
© 2014 IBM Corporation

IBM Security

0 © 2014 IBM Corporation

HOW I FORCED AN ANDROID

VULNERABILITY INTO BYPASSING MDM

RESTRICTIONS + DIY MALWARE

ANALYSIS

 Zubair Ashraf

Team Lead & Security Researcher

IBM X-Force Advanced Research

© 2014 IBM Corporation

IBM Security

1

@b0ut.m3

▪ Team Lead & Security Researcher

@ IBM X-Force Research

 @zashraf1337

 securityintelligence.com/author/zubair-ashraf

 ca.linkedin.com/in/zubairashraf

© 2014 IBM Corporation

IBM Security

2

Agenda

● DIY Malware Analysis (available on slides only)

● Vulnerability Hunt

● Exploitation

© 2014 IBM Corporation

IBM Security

3

© 2014 IBM Corporation

IBM Security

4

Android Malware Analysis

(please refer to slides from download

section)

© 2014 IBM Corporation

IBM Security

5

Let‟s get the emulator running

mobisec@Mobisec:/opt/mobisec/devtools/androi

d-sdk/tools$ emulator-arm -avd Android_4.0.3

-scale 0.75 -debug all -logcat all -no-boot-

anim

mobisec@Mobisec-VM:~$ adb install

Malware/OBad/E1064BFD836E4C895B569B2DE470028

4.apk

Let‟s get OBAD in the emulator

© 2014 IBM Corporation

IBM Security

6

The persistent begging starts

© 2014 IBM Corporation

IBM Security

7

© 2014 IBM Corporation

IBM Security

8

Won‟t take No for an answer

Sales /

Marketing

© 2014 IBM Corporation

IBM Security

9

© 2014 IBM Corporation

IBM Security

10

No Device Admin?

© 2014 IBM Corporation

IBM Security

11

We would expect something like this

© 2014 IBM Corporation

IBM Security

12

Can we see OBAD in app list and uninstall it?

© 2014 IBM Corporation

IBM Security

13

May be from command line - „adb‟

mobisec@Mobisec-VM:~/Malware/OBAD$ adb

uninstall com.android.system.admin

Failure

mobisec@Mobisec-VM:~/Malware/OBAD$ adb

logcat -d -b main -b events | grep admin | tail -1

W/PackageManager(277): Not removing

package com.android.system.admin: has

active device admin

Let‟s try the command line

© 2014 IBM Corporation

IBM Security

14

Let‟s hunt the code that hides it from Device Admin List

© 2014 IBM Corporation

IBM Security

15

Checkout the patch history … or ...

© 2014 IBM Corporation

IBM Security

16

Launch Settings -> Security -> Device Administrators

Check out the logs:

adb logcat -d -b events

I/am_new_intent(276):

[0,1106566944,17,com.android.settings/.Settings,android.intent.action.

MAIN,NULL,NULL,274726912]

I/am_resume_activity(276):

[0,1106900904,17,com.android.settings/.Settings]

I/am_on_resume_called(1118): [0,com.android.settings.Settings]

Find Relevant Code
Find Relevant Code

© 2014 IBM Corporation

IBM Security

17

▪search for these strings at

androidxref.com

▪following along you will arrive at

packages/apps/Settings/src/com/android/settings/

DeviceAdminSettings.java

Find Relevant Code (contd…)

© 2014 IBM Corporation

IBM Security

18

▪check out the function

void updateList()

▪and the conditions for something to appear in device

admin list

Find Relevant Code (contd…)

© 2014 IBM Corporation

IBM Security

19

getActivity().getPackageManager().queryBroadcastReceive

rs(Intent(DeviceAdminReceiver.ACTION_DEVICE

_ADMIN_ENABLED), ...

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

20

getActivity().getPackageManager().queryBroadcastReceive

rs(Intent(DeviceAdminReceiver.ACTION_DEVICE

_ADMIN_ENABLED), ...

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

21

Hackers won‟t follow the specs unless they have to

© 2014 IBM Corporation

IBM Security

22

To use the Device Administration API, the application's

manifest must include the following:

●A subclass of DeviceAdminReceiver that includes the

following:

oThe BIND_DEVICE_ADMIN permission.

oThe ability to respond to the

ACTION_DEVICE_ADMIN_ENABLED intent, expressed in

the manifest as an intent filter.

What they should do
What they should do

http://developer.android.com/reference/android/app/admin/DeviceAdminReceiver.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/app/admin/DeviceAdminReceiver.html

© 2014 IBM Corporation

IBM Security

23

<receiver "System" =".OCllCoO">

 <meta-data "android.app.device_admin"

="@2130968576">

 </meta-data>

 <intent-filter>

 <action

name="com.strain.admin.DEVICE_ADMIN_ENABLED">

 </action>

 </intent-filter>

 </receiver>

What they actually did
What they actually did

© 2014 IBM Corporation

IBM Security

24

name="com.strain.admin.DEVICE_ADMIN_ENABLED">

What they actually did

instead of

android.app.action.DEVICE_ADMIN_ENABLED

What they actually did

© 2014 IBM Corporation

IBM Security

25

What‟s next

© 2014 IBM Corporation

IBM Security

26

services/java/com/android/server/

DevicePolicyManagerService.java

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

27

When adding an Admin

policy.mAdminMap.put(adminReceiver, newAdmin);

and

policy.mAdminList.add(newAdmin);

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

28

Please make sure you take ALL your stuff with you

Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

29

removeActiveAdminLocked

1.policy.mAdminList.remove(admin);

2.policy.mAdminMap.remove(adminReceiver);

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

30

Please make sure you take ALL your stuff

with you

ALL THE TIME! even when in

RUSH

Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

31

private void handlePackagesChanged(int userHandle) {

removed = true;

policy.mAdminList.remove(i);

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

32

private void handlePackagesChanged(int userHandle) {

removed = true;

policy.mAdminList.remove(i);

Device Admin Vulnerability

and who will clean up the

mAdminMap for you

Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

33

This code path gets executed when you DISABLE the

device admin component

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

34

All we have so far is a leak / bad coding practice

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

35

Is this a vulnerability?

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

36

Is there a code path that consults mAdminMap but not

mAdminList ?

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

37

▪getActiveAdminUncheckedLocked

▪ getActiveAdminForCallerLocked

 (ComponentName who, int reqPolicy)

 with “who” parameter being non null

Device Admin Vulnerability
Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

38

getActiveAdminUncheckedLocked is used by isAdminActive

Device Admin Vulnerability
Device Admin Vulnerability

http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html

© 2014 IBM Corporation

IBM Security

39

So can we exploit it?

Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

40

© 2014 IBM Corporation

IBM Security

41

DID YOU KNOW? By 2016, 20% of enterprise BYOD

programs will fail due to deployment of mobile device

management (MDM) measures that are too restrictive.

Gartner:
Gartner

© 2014 IBM Corporation

IBM Security

42

How about typing a 14 character password while driving?

© 2014 IBM Corporation

IBM Security

43

▪enable device admin

▪disable the device admin component

▪At this point, from the data structure and code

perspective, device admin‟s isAdminEnabled will still

return true

Exploiting the Device Admin Vulnerability
Exploiting the Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

44

pm.setComponentEnabledSetting(

 this.getWho(context),

PackageManager.COMPONENT_ENABLED_STATE_DISABLED,

 PackageManager.DONT_KILL_APP);

Exploiting the Device Admin Vulnerability
Exploiting the Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

45

Uninstall the app (it will still be in the mAdminMap)

Exploiting the Device Admin Vulnerability
Exploiting the Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

46

Now, install the original app

Exploiting the Device Admin Vulnerability
Exploiting the Device Admin Vulnerability

© 2014 IBM Corporation

IBM Security

47

© 2014 IBM Corporation

IBM Security

48

BUT

© 2014 IBM Corporation

IBM Security

49

© 2014 IBM Corporation

IBM Security

50

BUT it may not necessarily work with MDM

© 2014 IBM Corporation

IBM Security

51

© 2014 IBM Corporation

IBM Security

52

isActivePasswordSufficient

http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html

© 2014 IBM Corporation

IBM Security

53

public boolean isActivePasswordSufficient(int userHandle)

{

 enforceCrossUserPermission(userHandle);

 synchronized (this) {

 // This API can only be called by an active device

admin,

 DevicePolicyData policy = getUserData(userHandle);

 // so try to retrieve it to check that the caller is one.

 getActiveAdminForCallerLocked(null,

 DeviceAdminInfo.USES_POLICY_LIMIT_PASSWORD);

isActivePasswordSufficient

© 2014 IBM Corporation

IBM Security

54

ActiveAdmin getActiveAdminForCallerLocked

 (ComponentName who, int reqPolicy) throws

 SecurityException {

 if (who != null) { ... }

 else {

 final int N = policy.mAdminList.size();

getActiveAdminForCallerLocked

© 2014 IBM Corporation

IBM Security

55

 else {

 final int N = policy.mAdminList.size();

 for (int i=0; i<N; i++) {

 ActiveAdmin admin = policy.mAdminList.get(i);

 if (admin.getUid() == callingUid &&

 admin.info.usesPolicy(reqPolicy)) {

 return admin;

 }

 }

 throw new SecurityException

getActiveAdminForCallerLocked

© 2014 IBM Corporation

IBM Security

56

 else {

 final int N = policy.mAdminList.size();

 for (int i=0; i<N; i++) {

 ActiveAdmin admin = policy.mAdminList.get(i);

 if (admin.getUid() == callingUid &&

 admin.info.usesPolicy(reqPolicy)) {

 return admin;

 }

 }

 throw new SecurityException

getActiveAdminForCallerLocked

© 2014 IBM Corporation

IBM Security

57

There is a way

© 2014 IBM Corporation

IBM Security

58

▪active device admin with same policies

▪and same UID - sharedUID

 if (admin.getUid() == callingUid &&

 admin.info.usesPolicy(reqPolicy)) {

sharedUID

© 2014 IBM Corporation

IBM Security

59

▪Modify AndroidManifest.xml of the MDM

−add android:sharedUserId attribute

▪repackage and self sign

Extended Hack
Extended Hack

© 2014 IBM Corporation

IBM Security

60

▪Create a different device admin

−same sharedUid

−same policies

−install and activate it

Extended Hack
Extended Hack

© 2014 IBM Corporation

IBM Security

61

▪Do everything else as before

−but using the self signed MDM apk with sharedUID

Extended Hack
Extended Hack

© 2014 IBM Corporation

IBM Security

62

© 2014 IBM Corporation

IBM Security

63

COMPLIANT != SECURE

© 2014 IBM Corporation

IBM Security

64

© 2014 IBM Corporation

IBM Security

65

▪Don‟t make it really painful to use the device

▪code protection

▪verifying app signatures

Lessons
Lessons

© 2014 IBM Corporation

IBM Security

66

Further Learning

● https://github.com/strazzere/android-unpacker

● https://github.com/strazzere/android-

unpacker/blob/master/AHPL0.pdf

https://github.com/strazzere/android-unpacker
https://github.com/strazzere/android-unpacker
https://github.com/strazzere/android-unpacker
https://github.com/strazzere/android-unpacker

© 2014 IBM Corporation

IBM Security

67

Loved ones, X-Force, DFRW EU and YOU

© 2014 IBM Corporation

IBM Security

68

 @zashraf1337

 securityintelligence.com/author/zubair-ashraf

 ca.linkedin.com/in/zubairashraf

