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Agenda 

● DIY Malware Analysis (available on slides only ) 

● Vulnerability Hunt 

● Exploitation 
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Android Malware Analysis 

(please refer to slides from download 

section) 
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Let‟s get the emulator running 

 

mobisec@Mobisec:/opt/mobisec/devtools/androi

d-sdk/tools$ emulator-arm -avd Android_4.0.3 

-scale 0.75 -debug all -logcat all -no-boot-

anim 

 

mobisec@Mobisec-VM:~$ adb install 

Malware/OBad/E1064BFD836E4C895B569B2DE470028

4.apk 

 

 

 

Let‟s get OBAD in the emulator 
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The persistent begging starts 
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Won‟t take No for an answer 

Sales / 

Marketing 
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No Device Admin? 
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We would expect something like this 
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Can we see OBAD in app list and uninstall it? 
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May be from command line - „adb‟ 
 

mobisec@Mobisec-VM:~/Malware/OBAD$ adb 

uninstall com.android.system.admin 

Failure 

  

mobisec@Mobisec-VM:~/Malware/OBAD$ adb 

logcat -d -b main -b events | grep admin | tail -1 

W/PackageManager(  277): Not removing 

package com.android.system.admin: has 

active device admin 
 

Let‟s try the command line 
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Let‟s hunt the code that hides it from Device Admin List 
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Checkout the patch history … or ... 
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Launch Settings -> Security -> Device Administrators 
 

Check out the logs: 

adb logcat -d -b events 
 
  

I/am_new_intent(  276): 

[0,1106566944,17,com.android.settings/.Settings,android.intent.action.

MAIN,NULL,NULL,274726912] 

I/am_resume_activity(  276): 

[0,1106900904,17,com.android.settings/.Settings] 

I/am_on_resume_called( 1118): [0,com.android.settings.Settings] 

 

Find Relevant Code 
Find Relevant Code 
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▪search for these strings at  

androidxref.com 
 

▪following along you will arrive at  
 

packages/apps/Settings/src/com/android/settings/ 

DeviceAdminSettings.java 

Find Relevant Code (contd…) 
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▪check out the function  

void updateList() 
 

▪and the conditions for something to appear in device 

admin list 

Find Relevant Code (contd…) 
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getActivity().getPackageManager().queryBroadcastReceive

rs(Intent(DeviceAdminReceiver.ACTION_DEVICE

_ADMIN_ENABLED), ... 

             

Device Admin Vulnerability 
Device Admin Vulnerability 
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getActivity().getPackageManager().queryBroadcastReceive

rs(Intent(DeviceAdminReceiver.ACTION_DEVICE

_ADMIN_ENABLED), ... 

             

Device Admin Vulnerability 
Device Admin Vulnerability 
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Hackers won‟t follow the specs unless they have to 
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To use the Device Administration API, the application's 

manifest must include the following: 

●A subclass of DeviceAdminReceiver that includes the 

following: 

oThe BIND_DEVICE_ADMIN permission. 

oThe ability to respond to the 

ACTION_DEVICE_ADMIN_ENABLED intent, expressed in 

the manifest as an intent filter. 

 

             

What they should do 
What they should do 
 

http://developer.android.com/reference/android/app/admin/DeviceAdminReceiver.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/app/admin/DeviceAdminReceiver.html
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<receiver "System" =".OCllCoO"> 

      <meta-data "android.app.device_admin" 

="@2130968576"> 

      </meta-data> 

      <intent-filter> 

        <action   

name="com.strain.admin.DEVICE_ADMIN_ENABLED"> 

        </action> 

      </intent-filter> 

    </receiver> 

What they actually did 
What they actually did 
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name="com.strain.admin.DEVICE_ADMIN_ENABLED"> 

         
 

 

What they actually did 

instead of 

android.app.action.DEVICE_ADMIN_ENABLED 

 

What they actually did 
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What‟s next 



© 2014 IBM Corporation 

IBM Security 

26   

services/java/com/android/server/ 

 

DevicePolicyManagerService.java 

Device Admin Vulnerability 
Device Admin Vulnerability 
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When adding an Admin 

 

policy.mAdminMap.put(adminReceiver, newAdmin); 

 

and 

 

policy.mAdminList.add(newAdmin); 

Device Admin Vulnerability 
Device Admin Vulnerability 
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Please make sure you take ALL your stuff with you 

Device Admin Vulnerability 



© 2014 IBM Corporation 

IBM Security 

29   

removeActiveAdminLocked 

 

1.policy.mAdminList.remove(admin); 

2.policy.mAdminMap.remove(adminReceiver); 

 

Device Admin Vulnerability 
Device Admin Vulnerability 
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Please make sure you take ALL your stuff 

with you 

ALL THE TIME! even when in 

RUSH 

Device Admin Vulnerability 
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private void handlePackagesChanged(int userHandle) { 

 

removed = true; 

policy.mAdminList.remove(i); 

 

 

 

Device Admin Vulnerability 
Device Admin Vulnerability 
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private void handlePackagesChanged(int userHandle) { 

 

removed = true; 

policy.mAdminList.remove(i); 
 

 

 

Device Admin Vulnerability 

and who will clean up the 

mAdminMap for you 

Device Admin Vulnerability 
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This code path gets executed when you DISABLE the 

device admin component 

 

Device Admin Vulnerability 
Device Admin Vulnerability 
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All we have so far is a leak / bad coding practice 

 

Device Admin Vulnerability 
Device Admin Vulnerability 
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Is this a vulnerability? 

 

Device Admin Vulnerability 
Device Admin Vulnerability 
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Is there a code path that consults mAdminMap but not 

mAdminList ? 

 

Device Admin Vulnerability 
Device Admin Vulnerability 
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▪getActiveAdminUncheckedLocked 

▪ getActiveAdminForCallerLocked 

          (ComponentName who, int reqPolicy) 

          with “who” parameter being non null  

 

Device Admin Vulnerability 
Device Admin Vulnerability 
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getActiveAdminUncheckedLocked is used by isAdminActive 

Device Admin Vulnerability 
Device Admin Vulnerability 

http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
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So can we exploit it? 

Device Admin Vulnerability 
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DID YOU KNOW? By 2016, 20% of enterprise BYOD 

programs will fail due to deployment of mobile device 

management (MDM) measures that are too restrictive. 

Gartner: 
Gartner 
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How about typing a 14 character password while driving? 
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▪enable device admin 

▪disable the device admin component 

▪At this point, from the data structure and code 

perspective, device admin‟s isAdminEnabled will still 

return true 

Exploiting the Device Admin Vulnerability 
Exploiting the Device Admin Vulnerability 
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pm.setComponentEnabledSetting( 

   this.getWho(context), 

   

PackageManager.COMPONENT_ENABLED_STATE_DISABLED, 

   PackageManager.DONT_KILL_APP); 

Exploiting the Device Admin Vulnerability 
Exploiting the Device Admin Vulnerability 
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Uninstall the app (it will still be in the mAdminMap) 

 

Exploiting the Device Admin Vulnerability 
Exploiting the Device Admin Vulnerability 
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Now, install the original app 

 

Exploiting the Device Admin Vulnerability 
Exploiting the Device Admin Vulnerability 
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BUT 
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BUT it may not necessarily work with MDM 
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isActivePasswordSufficient 

 

http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
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public boolean isActivePasswordSufficient(int userHandle) 

{  

   enforceCrossUserPermission(userHandle);  

   synchronized (this) {  

      // This API can only be called by an active device 

admin,  

      DevicePolicyData policy = getUserData(userHandle); 

      // so try to retrieve it to check that the caller is one.  

      getActiveAdminForCallerLocked(null, 

         DeviceAdminInfo.USES_POLICY_LIMIT_PASSWORD); 

isActivePasswordSufficient 
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ActiveAdmin getActiveAdminForCallerLocked 

   (ComponentName who, int reqPolicy) throws 

      SecurityException {  

   if (who != null) { ... }  

   else {  

      final int N = policy.mAdminList.size();  

       

getActiveAdminForCallerLocked 
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   else {  

      final int N = policy.mAdminList.size();  

      for (int i=0; i<N; i++) { 

                ActiveAdmin admin = policy.mAdminList.get(i); 

                if (admin.getUid() == callingUid && 

                     admin.info.usesPolicy(reqPolicy)) { 

                    return admin; 

                } 

            } 

            throw new SecurityException 

 

       

getActiveAdminForCallerLocked 
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   else {  

      final int N = policy.mAdminList.size();  

      for (int i=0; i<N; i++) { 

                ActiveAdmin admin = policy.mAdminList.get(i); 

                if (admin.getUid() == callingUid && 

                     admin.info.usesPolicy(reqPolicy)) { 

                    return admin; 

                } 

            } 

            throw new SecurityException 

 

       

getActiveAdminForCallerLocked 
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There is a way 
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▪active device admin with same policies  

▪and same UID - sharedUID 

 

                if (admin.getUid() == callingUid && 

                     admin.info.usesPolicy(reqPolicy)) { 

 

       

sharedUID 
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▪Modify AndroidManifest.xml of the MDM  

−add android:sharedUserId attribute 

▪repackage and self sign 

 

Extended Hack 
Extended Hack 
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▪Create a different device admin 

−same sharedUid 

−same policies 

−install and activate it 

Extended Hack 
Extended Hack 
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▪Do everything else as before 

−but using the self signed MDM apk with sharedUID 

 

Extended Hack 
Extended Hack 
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COMPLIANT != SECURE 
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▪Don‟t make it really painful to use the device 

▪code protection 

▪verifying app signatures 

Lessons 
Lessons 
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Further Learning 

● https://github.com/strazzere/android-unpacker 

● https://github.com/strazzere/android-

unpacker/blob/master/AHPL0.pdf 

https://github.com/strazzere/android-unpacker
https://github.com/strazzere/android-unpacker
https://github.com/strazzere/android-unpacker
https://github.com/strazzere/android-unpacker
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Loved ones, X-Force, DFRW EU and YOU 
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