
84 Chapter 7 Relational-Database Design

Exercises

7.1 Explain what is meant by repetition of information and inability to represent in-
formation. Explain why each of these properties may indicate a bad relational-
database design.
Answer:

• Repetition of information is a condition in a relational database where the
values of one attribute are determined by the values of another attribute
in the same relation, and both values are repeated throughout the relation.
This is a bad relational database design because it increases the storage re-
quired for the relation and it makes updating the relation more difficult.

• Inability to represent information is a condition where a relationship exists
among only a proper subset of the attributes in a relation. This is bad re-
lational database design because all the unrelated attributes must be filled
with null values otherwise a tuple without the unrelated information can-
not be inserted into the relation.

• Loss of information is a condition of a relational database which results from
the decomposition of one relation into two relations and which cannot be
combined to recreate the original relation. It is a bad relational database
design because certain queries cannot be answered using the reconstructed
relation that could have been answered using the original relation.

7.2 Suppose that we decompose the schema R = (A, B, C, D, E) into

(A, B, C)
(A, D, E).

Show that this decomposition is a lossless-join decomposition if the following
set F of functional dependencies holds:

A → BC
CD → E
B → D
E → A

Answer: A decomposition {R1, R2} is a lossless-join decomposition if R1 ∩
R2 → R1 or R1 ∩ R2 → R2. Let R1 = (A, B, C), R2 = (A, D, E), and R1 ∩
R2 = A. Since A is a candidate key (see Exercise 7.11), Therefore R1 ∩ R2 →
R1.

7.3 Why are certain functional dependencies called trivial functional dependen-
cies?
Answer: Certain functional dependencies are called trivial functional depen-
dencies because they are satisfied by all relations.

7.4 List all functional dependencies satisfied by the relation of Figure 7.21.

Answer: The nontrivial functional dependencies are: A → B and C → B,

Exercises 85

and a dependency they logically imply: AC → B. There are 19 trivial func-
tional dependencies of the form α → β, where β ⊆ α. C does not functionally
determine A because the first and third tuples have the same C but different A
values. The same tuples also show B does not functionally determine A. Like-
wise, A does not functionally determine C because the first two tuples have the
same A value and different C values. The same tuples also show B does not
functionally determine C.

7.5 Use the definition of functional dependency to argue that each of Armstrong’s
axioms (reflexivity, augmentation, and transitivity) is sound.
Answer: The definition of functional dependency is: α → β holds on R if in any
legal relation r(R), for all pairs of tuples t1 and t2 in r such that t1[α] = t2[α], it
is also the case that t1[β] = t2[β].

Reflexivity rule: if α is a set of attributes, and β ⊆ α, then α → β.
Assume ∃ t1 and t2 such that t1[α] = t2[α]

t1[β] = t2[β] since β ⊆ α
α → β definition of FD

Augmentation rule: if α → β, and γ is a set of attributes, then γ α → γ β.
Assume ∃ t1, t2 such that t1[γ α] = t2[γ α]

t1[γ] = t2[γ] γ ⊆ γ α
t1[α] = t2[α] α ⊆ γ α
t1[β] = t2[β] definition of α → β
t1[γ β] = t2[γ β] γ β = γ ∪ β
γ α → γ β definition of FD

Transitivity rule: if α → β and β → γ, then α → γ.
Assume ∃ t1, t2 such that t1[α] = t2[α]

t1[β] = t2[β] definition of α → β
t1[γ] = t2[γ] definition of β → γ
α → γ definition of FD

7.6 Explain how functional dependencies can be used to indicate the following:

• A one-to-one relationship set exists between entity sets account and customer.
• A many-to-one relationship set exists between entity sets account and cus-

tomer.

A B C

a1

a1

a2

a2

b1

b1

b1

b1

c1

c2

c1

c3

Figure 7.21. Relation of Exercise 7.4.

86 Chapter 7 Relational-Database Design

Answer: Let Pk(r) denote the primary key attribute of relation r.

• The functional dependencies Pk(account) → Pk (customer) and Pk(customer)
→ Pk(account) indicate a one-to-one relationship because any two tuples
with the same value for account must have the same value for customer,
and any two tuples agreeing on customer must have the same value for
account.

• The functional dependency Pk(account) → Pk(customer) indicates a many-
to-one relationship since any account value which is repeated will have the
same customer value, but many account values may have the same cus-
tomer value.

7.7 Consider the following proposed rule for functional dependencies: If α → β and
γ → β, then α → γ. Prove that this rule is not sound by showing a relation r that
satisfies α → β and γ → β, but does not satisfy α → γ.
Answer: Consider the following rule: if A → B and C → B, then A → C.
That is, α = A, β = B, γ = C. The following relation r is a counterexample
to the rule.

r: A B C

a1 b1 c1

a1 b1 c2

Note: A → B and C → B, (since no 2 tuples have the same C value,
C → B is true trivially). However, it is not the case that A → C since the same
A value is in two tuples, but the C value in those tuples disagree.

7.8 Use Armstrong’s axioms to prove the soundness of the union rule. (Hint: Use the
augmentation rule to show that, if α → β, then α → αβ. Apply the augmentation
rule again, using α → γ, and then apply the transitivity rule.)
Answer: To prove that:

if α → β and α → γ then α → βγ

Following the hint, we derive:
α → β given
αα → αβ augmentation rule
α → αβ union of identical sets
α → γ given
αβ → γ β augmentation rule
α → βγ transitivity rule and set union commutativity

7.9 Use Armstrong’s axioms to prove the soundness of the decomposition rule.
Answer: The decomposition rule, and its derivation from Armstrong’s axioms
are given below:

Exercises 87

if α → βγ, then α → β and α → γ.

α → βγ given
βγ → β reflexivity rule
α → β transitivity rule
βγ → γ reflexive rule
α → γ transitive rule

7.10 Use Armstrong’s axioms to prove the soundness of the pseudotransitivity rule.
Answer: Proof using Armstrong’s axioms of the Pseudotransitivity Rule:

if α → β and γ β → δ, then αγ → δ.

α → β given
αγ → γ β augmentation rule and set union commutativity
γ β → δ given
αγ → δ transitivity rule

7.11 Compute the closure of the following set F of functional dependencies for rela-
tion schema R = (A, B, C, D, E).

A → BC
CD → E
B → D
E → A

List the candidate keys for R.
Answer: Compute the closure of the following set F of functional dependencies
for relation schema R = (A, B, C, D, E).

A → BC
CD → E
B → D
E → A

List the candidate keys for R.
Note: It is not reasonable to expect students to enumerate all of F+. Some short-
hand representation of the result should be acceptable as long as the nontrivial
members of F+ are found.

Starting with A → BC, we can conclude: A → B and A → C.

Since A → B and B → D, A → D (decomposition, transitive)
Since A → CD and CD → E, A → E (union, decomposition, transitive)
Since A → A, we have (reflexive)
A → ABCDE from the above steps (union)
Since E → A, E → ABCDE (transitive)
Since CD → E, CD → ABCDE (transitive)
Since B → D and BC → CD, BC → ABCDE (augmentative, transitive)
Also, C → C, D → D, BD → D, etc.

88 Chapter 7 Relational-Database Design

Therefore, any functional dependency with A, E, BC, or CD on the left hand
side of the arrow is in F+, no matter which other attributes appear in the FD.
Allow * to represent any set of attributes in R, then F+ is BD → B, BD → D,
C → C, D → D, BD → BD, B → D, B → B, B → BD, and all FDs of
the form A ∗ → α, BC ∗ → α, CD ∗ → α, E ∗ → α where α is any subset of
{A, B, C, D, E}. The candidate keys are A, BC, CD, and E.

7.12 Using the functional dependencies of Exercise 7.11, compute B+.
Answer: Computing B+ by the algorithm in Figure 7.7 we start with result =
{B}. Considering FDs of the form β → γ in F , we find that the only depen-
dencies satisfying β ⊆ result are B → B and B → D. Therefore result =
{B, D}. No more dependencies in F apply now. Therefore B+ = {B, D}

7.13 Using the functional dependencies of Exercise 7.11, compute the canonical
cover Fc.
Answer: The given set of FDs F is:-

A → BC
CD → E
B → D
E → A

The left side of each FD in F is unique. Also none of the attributes in the left
side or right side of any of the FDs is extraneous. Therefore the canonical cover
Fc is equal to F .

7.14 Consider the algorithm in Figure 7.22 to compute α+. Show that this algorithm
is more efficient than the one presented in Figure 7.7 (Section 7.3.3) and that it
computes α+ correctly.
Answer: The algorithm is correct because:

• If A is added to result then there is a proof that α → A. To see this, observe
that α → α trivially so α is correctly part of result. If A �∈ α is added to
result there must be some FD β → γ such that A ∈ γ and β is already a
subset of result. (Otherwise fdcount would be nonzero and the if condition
would be false.) A full proof can be given by induction on the depth of
recursion for an execution of addin, but such a proof can be expected only
from students with a good mathematical background.

• If A ∈ α+, then A is eventually added to result. We prove this by induction
on the length of the proof of α → A using Armstrong’s axioms. First observe
that if procedure addin is called with some argument β, all the attributes in
β will be added to result. Also if a particular FD’s fdcount becomes 0, all
the attributes in its tail will definitely be added to result. The base case of
the proof, A ∈ α ⇒ A ∈ α+, is obviously true because the first call to
addin has the argument α. The inductive hypotheses is that if α → A can
be proved in n steps or less then A ∈ result. If there is a proof in n + 1

Exercises 89

result := ∅;
/* fdcount is an array whose ith element contains the number

of attributes on the left side of the ith FD that are
not yet known to be in α+ */

for i := 1 to |F | do
begin

let β → γ denote the ith FD;
fdcount [i] := |β|;

end
/* appears is an array with one entry for each attribute. The

entry for attribute A is a list of integers. Each integer
i on the list indicates that A appears on the left side
of the ith FD */

for each attribute A do
begin

appears [A] := NIL;
for i := 1 to |F | do

begin
let β → γ denote the ith FD;
if A ∈ β then add i to appears [A];

end
end

addin (α);
return (result);

procedure addin (α);
for each attribute A in α do

begin
if A �∈ result then

begin
result := result ∪ {A};
for each element i of appears[A] do

begin
fdcount [i] := fdcount [i] − 1;
if fdcount [i] := 0 then

begin
let β → γ denote the ith FD;
addin (γ);

end
end

end
end

Figure 7.22. An algorithm to compute α+.

90 Chapter 7 Relational-Database Design

steps that α → A, then the last step was an application of either reflexivity,
augmentation or transitivity on a fact α → β proved in n or fewer steps.
If reflexivity or augmentation was used in the (n + 1)st step, A must have
been in result by the end of the nth step itself. Otherwise, by the inductive
hypothesis β ⊆ result. Therefore the dependency used in proving β → γ,
A ∈ γ will have fdcount set to 0 by the end of the nth step. Hence A will
be added to result.

To see that this algorithm is more efficient than the one presented in the chap-
ter note that we scan each FD once in the main program. The resulting array
appears has size proportional to the size of the given FDs. The recursive calls to
addin result in processing linear in the size of appears. Hence the algorithm has
time complexity which is linear in the size of the given FDs. On the other hand,
the algorithm given in the text has quadratic time complexity, as it may perform
the loop as many times as the number of FDs, in each loop scanning all of them
once.

7.15 Given the database schema R(a, b, c), and a relation r on the schema R, write an
SQL query to test whether the functional dependency b → c holds on relation
r. Also write an SQL assertion that enforces the functional dependency. Assume
that no null values are present.
Answer:

a. The query is given below. Its result is non-empty if and only if b → c does
not hold on r.

select b
from r
group by b
having count(distinct c) > 1

b.

create assertion b-to-c check
(not exists

(select b
from r
group by b
having count(distinct c) > 1

)
)

7.16 Show that the following decomposition of the schema R of Exercise 7.2 is not a
lossless-join decomposition:

(A, B, C)
(C, D, E).

Exercises 91

Hint: Give an example of a relation r on schema R such that

ΠA,B,C (r)
�

ΠC,D,E (r) �= r

Answer: Following the hint, use the following example of r:

A B C D E

a1 b1 c1 d1 e1

a2 b2 c1 d2 e2

With R1 = (A, B, C), R2 = (C, D, E) :

a. ΠR1
(r) would be:

A B C

a1 b1 c1

a2 b2 c1

b. ΠR2
(r) would be:

C D E

c1 d1 e1

c1 d2 e2

c. ΠR1
(r)

�
ΠR2

(r) would be:

A B C D E

a1 b1 c1 d1 e1

a1 b1 c1 d2 e2

a2 b2 c1 d1 e1

a2 b2 c1 d2 e2

Clearly, ΠR1
(r)

�
ΠR2

(r) �= r. Therefore, this is a lossy join.

7.17 Let R1, R2, . . . , Rn be a decomposition of schema U. Let u(U) be a relation, and
let ri = ΠRI

(u). Show that

u ⊆ r1
�

r2
�

· · ·
�

rn

Answer: Consider some tuple t in u.
Note that ri = ΠRi

(u) implies that t[Ri] ∈ ri, 1 ≤ i ≤ n. Thus,

t[R1]
�

t[R2]
�

. . .
�

t[Rn] ∈ r1
�

r2
�

. . .
�

rn

By the definition of natural join,

t[R1]
�

t[R2]
�

. . .
�

t[Rn] = Πα (σβ (t[R1] × t[R2] × . . . × t[Rn]))

where the condition β is satisfied if values of attributes with the same name
in a tuple are equal and where α = U . The cartesian product of single tuples
generates one tuple. The selection process is satisfied because all attributes with

92 Chapter 7 Relational-Database Design

the same name must have the same value since they are projections from the
same tuple. Finally, the projection clause removes duplicate attribute names.

By the definition of decomposition, U = R1 ∪R2 ∪ . . .∪Rn, which means that
all attributes of t are in t[R1] � t[R2] � . . . � t[Rn]. That is, t is equal to the result
of this join.

Since t is any arbitrary tuple in u,

u ⊆ r1 � r2 � . . . � rn

7.18 Show that the decomposition in Exercise 7.2 is not a dependency-preserving
decomposition.
Answer: The dependency B → D is not preserved. F1, the restriction of F to
(A, B, C) is A → ABC, A → AB, A → AC, A → BC, A → B, A → C,
A → A, B → B, C → C, AB → AC, AB → ABC, AB → BC, AB → AB,
AB → A, AB → B, AB → C, AC (same as AB), BC (same as AB), ABC
(same as AB). F2, the restriction of F to (C, D, E) is A → ADE, A → AD,
A → AE, A → DE, A → A, A → D, A → E, D → D, E (same as A), AD,
AE, DE, ADE (same as A). (F1 ∪ F2)

+ is easily seen not to contain B → D
since the only FD in F1 ∪ F2 with B as the left side is B → B, a trivial FD. We
shall see in Exercise 7.22 that B → D is indeed in F+. Thus B → D is not
preserved. Note that CD → ABCDE is also not preserved.

A simpler argument is as follows: F1 contains no dependencies with D on the
right side of the arrow. F2 contains no dependencies with B on the left side of
the arrow. Therefore for B → D to be preserved there must be an FD B → α
in F+

1 and α → D in F+
2 (so B → D would follow by transitivity). Since the

intersection of the two schemes is A, α = A. Observe that B → A is not in F+
1

since B+ = BD.

7.19 Show that it is possible to ensure that a dependency-preserving decomposi-
tion into 3NF is a lossless-join decomposition by guaranteeing that at least one
schema contains a candidate key for the schema being decomposed. (Hint: Show
that the join of all the projections onto the schemas of the decomposition cannot
have more tuples than the original relation.)
Answer: Let F be a set of functional dependencies that hold on a schema R. Let
σ = {R1, R2, . . . , Rn} be a dependency-preserving 3NF decomposition of R. Let
X be a candidate key for R.

Consider a legal instance r of R. Let j = ΠX(r) � ΠR1
(r) � ΠR2

(r) . . . �
ΠRn

(r). We want to prove that r = j.
We claim that if t1 and t2 are two tuples in j such that t1[X] = t2[X], then

t1 = t2. To prove this claim, we use the following inductive argument –
Let F ′ = F1 ∪ F2 ∪ . . . ∪ Fn, where each Fi is the restriction of F to the schema
Ri in σ. Consider the use of the algorithm given in Figure 7.7 to compute the
closure of X under F ′. We use induction on the number of times that the for
loop in this algorithm is executed.

• Basis : In the first step of the algorithm, result is assigned to X , and hence
given that t1[X] = t2[X], we know that t1[result] = t2[result] is true.

Exercises 93

• Induction Step : Let t1[result] = t2[result] be true at the end of the k th exe-
cution of the for loop.
Suppose the functional dependency considered in the k + 1 th execution
of the for loop is β → γ, and that β ⊆ result. β ⊆ result implies that
t1[β] = t2[β] is true. The facts that β → γ holds for some attribute set Ri

in σ, and that t1[Ri] and t2[Ri] are in ΠRi
(r) imply that t1[γ] = t2[γ] is

also true. Since γ is now added to result by the algorithm, we know that
t1[result] = t2[result] is true at the end of the k + 1 th execution of the for
loop.

Since σ is dependency-preserving and X is a key for R, all attributes in R are in
result when the algorithm terminates. Thus, t1[R] = t2[R] is true, that is, t1 = t2
– as claimed earlier.

Our claim implies that the size of ΠX(j) is equal to the size of j. Note also
that ΠX(j) = ΠX(r) = r (since X is a key for R). Thus we have proved that the
size of j equals that of r. Using the result of Exercise 7.17, we know that r ⊆ j.
Hence we conclude that r = j.

Note that since X is trivially in 3NF, σ ∪ {X} is a dependency-preserving
lossless-join decomposition into 3NF.

7.20 List the three design goals for relational databases, and explain why each is de-
sirable.
Answer: The three design goals are lossless-join decompositions, dependency
preserving decompositions, and minimization of repetition of information. They
are desirable so we can maintain an accurate database, check correctness of up-
dates quickly, and use the smallest amount of space possible.

7.21 Give a lossless-join decomposition into BCNF of schema R of Exercise 7.2.
Answer: From Exercise 7.11, we know that B → D is nontrivial and the left
hand side is not a superkey. By the algorithm of Figure 7.13 we derive the rela-
tions {(A, B, C, E), (B, D)}. This is in BCNF.

7.22 Give an example of a relation schema R′ and set F ′ of functional dependencies
such that there are at least three distinct lossless-join decompositions of R′ into
BCNF.
Answer: Given the relation R′ = (A, B, C, D) the set of functional dependen-
cies F ′ = A → B, C → D, B → C allows three distinct BCNF decomposi-
tions.

R1 = {(A, B), (C, D), (B, C)}

is in BCNF as is

R2 = {(A, B), (C, D), (A, C)}

R2 = {(A, B), (C, D), (A, C)}

R3 = {(B, C), (A, D), (A, B)}

94 Chapter 7 Relational-Database Design

7.23 In designing a relational database, why might we choose a non-BCNF design?
Answer: BCNF is not always dependency preserving. Therefore, we may want
to choose another normal form (specifically, 3NF) in order to make checking de-
pendencies easier during updates. This would avoid joins to check dependen-
cies and increase system performance.

7.24 Give a lossless-join, dependency-preserving decomposition into 3NF of schema
R of Exercise 7.2.
Answer: First we note that the dependencies given in Exercise 7.2 form a canon-
ical cover. Generating the schema from the algorithm of Figure 7.14 we get

R′ = {(A,B,C), (C,D,E), (B,D), (E,A)}.

Schema (A, B, C) contains a candidate key. Therefore R′ is a third normal form
dependency-preserving lossless-join decomposition.

Note that the original schema R = (A, B, C, D, E) is already in 3NF. Thus,
it was not necessary to apply the algorithm as we have done above. The single
original schema is trivially a lossless join, dependency-preserving decomposi-
tion.

7.25 Let a prime attribute be one that appears in at least one candidate key. Let α and
β be sets of attributes such that α → β holds, but β → α does not hold. Let A be
an attribute that is not in α, is not in β, and for which β → A holds. We say that
A is transitively dependent on α. We can restate our definition of 3NF as follows:
A relation schema R is in 3NF with respect to a set F of functional dependencies
if there are no nonprime attributes A in R for which A is transitively dependent
on a key for R.

Show that this new definition is equivalent to the original one.
Answer: Suppose R is in 3NF according to the textbook definition. We show
that it is in 3NF according to the definition in the exercise. Let A be a nonprime
attribute in R that is transitively dependent on a key α for R. Then there exists
β ⊆ R such that β → A, α → β, A �∈ α, A �∈ β, and β → α does not hold.
But then β → A violates the textbook definition of 3NF since

• A �∈ β implies β → A is nontrivial
• Since β → α does not hold, β is not a superkey
• A is not any candidate key, since A is nonprime

Now we show that if R is in 3NF according to the exercise definition, it is in 3NF

according to the textbook definition. Suppose R is not in 3NF according the the
textbook definition. Then there is an FD α → β that fails all three conditions.
Thus

• α → β is nontrivial.
• α is not a superkey for R.
• Some A in β − α is not in any candidate key.

This implies that A is nonprime and α → A. Let γ be a candidate key for R.
Then γ → α, α → γ does not hold (since α is not a superkey), A �∈ α, and

