More or less

I SEE PROBLEM-SOLVING - UKS2

 WORKED EXAMPLES
the same length

GARETH METCALFE

Available as PowerPoint and PDF from www.iseemaths.com

I SEE PROBLEM-SOLVING - UKS2 WORKED EXAMPLES

Task 1: Sum of the digits
Task 2: Decimal number line
Task 3: Rounding money
Task 4: Rounding puzzles
Task 5: Negatives on a number line
Task 6: Number sequences
Task 7: More, less, equal
Task 8: Four number sentences
Task 9: Subtraction number sentences
Task 10: Missing digits addition

Task 11: Missing digits subtraction
Task 12: Sum and difference
Task 13: Four numbers challenge
Task 14: Café calculations
Task 15: Multiplication missing digits
Task 16: Remainder of one-half
Task 17: Find the factors
Task 18: Number detective
Task 19: Athletics club ratios
Iask 20: Shoł accuracy statistics

I SEE PROBLEM-SOLVING - UKS2 WORKED EXAMPLES

Task 21: Pages read, pages left
Task 22: Clothes shop sale
Task 23: Fractions of a square
Task 24: Adding fractions
Task 25: Make one and a quarter
Task 26: Fractions of an amount
Task 27: Improper fractions
Task 28: Make two and a quarter
Task 29: Part-finished book
Task 30: Fractions and decimals

Task 31, Algebra: Combined weights
Task 32, Algebra: Sports ball weights
Task 33, Algebra: Hiring a surfboard
Task 34, Algebra: Dot pattern sequence
Task 35, Algebra: My secret number
Task 36, Measures: Sorting measures
Task 37, Measures: Time spent driving
Task 38, Measures: Lengths of time
Task 39, Measures: Ticket prices
Task 40, Angle: Missing angles

I SEE PROBLEM-SOLVING - UKS2 WORKED EXAMPLES

Task 41: Isosceles triangle angles
Task 42: Clock hands angles
Task 43: Change the perimeter
Task 44: Rectangle length
Task 45: Compound shape
Task 46: Combined shapes
Task 47: Triangle area
Task 48: Inside, edge or outside?
Task 49: Which vertices?
Task 50: Branching database

Task 51: Cube nets
Task 52: Cuboid dimensions
Task 53: Faces, edges, vertices
Task 54: Before/now pie charts
Task 55: Bike race line graphs
Task 56: Train timetables
Task 57: Average of 3 numbers
Task 58: Average ages

Task 1: Sum of the digits

To make the smallest possible number:

Task 1: Sum of the digits

To make the smallest possible number:

- Must be a 2-digit number
- Make the tens value as small as possible

Task 1: Sum of the digits

To make the smallest possible number:

- Must be a 2-digit number
- Make the tens value as small as possible

15

Task 1: Sum of the digits

To make the largest possible number:

Task 1: Sum of the digits

To make the largest possible number:

- Use as many digits as possible
- Use the digit 0

Task 1: Sum of the digits

To make the largest possible number:

- Use as many digits as possible
- Use the digit 0

Use four digits: 0, 1, 2, 3

Task 1: Sum of the digits

To make the largest possible number:

- Use as many digits as possible
- Use the digit 0
- Largest \rightarrow smallest digits put left \rightarrow right

Use four digits: 0, 1, 2, 3

Task 1: Sum of the digits

To make the largest possible number:

- Use as many digits as possible
- Use the digit 0
- Largest \rightarrow smallest digits put left \rightarrow right

Use four digits: 0, 1, 2, 3

3210

Task 2: Decimal number line

Example 1:

Task 2: Decimal number line

Example 1:

Task 2: Decimal number line

Example 1:

Task 2: Decimal number line

Example 2:

Task 2: Decimal number line

Example 2:

Task 2: Decimal number line

Example 3:

Task 2: Decimal number line

Example 3:

Task 3: Rounding money

Alex has £250, rounded to the
nearest £10

£245 \rightarrow £254

Task 3: Rounding money

Alex has £250, rounded to the
nearest £10

$$
£ 245 \rightarrow £ 254
$$

Task 3: Rounding money

Alex has £250, rounded to the nearest £10

Jim has $£ 400$, rounded to the nearest £100

$$
\underline{£ 245} \rightarrow £ 254
$$

$£ \mathbf{5 5 0} \rightarrow \mathbf{£ 4 4 9}$

Task 3: Rounding money

Alex has £250, rounded to the nearest £10

Jim has $£ 400$, rounded to the nearest £100

$$
£ 449-£ 245=\underline{£ 204}
$$

Task 4: Rounding puzzles

Part 1: nearest 100 is 4000

Task 4: Rounding puzzles
 Part 1: nearest 100 is 4000

Numbers in this range, to the nearest 100, are 4000

Task 4: Rounding puzzles
 Part 1: nearest 100 is 4000

Numbers in this range, to the nearest 100, are 4000

Largest possible whole number $=\underline{4049}$

Task 4: Rounding puzzles

Part 2: nearest 200 is $\mathbf{4 0 0 0}$

Task 4: Rounding puzzles
 Part 2: nearest 200 is $\mathbf{4 0 0 0}$

Numbers in this range, to the nearest 200, are 4000

Task 4: Rounding puzzles
 Part 2: nearest 200 is $\mathbf{4 0 0 0}$

Numbers in this range, to the nearest 200, are 4000

Largest possible whole number $=\underline{4099}$

Task 5: Negatives on number line

Task 5: Negatives on number line

more than 30

Task 5: Negatives on number line

Task 5: Negatives on number line

Example answer 1:

Task 5: Negatives on number line

Example answer 1:

Task 5: Negatives on number line

Example answer 2:

Task 5: Negatives on number line

Example answer 2:

Task 6: Number sequences

Can the difference between the numbers in the sequence be 3 ?

8, 5, 2...

Task 6: Number sequences

Can the difference between the numbers in the sequence be 3 ?

8, 5, 2...

No: -7 is the third negative number in this sequence

Task 6: Number sequences

Can the difference between the numbers in the sequence be 4 ?

9,5,1...

Task 6: Number sequences

Can the difference between the numbers in the sequence be 4 ?

9, 5, 1...

Yes: -7 is the second negative number in this sequence

Task 6: Number sequences

Can the difference between the numbers in the sequence be $\mathbf{5}$?

13, 8, 3...

Task 6: Number sequences

Can the difference between the numbers in the sequence be $\mathbf{5}$?

$13,8,3 \ldots$

Yes: -7 is the second negative number in this sequence

Task 6: Number sequences

Can the difference between the numbers in the sequence be $\mathbf{6}$?

17, 11,5...

Task 6: Number sequences

Can the difference between the numbers in the sequence be 6?

17,11,5...

Yes: -7 is the second negative number in this sequence

Task 6: Number sequences

Can the difference between the numbers in the sequence be $\mathbf{7}$?
$21,14,7 .$.

Task 6: Number sequences

Can the difference between the numbers in the sequence be 7 ?

$21,14,7 .$.

No: -7 is the first negative number in this sequence

Task 7: More, less, equal

$$
\begin{aligned}
& 4,5,6,7,8 \\
& 10-8<\square-\square \\
& 20>\square \times 3 \\
& \square+4=15-\square
\end{aligned}
$$

Task 7: More, less, equal

$$
\begin{aligned}
& 4,5,6,7,8 \quad \text { Where can } 8 \text { go? } \\
& 10-8<\square-\square \\
& 20>\square \times 3 \\
& \square+4=15-\square
\end{aligned}
$$

Task 7: More, less, equal

$$
\begin{array}{ll}
4,5,6,7,8 & \begin{array}{l}
\text { This is the only } \\
\text { place the } 8 \text { can } \\
\text { go, so it must go } \\
\text { there. } \\
\text { Where can } 7 \mathrm{go}
\end{array} \\
10-8<\boxed{8}-\square & \begin{array}{l}
\text { Whe }
\end{array} \\
\square+4=15-\square
\end{array}
$$

Task 7: More, less, equal

$$
\begin{array}{ll}
4,5,6,7 & \begin{array}{l}
\text { The } 7 \text { can't go in the } \\
\text { top two lines. It must } \\
\text { go on the bottom line. } \\
\text { 4 must be in the other } \\
\text { bottom box to make } \\
\text { the number sentence } \\
\text { balance. }
\end{array} \\
0-8<\boxed{8} \times \square & \begin{array}{l}
\text { the } 7 \text { and } 4 \text { can go in } \\
\text { either bottom box. } \\
\text { Where can } 6 \text { go? }
\end{array}
\end{array}
$$

Task 7: More, less, equal

This is solution 1

6 must go in the middle line space.

$$
\begin{aligned}
& 10-8<8-5 \\
& 20>6 \times 3 \\
& 7+4=15-4
\end{aligned}
$$

Task 7: More, less, equal

This is solution 2

$$
10-8<8-5
$$

$$
20>6 \times 3
$$

$$
4+4=15-7
$$

Task 8: Four number sentences

$$
\begin{aligned}
& 3,6,7,8,9 \\
& \square \times 3=18+\square \\
& 2<9-\square \\
& \square \div 2<4 \\
& 2 \times 2 \times 2 \times 2<\square+8
\end{aligned}
$$

Task 8: Four number sentences

$$
\begin{aligned}
& 3,6,7,8,9 \\
& \square \times 3=18+\square \\
& 2<9-\square \\
& \begin{array}{l}
\text { Which number can } \\
\text { go in the orange } \\
\text { box? }
\end{array} \\
& \square \div 2<4 \\
& 2 \times 2 \times 2 \times 2<\square+8
\end{aligned}
$$

Task 8: Four number sentences

$$
\begin{array}{ll}
3,6,7,8 & \begin{array}{l}
9 \text { is the only number } \\
\text { that can go in the } \\
\text { orange box. }
\end{array} \\
\square \times 3=18+\square & \begin{array}{l}
\text { Where can } 8 \text { go? }
\end{array} \\
2<9-\square \\
\square \div 2<4 \\
2 \times 2 \times 2 \times 2<9+8
\end{array}
$$

Task 8: Four number sentences

3, 7
$8 \times 3=18+6$

$$
\begin{aligned}
& 2<9-\square \\
& \square \div 2<4
\end{aligned}
$$

$$
2 \times 2 \times 2 \times 2<9+8
$$

Task 8: Four number sentences

This is the solution
$8 \times 3=18+6$
$2<9$ - 3
$7 \div 2<4$
$2 \times 2 \times 2 \times 2<9+8$

Task 9: Subtraction number sentences

H $-25<35$

$80-\mathrm{H}<39$

$$
\mathrm{H} \text { is a multiple of } 6
$$

Task 9: Subtraction number sentences

$$
H-25<35 \quad 60-25=35
$$

$$
80-H<39
$$

$$
\mathrm{H} \text { is a multiple of } 6
$$

Task 9: Subtraction number sentences

$$
H-25<35 \quad 59-25<35
$$

$$
80-H<39
$$

$$
\mathrm{H} \text { is a multiple of } 6
$$

Task 9: Subtraction number sentences

$$
H-25<3559-25<35 H \text { is } 59 \text { or less }
$$

$$
80-H<39
$$

$$
H \text { is a multiple of } 6
$$

Task 9: Subtraction number sentences

$$
H-25<35 \quad 59-25<35 \mathbf{H} \text { is } 59 \text { or less }
$$

$$
80-H<39
$$

$$
\mathrm{H} \text { is a multiple of } 6
$$

Task 9: Subtraction number sentences

$$
H-25<35 \quad 59-25<35 \mathbf{H} \text { is } 59 \text { or less }
$$

$$
80-H<39 \quad 80-41=39
$$

$$
\mathrm{H} \text { is a multiple of } 6
$$

Task 9: Subtraction number sentences

$$
H-25<35 \quad 59-25<35 \mathbf{H} \text { is } 59 \text { or less }
$$

$$
80-H<39 \quad 80-42<39
$$

$$
\mathrm{H} \text { is a multiple of } 6
$$

Task 9: Subtraction number sentences

$$
H-25<3559-25<35 \mathbf{H} \text { is } 59 \text { or less }
$$

$$
80-H<39 \quad 80-42<39 H \text { is } 42 \text { or more }
$$

H is a multiple of 6

Task 9: Subtraction number sentences

$$
H-25<35 \quad 59-25<35 \mathbf{H} \text { is } 59 \text { or less }
$$

$80-H<3980-42<39$
 H is 42 or more

H is a multiple of 6

Task 9: Subtraction number sentences

$$
H-25<35 \quad 59-25<35 \mathbf{H} \text { is } 59 \text { or less }
$$

$80-H<39 \quad 80-42<39 \quad \mathbf{H}$ is 42 or more

H is a multiple of $6 \quad \underline{42,48,54}$

Task 10: Missing digits addition

Task 11: Missing digits subtraction

Task 12: Sum and difference

Two numbers: sum =9, difference $=4$

Task 12: Sum and difference

Two numbers: sum =9, difference $=4$

6 and 3

7 and 2

Task 12: Sum and difference

Two numbers: sum =9, difference $=4$

6 and 3

6.5 and 2.5 | $6.5 \quad 2.5$ |
| :--- |
| sum $=9 \checkmark$ |

difference $=4 \boldsymbol{\downarrow}$

Task 13: Four numbers challenge

sum $=23$

Task 13: Four numbers challenge

sum $=23$

Task 13: Four numbers challenge

sum $=23$

Task 13: Four numbers challenge

$$
\text { sum = } 23
$$

Not possible with two whole numbers less than 7

Task 13: Four numbers challenge

sum $=23$

Task 13: Four numbers challenge

sum $=23$

Task 13: Four numbers challenge

$$
\text { sum = } 23
$$

7 and 6 only numbers less than 8 with sum of 13

Task 13: Four numbers challenge

sum $=23$

Task 13: Four numbers challenge

sum $=23$

Task 13: Four numbers challenge

sum $=23$

Task 13: Four numbers challenge

sum $=23$

Task 13: Four numbers challenge

$$
\text { sum = } 23
$$

Not possible with two whole numbers greater than 4

Task 13: Four numbers challenge

$$
\text { sum = } 23
$$

Answers
2, 6, 7, 8
3, 5, 6, 9
3, 4, 7, 9 \uparrow
All possible answers

Not possible with two whole numbers greater than 4

Task 14: Café calculations

Tea costs more than biscuit

Task 14: Café calculations

Tea and biscuit $=\mathbf{£ 1 . 3 0}$

Task 14: Café calculations

Tea 60p more than biscuit

Task 14: Café calculations

Task 14: Café calculations

Each section: $70 p \div 2=35 p$

Task 14: Café calculations

A biscuit costs 35p

Task 15: Multiplication missing digits

$68 \times \square 0=2720$

Task 15: Multiplication missing digits

Task 15: Multiplication missing digits

Task 15: Multiplication missing digits

Task 16: Remainder of one-half

When $\div 8$, a remainder of \square is equivalent to $\frac{1}{2}$

Task 16: Remainder of one-half

When $\div 8$, a remainder of 4 is equivalent to $\frac{1}{2}$
Example: $20 \div 8=2$ remainder $4=2 \frac{1}{2}$

Task 16: Remainder of one-half

Example method: work out which digits can go in this place.

X
 X

Task 16: Remainder of one-half

Example method: work out which digits can go in this place.

Try 3:

NOT a solution as the digits 2 and 8 are used twice.

$$
28 \div 8=3 \frac{1}{2}
$$

Task 16: Remainder of one-half

Example method: work out which digits can go in this place.

Try 4:

$$
\begin{aligned}
& 36 \div 8=4 \frac{1}{2} \\
& \text { This is a possible solution. }
\end{aligned}
$$

Task 16: Remainder of one-half

Example method: work out which digits can go in this place.

Try 5:
$44 \div 8=5 \frac{1}{2}$
NOT a solution as the digit 4 is used twice.

Task 16: Remainder of one-half

Example method: work out which digits can go in this place.

$52 \div 8=6 \frac{1}{2}$
NOT a solution as the digit 2 is used twice.

Task 16: Remainder of one-half

Example method: work out which digits can go in this place.

$60 \div 8=7 \frac{1}{2}$
This is a possible solution.
Try 7:

Task 16: Remainder of one-half

Example method: work out which digits can go in this place.

$$
76 \div 8=9 \frac{1}{2}
$$

This is a possible solution.
Try 9:

X
 Xx X 4 \times \times *

Task 16: Remainder of one-half

Example method: work out which digits can go in this place.

Possible solutions:

$60 \div 8=7 \frac{1}{2} \quad 36 \div 8=4 \frac{1}{2}$
$76 \div 8=9 \frac{1}{2}$

Task 17: Find the factors

532

$$
\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

Without calculating we know...

Task 17: Find the factors

532

$\begin{array}{lllllllll}\text { (1) (2) } & 3 & 4 & & 6 & 7 & 8 & 9\end{array}$

Without calculating we know...

Task 17: Find the factors

532

$\begin{array}{lllllllll}\text { (1) } & \text { (2) } & 3 & 4 & 7 & 6 & 7 & 8 & 9\end{array}$

600 is a multiple of 3
60 is a multiple of 3
540 is therefore a multiple of 3

Task 17: Find the factors

532

(1) (2) $\begin{array}{lllllll}\mathbf{x} & \mathbf{4} & \mathbf{x} & 6 & 7 & 8 & 9\end{array}$

600 is a multiple of 3
60 is a multiple of 3
540 is therefore a multiple of 3
So 3 is not a factor of 532.
$540-532=8.8$ is not a multiple of 3 .

Task 17: Find the factors

532

(1) (2) $\begin{array}{lllllll}\mathbf{x} & \mathbf{4} & 6 & 7 & 8 & 9\end{array}$

3 is not a factor of 532 , therefore and are not factors of 532.

Task 17: Find the factors

532

(1) (2) $\begin{array}{lllllll}\mathbf{x} & \mathbf{4} & \mathbf{x} & \mathbf{x} & \mathbf{7} & \mathbf{8} & \mathbf{x}\end{array}$

3 is not a factor of 532 , therefore 6 and 9 are not factors of 532.

Task 17: Find the factors

532

(1) (2) $\mathbf{x} \times 7 \times 8 \times$

4 is a factor of $100(4 \times 25=100)$
This means 4 is a factor of 500

Task 17: Find the factors

532

(1) (2) x (4) $x \quad x \quad 7 \quad 8 \quad x$

4 is a factor of $100(4 \times 25=100)$
This means 4 is a factor of 500
4 is a factor of $32(4 \times 8=32)$
So 4 is a factor of $532(500+32=532)$

Task 17: Find the factors

532

(1) (2) \mathbf{x} (4) $\mathbf{x} \times \mathbf{7}$
 7 is a factor of $490(7 \times 70=490)$

Task 17: Find the factors

532

7 is a factor of $490(7 \times 70=490)$
$532-490=42$

Task 17: Find the factors

532

(1) (2) x (4) x (7) $8 x$

7 is a factor of $490(7 \times 70=490)$
$532-490=42$
7 is a factor of $42(7 \times 6=42)$
So 7 is a factor of $532(490+42=532)$

Task 17: Find the factors

532

(1) (2) x (4) x (7) 8 x

8 is a factor of $480(8 \times 60=480)$

Task 17: Find the factors

532

(1) (2) x (4) $x \quad x$ (7) $8 x$

8 is a factor of $480(8 \times 60=480)$
$532-480=52$

Task 17: Find the factors

532

(1) (2) x (4) x (7) x

8 is a factor of $480(8 \times 60=480)$
$532-480=52$
8 is a not a factor of 52
So 8 is not a factor of 532

Task 18: Number detective

Digits with sum of $13:$
9 and 4
8 and 5
7 and 6

Task 18: Number detective

Digits with sum of $13:$	Number made with these digits:
9 and 4	94 and 49
8 and 5	85 and 58
7 and 6	76 and 67

Task 18: Number detective

Digits with sum of $13:$	Number made with these digits:
9 and 4	94 and 49
8 and 5	85 and 58
7 and 6	76 and 67
Multiple of 4	

Task 19: Athletics club ratios

Athletics Club, Week 1:

Twice as many girls as boys.

Task 19: Athletics club ratios

Athletics Club, Week 2:

For every boy there are three girls.

Task 19: Athletics club ratios

Athletics Club, Week 2:

For every boy there are three girls.
There are $\mathbf{2 4}$ children at athletics club.

Task 20: Shot accuracy statistics

Julia's average shots per match:
12 per match

12

shots missed per match

shots taken per match

Task 20: Shot accuracy statistics

Julia's average shots per match:
12 per match

12
shots scored per match

shots missed per match

shots taken per match

Task 20: Shot accuracy statistics

Julia's average shots per match:
12 per match

12
4 shots missed per match
shots taken per match

Task 20: Shot accuracy statistics

Julia's average shots per match:
12 per match

12

4shots missed per match

16 shots taken $\begin{aligned} & \text { per match }\end{aligned}$

Task 20: Shot accuracy statistics

Julia's average shots per match:
12 per match

12 shots scored per match

4 shots missed per match

16
shots taken per match

16 shots per match $\times 12$ matches
$=192$ shots in the season

Task 21: Pages read, pages left

pages read

Task 21: Pages read, pages left

pages read

Task 21: Pages read, pages left

pages read pages left

Task 21: Pages read, pages left

pages read pages left

60 pages	30 pages $\vdots 30$ pages $\vdots 30$ pages		
40%	20%	20%	20%

60 pages have been read

Task 22: Clothes shop sales

start price

Task 22: Clothes shop sales

start price

£8 off in the sale.
Next step: $£ 8$ is what fraction of $£ \mathbf{£ 2}$?

Task 22: Clothes shop sales

start price

$£ 8$ is one-quarter of $£ 32$. One-quarter is 25%. There is 25% off in the sale.

Task 23: Fraction of square

Split blue shape into sections

Task 23: Fraction of square

Task 23: Fraction of square

Task 23: Fraction of square

Task 24: Adding fractions

Example system to find all possible answers:

Task 24: Adding fractions

Example system to find all possible answers:

Task 24: Adding fractions

Example system to find all possible answers:

$$
\frac{1}{6}+\frac{1}{6}=\frac{1}{3}
$$

Task 24: Adding fractions

Example system to find all possible answers:

$\frac{1}{6}+\frac{1}{6}=\frac{1}{3}$

Task 24: Adding fractions

Example system to find all possible answers:

$$
\frac{1}{6}+\frac{1}{6}=\frac{1}{3}
$$

Task 24: Adding fractions

Example system to find all possible answers:

$\frac{1}{6}+\frac{1}{6}=\frac{1}{3} \quad \frac{1}{6}+\frac{1}{2}=\frac{2}{3}$

Task 24: Adding fractions

Example system to find all possible answers:

$\frac{1}{6}+\frac{1}{6}=\frac{1}{3} \quad \frac{1}{6}+\frac{1}{2}=\frac{2}{3} \quad \frac{2}{6}+\frac{1}{3}=\frac{2}{3}$

Task 24: Adding fractions

Example system to find all possible answers:

$$
\frac{1}{6}+\frac{1}{6}=\frac{1}{3} \quad \frac{1}{6}+\frac{1}{2}=\frac{2}{3} \quad \frac{2}{6}+\frac{1}{3}=\frac{2}{3} \quad \frac{3}{6}+\frac{1}{6}=\frac{2}{3}
$$

Task 24: Adding fractions

Example system to find all possible answers:

$$
\frac{1}{6}+\frac{1}{6}=\frac{1}{3} \quad \frac{1}{6}+\frac{1}{2}=\frac{2}{3} \quad \frac{2}{6}+\frac{1}{3}=\frac{2}{3} \quad \frac{3}{6}+\frac{1}{6}=\frac{2}{3}
$$

Task 25: Make one and a quarter

Example answer 1:

Task 25: Make one and a quarter

Example answer 1:

Task 25: Make one and a quarter

Example answer 1:

$$
\frac{3}{4}+\frac{\square}{2}=1 \frac{1}{4}
$$

Task 25: Make one and a quarter

Example answer 2:

$$
\frac{3}{6}+\frac{\square}{\square}=1 \frac{1}{4}
$$

Task 25: Make one and a quarter

Example answer 2:

$$
\frac{3}{6}+\frac{3}{4}=1 \frac{1}{4}
$$

Task 25: Make one and a quarter

Example answer 3:

Task 25: Make one and a quarter

Example answer 3:

$$
\frac{3}{8}+\frac{7}{8}=1 \frac{1}{4}
$$

Task 26: Fractions of an amount

Example answer 1:

Task 26: Fractions of an amount

Example answer 1:

Task 26: Fractions of an amount

Example answer 1:

Task 26: Fractions of an amount

Example answer 1:
$\frac{2}{\sqrt[3]{ }}$ of $48=32$

Task 26: Fractions of an amount

Example answer 2:

Task 26: Fractions of an amount

Example answer 2:

Task 26: Fractions of an amount

Example answer 2:

Task 26: Fractions of an amount

Example answer 3:

Task 26: Fractions of an amount

Example answer 3:

Task 26: Fractions of an amount

Example answer 3:

$\frac{2}{5}$ of $80=32$

Task 27: Improper fractions

Can it be 17 fifths?

Task 27: Improper fractions

$\begin{aligned} & \text { Can it be } \\ & \text { fifths? }\end{aligned} \frac{17}{\square 5}=2 \frac{\square}{\square}$

NOT a solution

Task 27: Improper fractions

Canit be 17 sixths?

Task 27: Improper fractions

$\begin{aligned} & \text { Can it be } \\ & \text { sixths? }\end{aligned} \frac{17}{6}=2 \frac{5}{6}$

1						
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	

$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

$$
\begin{aligned}
& \frac{17}{6}=2 \frac{5}{6} \\
& \text { Solution } 1
\end{aligned}
$$

Task 27: Improper fractions

Canit be 17 2 믐

Task 27: Improper fractions

$\begin{aligned} & \text { Can it be } \\ & \text { sevenths? }\end{aligned} \frac{17}{\sqrt{7}}=2 \frac{3}{7}$

1						
$\frac{1}{7}$						

$\frac{17}{7}=2 \frac{3}{7}$
Solution 2

Task 27: Improper fractions

Canit be 17
 eighths?

 \section*{Task 27: Improper fractions
 \section*{Task 27: Improper fractions

 $\begin{aligned} & \text { Can it be } \\ & \text { eighths? }\end{aligned} \frac{17}{8}=2 \frac{\square}{8}$}

 $\begin{aligned} & \text { Can it be } \\ & \text { eighths? }\end{aligned} \frac{17}{8}=2 \frac{\square}{8}$}
$\frac{1}{8}$

$$
\frac{17}{8}=2 \frac{1}{8}
$$

Solution 3

Task 27: Improper fractions

Canit be 17 ninths?

Task 27: Improper fractions

\section*{| $\begin{array}{l}\text { Can it be be } \\ \text { ninths? }\end{array}$ |
| :--- |
| 9 |$\frac{17}{\square}$}

$$
\begin{aligned}
& \frac{17}{9}=1 \frac{8}{9} \\
& \text { NOT a solution }
\end{aligned}
$$

Task 28: Make two and a quarter

Example answer 1:

$$
\frac{\square}{\square} \times \square=2 \frac{1}{4}
$$

Task 28: Make two and a quarter

Example answer 1:

$$
\frac{\square}{\square} \times \square=2 \frac{1}{4}
$$

Task 28: Make two and a quarter

Example answer 1:

$$
\frac{\square}{\square} \times \square=2 \frac{1}{4}
$$

Task 28: Make two and a quarter

Example answer 2:

$\frac{\square}{\square} \times \square=2 \frac{1}{4}$

Task 28: Make two and a quarter

Example answer 2:

$$
\frac{3}{4} \times \sqrt{3}=2 \frac{1}{4}
$$

Task 28: Make two and a quarter

Example answer 3:

$\frac{\square 3}{8} \times \square=2 \frac{1}{4}$

Task 28: Make two and a quarter

Example answer 3:

$$
\frac{3}{8} \times 6=2 \frac{1}{4}
$$

Task 29: Part-finished book

total pages

pages Megan has read

Task 29: Part-finished book

total pages

Megan's book is $\mathbf{2 2 5}$ pages long.

Task 30: Fractions and decimals

Task 31: Combined weights

90 kg

Task 31: Combined weights

90 kg

Jack weighs 10 kg more than Sam.

Task 31: Combined weights

Jack weighs 10 kg more than Sam.
Sam and Jack weigh 80kg in total.

Task 31: Combined weights

Jack weighs 10 kg more than Sam.
Sam and Jack weigh 80kg in total.

Task 31: Combined weights

Sam weighs 35 kg
Jack weighs 10kg more than Sam.
Sam and Jack weigh 80kg in total.

Task 32: Sports ball weights

Task 32: Sports ball weights

A golf ball weighs $\mathbf{4 6 g}$

Task 32: Sports ball weights

Task 32: Sports ball weights

A tennis ball weighs 58g

Task 32: Sports ball weights

Task 32: Sports ball weights

A cricket ball weighs $\mathbf{1 6 0 g}$

Task 33 Question: Hiring a surfboard

£7 to hire a surfboard plus $£ \mathbf{£}$ per half-hour.

starting cost

\downarrow
 £7

Task 33 Question: Hiring a surfboard

£7 to hire a surfboard plus $£ \mathbf{~} \mathbf{3}$ per half-hour.

starting cost

cost for six half-hours

Task 33 Question: Hiring a surfboard

£7 to hire a surfboard plus $£ 3$ per half-hour.

starting cost

Total cost $=\underline{\mathbf{£ 2 5}}$

Task 33 Question: Hiring a surfboard

£7 to hire a surfboard plus $£ 3$ per half-hour.

starting cost
\downarrow
£7

£34

Task 33 Question: Hiring a surfboard

£7 to hire a surfboard plus $£ 3$ per half-hour.

starting cost
\downarrow

£7
 $£ 27$

£34

Task 33 Question: Hiring a surfboard

£7 to hire a surfboard plus $£ 3$ per half-hour.

starting cost

Task 33 Question: Hiring a surfboard

£7 to hire a surfboard plus $£ 3$ per half-hour.

starting cost
9 half-hours costing $£ 3$ each

\downarrow | | $£ 7$ | $£ 3$ | $£ 3$ | $£ 3$ | $£ 3$ | $£ 3$ | $£ 3$ | $£ 3$ | $£ 3$ | $£ 3$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

£34

Task 33 Question: Hiring a surfboard

£7 to hire a surfboard plus $£ 3$ per half-hour.

starting cost
9 half-hours costing $£ 3$ each
\downarrow

$$
\begin{array}{l|l|l|l|l|l|}
\hline £ 7 & £ 3 & £ 3 & £ 3 & £ 3 \\
\hline
\end{array}
$$

£34

Jack goes surfing for $4 \frac{1}{2}$ hours

Task 34: Dot pattern sequence

 Method 1:

Task 34: Dot pattern sequence

Method 1: 4 dots plus 3 more dots each picture

4 dots

$4+3$ dots
$4+1 \times 3$ dots

$4+3+3$ dots
$4+2 \times 3$ dots

Task 34: Dot pattern sequence

Method 1: 4 dots plus 3 more dots each picture

4 dots

Picture 2:

$4+3$ dots
$4+1 \times 3$ dots

Picture 3:

$4+3+3$ dots
$4+2 \times 3$ dots

Picture 8: $4+7 \times 3$
$=25$ dots

Picture 16: $4+15 \times 3$
$=49$ dots

Task 34: Dot pattern sequence

Method 2:

Task 34: Dot pattern sequence

Method 2: 3 more dots each picture plus 1

1 + 3 dots

$1+2 \times 3$ dots

$1+3 \times 3$ dots

Task 34: Dot pattern sequence

Method 2: 3 more dots each picture plus 1

1 + 3 dots

Picture 2:

7 dots
$1+2 \times 3$ dots

Picture 3:

$1+3 \times 3$ dots

Picture 8: $8 \times 3+1$
$=25$ dots

Picture 16: $16 \times 3+1$
$=49$ dots

Task 35: My secret number

Could the secret number be 4 ?

Task 35: My secret number

Could the secret number be 4 ?

19

Less than 20.

The secret number is more than 4.

Task 35: My secret number

Could the secret number be 5 ?

Task 35: My secret number

Could the secret number be 5 ?

22
The secret number could be 5 .
Next try 6.

Task 35: My secret number

Could the secret number be 6 ?

Task 35: My secret number

Could the secret number be 6?

The secret number could be 6 .
Next try 7.

Task 35: My secret number

Could the secret number be 7 ?

28

The secret number could be 7 .
Next try 8.

Task 35: My secret number

Could the secret number be 8 ?

Task 35: My secret number

Could the secret number be 8 ?

31

More than 29.

The secret number can be 5, 6 or 7 .

Task 36: Sorting measures

measures of metric measures
length
gallons
Position these measures: inches, metres

Task 36: Sorting measures

measures of metric measures
length
inches
measures of weight
ounces
gallons
Position these measures: inches, metres

Task 36: Sorting measures

measures of metric measures length
inches
measures of weight
ounces
gallons
Position these measures: hours, millilitres (ml)

Task 36: Sorting measures

measures of metric measures
length
inches

metres

millilitres
hours

Position these measures: hours, millilitres (ml)

Task 36: Sorting measures

measures of metric measures
length
inches
hours
gallons
Position these measures: grams, stones

Task 36: Sorting measures

measures of metric measures measures of length
inches

metres

millilitres
hours
gallons
Position these measures: grams, stones

Task 37: Time spent driving

Example Method 1:

$\frac{3}{4}$ hour drive each way $=1 \frac{1}{2}$ hours driving per day

Task 37: Time spent driving

Example Method 1:

$\frac{3}{4}$ hour drive each way $=1 \frac{1}{2}$ hours driving per day
5 days $\times 1 \frac{1}{2}$ hours $=7 \frac{1}{2}$ hours per week
7 hours 30 minutes driving to work each week

Task 37: Time spent driving

Example Method 2:

$\frac{3}{4}$ hour drive each way, 10 journeys
$\frac{3}{4} \times 10$

Task 37: Time spent driving

Example Method 2:

$\frac{3}{4}$ hour drive each way, 10 journeys
$\frac{3}{4} \times 10=\frac{30}{4}$
$\frac{30}{4}=7 \frac{2}{4}$ hours per week
7 hours 30 minutes driving to work each week

Task 37: Time spent driving

Example Method 3:

$\frac{3}{4}$ hour drive each way (45 minutes), 10 journeys
45 minutes $\times 10$

Task 37: Time spent driving

Example Method 3:

$\frac{3}{4}$ hour drive each way (45 minutes), 10 journeys
45 minutes $\times 10=450$ minutes
450 minutes $=7$ hours 30 minutes
7 hours 30 minutes driving to work each week

Task 38: Lengths of time

minutes \rightarrow hours \rightarrow days \rightarrow weeks

5400 minutes $\quad \frac{1}{2}$ week 72 hours 4 days

Task 38: Lengths of time

minutes \rightarrow hours \rightarrow days \rightarrow weeks
5400 minutes $\quad \frac{1}{2}$ week 72 hours 4 days

5400 mins $\div 60$
$=90$ hours

shortest

longest

Task 38: Lengths of time

minutes \rightarrow hours \rightarrow days \rightarrow weeks

5400 minutes I

$\frac{1}{2}$ week 72 hours 4 days

 1$3 \frac{1}{2}$ days $\times 24$
$=84$ hours

shortest

longest

Task 38: Lengths of time

 minutes \rightarrow hours \rightarrow days \rightarrow weeks5400 minutes 1
5400 mins $\div 60 \quad 3 \frac{1}{2}$ days $\times 24$
$=90$ hours
$\frac{1}{2}$ week 72 hours 4 days

4 days $\times 24$
$=96$ hours

shortest

longest

Task 38: Lengths of time

$$
\text { minutes } \rightarrow \text { hours } \rightarrow \text { days } \rightarrow \text { weeks }
$$

5400 minutes 1
5400 mins $\div 60 \quad 3 \frac{1}{2}$ days $\times 24$
$=90$ hours \downarrow ays $\times 24$
$\frac{1}{2}$ week 72 hours $\begin{array}{ll}3 \frac{1}{2} \text { days } \times 24 & 4 \text { days } \times 24 \\ =84 \text { hours } & =96 \text { hours }\end{array}$ $\begin{array}{ll}3 \frac{1}{2} \text { days } \times 24 & 4 \text { days } \times 24 \\ =84 \text { hours } & =96 \text { hours }\end{array}$ $\begin{array}{ll}3 \frac{1}{2} \text { days } \times 24 & 4 \text { days } \times 24 \\ =84 \text { hours } & =96 \text { hours }\end{array}$

4 days I

72 hours $\frac{1}{2}$ week
shortest
longest

Task 39: Ticket prices

£14.10

£23.50

Task 39: Ticket prices

Two child tickets $=\mathbf{£ 9 . 4 0}$

Task 39: Ticket prices

$$
£ 23.50-£ 14.10
$$

$$
£ 14.10=£ 9.40
$$

£23.50

One child ticket $=£ 9.40 \div 2=\mathbf{£ 4 . 7 0}$

Task 40: Missing angles

What is the size of angle a ?

Task 40: Missing angles

What is the size of angle a ?

Task 40: Missing angles

What is the size of angle a ?

180°

145°

Task 40: Missing angles

What is the size of angle a ?

180°

145°

 35°
Task 40: Missing angles

What is the size of angle a ?

Task 40: Missing angles

Task 40: Missing angles

What is the size of angle a ?

$$
a=75^{\circ}
$$

Task 41: Isosceles triangle angles

Isosceles triangles have two identical angles

Task 41: Isosceles triangle angles

Task 41: Isosceles triangle angles

Task 41: Isosceles triangle angles

Task 41: Isosceles triangle angles

$$
360^{\circ}-74^{\circ}=286^{\circ}
$$

Task 42: Clock hands angles

Clock face split into 12

Task 42: Clock hands angles

Clock face split into 12

Angle between hands: $360^{\circ} \div 12=30^{\circ}$

Task 42: Clock hands angles

Task 42: Clock hands angles

Task 42: Clock hands angles

Task 43: Change the perimeter

area $=24$ squares perimeter $=20$

Task 43: Change the perimeter

area $=24$ squares perimeter $=20$

area $=24$ squares perimeter $=22$
'For rectangles with the same area, thinner rectangles have a larger perimeter.'

Task 43: Change the perimeter

area $=24$ squares perimeter $=20$

area $=24$ squares perimeter $=22$
'For rectangles with the same area, thinner rectangles have a larger perimeter.'

Task 44: Rectangle length

- Length is double width.
- Area to neares $100 \mathrm{~cm}^{2}$ is $200 \mathrm{~cm}^{2}$.
- Smallest length of rectangle.

Trial 1: length $=20 \mathrm{~cm}$, width $=10 \mathrm{~cm}$

Task 44: Rectangle length

- Length is double width.
- Area to nearest $100 \mathrm{~cm}^{2}$ is $200 \mathrm{~cm}^{2}$.
- Smallest length of rectangle.

Trial 1: length $=20 \mathrm{~cm}$, width $=10 \mathrm{~cm}$

Task 44: Rectangle length

- Length is double width.
- Area to nearest $100 \mathrm{~cm}^{2}$ is $200 \mathrm{~cm}^{2}$.
- Smallest length of rectangle.

Trial 1: length $=20 \mathrm{~cm}$, width $=10 \mathrm{~cm}$

Next try a smaller rectangle.

Task 44: Rectangle length

- Length is double width.
- Area to neares $100 \mathrm{~cm}^{2}$ is $200 \mathrm{~cm}^{2}$.
- Smallest length of rectangle.

Trial 2: length $=16 \mathrm{~cm}$, width $=8 \mathrm{~cm}$

Task 44: Rectangle length

- Length is double width.
- Area to nearest $100 \mathrm{~cm}^{2}$ is $200 \mathrm{~cm}^{2}$.
- Smallest length of rectangle.

Trial 2: length $=16 \mathrm{~cm}$, width $=8 \mathrm{~cm}$

Task 44: Rectangle length

- Length is double width.
- Area to nearest $100 \mathrm{~cm}^{2}$ is $200 \mathrm{~cm}^{2}$.
- Smallest length of rectangle.

Trial 2: length $=16 \mathrm{~cm}$, width $=8 \mathrm{~cm}$

Does not round to 200.
Next try a larger rectangle.

Task 44: Rectangle length

- Length is double width.
- Area to nearest $100 \mathrm{~cm}^{2}$ is $200 \mathrm{~cm}^{2}$.
- Smallest length of rectangle.

Trial 3: length $=18 \mathrm{~cm}$, width $=9 \mathrm{~cm}$

Task 44: Rectangle length

- Length is double width.
- Area to nearest $100 \mathrm{~cm}^{2}$ is $200 \mathrm{~cm}^{2}$.
- Smallest length of rectangle.

Trial 3: length $=18 \mathrm{~cm}$, width $=9 \mathrm{~cm}$

Task 44: Rectangle length

- Length is double width.
- Area to nearest $100 \mathrm{~cm}^{2}$ is $200 \mathrm{~cm}^{2}$.
- Smallest length of rectangle.

Trial 3: length $=18 \mathrm{~cm}$, width $=9 \mathrm{~cm}$

This is the smallest possible rectangle. Length $=18 \mathrm{~cm}$

Task 45: Compound shape

Lengths of missing sides

Task 45: Compound shape

Lengths of missing sides

Task 45: Compound shape

Lengths of missing sides

12m

Task 45: Compound shape

Lengths of missing sides

12m

Task 45: Compound shape

Lengths of missing sides

Task 45: Compound shape

Lengths of missing sides

Task 45: Compound shape

Lengths of missing sides

Task 45: Compound shape

Lengths of missing sides

Task 45: Compound shape

Lengths of missing sides

Task 45: Compound shape

Lengths of missing sides

Task 45: Compound shape

Lengths of missing sides

Task 45: Compound shape

Lengths of missing sides

Task 45: Compound shape

Lengths of missing sides

Task 45: Compound shape

Lengths of missing sides

Task 45: Compound shape

Lengths of missing sides 12m

$54 \mathrm{~m}^{2}+36 \mathrm{~m}^{2}=9 \mathrm{~m}^{2}$

Task 45: Compound shape

Lengths of missing sides

Task 45: Compound shape

Lengths of missing sides

Task 45: Compound shape

Lengths of missing sides

Task 45: Compound shape

Lengths of missing sides

Task 46: Combined shapes

Task 47: Triangle area

Task 47: Triangle area

When length $B=16 \mathrm{~cm}$ Area of triangle: $16^{2} \div 2=128 \mathrm{~cm}^{2}$

Task 47: Triangle area

When length $B=16 \mathrm{~cm}$ Area of triangle:

 $16^{2} \div 2=128 \mathrm{~cm}^{2}$Less than $150 \mathrm{~cm}^{2} \boldsymbol{V}$
Now try 17cm

Task 47: Triangle area

When length $B=17 \mathrm{~cm}$ Area of square: $17^{2} \div 2=289 \mathrm{~cm}^{2}$

Task 47: Triangle area

Task 47: Triangle area

Task 47: Triangle area

When length $B=18 \mathrm{~cm}$ Area of square: $18^{2}=324 \mathrm{~cm}^{2}$

Task 47: Triangle area

When length $B=18 \mathrm{~cm}$ Area of triangle: $18^{2} \div 2=162 \mathrm{~cm}^{2}$

Task 47: Triangle area

> When length $B=18 \mathrm{~cm}$ Area of triangle: $18^{2} \div 2=162 \mathrm{~cm}^{2}$
> More than $150 \mathrm{~cm}^{2} \boldsymbol{X}$
> Largest length $B=17 \mathrm{~cm}$

Task 48: Inside, edge or outside?

(2,12)
$(14,12)$

$(2,4)$
$(14,4)$

	Inside	Edge	Outside
$(6,10)$			
$(9,14)$			
$(14,9)$			
$(13,5)$			

Task 48: Inside, edge or outside?

	Inside	Edge	Outside
$(6,10)$			
$(9,14)$			\swarrow
$(14,9)$			
$(13,5)$			

Task 48: Inside, edge or outside?

Task 48: Inside, edge or outside?

Task 49: Which vertices?

Task 49: Which vertices?

$A=(4,9)$

Task 49: Which vertices?

$A=(4,9)$
 $D=(4,2)$

Task 49: Which vertices?

$A=(4,9)$
 $D=(4,2)$

We don'† know the x coordinate of points B and C

Task 50: Branching database

Example 1:

Task 50: Branching database

Example 1:

Task 50: Branching database

Example 1:

Task 50: Branching database

Example 1:

Does the shape have a right angle?

Are the opposite angles equal?

Task 50: Branching database

Example 2:

Task 50: Branching database

Example 2:

Task 50: Branching database

Example 2:

Are there adjacent sides that are the same length?

Does the shape have a reflex angle?

Task 50: Branching database

Example 2:

Are there adjacent sides that are the same length?

Does the shape have a reflex angle?

Does the shape have two obtuse angles?

Task 51: Cube nets

Tip: Imagine one face staying still and the other faces folding around it.

Task 51: Cube nets

Task 51: Cube nets

These faces are opposite.

Task 51: Cube nets

Task 51: Cube nets

\square Imagine this face staying still.
 These faces are opposite.

Task 51: Cube nets

Task 52: Cuboid dimensions

Square face (sides same length)
Rectangular face
$45 \mathrm{~cm}^{3}$

Task 52: Cuboid dimensions

$$
s \times s \times r=45 \mathrm{~cm}^{3}
$$

Task 52: Cuboid dimensions

$$
s \times s \times r=45 \mathrm{~cm}^{3}
$$

$S \times S$ is a factor of 45

What could the length of s be?

Task 52: Cuboid dimensions

$$
s \times s \times r=45 \mathrm{~cm}^{3}
$$

$$
s=3 \mathrm{~cm}
$$

Task 52: Cuboid dimensions

$$
s \times s \times r=45 \mathrm{~cm}^{3}
$$

$s=3 \mathrm{~cm}$
$r=5 \mathrm{~cm}$

Task 53: Faces, edges, vertices

Note:
4 new vertices at the top.
1 vertices cut off from top of pyramid.
In total 3 extra vertices.

Task 54: Before/now pie charts

Running club
 Year Group
 Gender

(start of term) 12 children

■ Y3
■ Y4

- Y5
- Y6

Task 54: Before/now pie charts

Running club
 Year Group
 Gender

(start of term) 12 children

- Y3

■ Y4

- Y5
- Y6

Task 54: Before/now pie charts

Running club
 Year Group
 Gender

(start of term) 12 children

- Y3

■ Y4

- Y5
- Y6

Task 54: Before/now pie charts

Task 55: Bike race line graphs (question 1)

'I started the race quickly.'

Task 55: Bike race line graphs (question 1)

 High speed at the start

Low speed at the start

'I started the race quickly.'

Task 55: Bike race line graphs (question 1)

'There was a big uphill climb half-way through the race.'

Task 55: Bike race line graphs (question 1)

'There was a big uphill climb half-way through the race.'

Task 55: Bike race line graphs (question 1)

'I slowed down for the last 5km but I did a sprint finish.'

Task 55: Bike race line graphs (question 1)

Sprint finish shown by sudden, short increase in speed $\boldsymbol{\downarrow}$

Increase in speed gradual, so not showing a sprint finish \boldsymbol{X}

'I slowed down for the last 5km but I did a sprint finish.'

Task 55: Bike race line graphs (question 2)

Example Graph:

‘I started quickly - first 3km of the race was downhill.'

Task 55: Bike race line graphs (question 2)

Example Graph:

‘I started quickly - first 3km of the race was downhill.'

Task 55: Bike race line graphs (question 2)

Example Graph:

'I slowed down after that, cycling at a similar speed in the middle part of the race.'

Task 55: Bike race line graphs (question 2)

Example Graph:

'I slowed down after that, cycling at a similar speed in the middle part of the race.'

Task 55: Bike race line graphs (question 2)

Example Graph:

'There was a long hill that started 15km into the race.'

Task 55: Bike race line graphs (question 2)

Example Graph:

'There was a long hill that started 15km into the race.'

Task 55: Bike race line graphs (question 2)

Example Graph:

'The fastest part of my race was the last 2km.'

Task 55: Bike race line graphs (question 2)

Example Graph:

'The fastest part of my race was the last 2km.'

Task 56: Train timetables

Stan gets to Doncaster train station at 7:35am.

Sheffield	$6: 20$	$7: 04$	$7: 58$	$8: 45$
Doncaster	$6: 47$	$7: 33$	$8: 25$	$9: 14$
York	$7: 14$	$8: 00$	$8: 52$	$9: 41$
Darlington	$7: 43$	$8: 29$	$9: 21$	$10: 11$
Durham	$8: 01$	$8: 48$	$9: 39$	$10: 30$
Newcastle	$8: 14$	$9: 01$	$9: 52$	$10: 43$

Task 56: Train timetables

Stan gets to Doncaster train station at 7:35am.

Sheffield	$6: 20$	$7: 04$	$7: 58$	$8: 45$
Doncaster	$6: 47$	$7: 33$	$\mathbf{8 : 2 5}$	$9: 14$
York	$7: 14$	$8: 00$	$8: 52$	$9: 41$
Darlington	$7: 43$	$8: 29$	$9: 21$	$10: 11$
Durham	$8: 01$	$8: 48$	$9: 39$	$10: 30$
Newcastle	$8: 14$	$9: 01$	$9: 52$	$10: 43$

The next train from Doncaster leaves at 8:25.

Task 56: Train timetables

Stan gets to Doncaster train station at 7:35am.

Sheffield	$6: 20$	$7: 04$	$7: 58$	$8: 45$
Doncaster	$6: 47$	$7: 33$	$\mathbf{8 : 2 5}$	$9: 14$
York	$7: 14$	$8: 00$	$8: 52$	$9: 41$
Darlington	$7: 43$	$8: 29$	$9: 21$	$10: 11$
Durham	$8: 01$	$8: 48$	$\mathbf{9 : 3 9}$	$10: 30$
Newcastle	$8: 14$	$9: 01$	$9: 52$	$10: 43$

The next train from Doncaster leaves at 8:25
Stan will arrive in Durham at $\underline{9: 39}$

Task 57: Average of 3 numbers

Task 57: Average of 3 numbers

Task 57: Average of 3 numbers

The three numbers have an average of 6.

Task 57: Average of 3 numbers

Therefore, the sum of the three numbers is 18.

Task 57: Average of 3 numbers

Can the smallest and largest numbers be 2 and 7 ?

Task 57: Average of 3 numbers

Can the smallest and largest numbers be 2 and $\mathbf{7 ?}$ No: to have an average of 6 , the other number is 9 . This makes the difference between the largest and smallest numbers incorrect.

Task 57: Average of 3 numbers

Can the smallest and largest numbers be 3 and 8 ?

Task 57: Average of 3 numbers

Can the smallest and largest numbers be $\mathbf{3}$ and 8 ?
Yes: to have an average of 6 , the other number is 7 .

Task 57: Average of 3 numbers

Can the smallest and largest numbers be 4 and $9 ?$

Task 57: Average of 3 numbers

Can the smallest and largest numbers be $\mathbf{4}$ and $\mathbf{9 ?}$
Yes: to have an average of 6 , the other number is 5 .

Task 57: Average of 3 numbers

Can the smallest and largest numbers be 5 and $10 ?$

Task 57: Average of 3 numbers

Can the smallest and largest numbers be 5 and 10 ?
No: to have an average of 6 , the other number is 3 . This makes the difference between the largest and smallest numbers incorrect.

Task 58: Average ages

Three children, ages unknown.

Task 58: Average ages

Three children, ages unknown, average age of 7.

Task 58: Average ages

Sum of three children's ages is 21.

21

Task 58: Average ages

Harry walks in.

21

Task 58: Average ages

The average age for the four people is 9.

Task 58: Average ages

The sum of the ages for the four people is 36 .

Task 58: Average ages

The sum of the ages for the four people is 36 .

Harry is 15 years old.

