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Abstract. The chemical master equation (CME) is the fundamental evolution equation of the stochas-
tic description of biochemical reaction kinetics. In most applications it is impossible to solve the CME
directly due to its high dimensionality. Instead indirect approaches based on realizations of the underly-
ing Markov jump process are used such as the stochastic simulation algorithm (SSA). In the SSA, however,
every reaction event has to be resolved explicitly such that it becomes numerically inefficient when the
system’s dynamics include fast reaction processes or species with high population levels. In many hybrid
approaches, such fast reactions are approximated as continuous processes or replaced by quasi-stationary
distributions either in a stochastic or deterministic context. Current hybrid approaches, however, al-
most exclusively rely on the computation of ensembles of stochastic realizations. We present a novel
hybrid stochastic–deterministic approach to solve the CME directly. Starting point is a partitioning of
the molecular species into discrete and continuous species that induces a partitioning of the reactions
into discrete–stochastic and continuous–deterministic. The approach is based on a WKB approximation
of a conditional probability distribution function (PDF) of the continuous species (given a discrete state)
combined with a multiscale expansion of the CME. The black resulting hybrid stochastic–deterministic
evolution equations comprise a CME with averaged propensities for the PDF of the discrete species that
is coupled to an evolution equation of the partial expectation of the continuous species for each discrete
state. In contrast to indirect hybrid methods, the impact of the evolution of discrete species on the dynam-
ics of the continuous species has to be taken into account explicitly. The proposed approach is efficient
whenever the number of discrete molecular species is small. We illustrate the performance of the new
hybrid stochastic–deterministic approach in application to model systems of biological interest.

Key words. chemical master equation, hybrid model, multiscale analysis, partial averaging, asymp-
totic approximation, WKB-ansatz
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1. Introduction. The last decade has witnessed an increased interest in stochas-
tic descriptions of biochemical reaction networks due to considerable experimental
evidence indicating that stochastic effects can play a crucial role in many cellular
processes like gene expression and regulation [1, 2, 3, 4], where constituents are
present in small numbers. The fundamental equation of stochastic chemical kinet-
ics is the chemical master equation (CME). It defines the temporal evolution of the
probability density function (PDF) of the system’s state describing the number of
molecules of each species at a given time. Only few approaches exist that directly
solve for the PDF [5, 6, 7, 8]. The main problem is that the state space grows expo-
nentially with the number of species, which renders most direct approaches compu-
tationally infeasible for larger reaction networks.

There exist a number of approximate solutions techniques to the CME [9, 10, 11,
12, 13]. Most are based on Monte Carlo (MC) simulations of the Markov jump pro-
cess underlying the CME [9, 10], such as the stochastic simulation algorithm (SSA)
[9]. An overview of existing methods is given in [14]. We call these MC-based
methods indirect in the following. The advantage of indirect approaches is their
easy applicability. They share, however, common disadvantages with MC-based ap-
proaches: There is always a sampling error since the PDF has to be approximated by a
statistically significant ensemble of realizations. The number of realization required
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to meet a certain accuracy can be very large, depending on the quantities of interest
(expectation values, higher moments or the PDF itself). Convergence can be slow,
despite the fact that the approximation error decays like Cn−1/2 with the number n
of realizations. In addition, the constant C can be exponentially large if the system
exhibits switching behavior [15].

Apart from the problem of judging the required number of realization to build-
up sufficient statistics, the computational costs of each single realization of indirect
methods generally depend on the number of reactions and the reaction events, i.e.,
the number of firings of a reaction channel. This property renders indirect methods
numerically impracticable whenever the system dynamics includes rapidly firing re-
action channels. Common approaches to avoid the explicit realization of every single
reaction event are based on a τ-leap condition [16, 17] that allows one to approxi-
mate the reaction extents as independent Poisson random variables, or hybrid for-
mulations [18, 19, 20], where state changes resulting from fast reactions are approx-
imated as continuous processes or are incorporated via their conditional invariant
measures (quasi-stationary PDFs) in the fast subspace [21, 22, 23]. The applicability
of these indirect hybrid approaches depend on the existence of a time scale gap that
allows one to distinguish between fast and slow reaction channels.

In this article, we propose and theoretically justify a novel direct hybrid
stochastic–deterministic approach to solve the CME. Starting point is a partitioning
of the molecular species into discrete and continuous species that induces a parti-
tioning of the reactions into discrete–stochastic and continuous–deterministic. Us-
ing Bayes’ formula, we decompose the full PDF P (X,Z; t) = P (X |Z; t) · P (Z; t) into the
part P (Z; t) related to the discrete species and the conditional PDF P (X |Z; t) for the
species to be modeled continuously. Based on some scaling parameter ε motivated
by large population levels or fast reactions, we approximate the conditional PDF us-
ing the Wentzel-Kramers-Brillouin (WKB) approximation [24] and derive evolution
equations based on a multiscale expansion of the scaled CME. This approach can be
interpreted as taking partial expectations over the continuous species. If the entire
state space is scaled, our approach resembles the well-known limit from the CME to
the deterministic formulation of chemical reaction networks [25]. A first heuristic
hybrid approach to directly solve the CME based on a partitioning of the state space
was proposed in [26], where the coupling is realized in two separate steps: (i) prop-
agation of the continuous variables and discrete distribution for a given time step;
(ii) distribution of the continuous variables according to the change in the discrete
distribution. In contrast to [26], we present a closed hybrid discrete PDE–ODE ap-
proach to the CME that implicitly integrates the propagation and distribution steps
continuously. In contrast to indirect hybrid methods, the impact of the evolution
of discrete species on the dynamics of the continuous species is taken into account
explicitly.

The derivation of our hybrid approach neither requires a time scale gap nor
does the resulting method suffer from the aforementioned disadvantages of indirect
methods. Our approach will be more efficient than indirect approaches if the reac-
tion system comprises a few molecular species in low quantities and the remaining
species in larger quantities or associated with rapidly firing reaction channels. This
is often the case for systems comprising gene regulation, transcription and metabolic
regulatory networks.

The paper is organized as follows: First we introduce the general setting, includ-
ing a brief background on the stochastic and deterministic formulation of reaction



HYBRID STOCHASTIC–DETERMINISTIC SOLUTION OF THE CME 3

networks and their relation. In the main part, we derive the proposed hybrid model,
based on an asymptotic approximation of the PDF. We further illustrate the hybrid
approach and study its efficiency, approximation error and applicability by three
numerical examples.

2. The Chemical Master Equation and Mass Action Kinetics. Consider a
system of N species Si (i = 1, . . . ,N ) that interact through M reaction channels Rµ
(µ = 1, . . . ,M) of the type

Rµ : srµ1S1 + · · · + srµN SN

kµ
GGGGGA s

p
µ1S1 + · · · + s

p
µN SN (µ = 1, . . . ,M) , (2.1)

where srµi and spµi ∈N0 are the stoichiometric coefficients of the reactant and product
species Si , respectively, and kµ ∈R+ denotes the macroscopic rate constant of Rµ.
The state of the system at time t is describe by the process Y (t) ∈NN

0 with

Y i (t) :=number of entities of species Si at time t (i = 1, . . . ,N ) . (2.2)

Firing of a reaction channel Rµ causes a net change υµ ∈ZN in the state of the system
Y (t)← Y (t) + υµ with

υµ :=
(
s
p
µi − s

r
µi

)N
i=1

(µ = 1, . . . ,M) . (2.3)

In the discrete–stochastic formulation of biochemical reaction kinetics, the state
of the system is modeled as a continuous-time, discrete-state space Markov jump
process Y (t). The probability that a channel Rµ fires and the process changes from
state Y to state Y + υµ in the next infinitesimal time interval [t, t + dt) is given by the
propensity function aµ according to

P

[
Kµ (t + dt)−Kµ (t) = 1 |Y 1 (t) = Y1, . . . ,Y N (t) = YN

]
= aµ (Y )dt + o (dt) , (2.4)

Table 2.1

Relevant elementary reactions and their propensity functions with respect to macroscopic rate con-
stants kµ and the corresponding conversion factor Ω, e.g., the system volume times the Avogadro constant

NA ≈ 6× 1023 mol−1.

Order Reaction Propensity

0th
∅

k0
GGGGGA · · · a0 (Y ) = k0Ω

1st Si
k1

GGGGGA · · · a1 (Y ) = k1Yi

2nd

Si + Sj
k2a

GGGGGGA · · · a2a (Y ) = k2a
Ω
YiYj

2Si
k2b

GGGGGGA · · · a2b (Y ) =


k2b
Ω
Yi (Yi − 1) if Yi ≥ 1

0 otherwise
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where o (dt) refers to unspecified terms which satisfy o (dt) /dt→ 0 as dt→ 0, and
Kµ (t) denotes the number of occurrences of reactionRµ at time t. Kµ is also a random
variable (see for instance [27, 28] for more details). For an elementary reaction Rµ,
the propensity is of the form

aµ (Y ) =


kµ

Ω|srµ|−1

N∏
i=1

Yi !(
Yi−srµi

)
!

if Yi ≥ srµi for all i = 1, . . . ,N ,

0 otherwise,

(2.5)

with Ω denoting a factor related to conversion of the macroscopic rate constant kµ,
e.g., the system volume, the Avogadro constant or the product of both. The sum of
all stoichiometric coefficients

∣∣∣srµ∣∣∣ =
∑N
i=1 s

r
µi of an elementary reaction—specifying

the number of reacting entities—is called reaction order. In many reaction systems,
only zero, first and second order reactions are considered. Their propensities are
given in Table 2.1. The time evolution of the probability density function (PDF)

P (Y ; t) = P [Y 1 (t) = Y1, . . . ,Y N (t) = YN ] , (2.6)

is given by the chemical master equation (CME) [27]

∂
∂t
P (Y ; t) =

M∑
µ=1

aµ
(
Y − υµ

)
P
(
Y − υµ; t

)
− aµ (Y )P (Y ; t) . (2.7)

The CME (2.7) may be considered as a discrete partial differential equation (PDE),
or, equivalently, as a countable system of ordinary differential equations (CODEs)
[6].

In classical formulation of biochemical reaction kinetics, the state of the sys-
tem at time t is approximated by a deterministic process y (t) on a continuous state
space R

N
0 . The states y of the deterministic model are related to the states Y in the

stochastic formulation by y = Y /Ω; for instance with Ω denoting the system vol-
ume times the Avogadro constant in a model based on amount concentrations of the
species. The time evolution of y (t) is given by the system of ordinary differential
equations (ODEs):

d
dt

y (t) =
M∑
µ=1

υµαµ (y (t)) , (2.8)

with αµ (y) :=aµ (Y ) /Ω denoting the Ω-scaled propensity of a reaction. For an ele-
mentary reaction Rµ it is

aΩµ (Y ) =
kµ

Ω|s
r
µ|−1

N∏
i=1

Yi !(
Yi − srµi

)
!

= Ω
kµ

Ω|s
r
µ|

N∏
i=1

srµi−1∏
s=0

(Yi − s)

= Ωkµ

N∏
i=1

srµi−1∏
s=0

(
yi −

s
Ω

)
= Ωαµ (y) , (2.9)

if yi ≥ srµi /Ω for all i = 1, . . . ,N , and αµ (y) = 0 otherwise.
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Remark: Relation to Reaction Rates. Based on the law of mass action, a deter-
ministic model typically incorporates reaction rates vµ (y) :=kµ

∏N
i=1 yi

srµi instead of
propensities αµ. For elementary reactions Rµ with srµi ≤ 1 for all i = 1, . . . ,N (e.g.,
zero and first order reactions), both, the rate vµ and the propensity αµ, are identi-
cal. In case of more complex reactions (any srµi > 1), the rate vµ approximates αµ for
Ω� 1, since then

αµ (y) = kµ
N∏
i=1

srµi−1∏
s=0

(
yi −

s
Ω

)
= kµ

N∏
i=1

yi
srµi +O

(
Ω−1

)
. (2.10)

In the sequel, we will solely use reaction propensities.

As shown by T. G. Kurtz [29], in the thermodynamic limit, i.e., the number of en-
tities of all species and the volume of the system approach infinity (Y0→∞, Ω→∞)
while the species concentrations converge to some value y0, the continuous deter-
ministic process y (t) given by eq. (2.8) approaches the discrete stochastic process
that underlies the CME (2.7) for every finite time t. Hence, if species are present in
larger numbers, the deterministic mass action kinetics is a good approximation to
the CME. This well-known property is one of the key facts to be exploited by the
herein proposed hybrid approach for solving the CME. While in the above results
the thermodynamic limit is applied to the reaction system as a whole, the idea of
our hybrid approach is to apply only a partial limit to those species that are present
in large quantities. Since a partial volume limit is hard to justify for obvious reasons,
we pursue a multiscale expansion approach with respect to a parameter ε� 1. This
‘artificial’ parameter ε will be linked to the abundance of species Si with Yi � 1 and
plays a similar role as Ω−1 in the classical deterministic limit.

For our derivation it is instructive to link the mass action kinetics model to the
evolution of expected values of the probability density function of the CME. The
expected value of the stochastic process Y (t) at a specific time t is defined as

E [Y (t)] :=
∑
Y

Y · P (Y ; t) . (2.11)

Multiplication of the CME (2.7) with Y and summation over all possible states yields

∑
Y

Y · ∂
∂t
P (Y ; t) =

∑
Y

Y ·
M∑
µ=1

aµ
(
Y − υµ

)
P
(
Y − υµ; t

)
− aµ (Y )P (Y ; t) . (2.12)

Exchange summations and exploiting the fact that Y (t) is non-negative allows us to
re-index the first sum, yielding

∂
∂t

E [Y (t)] =
M∑
µ=1

υµE
[
aµ (Y (t))

]
. (2.13)

For zero and first order reactions Rµ, the propensity aµ is a linear function and
E[aµ (Y (t))] = aµ (E [Y (t)]) holds, resulting in

∂
∂t

E [Y (t)] =
M∑
µ=1

υµaµ (E [Y (t)]) . (2.14)
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For second and higher order reactions, the propensity is non-linear and, as it is well-
known, E[aµ (Y (t))] , aµ (E [Y (t)]). However, from results of T. G. Kurtz we infer
that E[aµ (Y (t))] ≈ aµ (E [Y (t)]) is expected to hold for general reaction systems where
molecular species are present in large numbers (close to the thermodynamic limit).

3. Derivation of the Hybrid CME–ODE Method. In the following, we derive a
general hybrid description of the system dynamics where the time evolution of the
probability density P (Z; t) of all species present in small numbers Z is coupled to the
time evolution of the partial expectations EZ [X] :=

∑
Z X · P (X,Z; t) of species with

population levels X adequate for an approximation by deterministic mass action ki-
netics. The derivation will be based on a WKB-ansatz for the conditional probability
P (X |Z; t) and the resulting implications in computing expected values of X . In gen-
eral, the WKB-technique is a powerful method for approximating the solution of
a linear differential equation whose highest derivative is multiplied by a small pa-
rameter ε, for more information see for instance [24]. In the context of the CME, the
leading order WKB-approximation (eikonal function) is known to describe the mode
of the probability function in the basin of an attractor [30, 31] that naturally leads to
the corresponding deterministic formulation of the reaction processes [25]. In order
to maintain the effects of discrete, stochastic fluctuations on the system dynamics,
we apply this approximation only partially.

3.1. Definition of Discrete and Continuous Species and Reactions. We parti-
tion the system with respect to the species and their expected number of entities.
Assume that for a given reaction network it can be distinguished between:

(i) ‘Continuous’ species Sci (i = 1, . . . ,N c) whose changes in number of entities
are approximated by a continuous, deterministic process.

(ii) ‘Discrete’ species Sdi (i = 1, . . . ,N d) whose changes in number of entities re-
tain a discrete, stochastic description.

This partitioning is disjoint: N c +N d =N , and we rearrange the species-related vari-
ables accordingly:

Y = (X,Z)T , and υµ =
(
νµ,ζµ

)T
(µ = 1, . . . ,M) , (3.1)

where X and νµ denote the number of entities and net changes of all continuous
species Sci , and Z and ζµ denote the number of entities and net changes of all discrete
species Sdi , respectively. Finally, we represent the joint probability function P (X,Z; t)
using conditional probabilities as

P (X,Z; t) = P (X |Z; t)P (Z; t) . (3.2)

To correctly account for stochastic fluctuations in the discrete variable Z, all
reaction channels Rµ that act on a discrete species Sdi are modeled as a discrete,
stochastic process. All other reactions influence only the continuous species. Based
on the above assumption, those reactions are approximated as a continuous, deter-
ministic process. Hence, the discrete–continuous partitioning of the species induces
a corresponding partition of the reaction channels:

(i) ‘Continuous’ reactions do not change the number of entities of any discrete
species Sdi , i.e.,

ζµ = 0 for all µ ∈Mc, (3.3)
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where Mc denotes the subset of all continuous reactions.
(ii) ‘Discrete’ reactions change the number of entities of at least one discrete

species Sdi , i.e.,

ζµ , 0 for all µ ∈Md , (3.4)

where Md denotes the subset of all discrete reactions.

As a consequence of the above partitioning, the net changes of all reaction chan-
nels can be rearranged as

reactions

sp
ec

ie
s


cont. disc.

co
nt

.

νMc νMd

d
is

c. 0 ζMd

. (3.5)

Grouping terms together, we thus obtain

∂
∂t

[P (X |Z; t)P (Z; t)]

= P (Z; t)
∑
µ∈Mc

aµ
(
X − νµ,Z

)
P
(
X − νµ |Z; t

)
− aµ (X,Z)P (X |Z; t)

+
∑
µ∈Md

[
aµ

(
X − νµ,Z − ζµ

)
P
(
X − νµ |Z − ζµ; t

)
P
(
Z − ζµ; t

)
−aµ (X,Z)P (X |Z; t)P (Z; t)

]
. (3.6)

3.2. ε-Scaling of the Continuous Species and Reactions. According to our as-
sumption on continuous species, we scale their population levels with a factor ε� 1,
i.e.,

x :=ε ·X. (3.7)

The parameter ε is related to the abundance of the continuous species Sci and used in
the following asymptotic approximation to derive a partial limit of reaction kinetics.
The exact value of ε may not be required, since the final equations in the scaled state
space can be transformed back to the original unscaled state space. However, as the
following hybrid approach gives an asymptotic approximation, the resulting error
depends on the validity of this partial continuous–deterministic approximation and
only vanish in the limit as ε→ 0.

In order to keep the probability invariant under the change of variables (3.7),
the PDF of the scaled population levels is given by

Pε (x,Z; t) = Pε (x |Z; t)Pε (Z; t) :=εN
c
P (X |Z; t)P (Z; t) , (3.8)

where N c denotes the number of continuous species. Hence, with respect to the
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scaled levels, the partitioned CME. (3.6) reads

∂
∂t

[Pε (x |Z; t)Pε (Z; t)]

= Pε (Z; t)
∑
µ∈Mc

aεµ
(
x − ενµ,Z

)
Pε

(
x − ενµ |Z; t

)
− aεµ (x,Z)Pε (x |Z; t)

+
∑
µ∈Md

[
aεµ

(
x − ενµ,Z − ζµ

)
Pε

(
x − ενµ |Z − ζµ; t

)
Pε

(
Z − ζµ; t

)
−aεµ (x,Z)Pε (x |Z; t)Pε (Z; t)

]
, (3.9)

where aεµ (x,Z) = aµ (X = x/ε,Z) for all ε > 0. Intuitively it is clear that the intensity of
a reaction process does not depend on the scale of the reactant levels, see also [28].
For example, one might interpret the scaling as some transformation of units.

In accordance with the definition of continuous species, we assume that the scal-
ing of their levels imposes a corresponding scaling of the continuous reaction chan-
nels, analogously to the classical formulation of reaction kinetics. IfN c =N and thus
all levels are scaled, we require that our hybrid approach coincides with the purely
deterministic limit. In this case, the parameter ε can be linked to the Ω-scaling in
classical reaction kinetics via ε = Ω−1. Therefore, in line with eq. (2.9), we assume a
corresponding ε-scaling of the propensities of all continuous reactions

αµ (x,Z) :=ε · aεµ (x,Z) = ε · aµ (X = x/ε,Z) for all µ ∈Mc. (3.10)

In our context, however, this scaling is only applied to the subset Mc of the reaction
system, since the firing of a discrete channel results in changes of the process Z (t),
which, by definition, necessitates stochastic reaction kinetics. Hence, the propensi-
ties of all discrete reactions are assumed to satisfy

αµ (x,Z) :=aεµ (x,Z) = aµ (X = x/ε,Z) for all µ ∈Md . (3.11)

Under assumptions (3.10) and (3.11), eq. (3.9) becomes

∂
∂t

[Pε (x |Z; t)Pε (Z; t)]

=
1
ε
Pε (Z; t)

∑
µ∈Mc

αµ
(
x − ενµ,Z

)
Pε

(
x − ενµ |Z; t

)
−αµ (x,Z)Pε (x |Z; t)

+
∑
µ∈Md

[
αµ

(
x − ενµ,Z − ζµ

)
Pε

(
x − ενµ |Z − ζµ; t

)
Pε

(
Z − ζµ; t

)
−αµ (x,Z)Pε (x |Z; t)Pε (Z; t)

]
. (3.12)

In the following, we seek an approximate solution of the ε-scaled CME (3.12)
in the form of a multiscale expansion. We assume that the conditional probability
Pε (x |Z; t) can be represented in a WKB-like series expansion with respect to the
spatial coordinate, i.e.,

Pε (x |Z; t) =
1
√
ε

exp
{1
ε
s0 (x |Z; t)

}
(U0 (x |Z; t) + εU1 (x |Z; t) + . . .) , (3.13)
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where the factor ε−1/2 is related to the normalization of Pε (x |Z; t). We represent the
PDF Pε (Z; t) of the discrete species in an asymptotic series with respect to the spatial
coordinate of the form

Pε (Z; t) = P0 (Z; t) + εP1 (Z; t) + . . . . (3.14)

We assume that the functions s0,Ui and Pi , i = 0,1, . . . in the above asymptotic expan-
sion of the PDFs Pε (x |Z; t) and Pε (Z; t) are sufficiently continuously differentiable
with respect to the arguments x and t.

3.3. Leading Order Approximation of Conditional PDF. We determine a solu-
tion of the conditional PDF Pε (x |Z; t) to its leading order O

(
ε−1

)
. Differentiation of

eqs. (3.13) and (3.14) with respect to t gives

∂
∂t
Pε (x |Z; t) =

1
ε
Pε (x |Z; t)

∂
∂t
s0 (x |Z; t)

+
1
√
ε

exp
{1
ε
s0 (x |Z; t)

}( ∂
∂t
U0 (x |Z; t) + ε

∂
∂t
U1 (x |Z; t) + . . .

)
(3.15)

and

∂
∂t
Pε (Z; t) =

∂
∂t
P0 (Z; t) + ε

∂
∂t
P1 (Z; t) + . . . . (3.16)

Hence, on the left hand side of the ε-scaled CME (3.12) we find to leading order

∂
∂t

[Pε (x |Z; t)Pε (Z; t)]

= Pε (Z; t)
∂
∂t
Pε (x |Z; t) + Pε (x |Z; t)

∂
∂t
Pε (Z; t)

=
1
√
ε

(
1
ε
P0 (Z; t)exp

{1
ε
s0 (x |Z; t)

}
U0 (x |Z; t)

∂
∂t
s0 (x |Z; t) +O (1)

)
. (3.17)

In the right hand side of eq. (3.12), we first Taylor expand the eikonal function
s0

(
x − ενµ |Z; t

)
and U0

(
x − ενµ |Z; t

)
around the state x, i.e.,

s0
(
x − ενµ |Z; t

)
= s0 (x |Z; t)− ενT

µ∇s0 (x |Z; t) +O
(
ε2

)
(3.18)

and

U0

(
x − ενµ |Z; t

)
=U0 (x |Z; t) +O (ε) , (3.19)

where ∇s0 (x |Z; t) denotes the gradient of s0 with respect to x, defined as

∇s0 (x |Z; t) :=
(
∂
∂x1

s0 (x |Z; t) , . . . ,
∂

∂xN c
s0 (x |Z; t)

)T

. (3.20)

This implies the following expansion of the conditional PDF,

Pε
(
x − ενµ |Z; t

)
=

1
√
ε

exp
{1
ε
s0 (x |Z; t)

}
exp

{
−νT

µ∇s0 (x |Z; t)
} (
U0 (x |Z; t) +O (ε)

)
.

(3.21)
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Similarly, we Taylor expand the propensities αµ
(
x − ενµ,Z

)
in eq. (3.12) as

αµ
(
x − ενµ,Z

)
= αµ (x,Z) +O (ε) . (3.22)

Substituting both expansions (3.21) and (3.22) into the right hand side of the ε-
scaled CME (3.12), using eq. (3.17) on the left hand side, multiplying with ε−1/2 and
comparing the terms of order O

(
ε−1

)
on both sides, we obtain the leading order

approximation of the continuous processes for a given discrete state Z as

∂
∂t
s0 (x |Z; t) =

∑
µ∈Mc

αµ (x,Z)
[
exp

{
−νT

µ∇s0 (x |Z; t)
}
− 1

]
, (3.23)

where we divided both sides by P0 (Z; t)exp
{

1
ε s0 (x |Z; t)

}
U0 (x |Z; t).1 A convenient

approach for the analysis of the eikonal function s0 is to consider the PDE (3.23) as
the Hamilton–Jacobi equation for the action of an auxiliary system with coordinates
x (t |Z) and momenta p (t |Z) :=∇s0 (x |Z; t). The corresponding HamiltonianH of this
system is defined as

H (x,p; t) :=− ∂
∂t
s0 (x |Z; t) = −

∑
µ∈Mc

αµ (x (t |Z) ,Z)
[
exp

{
−νT

µp (t |Z)
}
− 1

]
. (3.24)

The corresponding Hamiltonian equations of motion read

d
dt

x (t |Z) :=
∂
∂p
H (x,p; t) =

∑
µ∈Mc

νµαµ (x (t |Z) ,Z)exp
{
−νT

µp (t |Z)
}
,

d
dt

p (t |Z) :=− ∂
∂x
H (x,p; t) =

∑
µ∈Mc

∇αµ (x (t |Z) ,Z)
[
exp

{
−νT

µp (t |Z)
}
− 1

]
.

(3.25)

These equations of motions define the characteristics of the PDE (3.23) and their
solution determines s0 (x |Z; t) [32].

We assume that the initial function s0 (x |Z; t = 0) has a unique global extremum
x = x̄0 (Z) where

p̄0 (Z) ≡ ∇s0 (x = x̄0(Z) |Z; t = 0) = 0. (3.26)

Moreover, we will assume that this extremum is in fact the global maximum of
s0 (x |Z; t = 0). In the regime ε� 1, this assumption ensures that the ε-parametrized
family of distributions Pε (x |Z; t = 0) has support concentrated around x̄0 (Z) and
width O

(√
ε
)
.

Remark. One could choose, for instance, a Gaussian distribution of the form

Pε (x |Z; t = 0) =
1
√
ε

√
σ2

(2π)N c exp
{
−1
ε
|x − x̄0 (Z)|2

2σ2

}
. (3.27)

1If P0 (Z; t)exp
{

1
ε s0 (x |Z; t)

}
U0 (x |Z; t) = 0, eqs. (3.12) and (3.17) result in an algebraic equation for

s0 (x |Z; t). This situation will be jointly dealt with the case where P0 (Z; t)� 1, see Section 3.7.
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In this case,

s0 (x |Z; t = 0) = −|x − x̄0 (Z)|2

2σ2 , (3.28)

and

U0 (x |Z; t = 0) =

√
σ2

(2π)N c , Ui (x |Z; t = 0) ≡ 0 (i = 1,2, . . .) . (3.29)

The equations of motion (3.25) for the propagation in time of the extremum
x̄ (t |Z) and corresponding p̄ (t |Z) are

d
dt

x̄ (t |Z) =
∑
µ∈Mc

νµαµ (x̄ (t |Z) ,Z) with x̄ (t = 0 |Z) = x̄0 (Z) , (3.30)

and

d
dt

p̄ (t |Z) = 0 with p̄ (t = 0 |Z) = p̄0 (Z) = 0. (3.31)

Moreover, x̄ (t |Z) remains the unique maximum of s0 for all t > 0.2 The solution of
eq. (3.30) hence gives the most probable values x̄ (t |Z) of the continuous species for
a given discrete state Z, which is identical to the classical solution of biochemical
reaction kinetics (compare eqs. (2.8) and (3.30)). However, it is important to realize
that a solution of eq. (3.30), or more generally eq. (3.25), is only valid on the O (ε)
scale, but the continuous processes also depend on the discrete–stochastic dynamics
evolving on the O (1) scale. Hence, we wish to derive evolution equations that live on
scales of order O (1). In indirect multiscale methods, for instance, eq. (3.30) is usually
solved up to the predicted time of a next stochastic reaction event where the system
is then updated accordingly and propagation of the characteristics continued for the
corresponding new initial conditions [18, 19, 20] (see also [33] for an analysis on this
type of multiscale numerical methods).

3.4. Laplace’s Integral Approximation of Conditional PDF. In the previous
section we derived the evolution equation (3.30) for the most probable value of x
for each discrete state Z, as given by the maximum of the eikonal function s0, and
showed that this maximum will remain unique at x̄ (t |Z) for all times t > 0. As we
demonstrate in this section, this result has important consequences for computing
expectations of the process x. Because of the special form of the ansatz (3.13), we
can use the Laplace approximation to compute integrals of the form

E
ε [f (x(t)) |Z] =

∫
f (x)Pε (x |Z; t)dx. (3.32)

2If there exists a solution (ȳ (t |Z) , p̄ (t |Z)) of (3.25) with initial conditions ȳ0 (Z) , x̄0 (Z) and
p̄0 (Z) , 0, but such that p̄ (t = T |Z) = 0 for T > 0 (implying that ȳ (t = T |Z) is an extremum of
s0 (x |Z; t = T )), then one could reverse time in eqs. (3.30)–(3.31) and conclude that necessarily p̄0 (Z) = 0,
which yields a contradiction.
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If the function s0 (x |Z; t) has a unique maximum at the point x = x̄ (t |Z), then by
Laplace’s method [34], it is∫

f (x)exp
{1
ε
s0 (x |Z; t)

}
dx

= exp
{1
ε
s0 (x̄ (t |Z) |Z; t)

}f (x̄(t |Z))

√
ε(2π)N c∣∣∣∇2s0 (x̄ (t |Z) ; t)

∣∣∣ +O
(
ε

3/2
) , (3.33)

where we have used that the Hessian matrix ∇2s0 (x = x̄ ( · ) |Z; t) is positive definite,
since x̄ ( · ) is a maximum of s0. This result has an immediate consequence: Since the
total probability Pε (x |Z; t) has to integrate to one, we can compute s0 (x = x̄ ( · ) |Z; t)
and U0 (x = x̄ ( · ) |Z; t) directly. We have

1 ≡
∫
Pε (x |Z; t)dx

=
∫

1
√
ε

exp
{1
ε
s0 (x |Z; t)

}
(U0 (x |Z; t) + εU1 (x |Z; t) + . . .)dx

=
1
√
ε

∫
exp

{1
ε
s0 (x |Z; t)

}
(U0 (x |Z; t) +O (ε))dx

=
1
√
ε

exp
{1
ε
s0 (x̄ (t |Z) |Z; t)

}U0 (x̄ (t |Z) |Z; t)

√
ε (2π)N

c∣∣∣∇2s0 (x̄ (t |Z) |Z; t)
∣∣∣ +O

(
ε

3/2
)

= exp
{1
ε
s0 (x̄ (t |Z) |Z; t)

}U0 (x̄ (t |Z) |Z; t)

√
(2π)N

c∣∣∣∇2s0 (x̄ (t |Z) |Z; t)
∣∣∣ +O (ε)

 . (3.34)

Since the above equation holds for all ε it follows that

s0 (x̄ (t |Z) |Z; t) = 0, (3.35)

and

U0 (x̄ (t |Z) |Z; t) =

√∣∣∣∇2s0 (x̄ (t |Z) |Z; t)
∣∣∣

(2π)N
c , (3.36)

for all Z and t ≥ 0. Moreover, we find that the O (ε) corrections in eq. (3.34) must
be identical to zero. In particular, this shows that the partial expectation of any
function f of x with respect to Pε ( · ,Z; t) can be approximated by

E
ε
Z [f (x)] :=

∫
f (x)Pε (x,Z; t)dx

=
∫
f (x)Pε (x |Z; t)dx · Pε (Z; t)

=
1
√
ε

∫
f (x)exp

{1
ε
s0 (x |Z; t)

}
U0 (x |Z; t)dx · (P0 (Z; t) +O (ε))

= f (x̄ (t |Z))P0 (Z; t) +O (ε) , (3.37)
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where we used Laplace’s method and the above results for s0 and U0 (eqs. (3.35) and
(3.36)) for the last equality. In a similar manner, we find that all expectation values
with respect to the PDF Pε ( · ,Z; t) can be computed from x̄ (t |Z) and P0 (Z; t).3

3.5. Approximation of the PDF of Discrete Species. We use the results of the
previous two sections to derive the evolution equation of P0 (Z; t). Integration of the
ε-scaled CME (3.12) over x results in

∂
∂t
Pε (Z; t) =

∫
∂
∂t

[Pε (x |Z; t)Pε (Z; t)]dx

=
1
ε
Pε (Z; t)

∫ ∑
µ∈Mc

[
αµ

(
x − ενµ,Z

)
Pε

(
x − ενµ |Z; t

)
−αµ (x,Z)Pε (x |Z; t)

]
dx

+
∫ ∑

µ∈Md

[
αµ

(
x − ενµ,Z − ζµ

)
Pε

(
x − ενµ |Z − ζµ; t

)
Pε

(
Z − ζµ; t

)
−αµ (x,Z)Pε (x |Z; t)Pε (Z; t)

]
dx

= 0 +
∫ ∑

µ∈Md

[
αµ

(
x − ενµ,Z − ζµ

)
Pε

(
x − ενµ |Z − ζµ; t

)
Pε

(
Z − ζµ; t

)
−αµ (x,Z)Pε (x |Z; t)Pε (Z; t)

]
dx.

(3.38)

This last equation implies that the evolution of Pε (Z; t) is given by scales of order
O (1). Therefore, the dynamics of Pε (Z; t) can be expressed as

∂
∂t
Pε (Z; t) =

∂
∂t
P0 (Z; t) + ε

∂
∂t
P1 (Z; t) + . . .

=
1
√
ε

∫ ∑
µ∈Md

[
αµ

(
x,Z − ζµ

)
exp

{1
ε
s0

(
x |Z − ζµ; t

)}
U0

(
x |Z − ζµ; t

)
× exp

{
−νT

µ∇s0
(
x |Z − ζµ; t

)}
P0

(
Z − ζµ; t

)
−αµ (x,Z)exp

{1
ε
s0 (x |Z; t)

}
U0 (x |Z; t)P0 (Z; t)

]
dx+O (ε) ,

(3.39)

where we consider the same expansions of Pε
(
x − ενµ |Z; t

)
and αµ

(
x − ενµ,Z

)
as

already used for the eikonal approximation, see eqs. (3.21) and (3.22). Combing
Laplace’s integral approximation with the results for s0 and U0 given in eqs. (3.35)
and (3.36), and comparing the terms of order O (1) on both sides of eq. (3.39) yields

3From this last result we can infer that the assumption that s0 has a unique maximum at t = 0 may be
relaxed. If initially s0 has many local maxima given by x̄i0, i = 1,2, . . ., these maxima will evolve indepen-
dently in time according to eq. (3.30). The approximation of partial expectations of the form (3.37) will
then be a superposition of terms of the form f

(
x̄i (t |Z)

)
, as long as the distance between these maxima is

O (1) so that Laplace’s method can be applied.
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the time evolution of P0 (Z; t) as

∂
∂t
P0 (Z; t) =

∑
µ∈Md

αµ
(
x̄
(
t |Z − ζµ

)
,Z − ζµ

)
P0

(
Z − ζµ; t

)
−αµ (x̄ (t |Z) ,Z)P0 (Z; t) ,

(3.40)
where we used the WKB-result that characteristics x̄ (t |Z) propagate the maximum
of Pε (x |Z; t), and hence exp

{
−νT

µ∇s0 (x̄ (t |Z) |Z; t)
}

= 1 for all Z and t.

3.6. Approximation of the Partial Expectation of Continuous Species. As we
did in the previous section, we may derive the evolution of the leading order approx-
imation for the partial expectations of the continuous species on the O (1) scale. As
shown above, the partial expectation of any function f of x with respect to Pε ( · ,Z; t)
can be approximated by

E
ε
Z [f (x)] = f (x̄ (t |Z))P0 (Z; t) +O (ε) . (3.41)

This approximation is consistent with the derived evolution of P0 (Z; t) in eq. (3.40).
More importantly, it also allows us to derive the evolution of the leading order ap-
proximation of EεZ [x], i.e.,

E
0
Z [x] := x̄ (t |Z)P0 (Z; t) . (3.42)

First note that multiplication of the ε-scaled CME (3.12) with x and subsequent in-
tegration gives

∂
∂t

E
ε
Z [x] =

∫
x
∂
∂t

[Pε (x |Z; t)Pε (Z; t)]dx

=
1
ε
Pε (Z; t)

∫
x

∑
µ∈Mc

[
αµ

(
x − ενµ,Z

)
Pε

(
x − ενµ |Z; t

)
−αµ (x,Z)Pε (x |Z; t)

]
dx

+
∫
x

∑
µ∈Md

[
αµ

(
x − ενµ,Z − ζµ

)
Pε

(
x − ενµ |Z − ζµ; t

)
Pε

(
Z − ζµ; t

)
−αµ (x,Z)Pε (x |Z; t)Pε (Z; t)

]
dx

= Pε (Z; t)
∫ ∑

µ∈Mc

[
νµαµ (x,Z)Pε (x |Z; t)

]
dx

+
∫
x

∑
µ∈Md

[
αµ

(
x − ενµ,Z − ζµ

)
Pε

(
x − ενµ |Z − ζµ; t

)
Pε

(
Z − ζµ; t

)
−αµ (x,Z)Pε (x |Z; t)Pε (Z; t)

]
dx.

(3.43)



HYBRID STOCHASTIC–DETERMINISTIC SOLUTION OF THE CME 15

Once again, we observe that the terms of order O
(
ε−1

)
do not appear in the right

hand side of eq. (3.43), and therefore the dynamics of EεZ [x] can be approximated by

∂
∂t

E
ε
Z [x] =

∂
∂t

E
0
Z [x] +O (ε)

= P0 (Z; t)
1
√
ε

∫ ∑
µ∈Mc

[
νµαµ (x,Z)exp

{1
ε
s0 (x |Z; t)

}
U0 (x |Z; t)

]
dx

+
1
√
ε

∫
x

∑
µ∈Md

[
αµ

(
x,Z − ζµ

)
exp

{1
ε
s0

(
x |Z − ζµ; t

)}
U0

(
x |Z − ζµ; t

)
× exp

{
−νT

µ∇s0
(
x |Z − ζµ; t

)}
P0

(
Z − ζµ; t

)
−αµ (x,Z)exp

{1
ε
s0 (x |Z; t)

}
U0 (x |Z; t)P0 (Z; t)

]
dx+O (ε) .

(3.44)

Applying Laplace’s method, using the results for s0 and U0 in eqs. (3.35) and (3.36),
and comparing the terms of order O (1) on both sides, we find

∂
∂t

E
0
Z [x] = P0 (Z; t)

∑
µ∈Mc

νµαµ (x̄ (t |Z) ,Z)

+
∑
µ∈Md

αµ
(
x̄
(
t |Z − ζµ

)
,Z − ζµ

)
E

0
Z−ζµ [x̄]−αµ (x̄ (t |Z) ,Z)E0

Z [x̄] . (3.45)

In summary, eqs. (3.40) and (3.45) describe the evolutions of P0 (Z; t) and E
0
Z [x].

It is worth mentioning that although E
0
Z [x] is determined explicitly by x̄ (t |Z) and

P0 (Z; t), it cannot be recovered by direct integration of eqs. (3.30) and (3.40), since
the evolution of x̄ (t |Z) as given by eq. (3.30) is only valid on the order O (ε). The
evolution equation (3.45) of E

0
Z [x], on the other hand, is valid on the order O (1),

which is the scale we are interested in. The corresponding conditional levels x̄ (t |Z)
can then be recovered by the relation (3.42), as we shall see in the next sections.

3.7. Final Equations of the Hybrid CME–ODE Approach. Summarizing, we
derived the following hybrid system approximating the coupled dynamics of the
stochastic and deterministic processes up to order O (1). The time evolution of the
probability distribution P0 (Z; t) of the discrete species is given by eq. (3.40), i.e.,

∂
∂t
P0 (Z; t) =

∑
µ∈Md

aµ
(
X̄

(
t |Z − ζµ

)
,Z − ζµ

)
P0

(
Z − ζµ; t

)
− aµ

(
X̄ (t |Z) ,Z

)
P0 (Z; t) ,

(3.46)
where we re-substituted the functions αµ by the original propensities aµ for the
discrete reactions using definition (3.11). By eq. (3.45), the partial expectations
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E
0
Z [X] = ε−1

E
0
Z [x] of the continuous species for a discrete state Z are defined by

∂
∂t

E
0
Z [X] = P0 (Z; t)

∑
µ∈Mc

νµaµ
(
X̄ (t |Z) ,Z

)
︸                                ︷︷                                ︸

impact of continuous reactions

+
∑
µ∈Md

aµ
(
X̄

(
t |Z − ζµ

)
,Z − ζµ

)
E

0
Z−ζµ [X]− aµ

(
X̄ (t |Z) ,Z

)
E

0
Z [X]

︸                                                                              ︷︷                                                                              ︸
impact of discrete reactions

, (3.47)

where we replaced all αµ by the original propensities aµ as given by eqs. (3.10) and
(3.11). To obtain the solution of X̄ (t |Z) that is valid for scales of order O (1) from
the above equations, we use definition (3.42), i.e., divide E

0
Z [X] = X̄ (t |Z)P0 (Z; t) by

P0 (Z; t) > 0 or set X̄ (t |Z) = 0 if P0 (Z; t) = 0, respectively.

As the size of the discrete, stochastic state space is drastically reduced a stan-
dard numerical integration of eqs. (3.46) and (3.47) becomes applicable even for
more complex systems. During numerical integration of the hybrid system the ac-
tual propensities have to be evaluated at every integration step. This also requires
the explicit computation of the conditional values X̄ (t |Z) of the continuous species
from P0 (Z; t) and E

0
Z [X]. To avoid numerical instabilities, we introduce a threshold

δ� 1: Whenever the actual value of P0 (Z; t) ≤ δ, we set P0 (Z; t) = 0 and E
0
Z [X] = 0

in the evaluation of eqs. (3.46) and (3.47), i.e., the actual dynamics of the hybrid sys-
tem will be constrained to those discrete states with P0 (Z; t) > δ during integration.
For appropriate choices of δ, the additional error made with this criterion can be ex-
pected to be negligible. A reasonable choice for δ would be a value not greater than
the allowed absolute error used in the numerical integration of the hybrid system.

3.8. Coarse Graining of the Continuous Processes. In many reaction systems,
most reactions are of zero, first or second order, i.e., the propensity functions will
depend on the level of a few species only, see Table 2.1. If the propensities of the
continuous reactions are constant on a subset Zk of discrete states, then we may
associate a single ODE with the entire subsetZk rather than an ODE for each element
of the subset. We therefore seek subsets Zk of discrete states such that for all µ ∈Mc:

aµ ( · ,Z) = const for all Z ∈ Zk . (3.48)

If criterion (3.48) holds, we find that the evolution equations of the eikonal
functions s0 ( · |Z; t) are identical for every Z ∈ Zk . Given equal initial conditions
X = X̄0 (Z) for every Z ∈ Zk , they would therefore propagate in time along the same
characteristic X̄ (t |Zk). Consequently, we assign the same expectation E

ε
Zk [X] to

each subset Zk of discrete states:

E
ε
Zk [X] :=

∑
Z∈Zk

E
ε
Z [X] = X̄ (t |Zk)

∑
Z∈Zk

P0 (Z; t) +O (ε) . (3.49)

The time evolution of E0
Zk [X] := X̄ (t |Zk)

∑
Z∈Zk P0 (Z; t) is than given by summation
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of eq. (3.47) over all discrete states Z ∈ Zk , i.e.,

∂
∂t

E
0
Zk [X] =

∑
Z∈Zk

P0 (Z; t)
∑
µ∈Mc

νµaµ
(
X̄ (t |Zk) ,Zk

)
+

∑
Z∈Zk

∑
µ∈Md

[
aµ

(
X̄

(
t |Z − ζµ

)
,Z − ζµ

)
E

0
Z−ζµ [X]− aµ

(
X̄ (t |Z) ,Z

)
E

0
Z [X]

]
,

(3.50)

where aµ
(
X̄ (t |Zk) ,Zk

)
in the first sum denotes the propensity of a continuous reac-

tion on Zk evaluated for X̄ (t |Zk). Again, the second summand in the right hand side
of eq. (3.50) describes the impact of the discrete reactions on the partial expectation
of the continuous species. As these are coarse grained, all terms describing the ex-
change on the same subset Zk cancel out, and only those terms related to an in- or
outflow of probability to be in Zk remain in the second summand of eq. (3.50).

Any conditional value X̄ (t |Zk) necessary for the evaluation of eq. (3.50) can be
computed from E

0
Zk [X] := X̄ (t |Zk)

∑
Z∈Zk P0 (Z; t) and the PDFs P0 (Z; t) as described

in the previous subsection. Since X̄ (t |Z) = X̄ (t |Zk) for all Z ∈ Zk , this also allows to
compute the leading order approximation E

0
Z [X] = X̄ (t |Z)P0 (Z; t) of the partial ex-

pectations at a specific state Z, which are used in the second summand of eq. (3.50).
The evolution equations of the PDFs P0 (Z; t) are not effected by the suggested coarse
graining.

3.9. Algorithmic Flow. The main steps of our hybrid approach may be summa-
rized as follows:

Step 1 (Partition the Species). Define a partition of theN species into discrete and
continuous species, i.e., Sd1 , . . . ,S

d
Nd and Sc1, . . . ,S

c
N c , respectively, with N d +N c =N .

Such partitioning can be based on the expected levels and conservation properties
of the species, different time-scales of the reactions or other prior knowledge on the
system dynamics.

Step 2 (Partition the Reactions). According to conditions (3.3) and (3.4), treat
every reaction Rµ that changes a discrete species Sdi as a discrete process. Set all
remaining reactions as continuous processes.

Step 3 (Formulate Hybrid CME–ODE Equations). If the dynamics of the N d dis-
crete species is a priori known to be restricted to a specific subset of states, formu-
late the corresponding system of (linear) ODEs for the time evolution of the PDF
as described by eq. (3.46). Otherwise, choose a reasonable initial subset of discrete
states. The approximation error can be bounded by the finite state projection (FSP)
algorithm [5]. Further check the dependence of the propensities of all continuous
reactions on the discrete state space in order to identify subsets Zk of discrete states
where their values are constant. If coarse graining can be applied, assign a system
of ODEs for all N c continuous species to every subset Zk that satisfies eq. (3.50).
Otherwise assign an ODE system for the continuous species to every discrete state
as described by eq. (3.47). Furthermore, our above scaling approach does hold for
more general situation than just some species with large copy numbers. We just re-
quire equations (3.10) and (3.11) to be valid in the specific subspaces. Therefore, we
can also integrate rapidly firing reactions (with rate constants scaling like ε−1). Vice
versa, observation of a critically small propensity (order ε) in one of the reactions in
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Mc may spoil the approximation property, and thus has to be considered in choosing
the discrete states and reactions.

Step 4 (Compute Numerical Solution). Numerical integration of the final hybrid
model requires appropriate methods for efficient solution of differential algebraic
equations (DAEs). Since a variety of such methods are available and choosing the
optimal one for the case at hand is a problem on its own, we refrain from addressing
this topic in depth. Instead we apply a straight-forward approach to the simulation
that exploits the threshold value δ introduced above: Choose an appropriate δ for
the evaluation of the continuous levels from E

0
Z [X] or E

0
Zk [X], respectively. Start

numerical integration of the system. If applicable, monitor the loss in probability
mass based on the FSP algorithm and dynamically update the support of the system
by expanding the discrete state space. Update the corresponding ODE system of the
PDF and the associated expectations of the continuous species accordingly. For state
space expansion, strategies elaborated in [5, 13] can be used.

To highlight the benefits of our hybrid approach, we compare numerical costs
in terms of number of equations that have to be integrated. Assume that the popu-
lation level of every discrete species is bounded by the same maximal value m, and
the level of every continuous species can maximally reach h, with h�m by assump-

tion. Hence, the state space of the system would include (m+ 1)N
d
· (h+ 1)N

c
states

that have to be considered in the spatial discretization of the CME. In contrast, in

our hybrid approach the system dynamics would be described by (m+ 1)N
d
· (1 +N c)

equations only. These are given by the (m+ 1)N
d

states necessary for the support of
the PDF of discrete species, and the ODEs for the expectation levels of the N c differ-
ent continuous species associated with each of these discrete states. The reduction
would be even higher if the continuous processes can be further coarse grained to

subsets of the discrete state space. In that case we would have only (m+ 1)N
d

+K ·N c

equations, whereK � (m+ 1)N
d

denotes the number of subsets used for coarse grain-
ing. As the numerical costs of our hybrid approach basically scale with the number
of discrete states, we expect it to be especially efficient for systems that include a
few species that have to be modeled discretely, e.g., gene regulatory or signaling net-
works.

4. Numerical Experiments. The SSA and an explicit Runge-Kutta method of
order 4 with error and step size control were implemented in C++ . All numeri-
cal experiments were performed on an Intel® Core™2 Duo processor with 2 GHz
and 2 GB RAM. In each example, the numerical solution of the proposed hybrid ap-
proach was compared to the corresponding predictions obtained from ten thousand
SSA simulations of the full CME. Numerical integration of the hybrid equations was
performed with an absolute tolerance of 10−6 and a relative tolerance of 10−3. The
δ-threshold was set to 10−6, in accordance with the selected absolute error. For state
space truncation, appropriate levels for each discrete species were chosen initially,
accounting for higher values than observed in the SSA simulations. No additional
boundary conditions were applied to the truncated systems. Truncation error was
monitored by loss of probability mass, which was at final times of all experiments
much lower than the allowed absolute error.
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Figure 4.1. Left: Illustration of system (4.1), used as a first test example. The system can switch between
two (discrete) states S1 and S2. The degradation and production of the (continuous) species C depends on the
actual state of the system: In S1 only the degradation of C is active, whereas in S2 only the production of C
is active. Right: Typical results of a single SSA-realization of system (4.1) for the parameter values listed in
Table 4.1.

4.1. A Simple Switch-Model. Metastability is an important property of biolog-
ical systems, necessitating in general a stochastic modeling approach for its in silico
analysis. As a first test example for our hybrid approach, we designed a simple
bistable model of three species and four elementary reactions:

R1 : S1

k1
GGGGGA S2, R2 : S2

k2
GGGGGA S1,

R3 : C + S1

k3
GGGGGA S1, R4 : S2

k4
GGGGGA C + S2.

(4.1)

The concept behind this network is that S1 and S2 represent two metastable states
of a system, as illustrated in Fig. 4.1, left panel. These states are considered as dis-
crete species in our hybrid approach with a possible value of either zero ore one.
Transitions between S1 and S2 are modeled by reactions R1 and R2 that are treated
as discrete processes in the following. Depending on the actual state of the system,
the third, continuously treated species C gets either degraded or produced through
reactions R3 and R4, respectively. We included this state-dependence of R3 and R4
in their stoichiometries, see eqs. (4.1). The discrete species S1 and S2 are not affected
by a firing of channel R3 or R4, and hence, both reactions are treated as continuous,
deterministic processes (see also Fig. 4.1, right panel, for a typical SSA-realization of
the system).

The full set of hybrid equations of network (4.1) is given by

∂
∂t
P0 (S1; t) = −k1P0 (S1; t) + k2P0 (S2; t) = − ∂

∂t
P0 (S2; t) ,

∂
∂t

E
0
S1

[X] = −k1E
0
S1

[X] + k2E
0
S2

[X]− k3E
0
S1

[X]

∂
∂t

E
0
S2

[X] = +k1E
0
S1

[X]− k2E
0
S2

[X] + k4P0 (S2; t) ,

(4.2)

where P0 (S1; t) and P0 (S2; t) denote the probabilities that the system is either in state
S1 or S2 at time t, respectively. The approximated partial expectations of species C
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with respect to S1 and S2 are denoted by E
0
S1

[X] and E
0
S2

[X]. It should be noted
that the corresponding conditional levels X̄ (t |S1) and X̄ (t |S2) of C do not have to
be computed for the evaluation of the hybrid equations (4.2). This is generally the
case if all propensities in a reaction network are linear functions with respect to the
continuous species.

In Figures 4.2 and 4.3, the numerical solution of eqs. (4.2) is compared to predic-
tions obtained by SSA simulations. In the upper panels of Figure 4.2, the time evo-
lution of the probabilities P0 (S1; t) and P0 (S2; t) (left), as well as the evolution of the
partial expectations E

0
S1

[X] and E
0
S2

[X] (right) are shown. Additionally, Figure 4.2
depicts the corresponding conditional levels X̄ (t |S1) and X̄ (t |S2) (lower left panel)
and the approximation of the total expectation E

0 [X] of C (lower right panel). The
relative error between the results obtained by both methods is plotted against time
in Figure 4.3. As can be seen, the solution of our hybrid equations is in excellent
agreement with the SSA results. For the model system (4.1), we may demonstrate
that our hybrid approach corresponds to the exact evolution equations. This is guar-
anteed by two properties of the network: Independence of R1 and R2 from C, and
linearity of R3 and R4 with respect to C.

In general, the derived hybrid equations (3.46) and (3.47) are exact if:
(i) The stochastic part is decoupled from the deterministic processes, i.e., the

propensities of all discrete reactions Md are independent functions of the
continuous species X

aµ (X,Z) = aµ (Z) for all µ ∈Md . (4.3)

(ii) All continuous reactions Mc are linear functions with respect to the contin-
uous species X, which guarantees

E[aµ (X ,Z) |Z] = aµ (E [X |Z] ,Z) for all µ ∈Mc, (4.4)

with E [f (X) |Z] :=
∑
X f (X)P (X |Z; t) denoting the conditional expectation

of any function f of X with respect to P ( · |Z; t).

Starting from the full, unscaled CME (3.6) one can simply sum over the continu-
ous speciesX to obtain the marginal probability for the discrete species Z. Assuming
(4.3), the equation for P (Z,t) becomes exactly equation (3.46) for P0(Z,t) obtained in
the previous sections. Similarly, by multiplying (3.12) by X and summing over all
possible states, the linearity assumption (4.4) yields equation (3.47) for the evolu-
tion of EZ [X] by identifying the conditional expectations E [X |Z] of the continuous
species with the conditional levels X̄ (t |Z) in our setting. For that reason, any dis-
crepancies to SSA results, as for instance illustrated in Figure 4.3, is in this case
associated to the sampling error of the MC method.

Table 4.1

Parameter values used for system (4.1), conversion factor Ω = 1. The system is started in state S1 with ten
thousand entities of species C and solved for a time period of 100.

k1 k2 k3 k4
0.06 0.04 0.2 500.0
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Figure 4.2. Time evolution of system (4.1) as predicted by ten thousand SSA runs (solid lines) and the
numerical solution (marked by stars) of the corresponding hybrid equations (4.2) for the parameter values listed
in Table 4.1.
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Figure 4.3. Relative error of the numerical solution of the hybrid equations (4.2) with respect to the
predictions obtained by ten thousand SSA runs of system (4.1), as shown in Fig. 4.2.
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4.2. Viral Infection Kinetics. As a second example, we consider the infection
model of a non-lytic virus proposed by Srivastava et al. [36]. We also use this model
to illustrate the suggested coarse graining of the continuous processes. The model in-
cludes three viral components: viral nucleic acids, classified as either genomic (gen)
or template (tem), and viral structural protein (struct), governed by six elementary
reactions:

R1 : gen
k1

GGGGGA tem, R2 : tem
k2

GGGGGA ∅,

R3 : tem
k3

GGGGGA tem + gen, R4 : gen + struct
k4

GGGGGA ∅,

R5 : tem
k5

GGGGGA tem + struct, R6 : struct
k6

GGGGGA ∅.

(4.5)

The viral infection of a host-cell is initiated with a single molecule of tem, where
the viral template tem denotes the ‘active’ form of nucleic acids that is involved in
the catalytic synthesis of the viral components gen and struct (reactions R3 and R5,
respectively). The gen component refers to nucleic acids that transport the viral
genetic information, e.g., DNA or RNA, which is either processed into the active form
tem (reaction R1), or used together with structural proteins struct to compose a new
viral cell that gets released from the host (reaction R4). The number of tem and struct
molecules is further regulated by degradation (reactions R2 and R6, respectively).
The considered values of all rate constants are given in Table 4.2.

Even though the network (4.5) has a relative simple structure, it is capable of
resembling realistic scenarios of a viral infection by rendering two steady states;
the first representing a successful infection with approximately 20 gen, 200 tem and
10.000 struct molecules, and the second representing a successful rejection with no
molecule of any viral component left. However, a pure deterministic model of sys-
tem (4.5) will never account for these different scenarios, as the first steady state
is deterministically stable, whereas the second, absorbing state is deterministically
unstable. To study the system behavior correctly, the discrete–stochastic formula-
tion has to be used instead. Unfortunately, the system dynamics lives on a much
too large state space to solve the corresponding CME directly (e.g., there are more
than 42 million states that ‘directly’ connect the two steady states), and usually MC
realizations are considered instead.

As the level of struct is at least two orders of magnitude larger in a successful
infection than the levels of tem and gen (except for some transient phase), we treat
struct as a continuous species; and regard tem and gen as discrete species. Accord-
ingly, reactions R1–R4 are treated as discrete, stochastic processes; reactions R5 and
R6 are approximated as continuous, deterministic processes. Since the propensities

Table 4.2

Parameter values used for the viral infection kinetics model (4.5), conversion factor Ω = 1. Initially, the
system is with probability one in the state with 1 tem, and 0 gen and struct molecules. The system is simulated
for a period of 200 days.

k1 k2 k3 k4 k5 k6
[1/day] [1/day] [1/day] [1/day] [1/day] [1/day]

0.025 0.25 1.0 7.5× 10−6 1000 2.0



HYBRID STOCHASTIC–DETERMINISTIC SOLUTION OF THE CME 23

of both continuous reactions, R5 and R6, have constant values for a fixed number of
tem molecules, we further coarse grain the number of continuous processes, i.e., we
only associate a continuous process to each subset of discrete states with the same
level of tem. We use each of these processes to obtain a deterministic approximation
of the expected level of struct conditioned on the number of tem molecules. This
further reduces the number of hybrid equations drastically.

In Figs. 4.4 and 4.5 the predicted PDFs of the discrete species tem and gen, re-
spectively, are shown at four different time points. The corresponding expectations
of struct for a given number of tem are plotted in Fig. 4.6. The results of the hybrid
model are in excellent agreement with the approximations obtained by SSA realiza-
tions. Furthermore, it can be seen that the conditional expectations Et [#struct |#tem]
remain almost constant during later phase (compare, for instance, the results for
t = 100,150 and 200 days in Fig. 4.6), indicating that the continuously approximated
processes are already in equilibrium. Instead it is the probability to be in a specific
subset of the discrete state space that changes (see Figs. 4.4 and 4.5), and hence the
impact of the discrete reactions that results in changes of the partial expectations
of struct (data not shown). As illustrated in Fig. 4.7, this results in a very accurate
prediction of the total expectation of struct by the hybrid model, whereas the ‘pure’
deterministic model fails.
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Figure 4.4. Probability distribution of tem at t = 50,100,150 and 200 days in the viral infection kinetics
model (4.5) for parameter values as listed in Table 4.2. The approximations obtained by ten thousand SSA runs
are indicated by bars, the numerical solution of the suggested hybrid model is marked by stars, pure deterministic
predictions are highlighted by dashed lines. Bottom: The maximal relative (with respect to the SSA results) error
of the hybrid solution against time.
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Figure 4.5. Probability distribution of gen at t = 50,100,150 and 200 days in the viral infection kinetics
model (4.5) for parameter values as listed in Table 4.2. The approximations obtained by ten thousand SSA runs
are indicated by bars, the numerical solution of the suggested hybrid model is marked by stars, pure deterministic
predictions are highlighted by dashed lines. Bottom: The maximal relative (with respect to the SSA results) error
of the hybrid solution against time.
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Figure 4.6. Expected values of struct conditioned on the number of tem molecules in system (4.5) at
t = 50,100,150 and 200 days after begin of infection (parameters values listed in Table 4.2). The approximations
obtained by ten thousand SSA runs are indicated by bars, the numerical solution of the suggested hybrid model
is marked by stars, pure deterministic predictions are highlighted by dashed lines. Bottom: The average relative
(with respect to the SSA results) error of the hybrid solution against time.
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Figure 4.7. Expected value of struct in system (4.5), plotted against the simulated period of 200 days
(parameter values listed in Table 4.2). The approximation obtained by ten thousand SSA runs is plotted as a
straight line, the predicted expectation in the hybrid approach is marked by stars, the pure deterministic pre-
diction is illustrated by a dashed line. Below: The relative error of the hybrid solution with respect to the SSA
results against time.

4.3. Transcription Regulation. To further illustrate the proposed hybrid ap-
proach on a more complex system and to study the error resulting from a deter-
ministic approximation of the continuous species, we consider the transcriptional
regulatory system published in [35]. The system includes six species that interact
through the following ten elementary reactions:

R1 : mRNA
k1

GGGGGA mRNA + M, R2 : M
k2

GGGGGA ∅,

R3 : DNA·D
k3

GGGGGA DNA·D + mRNA, R4 : mRNA
k4

GGGGGA ∅,

R5 : DNA + D
k5

GGGGGA DNA·D, R6 : DNA·D
k6

GGGGGA DNA + D,

R7 : DNA·D + D
k7

GGGGGA DNA·2D, R8 : DNA·2D
k8

GGGGGA DNA·D + D,

R9 : 2M
k9

GGGGGAD, R10 : D
k10

GGGGGA 2M,

(4.6)

where M is a protein (monomer) the can reversibly dimerise (reactions R9 and R10)
to form the transcription factor D (dimer). The DNA template has two different
binding sites for D, where DNA denotes the state with both sites free, DNA ·D the
state with D bound at the first site, and DNA·2D the state with dimers bound at both
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sites. It is assumed that D can occupy the second binding site (reactions R7 and R8)
only when the first site is already occupied (R5 and R6). Transcription only occurs
from the state DNA ·D (reaction R3), where the dimer is bound to the first binding
site of the DNA. The produced messenger RNA, mRNA, is translated into protein M
(reaction R1). Both, M and mRNA, are subject of degradation (reactions R2 and R4).

Based on common knowledge in cell biology, we expect the level of proteins to be
much larger than the levels of mRNA and DNA. Therefore, we regard the monomer
and dimer forms of the protein, M and D, as continuous species in our hybrid ap-
proach, whereas mRNA and all DNA forms (DNA, DNA·D and DNA·2D) are treated
as discrete species. As reactions R3–R8 change the levels of discrete species, we treat
these reactions as discrete, stochastic processes. Reactions R1, R2, R9 and R10 have
only impact on the levels of the continuous species (M andD), and are hence approx-
imated as continuous, deterministic processes. Given this partition of the species
and reactions, we can formulate and numerically solve the corresponding hybrid
equations of the system.

In Fig. 4.8 the evolution of the system as predicted by the hybrid model is com-
pared to the results obtained from ten thousand SSA realizations. The predictions
are in excellent agreement, particularly those for the discrete species, as further illus-
trated in Fig. 4.9. We again emphasize that the results computed with SSA necessar-
ily include an unknown sampling error. While the error in the numerical integration
of the proposed hybrid equations is controlled by standard methods, the error made
with an indirect MC method is hard to estimate. In the hybrid model, however, an
additional error arises from approximating one part of the network continuously
and deterministically.

To study the error that results from modeling the two protein forms M and D
as continuous species, we decrease the rate constant of mRNA synthesis, k3. A lower
level of mRNA results in an overall weaker protein synthesis (reaction R1) and, con-
sequently, lower levels of monomer M and dimer D. As can be seen from the results
shown in Figs. 4.10 and 4.11, for instance, the error made with the hybrid model
increases in this scenario, which is also intuitively clear. Especially in the later tran-
sient phase (after ≈ 10 min), the predictions for the discrete species show a notice-
able mismatch to the SSA results.

In Fig. 4.12, we further investigate the dependence of the hybrid solution on
the rate of mRNA synthesis k3. As indicated by these results, for higher levels of M
and D (i.e., ε→ 0 in the partial scaling of the network) the error resulting from their
continuous–deterministic approximation decreases. At the same time, the CPU-time
needed to numerically solve the corresponding hybrid equations increases. This is
due to the fact that the mRNA species is part of the discrete partition. Hence, for
higher mRNA synthesis rates the state space expands and the number of ODEs in-
creases in the hybrid model, resulting in higher numerical cost to compute its solu-
tion. However, a similar effect is also present in the computation of the SSA real-
izations (Fig. 4.12, upper plot), and, compared to that, the hybrid solution is always
computed approximately two orders of magnitude faster (or as fast as one hundred
SSA realizations, respectively).
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Figure 4.8. Time evolutions of the expected values (black) and standard deviations (gray) in the transcrip-
tion regulation system (4.6) for the parameter values as listed in Table 4.3. The approximations obtained by ten
thousand SSA runs are plotted as lines, the numerical solutions of the suggested hybrid model are marked by
stars.
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Figure 4.9. Absolute and relative (with respect to the SSA predictions) errors, respectively, of the results
presented in Fig. 4.8. Black lines refer to the errors in expected values, gray lines to errors in standard deviations.



28 STEPHAN MENZ, JUAN C. LATORRE, CHRISTOF SCHÜTTE, AND WILHELM HUISINGA

0 5 10 15 20 25 30 35
0

20

40

t [min]

#
M

0 5 10 15 20 25 30 35
0

50

100

150

t [min]

#
D

0 5 10 15 20 25 30 35
0

5

10

15

t [min]

#
m

R
N

A

0 5 10 15 20 25 30 35
0

1

2

t [min]

#
D

N
A

0 5 10 15 20 25 30 35
0

1

2

t [min]

#
D

N
A
·D

0 5 10 15 20 25 30 35
0

1

2

t [min]

#
D

N
A
·2

D

Figure 4.10. Time evolutions of the expected values (black) and standard deviations (gray) in the tran-
scription regulation system (4.6) for the parameter values as listed in Table 4.3, but with a ten-fold slower mRNA
production (k3). The approximations obtained by ten thousand SSA runs are plotted as lines, the numerical so-
lutions of the suggested hybrid model are marked by stars.
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Figure 4.11. Absolute and relative (with respect to the SSA predictions) errors, respectively, of the results
presented in Fig. 4.10. Black lines refer to errors in expected values, gray lines to errors in standard deviations.
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Figure 4.12. Impact of the mRNA synthesis rate (k3) on the approximation error and the computational
costs in the numerical solution of the proposed hybrid model of system (4.6). The individual parameter settings
(marked by dots) correspond to changes of the original value of k3 by factors 1, 2, 5 and 10. For all other parame-
ter the same values as listed in Table 4.3 were used. Top: The average relative error for the predicted expectations
of the continuous species M and D (black), and the average absolute error for the predicted expectations of the
discrete species DNA, DNA·D and DNA·2D (gray) with respect to the approximations obtained by ten thousand
SSA runs. Bottom: Comparison of the required CPU-times to numerically compute the hybrid solution (black)
and ten thousand SSA simulations (gray) for each parameter setting.

Table 4.3

Parameter values used for the transcription regulation system (4.6). These are the original parameter values
for the average cell volume V ≈ 1.44× 10−15 l (conversion factor Ω =NA ·V ≈ 8.64× 108 l/mol) as published
in [35], except for a 10-fold faster mRNA production (k3). The system is started with probability one in the state
with 2 M, 6 D, 2 DNA, and 0 mRNA, DNA·D and DNA·2D molecules and simulated for a period of 35 min.

k1 k2 k3 k4 k5/Ω
[1/s] [1/s] [1/s] [1/s] [1/s]

0.043 7.0× 10−4 0.72§ 3.9× 10−3 0.014

k6 k7/Ω k8 k9/Ω k10
[1/s] [1/s] [1/s] [1/s] [1/s]

0.48 1.4× 10−4 8.8× 10−12 0.029 0.5

§The results presented in Figs. 4.10 and 4.11 are computed for the original rate of mRNA production,
corresponding to k3 = 0.072 s−1.
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5. Conclusion. We used multiscale analysis techniques to derive a novel hybrid
model for approximation of the PDF solution of the CME. To this end, we singled
out a subspace associated with species of low copy numbers and assumed that its
complement subspace is associated with large copy numbers which can be well ap-
proximated by a continuous distribution. We exploited the natural Bayesian decom-
position P (X,Z; t) = P (X |Z; t)P (Z; t) of the joint PDF into the PDF P (Z; t) on the
low copy number space and the conditional distribution P (X |Z; t) on the large copy
number space, where the condition is on the discrete states of the low copy num-
ber subspace. The hybrid model resulting from multiscale asymptotics based on this
Bayesian decomposition couples a CME for P (Z; t) to differential algebraic equations
(DAE) for the first moments of P (X |Z; t). Therefore, there has to be a DAE for every
discrete state Z of the low copy number CME. Although this may look like a huge
complication, the hybrid model solution is expected to be particularly suitable for
networks including a few ‘discrete’ species only since the numerical costs directly
scale with the dimension of the CME subspace which is much smaller for the hybrid
model than for the original CME. Hence, a direct solution of the proposed hybrid
model becomes feasible, which was demonstrated in applications to viral infection
kinetics and a transcription regulatory network.

It should be emphasized that the DAEs that govern the evolution of the PDF in
the large copy number subspace are not identical with the usually expected equa-
tions of chemical reaction kinetics; instead they include additional coupling terms
resulting from changes in the population of the discrete subspace. Since such kinds
of hybrid models have not been investigated before there are some important open
questions that will be subject of further research. Let us just mention three of these:
Where are the limits of our hybrid model, i.e., if there are species with moderate
copy numbers in between low and large copy numbers, when will their fluctuations
destroy the approximation quality of the model? In order to decide whether the
asymptotic assumptions underlying our hybrid model are valid, how can we esti-
mate the value of ε for a given chemical reaction network? How can one construct
an efficient and robust numerical scheme that allows to adaptively change the low
copy number subspace on the fly during numerical integration based on some accu-
racy requirements?
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