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Abstract

Bond graphs are a powerful formalism to model continuous dynamics of phys-
ical systems. Hybrid bond graphs introduce an ideal switching element, the con-
trolled junction, to approximate continuous behavior that is too complex for nu-
merical analysis (e.g., because of nonlinearities or steep gradients). HyBrSim is
a tool for hybrid bond graph modeling and simulation implemented in Java and
documented in this paper. It performs event detection and location based on a bi-
sectional search, handles run-time causality changes, including derivative causality,
performs physically consistent (re-)initialization, and supports two types of event
iteration because of dynamic coupling. It exports hybrid bond graph models in
Java and C/C++ code that includes discontinuities as switched equations (i.e.,
pre-enumeration is not required).

1 Introduction

Physical systems can be modeled by sets of ordinary differential equations (ODEs) pos-

sibly supplemented by algebraic constraints (DAEs). Often these are composed from

local constituent equations of primitive elements and constraints imposed by a network

structure that connects them [1, 2].

∗ Pieter J. Mosterman is supported by a grant from the DFG Schwerpunktprogramm KONDISK.
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1.1 Stiff Systems

Continuous physical system models may contain nonlinearities and steep gradients that

complicate numerical simulation. Integration methods such as the Backward Difference

Formula (BDF) [3, 4] address these problems by reducing the simulation step-size, at

the cost of increased computational complexity.

To illustrate, consider the hydraulic cylinder in Fig 1. To move the piston with

inertia, mp, the intake valve with fluid inertia, Iin, and flow resistance, Rin, is adjusted

to control oil-flow into the cylinder. The elasticity, Coil, and viscosity, Roil, of the oil

in the chamber generate a pressure that opens a relief valve with inertia and resistance,

Irel and Rrel, respectively, when the pressure exceeds a predefined safety threshold.

Rin

pin

vpRrelIrel

Iin

Roil

Coil
psmp mp

Figure 1: Hydraulic cylinder with relief valve.

Initially, the relief valve may be closed and when the intake valve closes completely,

there is no flow of oil into the chamber, causing the piston velocity to quickly become 0.

In a continuous model, a small leakage flow of the valve interacts with the fast dynam-

ics induced by Coil and Roil, which leads to high frequency low amplitude oscillations

requiring a small simulation step-size for a considerable time interval.

For the particular problem, efficient variable step-size numerical integration may not

be possible or such solvers may not be available or suitable for the task at hand (e.g.,

real-time simulation).

1.2 Discontinuities

Stiff systems because of steep gradients can be simplified by abstracting the fast contin-

uous transients into discontinuous changes and the models become of a mixed continu-

ous/discrete, hybrid, nature [5]. Hybrid systems typically operate in piecewise continu-

ous modes, modeled by ODEs and DAEs. Mode changes are most conveniently modeled

2



by activating and deactivating constituent equations of model components which may

change causality. For example, when the intake valve in Fig. 1 closes, its constituent

equation changes from enforcing a 0 pressure drop across it to enforcing 0 flow. These

causal changes may result in dynamic (i.e., run-time) changes in the state vector.

Two situations can be classified;

• state variables become dependent on exogeneous variables, and

• state variables become algebraically related.

In Fig. 1, when the intake valve closes and the relief valve is closed as well, if the oil

elasticity and viscosity are abstracted away, the piston velocity is forced to 0, and, there-

fore, its momentum is no longer a state variable (first issue). In this mode, the required

pressure build-up in the cylinder may be such that the relief valve opens. Now, the state

variables that correspond to Irel and mp, i.e., the fluid momentum prel and the momen-

tum pp, become dependent (algebraically related) and the initial piston momentum has

to be distributed so that their values are mutually consistent (second issue).

The closing of the intake valve and the opening of the relief valve follow each other

with no continuous, differential equation, behavior in between. In general, (de)activating

blocks of equations may result in a sequence of consecutive mode changes that has to

converge before continuous behavior resumes [5].

1.3 HyBrSim

HyBrSim (Hybrid Bond gRaph Simulator) is a modeling and simulation environment

to handle hybrid behaviors, implemented in Java. Instead of generating a global system

of equations, HyBrSim attempts to propagate known variable values (input and state)

through the model topology at each evaluation, i.e., it is interpretive. The advantage

of the interpretive approach lies in the flexible treatment of variable structure, i.e.,

hybrid, models for which HyBrSim is developed specifically [6], It does not focus on

sophisticated handling of pure continuous and discrete behaviors.

Section 2 reviews the bond graph modeling and simulation approach and identifies the

support provided by HyBrSim. Section 3 discusses the hybrid bond graph modeling

approach, general hybrid dynamic systems effects, and how these are facilitated by

HyBrSim. Section 4 describes the export filter to C/C++ and Java and Section 5

presents conclusions and future work.

2 Bond Graph Modeling and Simulation

In HyBrSim, dynamic behavior of physical systems is modeled by bond graphs [7, 8].
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Table 1: Bond graph elements.

process ID properties relation

irreversible R resistance, R e = Rf

capacitance, C f = C de
dtC

initial value, q0 e = 1

C

∫

fdt + q0

Creversible
inertia, I e = I df

dtI
initial value, p0 f = 1

I

∫

edt + p0

I

Se amplitude, E e = E
context

Sf amplitude, F f = F

ei = e0

normal
0 ∑

i fi = 0
distribution fi = f01 ∑

i ei = 0

transformation ein = neout

weighted
TF

ratio, n fin = nfout

distribution transformation eout = rfinGY
ratio, r ein = rfout

2.1 Bond Graph Modeling With HyBrSim

Bond graphs model the exchange of energy, power, between idealized physical processes,

which allows for multi-domain modeling (e.g., electrical, mechanical, hydraulic).

2.1.1 The Power Domain

Each power connection, bond, contains two conjugate variables, effort (e) and flow (f),

the product of which constitutes power, that correspond to an intensive variable (e.g.,

pressure and voltage) and rate of change of an extensive variable (e.g., volume and

charge), respectively [9]. There are nine primitive bond graph elements, listed in Table 1,

that represent lumped ideal behavior and exchange energy through ports.

Irreversible Processes The ideal irreversible processes, R, dissipate energy and gen-

erate entropy. For example, in Fig. 1 the intake valve is modeled to have a dissipative

effect, Rin. If the generated entropy does not affect dynamic behavior, this port (at

present not supported by HyBrSim) is not shown.

Reversible Processes Ideal reversible processes store energy without dissipation.

These are marked C and I to indicate stored flow and stored effort, respectively, with ini-

tial values generalized displacement, q0 (= Ce0) and generalized momentum p0 (= If0).

For example, in Fig. 1 the oil elasticity, Coil, stores oil compression. These variables

capture the state of the system. In general, one storage element can communicate en-

ergy to many different domains, however, at present, HyBrSim only supports one port
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Figure 2: Bond graph of cylinder with PID controller without the valves being modeled.

storage.

The Context The dynamics of the system environment are not modeled. Instead,

interaction is modeled by ideal sources that can be of effort and flow type, i.e., Se and

Sf, respectively. In Fig. 1, the interaction is by the hydraulic pressure, pin and sump

pressure, psmp, both of Se type.

The Junction Structure A junction structure that consists of normal and weighted

elements distributes power. The normal elements are of common effort type (e.g., Kir-

choff’s current law), 0-junctions, or common flow type (e.g., Kirchoff’s voltage law),

1-junctions. For example, in Fig. 1 the oil pressure in the chamber is the same on the

intake path, relief path, and the piston, and can therefore be modeled by a 0-junction.

The weighted distribution elements are of TF, the transformer, and GY, the gyrator

type. The intake valve in Fig. 1 can be modeled by a TF element to modulate the

hydraulic power supplied to the cylinder.

Graphical Appearance A HyBrSim bond graph model of the cylinder in Fig. 1 is

shown in Fig. 2. The bond graph elements are rectangles with the element type on the

left and their name on the right [10]. Power bonds (depicted by a harpoon) connect

elements that exchange energy, e.g., in Fig. 2 the connection between the Se element

and the TF element. In addition, bond graph models may contain modulation effects

based on connections that carry no energy. Such a connection may correspond to an

individual effort or flow variable that is tapped from a power bond by an active bond

(depicted by an arrow). In Fig. 2 an active bond taps the velocity of the piston mp and

feeds its value into the displacement element that is part of the signal domain.
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Table 2: Block diagram elements.

element ID properties relation

clock t p, x0 if time < p then so = x0

else s0 = time +x0 − p

integrator int p, x0 so = p
∫

∑

i sidt

step - p, x0 if
∑

i si > p then so = 1
else s0 = x0

sum + pi so =
∑

i pisi

multiplier ∗ p so = p ∗ Πisi

inverter inv p so = 1

p∗
∑

i
si

square
root

sqrt p so =
√

|p ∗
∑

i si|

sin sin p so = p ∗ sin(
∑

i si)

cos cos p so = p ∗ cos(
∑

i si)

2.1.2 The Signal Domain

A number of mathematical operations are available that operate on signals, i.e., connec-

tions that carry no power (of which active bonds are a subset). In HyBrSim, the signal

part of a model is shown in blue (gray in monochrome depiction).

In Fig. 2 the signal part is used to model a PID control law for the piston displace-

ment. This is a geometric state that is used as input to the control part, along with a

desired setpoint. The error between the two is integrated once to implement integral

control and the velocity is used directly to add a derivative component. A set of pro-

portional, integral, and derivative gains (Kp, Ki, Kd) computes the controller output

used to modulate the physical process, in this case the hydraulic power supplied to the

cylinder. These block diagram elements allow multiple input, si, and output, so, signals.

Their functionality is given in Table 2.

2.1.3 User Interface

The HyBrSim user interface consists of a workspace and a bond graph and block dia-

gram toolbox. Connections are made by first clicking the source and then the destination

element. The source element determines the type of connection. If it is a bond graph

element, a power connection is made. If it is a block diagram element, a signal connec-

tion is made. A connection from a block diagram to a bond graph element is allowed

in case of a modulated element, Se, Sf, TF, and GY, and automatically interpreted as

such.

Right clicking on an element brings up a pop-up menu with entries that include the

element name and its properties. In most cases, element properties include a parameter,

p, and initial value, x0 (Table 1 and Table 2). For the summing element it contains a

6



drop down list with all ingoing signals and their sign, pi, i.e., whether they are to be

added or subtracted.

2.2 Simulation with HyBrSim

Continuous simulation applies a distributed token passing approach and is based on the

Forward Euler method, x(tk+1) = x(tk) + ẋ(tk)∆T , where x(tk) is the state at time tk,

ẋ(tk) its time derivative, and ∆T the integration step-size. Each port of a bond graph

and block diagram element has an attribute that contains the current value of the token

at that port [11].

2.2.1 The Method

First, causality is assigned to the power elements based on a sequential causality assign-

ment procedure (SCAP) like algorithm [12]. Next, an execution order is determined such

that, at a given evaluation, k, all input values of an element are known when it is called

to compute its output. Modulated elements are handled by introducing pseudo state

behavior, i.e., the modulation factor is one evaluation (during continuous integration

this equals one integration step) delayed. The initial value is user specified.

The execution order is determined by first propagating the values of all clock elements

so time modulation is not delayed. Next, the values of sources and storage elements in

integral causality are propagated. The values of sources are user provided or, in case of

modulation, given by the pseudo state value. The values of storage elements in integral

causality are computed from their state. Storage elements in derivative causality are

no propagation roots and compute a numerical difference approximation of the time

derivative variables, 1

p

xk−xk−1

∆T
, where p is the parameter and xk the state with x0 as its

initial value. Note that this implies the first time step is off. Furthermore, zero-order

causal paths between resistances cannot be handled. These issues are addressed by a

recently implemented approach that is beyond the scope of this paper.

After all effort and flow variables have assigned values, these are propagated into the

block diagram model part via active bonds. Along with the integrator elements that

propagate their stored value and the values of clock elements, all block diagram variable

values are computed.

2.2.2 Derivative Causality

In case of derivative causality, there is dependency between storage elements and sources

and straightforward propagation of their values does not apply. Instead, algebraic con-

straints on state variables determine their values. In case of dependency on sources only,

the stored energy can be computed directly. If dependency on other storage elements
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Figure 3: Bond graph with derivative causality.

exists, state values have to be found that are consistent with the algebraic constraints.

Two critical issues must be solved: (i) a given set of values has to be made consistent

with the algebraic constraints, and (ii) it must be ensured that one integration step of

dynamic behavior remains consistent with the algebraic constraints.

To achieve (i), HyBrSim implements the conservation of state principle [13] as an

iteration process between algebraically related storage elements. In Fig. 3, I2 is in

derivative causality1 because of the algebraic dependency between I1 and I2 through

their common flow. So the stored momentum p1 and p2 has to be consistent with

p1

I1

=
p2

I2

. (1)

Suppose that at a point in time, tk, p1 = 2 and p2 = 1. These values may be user

specified if tk is the simulation start time or the result of a mode switch at tk in case of a

hybrid model. For I1 = I2 = 1, this is inconsistent with Eq. (1) and iteration first takes

part of the stored momentum out of I1, determined by a convergence factor, η = 0.4,

and transfers it into I2. This leads to p1 = 1.6 and p2 = 1.4, see Table 3. For these

momentum values, Eq. (1) is still not satisfied, and again a, now smaller, part of stored

momentum is transferred from I1 to I2. This results in p1 = 1.52 and p2 = 1.48. This

process continues till f1 = f2, within some preset numerical margin.

An important observation is that this allows all storage elements to be initialized.

Other simulation tools typically allow only initialization of the reduced state, which may

lead to differences in the simulation results. For example, if the I elements in Fig. 3 are

replaced by C elements, standard simulation packages allow the initialization of only

one of them and depending on the value of E, the state of the other is computed while

neglecting to take into account the constraint that only displacement can be added to

one if it is taken out of the other.

Once consistent values are found, it has to be ensured that future behavior remains

consistent, i.e., for the model in Fig. 3 that Eq. (1) remains satisfied. In an equation

based system, this is achieved by computing the gradient of behavior while accounting

1Note that the effort causality is indicated by a perpendicular stroke at the end of a power bond
and flow causality by a circle at the other end.
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Table 3: Conservation of state iteration, η = 0.4.

iteration p1 p+
2 p2 η(p+

2 − p2)

0 2 2 1 0.4

1 1.6 1.6 1.4 0.08

2 1.52 1.52 1.48 0.016

3 1.504 1.504 1.496 0.0032

4 1.5008 1.5008 1.4992 0.00064

for the dependency. From Eq. (1) and

ṗ1 = E − ṗ2 −
p1

I1

R (2)

it follows, after differentiation of Eq. (1), that ṗ1 = 1

I1+I2
(I1E − Rp1) = −3.25 and one

∆T = 0.1 time step gives p1(tk+1) = p1(tk) + ṗ1(tk)∆T = 1.175.

HyBrSim takes a two step approach. First, a gradient is allowed that results in

state values that are inconsistent with the algebraic constraints. Second, the iteration

approach is applied to find consistent values again. For the two inertias, after consistent

values p1 = p2 = 1.5 are found, the gradient of p1 is determined while disregarding the

influence of I2, i.e., e2 = 0, which yields e1 = −6.5, and one simulation step ∆T = 0.1 is

taken that only updates the state of I1, p1 = 0.85. This results in values for p1 and p2

that violate the algebraic constraint in Eq (1) and iteration computes p1 = p2 = 1.175

as well.

2.2.3 User Interface

Effort, flow, and signal values can be graphed after simulation. These variables are

coded by coloring the effort stroke, the flow circle, and the fill color of the signal arrow-

head, corresponding to the colors of the traces in a graph. This graph has a small set of

rudimentary display features such as data points on/off, autoscale, user selected maxima

and minima for x and y-axis separately, and a mouse driven zooming feature. To allow

the use of sophisticated plotting features such as those provided by Matlab [14], data

can be written to a file in standard ASCII format, which includes the evaluation step,

k, and the time stamp, tk, for each of the sets of data points.2

In addition, power along each bond can be animated (logarithmic or linear) with

positive power based at the harpoon destination and negative power at the source.

Figure 4 shows the power distribution in the hydraulic actuator in Fig. 1 at t = 0.2 s.

The relief valve is considered to be closed, and, therefore, not shown and the PID control

part is not shown because it does not distribute power. After some initial transient,

2All plots in this paper are generated by Matlab.

9



Figure 4: Logarithmic power distribution at t = 0.2 s.

the oil dynamics reach an internal steady state, and the parameters Roil and Coil do

not consume any more power. Therefore, to investigate low frequency behavior these

elements can be removed, e.g., by a singular perturbation related approach for bond

graphs [15]. In general, such power analyses can be used to aid in model reduction

by removing elements with low power consumption [16]. Animation can be pauzed,

restarted, and continued from final values when the simulation end time was reached.

3 Hybrid Bond Graphs

Piecewise linearization of nonlinearities and removal of steep gradients may lead to hy-

brid models with continuous behavior that is interspersed with discrete mode changes [17].

3.1 Hybrid Bond Graph Modeling

Hybrid bond graphs endow the bond graph modeling formalism with a finite state machine

model part that communicates by means of a controlled junction [18].

3.1.1 From Discrete to Continuous

The controlled junction operates in one of two states to systematically model switching

behavior. When it is on, it acts as a normal junction, and when it is off a 0-junction

acts as a 0 value effort source and a 1-junction as a 0 value flow source (see Fig. 5).

This implements ideal switching behavior (e.g., [19, 18, 20]) and changes causality on

one port when the junction changes its state. Note that dissipation may still occur when

junctions change their state, e.g., in case of a perfectly nonelastic collision.
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0Se:
0

ONOFF

(a) 0-junction.

1Sf:
0

ONOFF

(b) 1-junction.

Figure 5: The controlled junction types.

Figure 6: Hybrid bond graph model of actuator with the valves modeled by controlled
junctions.

In the bond graph model in Fig. 2, if the valves are modeled as ideal switches, the

corresponding 1-junctions (in and relief) become controlled junctions with inertial and

dissipative effects explicitly modeled.

3.1.2 The Discrete Event Model

The discrete event model part is implemented by local finite state machines (FSM), one

for each controlled junction, that map each of their states onto the on and off states. The

graphical representation is a state transition diagram that is associated to the junction

property. For example, Fig. 6 shows the FSM for the relief valve mechanism in Fig. 1.

When the net pressure, pnet, crosses a threshold value, pth, pnet = pcyl − pth < 0.0 the

relief valve opens, i.e., the corresponding controlled junction comes on. Note that the

threshold value can also be modeled in the FSM. For example, the relief valve closes

again when the pressure has subsided and crosses another threshold (pnet > 25.0).

This leads to the behavior in Fig. 7: During a control maneuver, the intake valve

closes inadvertently at t = 0.2 s. Shortly thereafter, the oil parameters have built up a

pressure in the cylinder chamber that exceeds the safety threshold. Consequently, the
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relief valve opens for a short duration, see Fig. 7(b), till the pressure has subsided and

then closes again. This leads again to too high a pressure in the cylinder and the same

procedure repeats, after which the piston velocity has reduced to a value that can safely

decay to 0. This ‘stuttering’ is typical for relief valve behavior.

Each FSM associated with a controlled junction has an initial state, indicated by a

shaded background, and an active state that is highlighted. States can be added and

removed but are always of the on and off type.

Because FSM switching effects are included locally, no global analysis of the modes

of behavior is required. Though this avoids pre-enumeration (which can be prohibitively

complex because of the state explosion), it requires run-time facilities to determine the

new global mode dynamically. This includes causal analysis which may lead to run-time

changes in the complexity of the underlying system of equations (i.e., derivative causality

may emerge).

3.1.3 From Continuous to Discrete

Block diagram signals and active bonds that may cause a controlled junction to change

its state are connected to this junction and show up in the state transition diagram as

signal ports. Signal ports constitute crossing functions that compare the value of the

corresponding variable in the bond graph, x, with a threshold, δ. Two inquiries are

allowed: (i) the new truth value of the crossing function can be requested and (ii) it

can be queried whether a crossing, or change of the sign of the crossing function, z (−1,

0, and 1 for below, at, and above the threshold, respectively), takes place, indicated by

setting the inquiry boolean variable cross to true. The first option is used to find the

new state of all controlled junctions and the second to halt continuous simulation when

a discrete event is generated.

The comparison can be of the types listed in Table 4 and results in a boolean output

(true and false) that can be connected to transitions between states. Several signal ports

may be connected to one transition to form a logical conjunction. A signal port with

output true generates a discrete event that may enable a transition and when it does,

force it to occur immediately (i.e., the FSM implements ‘must fire’ semantics).

3.2 Hybrid Bond Graph Simulation

Simulation of hybrid systems has to deal with a number of idiosynchracies [6].

3.2.1 Event Detection and Location

When continuous variables exceed threshold values, as specified in the signal ports,

HyBrSim uses a bisectional search to find when the first event (in general there are
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Table 4: Crossing variable, x, and its threshold, δ, comparisons.

request return value

x < δ x < δ − ε ∧ (¬cross ∨ z > −1)

x ≤ δ x ≤ δ + ε ∧ (¬cross ∨ z > 0)

x = δ

(cross ∧ z > 0 ∧ x ≤ δ + ε)∨
(cross ∧ z < 0 ∧ x ≥ δ − ε)∨
(¬cross ∧ |x− δ| ≤ ε)

x ≥ δ x ≥ δ − ε ∧ (¬cross ∨ z < 0)

x > δ x > δ + ε ∧ (¬cross ∨ z < 1)

0 0.05 0.1 0.15 0.2 0.25 0.3
−0.2

0

0.2

0.4

0.6

0.8

1

time

vp 

in 
relief

(a) Aborted control maneuver.

0.195 0.2 0.205 0.21
−0.2

0

0.2

0.4

0.6

0.8

1

time

vp 

in 

relief

(b) Zoomed in on switching behavior.

Figure 7: Simulation of the model in Fig. 6.

multiple events) in the ∆T interval occurs. If an event is detected, the stepsize is reduced

from ∆T to δtm, where δtm is computed based on whether an event occurs, σ = 1, or

not, σ = 0, in the interval δti as follows

δti+1 = δti + ∆ti(1− σ)
∆ti+1 = 1

2
∆ti

(3)

The initial values for this iteration are δt0 = 0 and ∆t0 = ∆T , and the iteration

terminates after a fixed number of a priori prescribed steps, m. This method is robust

and guaranteed to find the first event with a pre-specified accuracy, provided the crossing

function does not have an even number of roots on the δti intervals. Because HyBrSim

requires the user to determine the step-size of the Euler method, ∆T , this is the user’s

responsibility.

3.2.2 Reinitialization

During event iteration, algebraic dependencies of storage elements may arise that dis-

continuously change the state values using the iteration procedure in Section 2.2.2.
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3.2.3 Event Iteration

When an event occurs and a FSM changes its state, a further transition from this new

state may be immediately enabled, requiring a new evaluation of the FSM and causing

a discrete iteration phase. Furthermore, in case of dynamic coupling, when a discrete

state change causes a junction to switch between its on and off state (not each state

change is necessarily one between on and off), effort and flow variables in the bond

graph may change their values and when these values are propagated into the signal

ports they may enable further state transitions. Therefore, before continuous simulation

can resume, iteration between the discrete model parts and between the discrete and

continuous model parts is necessary to first find a consistent, stable, continuous and

discrete state.

A Priori and a Posteriori Values Algebraic constraints may be activated and de-

activated during one sequence of discrete state changes and change the state values of

storage elements. In the bond graph model it may or may not be desired to return to

the original values before the discrete state changes [5]. A check box specifies whether

a signal port generates events based on a priori or a posteriori values of x around a

discontinuity, shown by a ‘-’ or ‘+’ sign, respectively, on the left in the signal port (see

the relief FSM in Fig. 6). In case of a posteriori conditions, the new model variable

values computed as described in Section 2.2.13 are adopted by the signal port. In case

of a priori switching conditions, the values are only adopted after the system state is

updated and so discontinuous changes effected. The application of this is illustrated

next.

Mythical Modes Consider the situation where the intake valve closes while vp > 0,

as discussed previously. The oil viscosity, Roil, immediately causes a large pressure in

the cylinder chamber and this may cause the relief valve to open without any noticeable

change in piston velocity. If the oil viscosity, Roil and elasticity, Coil, are abstracted

away (simply removed from the bond graph in Fig. 6), the piston velocity becomes 0 in

the mode where both valves are closed. If the required (now infinitely) large pressure

causes the relief valve to open, the velocity would remain 0, which differs from behavior

of the more detailed model. Instead, the state values before the sequence of switches

started by closing the intake valve should be transferred to the mode where the relief

valve is opened. The intermediate mode where both valves are closed is called a mythical

3If two consecutive evaluations occur at the same point in time, i.e., tk = tk−1, the difference
approximation to compute efforts and flows of elements in derivative causality is formed by using an
ξ � ∆T .
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Figure 8: Actuator with explicit state jump.

mode [5, 21]. In this example, if the opening of the relief valve is based on a posteriori

values, the state vector is not updated yet when it is inferred that the valve opens, and,

therefore, the state is transferred correctly.

Pinnacles When the intake valve closes, the viscous pressure may not suffice to open

the relief valve. Instead, the elasticity may further build up pressure and there is a

significant change in elevator velocity before the relief valve opens, see Fig. 7(b). If the

oil parameters are abstracted away, a coefficient of restitution, ε, is used that depends

on the dissipation of the original parameters, to compute the change in elevator velocity,

vp = εv−p , where v−p is the value immediately before switching started. In Fig. 8 this is

implemented by the Sf element with ε = 0.6.4

The algebraic equation is activated using a posteriori values and deactivated using a

priori values. The relief valve is opened based on a priori values to ensure the computed

velocity change is effected. The stuttering behavior shown in Fig. 7 now occurs instanta-

neously at the same point in time, because the oil parameters are not present anymore.

A sequence of activations of the algebraic restitution constraint and opening of the relief

valve reduces piston velocity before it can be safely set to 0, shown in Fig. 9 by the data

points with decreasing velocity at the switching time. Note that the mode where both

valves are closed takes a mythical incarnation, otherwise, the velocity transferred to the

4Note the unique labels of connections and that causal conflicts between sources and junctions that
are off are not terminal.
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mode where pinnacle is on is 0, and no stuttering behavior takes place.

Also note that in Fig. 9(b) the data points are evenly spaced during continuous

integration (distance ∆T ), but there is a shorter time step to reach t = 0.2 s, because

of root-finding, described in Section 3.2.1.
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(a) Aborted control maneuver.

0.195 0.2 0.205 0.21
−0.05

0

0.05

0.1

0.15

time

vp 

(b) Zoomed in on switching behavior.

Figure 9: Simulation of the model in Fig. 8.

3.2.4 Impulse Comparison

In the model of the hydraulic cylinder in Fig. 8, when both valves are closed and the

piston has nonzero velocity, a pressure spike occurs that takes the form of a Dirac

pulse and has infinite magnitude. Therefore, the threshold pressure is always exceeded,

regardless the piston velocity. In the more detailed model whether the pressure threshold

is exceeded depends on the piston velocity [17]. This can be included in a first order

approximation by comparing impulse areas, i.e., the change in piston velocity.

HyBrSim explicitly compares impulsive variables based on their areas. The thresh-

old values as specified in the signal ports are interpreted as areas as well. Therefore,

in the cylinder model in Fig. 8, because the pressure threshold is given in the signal

port, the impulse area is tested. If, however, the threshold is given by use of a constant

value on the workspace, this is interpreted as a normal, non-impulsive, variable, and,

therefore, disregarded when impulses occur. In Fig. 8 the int element is used for the

continuous behavior threshold and the threshold value in the signal port for the impulse

area comparison. So, if the intantaneous change in velocity is less than −0.25, the relief

valve opens, and when during continuous behavior the pressure falls below the combined

threshold value of −95.25, the relief valve opens as well.
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Figure 10: Chattering behavior.

3.2.5 Further Issues

Other phenomena in hybrid dynamic systems behavior that at present cannot be handled

by HyBrSim are (i) chattering and (ii) aborted projections.

Chattering In hybrid dynamic system behavior, after a mode switch from an initial

mode is completed and a stable and converged new discrete and continuous state is

found, an infinitesimal small time step may lead to a mode change back to the initial

mode.5 The next infinitesimal time step may again switch to the mode reached from the

initial one. This means the system has reached a switching surface in phase space where

the gradients of behavior point towards the surface in both modes, see Fig. 10. If this

occurs, simulation reduces the step size to its smallest possible value repeatedly, and,

therefore, simulation becomes (many times prohibitively) slow. At present, in HyBrSim

this can only be circumvented by disabling root-finding, which causes a larger error. A

more sophisticated algorithm has been developed in other work [22].

Aborted Projections Dependency of a storage element may cause a discontinuous

change in its state variable. Before this change is completed a further mode change my

be induced by an intermediate value and this intermediate value should be transferred

to the new mode instead. This can be implemented by, e.g., a bisectional algorithm.

4 Export Filters

A hybrid bond graph model can be exported as an explicit ODE or implicit DAE in

Java or C/C++ to generate model behaviors using sophisticated numerical solvers.

4.1 Explicit Equations

Explicit equations take the form ẋ = f(x, u, t), with x the state variables, u input,

and t time, and are generated by a straightforward graph traversal procedure after the

5Note that this differs from an immediate switch back, in which case no stable discrete state exists.
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execution order of the bond graph model is established, provided no derivative causality

exists. Otherwise, the iteration procedure described in Section 2.2.2 is included as an

additional method, executed after the system of equations is evaluated. For the model

in Fig. 3, this method is

void 2i::iterate() {
double I2n = I1.f;
I1.f = (- I2.I * (I2n - I2.f)) / I1.I;
I2.f = I2n - I2.f;

}

and iteration is conform Table 3, with the convergence factor being set by the calling

method.

However, each explicit solution is mode dependent because the change of state of

a controlled junction may affect the computational causality. Therefore, the system of

equations, fα, has to be derived for each global mode, α. At present, a global causal

analysis is performed for permutations of up to three controlled junction states.

4.2 Implicit Equations

A DAE system with equations of the form 0 = f(ẋ, x, u, t) is more flexible. Numerical

solvers such as DASSL [4] provide the ẋ, x, u, and t arguments and require a vector, f ,

of return values.

In this form, modulation need not be treated as a pseudo state and the iteration

process is not required because the algebraic constraints can be included in the implicit

formulation. Though this means that the system of equations becomes more difficult

to handle, i.e., it is of a higher index [23], solvers such as DASSL are typically able to

handle this complexity provided that consistent initial values are available.

An additional advantage of the implicit formulation is that controlled junction state

changes can be included by switched equations, and, therefore, global analysis is not

required. To this end, the equations for each controlled 0-junction are formulated as

follows:

0 = L
∑

i

pifi + (1− L)e (4)

where L ∈ {0, 1} is a mode selection variable that is 1 if the junction is on and 0 if it is off.

The variables pi ∈ {−1, 1} indicate the orientation of each power bond. Furthermore,

equations

0 = ei − e (5)

are added for each power port, i. In case L = 1, the standard equations for a 0-junction

in implicit form are active. When L = 0, Eq. (4) results in e = 0, and combined with
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Eq. (5) the efforts on all ports are 0. The formulation for controlled 1-junctions is the

dual of this.

For the model in Fig. 3, with a switch to turn the 1-junction off when the effort of

R exceeds 0.5 the equations are

E.e = E.in;
f.L = (f.state == True) ? 1.0 : 0.0;
I1.res = -I1.f + f.f;
I1.e = I1.derf * I1.I;
R.f = f.f;
R.e = R.f * R.R;
I2.res = -I2.f + f.f;
I2.e = I2.derf * I2.I;
f.res = (- E.e + I1.e + R.e + I2.e) * f.L + (f.L - 1) * f.f;

with

u =
[

E.in
]

, x =







I1.f
I2.f
f.f






, f =







I1.res
I2.res
f.res






. (6)

and derf the time derivative of the variable f . The required initial values can be com-

puted by (i) using a routine explicitly generated by HyBrSim, but that suffers from

the combinatorial restriction (the computations differ per mode), and (ii) using a more

general (and computationally more expensive) decomposition method that relies on the

Weierstrass normal form [24].

5 Conclusions

Bond graphs are a powerful formalism to model the continuous behavior of physical

systems in different domains. In many cases the dynamics contain nonlinearities or

steep gradients that may be best handled by a discontinuous approximation. Hybrid

bond graphs facilitate this by supporting a junction that is controlled by a finite state

machine to operate as either a normal junction or a 0 value source.

HyBrSim is a hybrid bond graph modeling and simulation tool that is specifi-

cally developed to handle phenomena in the mixed continuous/discrete systems realm.

It performs event detection and location based on a bisectional search, handles run-

time causality changes, including derivative causality, performs physically consistent

(re-)initialization, and supports two types of event iteration because of dynamic cou-

pling. Continuous behavior is handled by a simple Forward Euler integration scheme.

Therefore, hybrid bond graph models can be exported as Java and C/C++ code to be

used by sophisticated numerical solvers where discontinuities are included as switched

equations (i.e., pre-enumeration is not required).
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