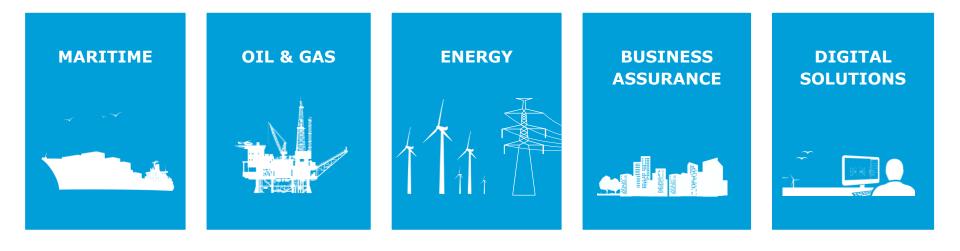

DNV·GL

Hydrogen and Fuel Cells in Ports and Shipping Workshop

The Path to Hydrogen Shipping


Gopal Nair/ Anthony Teo 09 October 2018

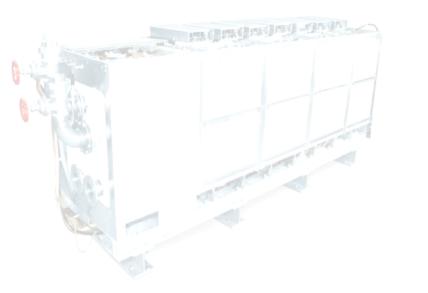
Hydrogen Means Business in California!

Our vision: global impact for a safe and sustainable future

TECHNOLOGY & RESEARCH

Global reach – local competence

Industry consolidation



1600 employees and 75 offices in North America

Agenda

- 1. Intro- Motivation Drivers
- 2. Technology overview
- 3. Regulation update
- 4. Maritime Fuel Cell Development / Projects

Introduction

Motivation

- Improvement of Ship Energy Efficiency
- Reduction of emissions to air
- Reaching insignificant noise and vibration level

Driver

- Environmental regulations and initiatives to
 - Increase efficiency of ship operation
 - Reduce NO_X , SO_X , CO_2 and particle (PM) emissions

Enhancement of Ship's emissions, efficiency and comfort

- Fuel option
 - HFO + scrubber
 - MGO
 - LNG
 - Other low-flashpoint fuels
- Energy efficiency
 - Hull form
 - Machinery improvement
 - Alternative energy converters
 - Logistics and speed
 - Speed reduction
 - Vessel utilization
 - Alternative Sea routes

Abstract from DNV GL Energy Transition Outlook 2017: Maritime Forecast to 2050

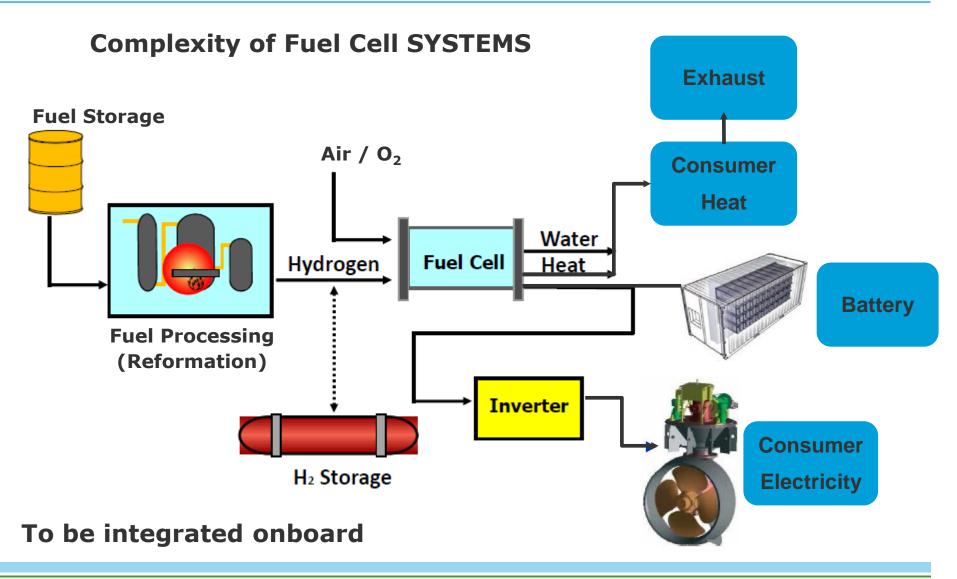
Maritime Fuel Cells are promising to enhance

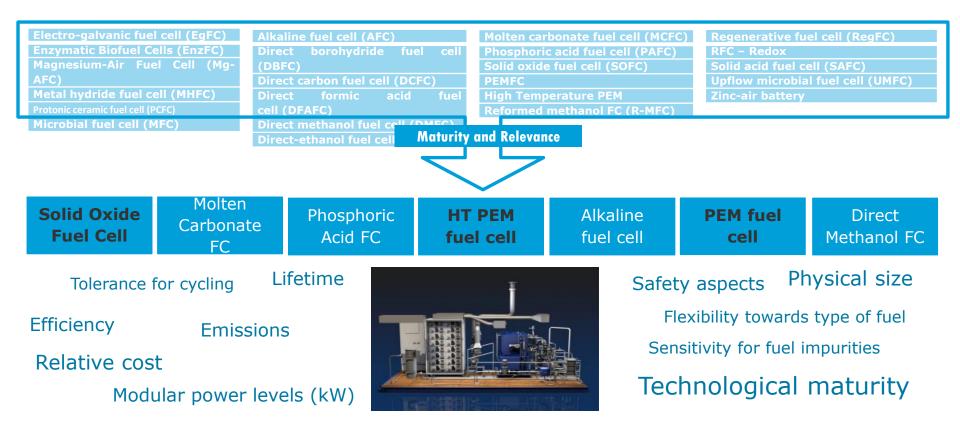
- Ship Energy Efficiency
- Emissions
- Noise & Vibration

HYBRID

- "Vision of the Fjords" The ship of the year 2016 Flom-Gudvangen
- Diesel hybrid 2 * 150 kW el- engines, 600 kWh batteries
- Fastest ever 14 months from contract to delivery 18.july 2016

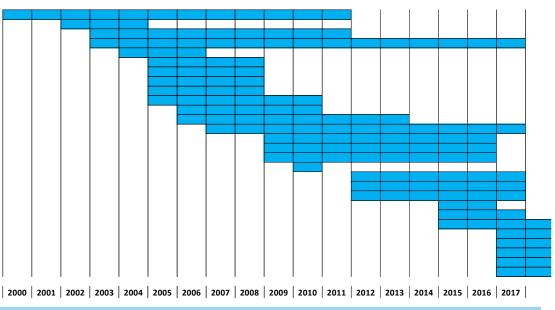
BATTERIES


- "Future of the Fjords"
- 100% electric 2 * 450 kW el- engines,1.8 MWh batteries
- Delivery 1.april 2018

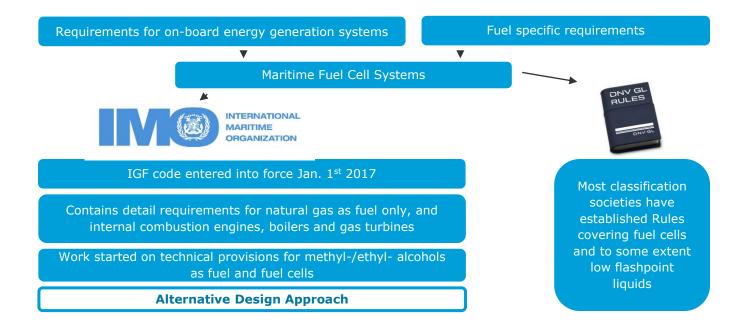

HYDROGEN – FUEL CELLS

- Next generation
- Increased range
- Reduced weight possible
- More flexible charging/bunkeri

Technology Overview



Maritime FC- Developments


- Start with first maritime FC applications in the early 2000
- Mostly based on European and US development programmes
- Technology readiness was proven: SOFC and PEMFC
 Technology are most promising for maritime
- Recent development projects focusing on a common rule frame work for maritime Fuel Cells

Maritime Fuel Cell Project Time table

Regulation overview - status

Regulation overview - Alternative Design

Currently, for Fuel Cells and Hydrogen

- IGF codes provides the possibility for alternative design process
- The equivalence of the alternative design shall be demonstrated by a risk-based approach as specified in SOLAS regulation II-1/55 and approved by the Administration
- The "Guidelines on Alternative Design and Arrangements for SOLAS Chapters II-1 and III (MSC.1 / Circ. 1212)" providing guidance to perform the *Alternative Design Process*

Preliminary Analysis

- · Identification of rule deviations
- Hazard Identification
- Scenarios, methods and assumptions for quantification

Quantitative Analysis

- Quantification of selected scenarios
- Comparison to conventional design

Report of Assessment

- Documentation
- · Presentation to flag

Regulation overview -DNVGL Fuel Cell Rules

- DNVGL Rules for Classification Ships
 - Part 6 Chapter 2 Section 3 Fuel Cell
 Installations FC
 - The Rules offer two class notations:
 - FC(Power)
 - Given to ships that fulfils design requirements in the Rules, where the FCs are used for essential-, important- or emergency services.

- FC(Safety)

 Given to ships that fulfils the environmental- and safety requirements in the Rules, where the FCs are not used for essential-, important- or emergency services.

	DNV·G
RULES FOR CL	ASSIFICATION
Ships	
	Edition July 20
Part 6 Additional	class notations
	sion, power generation an
auviliary evetom	~
auxiliary systems	s
auxiliary systems	5
The content of this service document is the subj accepts that it is prohibited by anyone eite built, and/or stratifyor ment to this back to be the	es of Intellenue geoperty rights reserved by DNV GLAS ("DNV GL"). The DNV of leading the Elemente and the rindor of DNV of LAS ("DNV GL"). The DNV of leading the Elemente and the rindor of DNV of LAS ("DNV GL"). The elemente of certificates and of declarations of conternity, who have effect fire of charge or chargeable, without DNV GL's profer written const a straining from any use of this document by others.

Maritime Fuel Cell Product Certification/Type Approval – under development

- DNVGL has initiated the development of a class program CP for Fuel Cell Power Installations, describing the procedures and technical requirements for the approval and certification of such systems (similar to the DNV GL CP-0418 for Lithium Batteries <u>https://rules.dnvgl.com/docs/pdf/DNVGL/CP/2015-12/DNVGL-CP-0418.pdf</u>).
- Technical basis will be e.g. the draft of the IGF-Code for fuel cells, the DNVGL CG-0339 'Environmental test specification for electrical, electronic and programmable equipment and systems' <u>https://rules.dnvgl.com/docs/pdf/DNVGL/CG/2015-11/DNVGL-CG-0339.pdf</u> and the IEC 62282 'Fuel Cell Technologies'.
- Since the technical requirements for fuel cell power installations are equivalent for case-bycase or type approval (only the procedure is different) and due to the very different kinds of fuel cells (PEM, HTPEM, HTFC etc.) the procedures and the technical requirements for approval and certification (CbC or TA) of such systems will be developed together with manufacturer and class until the above mentioned Class Program is available.

Maritime FC- Noteable Projects

	FellowSHIP	320 kW MCFC system for auxiliary power of Offshore Supply Vessel	Eidesvik Offshore, Wärtsilä, DNV	2003-2011	MCFC	320 kW	LNG
	ZemShip - Alsterwasser	100 kW PEMFC system developed and tested onboard of a small passenger ship in the area of Alster in Hamburg, Germany	Proton Motors, GL, Alster Touristik GmbH, Linde Group etc.	2006-2013	PEM	96 kW	Hydrogen
	E4Ships - SchIBZ MS Forester	100 kW containerized SOFC system de- veloped and tested for the auxiliary power supply of comercial ships. Scalable up to 500 kW units.	Thyssen Krupp Marine Sys- tems, DNVGL, Leibniz Univer- sity Hannover, OWI, Reederei Rörd Braren, Sunfire	Phase 1: 2009-2017 Phase 2: 2017-2022	SOFC	100 kW	Diesel
	E4Ships - Pa-X-ell MS MARI- ELLA	60 kW modularized HT-PEM fuel cell sys- tem developed and tested for the decen- tralized auxiliary power supply onboard passenger vessel MS MARIELLA.	Meyer Werft, DNVGL, Lürssen Werft, etc	Phase 1: 2009-2017 Phase 2: 2017-2022	HTPEM	60 kW (each stack is 30 kW)	Methanol
Part Harrison - I.D., TAXABLE	Nemo H2	Small passenger ship in the canals of Amsterdam	Rederij Lovers etc	2012- present	PEM	60 kW	Hydrogen
	RiverCell	250 kW modularized HT-PEM fuel cell system developed and to be tested as a part of a hybrid power supply for river cruice vessles	Meyer Werft, DNVGL, Neptun Werft, Viking Cruises	Phase 1: 2015-2017 Phase 2: 2017-2022	HTPEM	250 kW	Methanol
	SF-BREEZE	Feasibility study of a high-speed hydro- gen fuel cell passenger ferry and hydro- gen refueling station in San Francisco bay area	Sandia National Lab., Red and White Fleet	2015 - present	PEM	120 kW per module. Total power 2.5MW	Hydrogen

Zero/V - Hydrogen Fuel-Cell Coastal Research Vessel

Sandia partnered with the Scripps Institution of Oceanography, the naval architect firm Glosten and the class society DNV GL to assess the technical, regulatory and economic feasibility of a hydrogen fuel-cell coastal research vessel.

Report published on 7th May- http://energy.sandia.gov/transportationenergy/hydrogen/market-transformation/maritime-fuel-cells/

Maritime Hydrogen Projects

Customer	Scope	Time
Norwegian Public Roads Administration	H2 Ferry 2020 -Study of technical, regulatory and financial feasibility of hydrogen fuel cell ferry by 2020. Frame agreement supporting NPRA in their process for the hydrogen electric ferry that shall be built from dec 2018 – sept 2020, then tested and start normal operation with passengers in 2021.	2016-2021
Green Coastal Shipping Programme – Hydrogen Pilot	Hybrid hydrogen fuel cell powered high speed passenger ferry in Flora. DNV GL contributions are feasibility of concept, cost estimates, emissions savings, regulatory and safety aspects. Launch planned for 2021.	2017
Fiskerstrand. HYBRIDskip	Hybrid hydrogen (700 – 100 kg H2/day)fuel cell ferry with batteries. Ferry to start operation by 2020. DNV GL contribute with safety and classification competence and experience. 2017-2018 activities supported by PILOT-E.	2017-2018
European Maritime Safety Agency (EMSA)	Study on the use of fuel cells in shipping covering fuel cell technologies, review of applicable standards, regulations and guidelines, regulative gaps, safety assessment (Available on: http://emsa.europa.eu/main/air-pollution/alternative-fuels.html)	2016-2017
Sogn og Fjordane County Authority	Potential for hydrogen production, utilisation and value creation in Western Norway. Hydrogen value chains including maritime use. Technologies, market, potential production sites, scenarios for future hydrogen demand, regional competence. (Source https://www.dnvgl.no/publications/index.html)	2016
Eidesvik JIP	FellowSHIP/Viking Lady 330 kW molten carbonate FC for auxilliary power. Hybrid supply vessel with DNV GL class notation – Fuel Cell Safety	2009
DNV GL © 2015 0	9 October 2018	DNV·GL

DNV GL's services on Fuel Cell / Hydrogen

R&D	 Applied research and development including <i>experimental</i> setups Explosion and fire experiments and research
Innovation & demonstration	 Realization of <i>demonstration</i> projects Techno-economic <i>road mapping</i> for technology or solutions System integration with renewables/electricity/
Implementation support	 Technology qualification Explosion and fire save design analysis <i>Recommended practice</i> and standards development Guideline for HRS user interface improvement process
Realisation support	 Consortium initiation/execution Safety assessments (HAZOP, HAZID, QRA, RRR, CFD modeling)
Operational excellence	 Custody transfer? Performance validation Process optimization H2 Incident and accident database (HIAD)

Safer, Smarter, Greener...

EMSA Report available at http://www.emsa.europa.eu or search www: EMSA + DNVGL + fuel cell

Gopal Nair / Anthony Teo <u>Gopal.Nair@dnvgl.com/</u> <u>Tse.yen.teo@dnvgl.com</u> +1-562-426-0500 / +1-281-396-1507

www.dnvgl.com

SAFER, SMARTER, GREENER