Write
access number for data A. The path from data A to B selecting

Ca
i → Cb

j means data allocations are A → Memory i and

B → Memory j. We set the �Rfj = Rf − Rj , �Wfj =
Wf − Wj , �Rki = Rk − Ri, �Wki = Wk − Wi, and

MCtotal = MCi + MCj − MCk − MCf Therefore, the

optimal solutions constraints are shown in Eq. 5:

{
�Rfjb

R +�Wfjb
W +�Rkia

R +�Wkia
W � MCtotal

MCtotal = MCi +MCj −MCk −MCf

(5)

Applying Greedy algorithm can produce optimal solutions

when the condition meets the requirements given in Eq. 5.

Otherwise, using Greedy algorithm can generate suboptimal

solutions that need adjustments. The accomplishment of the

adjustment is processed by our proposed genetic algorithm.

The theorem stating the optimal solutions restraints is given in

Theorem 4.1, which focuses on the adjacent path comparisons

and decisions in D Table.

Theorem 4.1. ∃ a set memories M, {Mi, Mj , Mf , Mk}⊆
M, data A=〈aR, aW 〉, B=〈bR, bW 〉, Ca

i < Ca
k and Cb

f <

Cb
j . The costs of the memories consist of Rx and Wy , x =

{i, j, f, k}, y = {i, j, f, k}. Configure �Rfj = Rf − Rj ,
�Wfj = Wf −Wj , �Rki = Rk −Ri, �Wki = Wk −Wi,
and MCtotal = MCi +MCj −MCk −MCf . If satisfying
�Rfjb

R+�Wfjb
W+�Rkia

R+�Wkia
W � MCtotal and

priority selection principle, then Ca
i +Cb

j � Cb
f +Ca

k and the
data allocation 〈A → Mi, B → Mj〉 is an optimal solution
for minimizing total costs under the four-memory configuration.

We use contradiction proof to prove the correctness of

Theorem 4.1. We use P to represent the satisfaction of Eq.

5, use G to denote the optimal solutions. The following proof

proves that G is true when P is true, P ⇒ G.

Proof. Assume that P is true and G is false, when there

exists memories Mi, Mj , Mf , Mk, data A=〈aR, aW 〉 and

B=〈bR, bW 〉. Since P is true, P ⇒ Ca
i +Cb

j < Cb
f +Ca

k . G is

false ⇒ there exists a solution (Ca
x +Cb

y) offering a lower cost

than (Ca
i +Cb

j ). ¬G ⇒ (Ca
i +Cb

j ) > (Ca
x +Cb

y), where the

adjacent paths formed by Ca
i < Ca

x < Ca
k , Cb

f < Cb
j < Cb

y ,



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2594172, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, MONTH YEAR 7

following the availability priority principle in D Table. Define

the formulation calculating the total costs is C(m,n), as shown

in Eq. 2. In the formulation C(m,n), m means the memory

selection and n means the data.

Therefore, the following deduction is gained:(
C(f, b),C(j, b),C(y, b)
C(i, a),C(x, a),C(k, a)

)
with

{
Ca

x ∈ [Ca
i , C

a
k ]

Cb
y ∈ [Cb

f ,+∞)
⇒

when ¬G ⇒ ∃C(x, a) +C(y, b) < C(i, a) +C(j, b)

< C(f, b) +C(k, a) ⇒ Ca
x − Ca

i < Cb
i − Cb

y

Followed by P, ∃Ca
x − Ca

i > Cb
i − Cb

f

⇒ Cb
i − Cb

y > Ca
x − Ca

i > Cb
i − Cb

f ⇒ Cb
y < Cb

f

which conflicts with Cb
f < Cb

y . Therefore, P ⇒ G is true.

Proved.

Therefore, our genetic algorithm emphasizes the constraints

and configure the evolutive principle according to the findings

above. The initial plan created by greedy algorithm will be

assessed by the optimal solution constraints and determine

whether the plan needs to be adjusted. The next section provides

the detailed description about our crucial algorithms.

5 ALGORITHMS

In this section, we provide descriptions of two crucial algo-

rithms of CAHCM. Section 5.1 illustrates 2DA algorithm and

Section 5.2 exhibits the B Table Generation Algorithm.

5.1 Dynamic Data Allocation Advance (2DA) Algo-
rithm
Aim to generate an adaptable data allocation solution, we

propose Dynamic Data Allocation Advance (2DA) algorithm.

This algorithm is designed to solve COPHM problem in a

polynomial time. The outputs of implementing 2DA algorithm

is producing optimal solutions under constraints or suboptimal

solutions within non-constraint conditions. Pseudo codes of

2DA algorithm are given in Algorithm 5.1.

As mentioned in Section 4.1, inputs mainly include infor-

mation about the data and memories. The notations used in

algorithms’ pseudo codes are given as follows. We use Di

denote the input data and i refers to the data index. The number

of the input data is Nd. The data size for each data is Sd(i).

The required number of the Read and Write accesses for each

input data is Rd(i) and Wd(i), which is aligned with Di. The

critical points for each memory is β. The cost of Read access

is Cβ
r d(i) when Sd(i) < β. Otherwise, use C !β

r d(i) when

Sd(i) � β. Correspondingly, The cost of each Write is Cβ
wd(i)

when Sd(i) < β and the use C !β
w d(i) when Sd(i) � β. The

Move costs between memories are M−→
ab

, which means the data

move from Memory a to b. The number of cloud memory type

offered by one cloud vendor is Nmt. Each type has k available

memories and we use Mmt(g) to denote each memory.

In addition, the output is Data Allocation Table (DataAllo-

cation). Two crucial procedures are involved in this algorithm.

Algorithm 5.1 Dynamic Data Allocation Advance (2DA)
Algorithm
Require: B Table, Nmt, k, {Mmt(g)}
Ensure: DataAllocation

1: Input B Table
2: Initialize all availabilities of the cloud memories, Nmt, k,

{Mmt(g)}
3: ∀ data, sort data by the values of (Rd(i) + Wd(i)) in a

descending order

4: for ∀ input data do
5: Sort memory allocation costs in an ascending order

6: /*According to B Table*/

7: for ∀ the cost for each data allocation manner do
8: if The memory (Mmt(g)) is available then
9: Allocate data to this memory

10: /*Di → Mmt(g)*/

11: The number of this type of memory -1

12: end if
13: end for
14: end for
15: for i=1 to Constant do
16: for j=1 to data.size do
17: if (Costj(Planj)+Costj−1(Planj−1))>

(Costj−1(Planj)+Costj(Planj−1)) then
18: Planj ↔ Planj−1

19: /*Switch the memory selections*/

20: end if
21: end for
22: end for
23: RETURN DataAllocation

First, we use Greedy algorithm to create a solution that can be

either an optimal solution or a sub-optimal solution. Next, we

use genetic algorithm to improve the solution, which applies the

operating principle shown in Eq. (5) to evaluate the obtained

results gained from the Greedy. The data allocation plan will

be updated if lower costs are gained within the configured

generation rounds. The main phases of Algorithm 5.1 are:

1) Input B Table generated by Algorithm 5.2. Initialize all

availability information about the heterogeneous cloud

memories. The example of B Table is Table 4.

2) Summing up Rd(i) +Wd(i) for each memory and sort

the values in a descending order.

3) Sort the memory options in an ascending order for each

data according to the required costs, which are based

on mappings of B Table. The sorting results example

is illustrated by Table 5 in Section 3.

4) Allocate the data to the available memories that have

the highest priority till the last data by which the initial

DataAllocation strategy is made.

5) An adjustment is made by accomplishing a genetic

algorithm, in which a series of comparisons are pro-

cessed. The comparison is based on the optimal solu-

tion constraints defined by Eq. (5).



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2594172, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, MONTH YEAR 8

6) Update the plan if the better solution is found until the

configured rounds end. This is the main procedure of

applying our proposed genetic algorithm.

7) Return the completed DataAllocation strategy for data

allocations.

In summary, 2DA algorithm is an approach using both

Greedy and genetic algorithms, which can produce an efficient

solution within a short period time. The next section describes

the method of generating B Table generation, which is one of

the inputs of 2DA algorithm.

5.2 B Table Generation Algorithm
As mentioned in Section 5.1, we need to map the costs for each

data and the corresponding memories in a B Table, which is one

of the main inputs of Algorithm 5.1. This algorithm considers

the memory critical points, β, as well as the corresponding

memory performances under different βs. The purpose of this

algorithm is mapping the costs with the corresponding data

allocations in a computing friendly manner. Algorithm 5.2

represents the B Table Generation Algorithm.

Algorithm 5.2 B Table Generation Algorithm
Require: Di, Nd, Rd(i), Wd(i), M−→

ab
, Nmt, Mmt(g), k, Mj ,

Sd(i), C
β
r d(i), C

!β
r d(i), Cβ

wd(i), C
!β
w d(i), β

Ensure: B Table

1: Initialize all input data, Di, Nd, Rd(i), Wd(i), M−→
ab

,

Nmt, Mmt(g), k, Mj , Sd(i), C
β
r d(i), C

!β
r d(i), Cβ

wd(i),
C !β

w d(i), β
2: for ∀ data do
3: for ∀ memories {Mmt(g)} do
4: Initialize Costtemp ← 0
5: if Sd(i) < β then
6: Costtemp ← Costtemp +Rd(i) × Cβ

r d(i)
7: Costtemp ← Costtemp +Wd(i) × Cβ

wd(i)
8: else
9: Costtemp ← Costtemp +Rd(i) × C !β

r d(i)
10: Costtemp ← Costtemp +Wd(i) × C !β

w d(i)
11: end if
12: Costtemp ← Costtemp +Mab

13: Costtemp ← Costtemp + communication costs

14: Data allocation cost to Mmt(g) ← Costtemp

15: end for
16: end for
17: RETURN B Table

The main phases of Algorithm 5.2 include:

1) Input all required data, including Di, Nd, Rd(i),

Wd(i), M−→
ab

, Nmt, Mmt(g), k, Mj , Sd(i), C
β
r d(i),

C !β
r d(i), Cβ

wd(i), C
!β
w d(i), β. Initialize a temporary

variable Costtemp and assign an empty value.

2) Use Eq. (2) to calculate the value of total cost for each

possible data allocations considering the memory ca-

pacities. Assign the values of the calculation outcomes

to the temporary variable Costtemp.

3) Generate the Table B by assigning the values of the

Costtemp to the corresponding spots in Mmt(g).
4) Return B Table used as the inputs of Algorithm 5.1.

In summary, two algorithms illustrated in this section sup-

port two main procedures of the model. The following section

demonstrates our experimental evaluations.

6 EXPERIMENT AND THE RESULTS

We examined our proposed approach through an experimental

evaluation. Section 6.1 showed our experimental configurations,

and Section 6.2 displayed partial our experimental results.

6.1 Experimental Configurations

We used experimental evaluations to assess the performance

of the proposed scheme. For the purpose of simulating cloud

systems, we used two servers to imitate the operations of

distributed cloud servers. Two servers acted a remote server and

an on-premise client end, respectively. The operating system

configurations were Ubuntu 15.04 on bother servers. The input

data were generated in a random setting in order to simulate

the distributed data offload in practical scenarios. Two crucial

aspects were examined in our evaluations, including efficiency

and cost-saving performances.

First, we estimated the efficiency by evaluating the execu-

tion time. Two main comparisons were done in this evaluation.

One comparison was investigating the execution time differ-

ences between the proposed scheme and the brute force method

when various amounts of the cloud memories are executed.

The other comparison assessed the execution time trend of the

proposed model in various memory deployments.

In addition, our experiment also tested the performance

of saving costs by evaluating the optimal and suboptimal

solutions proportions out of a great number of experiments.

We configured the difference (�Cost) between the optimal

solution costs (Costop) and the costs (CostCAHCM ) required

by our proposed approach, which is represented as �Cost=
CostCAHCM −Costop. We defined the Accuracy Ratio (AR)

as the ratio between the optimal solution cost and �Cost,
which used the following formula: AR = �Cost/Costop.

Moreover, we had two main experimental settings that were

designed to assess the proposed approach’s performance in

different perspectives. The statement of two settings:

• Setting 1: We used a group of settings to evaluate the

performance of CAHCM with different input data sizes,

which included: Setting 1-1, 20 KB; Setting 1-2, 10

MB; Setting 1-3, 250 MB; Setting 1-4, 500 MB.

• Setting 2: We simulated multiple memory deployments,

from 5 to 20, to assess the performance of data alloca-

tions in heterogeneous cloud memories.

These two settings were designed to examine the performance

in adaptability and execution time while the input data sizes

were varied.



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2594172, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, MONTH YEAR 9

6.2 Experimental Results
This section represented a few experimental results based on

our experimental configurations. The performance comparisons

were given between the proposed CAHCM and other available

algorithms. The execution time examinations mainly focused

on various input data sizes while deploying different amounts

of the cloud memories.

Fig. 3. Time consumptions between CAHCM and Brute Force using
4and 5 memories under setting 1-1.

Fig. 3 represents the time consumptions between our pro-

posed scheme and brute force method using 4 and 5 cloud

memories under setting 1-1. The data allocation tasks using 6

memories cannot be accomplished in an acceptable polynomial

time. As depicted in Fig. 3, CAHCM could complete the task

in a shorter period. For example, using CAHCM could allocate

data within 5.1 ms using 5 cloud memories, which was much

shorter than brute force that required 22903.3 ms. The execution

time differences between the proposed approach and normal

method were great.

Fig. 4. Execution efficiency performance comparisons using CAHCM
using different amounts of cloud memories under setting 1-1.

Moreover, we further evaluated the execution time by

comparing various number of cloud memories, from 5 to

20, under settings 1-1, 1-2, 1-3, and 1-4. Fig. 4 exhibits the

execution efficiency performance comparisons using CAHCM

under different amounts of the cloud memories. As shown in

the figure, the execution time of applying CAHCM only had

a slight growth from 5 to 20 cloud memories. It implies that

our proposed scheme could solve N-memory deployments in

a dramatical short period, which met the heterogeneous cloud

memories’ needs. The average increase rate of the execution

time was 7.8% when one cloud memory was added.

Fig. 5. Execution efficiency performance comparisons using CAHCM
using different amounts of cloud memories under setting 1-2.

Fig. 5 represents the execution time evaluations under

setting 1-2. The execution time had a positive relationship with

the number of the memories. The average increase time was

218 ms. The average increase rate of the execution time was

6.5% along with the number of the cloud memories grew.

Fig. 6. Execution efficiency performance comparisons using CAHCM
using different amounts of cloud memories under setting 1-3.

Fig. 6 shows the execution efficiency performance evalua-

tions under setting 1-3. The movement had a similar trend line

to Fig. 5. In general, the average increased execution time was

550 ms. The average execution time increase rate of each cloud

memory increment was 4.1%.



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2594172, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, MONTH YEAR 10

Fig. 7. Execution efficiency performance comparisons using CAHCM
using different amounts of cloud memories under setting 1-4.

Furthermore, Fig. 7 displayed some experimental results for

evaluating execution efficiency under setting 1-4. The average

increase time was 246 ms. And the average increase rate was

0.7%. On the whole, the execution time was associated with the

number of the cloud memories in our experimental evaluations.

The input data sizes also had a positive relationship with the

execution time. The average of the increase rate for inserting

each cloud memory was 4.8%.

Fig. 8. Comparisons of the ratios of the optimal and suboptimal solu-
tions examined by ratios for solving four dimensional data allocations
for CAHCM, Greedy, and Random algorithms. AR1=0%, AR2=(0,
1%], AR3=(1%, 2%], AR4=(2%, 3%], AR5=(3%, 4%], AR6=(4%, 5%],
AR7=(5%, 10%], AR8=(10%, 20%], AR9=(20%, 50%], AR10=(50%,
100%], AR11=(100%, +∞]

Next, Fig. 8 represents the comparisons of the optimal

solutions proportions among CAHCM, Greedy, and Random

algorithms. As defined in Section 6.1, we used AR to represent

the portions of the optimal and suboptimal solutions. Our

experimental results showed that the optimal solutions took

move than 90% out of all the examinations, which was 93.61%.

AR1 depicts the percentage of the optimal solutions. From AR2
to AR11 illustrated the different portions under various settings,

which were given in the figure’s caption. The percentage of

the acceptable solutions was 95.8%, if the acceptable scope of

AR was [0, 2%] that could be considered the set of optimal

and suboptimal solution. As the same configuration, Greedy

algorithm could achieve 6.06% chances to reach the acceptable

solutions at [0, 10%]. Random algorithm could achieve 5.05%

at the scope [0, 10%]. The results depicted that our approach

could obtain a dramatically high rate of obtaining optimal

solutions.

Fig. 9. Ratios of the optimal and suboptimal solutions examined by ra-
tios for solving four dimensional data allocations. AR1=0%, AR2=(0,
1%], AR3=(1%, 2%], AR4=(2%, 3%], AR5=(3%, 4%], AR6=(4%, 5%],
AR7=(5%, 10%], AR8=(10%, 20%], AR9=(20%, 50%], AR10=(50%,
100%], AR11=(100%, +∞].

In addition, Fig. 9 represents a comparison rate between

CAHCM and other two algorithms. We defined Comparison
Rate = Algorithm/CAHCM. Therefore, a higher value of the rate

meant a greater difference gap when the rate was greater than 1.

And the algorithm could have a higher chances than CAHCM.

When the rate was less than 1, it meant the assessed algorithm

had lower chances than CAHCM. As shown in the figure,

our proposed CAHCM approach had an obvious advantage in

gaining acceptable solutions.
In summary, according to our experimental results, our pro-

posed approach had a great advantage in execution efficiency.

The ratio of the optimal solutions was in an acceptable range.

7 CONCLUSIONS

This paper proposed a novel approach solving the problem

of data allocations in cloud-based heterogeneous memories,

which could be applied in big data for smart cities. The

proposed model CAHCM was designed to enable to mitigate

the big data processing to remote facilities by using cloud-based

memories. The main algorithm was 2DA algorithm that could

output optimal solutions at a high rate. Our proposed approach

has been assessed in the experimental evaluations, in which

performs reached the desired level.

REFERENCES

[1] V. Aggarwal, V. Gopalakrishnan, R. Jana, K. Ramakrishnan, and
V. Vaishampayan. Optimizing cloud resources for delivering IPTV
services through virtualization. IEEE Transactions on Multimedia,
15(4):789–801, 2013.



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2594172, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. XX, MONTH YEAR 11

[2] F. Hao, G. Min, J. Chen, F. Wang, M. Lin, C. Luo, and L. T. Yang.
An optimized computational model for multi-community-cloud social
collaboration. IEEE Transactions on Services Computing, 7(3):346–
358, 2014.

[3] M. Qiu, M. Zhong, J. Li, K. Gai, and Z. Zong. Phase-change
memory optimization for green cloud with genetic algorithm. IEEE
Transactions on Computers, 64(12):3528 – 3540, 2015.

[4] Y. Song, Y. Sun, and W. Shi. A two-tiered on-demand resource
allocation mechanism for vm-based data centers. IEEE Transactions
on Services Computing, 6(1):116–129, 2013.

[5] Y. Guo, Q. Zhuge, J. Hu, M. Qiu, and E. Sha. Optimal data allocation
for scratch-pad memory on embedded multi-core systems. In 2011
Int’l Conf. on Parallel Processing (ICPP), pages 464–471, 2011.

[6] N. Vujic, F. Cabarcas, M. Gonzalez, A. Ramirez, X. Martorell,
and E. Ayguade. Dma++: On the fly data realignment for on-chip
memories. IEEE Transactions on Computers, 61(2):237–250, 2012.

[7] K. Gai and S. Li. Towards cloud computing: a literature review on
cloud computing and its development trends. In 2012 Fourth Int’l
Conf. on Multimedia Information Networking and Security, pages
142–146, Nanjing, China, 2012.

[8] J. Espadas, A. Molina, G. Jiménez, M. Molina, R. Ramı́rez, and
D. Concha. A tenant-based resource allocation model for scaling
Software-as-a-Service applications over cloud computing infrastruc-
tures. Future Generation Computer Systems, 29(1):273–286, 2013.

[9] L. Wu, S. Garg, S. Versteeg, and R. Buyya. SLA-Based resource
provisioning for hosted Software-as-a-Service applications in cloud
computing environments. IEEE Transactions on Services Computing,
7(3):465–485, 2014.

[10] C. Alcaraz and J. Aguado. MonPaaS: an adaptive monitoring Platform
as a Service for cloud computing infrastructures and services. IEEE
Transactions on Services Computing, 8(1):65–78, 2015.

[11] X. Wu, X. Zhu, G. Wu, and W. Ding. Data mining with big data.
IEEE Transactions on Knowledge and Data Engineering, 26(1):97–
107, 2014.

[12] C. Liu, J. Chen, L. T. Yang, X. Zhang, C. Yang, R. Ranjan, and
K. Rao. Authorized public auditing of dynamic big data storage on
cloud with efficient verifiable fine-grained updates. IEEE Transac-
tions on Parallel and Distributed Systems, 25(9):2234–2244, 2014.

[13] M. Sookhak, A. Gani, M. Khan, and R. Buyya. Dynamic remote data
auditing for securing big data storage in cloud computing. Information
Sciences, 2015.

[14] Z. Wei, G. Pierre, and C. Chi. CloudTPS: Scalable transactions
for Web applications in the cloud. IEEE Transactions on Services
Computing, 5(4):525–539, 2012.

[15] C. Wang, N. Cao, K. Ren, and W. Lou. Enabling secure and
efficient ranked keyword search over outsourced cloud data. IEEE
Transactions on Parallel and Distributed Systems, 23(8):1467–1479,
2012.

[16] M. Qiu, L. Chen, Y. Zhu, J. Hu, and X. Qin. Online data allocation
for hybrid memories on embedded tele-health systems. In IEEE Int’l
Conf. on High Performance Computing and Communications, pages
574–579, Paris, 2014.

[17] S. Yi, A. Andrzejak, and D. Kondo. Monetary cost-aware check-
pointing and migration on Amazon cloud spot instances. IEEE
Transactions on Services Computing, 5(4):512–524, 2012.

[18] J. Zhan, L. Wang, X. Li, W. Shi, C. Weng, W. Zhang, and
X. Zang. Cost-aware cooperative resource provisioning for heteroge-
neous workloads in data centers. IEEE Transactions on Computers,
62(11):2155–2168, 2013.

[19] M. Cheung, J. She, and Z. Jie. Connection discovery using big
data of user-shared images in social media. IEEE Transactions on
Multimedia, 17(9):1417–1428, 2015.

[20] K. Aizawa, Y. Maruyama, H. Li, and C. Morikawa. Food balance
estimation by using personal dietary tendencies in a multimedia food
log. IEEE Transactions on Multimedia, 15(8):2176–2185, 2013.

[21] P. Zhang, Y. Gao, and M. Qiu. A data-oriented method for scheduling
dependent tasks on high-density multi-GPU systems. In 2015 IEEE
17th International Conference on High Performance Computing and
Communications, pages 694–699, New York, NY, USA, 2015. IEEE.

[22] P. Zhang, L. Liu, and Y. Deng. A data-driven paradigm for mapping
problems. Parallel Computing, 48:108–124, 2015.

[23] J. Yu, Y. Rui, and D. Tao. Click prediction for web image rerank-
ing using multimodal sparse coding. IEEE Transactions on Image
Processing, 23(5):2019–2032, 2014.

[24] J. Park and J. Yoo. Preprocessing techniques for high-efficiency data
compression in wireless multimedia sensor networks. Advances in
Multimedia, 2015:1, 2015.

[25] M. Chen, J. Han, and P. Yu. Data mining: an overview from a database
perspective. IEEE Transactions on Knowledge and data Engineering,
8(6):866–883, 1996.

[26] Y. Sakurai, Y. Matsubara, and C. Faloutsos. Mining and forecasting
of big time-series data. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pages 919–922,
Melbourne, Victoria, Australia, 2015. ACM.

[27] J. Yu, Y. Rui, and B. Chen. Exploiting click constraints and multi-view
features for image re-ranking. IEEE Transactions on Multimedia,
16(1):159–168, 2014.

[28] K. Gai, M. Qiu, H. Zhao, L. Tao, and Z. Zong. Dynamic energy-aware
cloudlet-based mobile cloud computing model for green computing.
Journal of Network and Computer Applications, 59:46–54, 2016.

[29] A. Zhou and B. He. Transformation-based monetary cost optimiza-
tions for workflows in the cloud. IEEE Transactions on Cloud
Computing, 2(1):85–98, 2014.

[30] X. Zhu, L. Yang, H. Chen, J. Wang, S. Yin, and X. Liu. Real-time
tasks oriented energy-aware scheduling in virtualized clouds. IEEE
Transactions on Cloud Computing, 2(2):168–180, 2014.

[31] Y. Gu, Y. Fu, A. Prakash, Z. Lin, and H. Yin. Multi-aspect, robust,
and memory exclusive guest OS fingerprinting. IEEE Transactions
on Cloud Computing, 2(4):380–394, 2014.

[32] M. Qiu, K. Gai, B. Thuraisingham, L. Tao, and H. Zhao. Proactive
user-centric secure data scheme using attribute-based semantic access
controls for mobile clouds in financial industry. Future Generation
Computer Systems, PP:1, 2016.

[33] J. Li, X. Tan, X. Chen, D. Wong, and F. Xhafa. Opor: enabling
proof of retrievability in cloud computing with resource-constrained
devices. IEEE Transactions on Cloud Computing, 3(2):195–205,
2015.

[34] R. Duan, R. Prodan, and X. Li. Multi-objective game theoretic
scheduling of bag-of-tasks workflows on hybrid clouds. IEEE Trans-
actions on Cloud Computing, 2(1):29–42, 2014.

[35] Q. Zhang, M. Zhani, R. Boutaba, and J. Hellerstein. Dynamic
heterogeneity-aware resource provisioning in the cloud. IEEE Trans-
actions on Cloud Computing, 2(1):14–28, 2014.

[36] F. Zhang, J. Cao, K. Hwang, K. Li, and S. Khan. Adaptive workflow
scheduling on cloud computing platforms with iterativeordinal opti-
mization. IEEE Transactions on Cloud Computing, 3(2):156–168,
2015.

[37] R. Xie and X. Jia. Data transfer scheduling for maximizing throughput
of big-data computing in cloud systems. IEEE Transactions on Cloud
Computing, PP(99):1, 2015.

[38] J. Hu, C. Xue, Q. Zhuge, W. Tseng, and E. H. Sha. Data allocation
optimization for hybrid scratch pad memory with SRAM and non-
volatile memory. IEEE Transactions on Very Large Scale Integration
Systems, 21(6):1094–1102, 2013.

[39] Y. Guo, Q. Zhuge, J. Hu, J. Yi, M. Qiu, and E. Sha. Data placement
and duplication for embedded multicore systems with scratch pad
memory. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 32(6):809–817, 2013.

[40] P. Panda, N. Dutt, and A. Nicolau. On-chip vs. off-chip memory:
the data partitioning problem in embedded processor-based systems.
ACM Transactions on Design Automations of Electronic Systems
(TODAES), 5(3):682–704, 2000.

[41] C. Cicconetti, L. Lenzini, A. Lodi, S. Martello, E. Mingozzi, and
M. Monaci. Efficient two-dimensional data allocation in IEEE 802.16
OFDMA. IEEE/ACM Transactions on Networking, 22(5):1645–1658,
2014.

[42] M. Vidyasagar. A metric between probability distributions on finite
sets of different cardinalities and applications to order reduction. IEEE
Transactions on Automatic Control, 57(10):2464–2477, 2012.


