Histogram of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs (presented by Lupeng and Yuduo)

Introduction

Appearance / Clothing Background Illumination Scales Poses

Introduction

Objective: Feature sets for robust visual object recognition used in detecting human in images

Method: Linear SVM as classifier based human detection grids of Histograms of Oriented Gradient (HOG) descriptors

(d) Navneet Dalal and Bill Triggs

Navneet Dalal and Bill Triggs

- MIT Pedestrian Database:

509 training and 200 test images

Front and back views with limited poses

- INRIA:

1805 images Figure 2. Some sample images from our new human detection database. The subjects are always upright, but with some partial occlusions and a wide range of variations in pose, appearance, clothing, illumination and background.

No particular bias on poses

Navneet Dalal and Bill Triggs

Methodology

- selected 2478 images as **positive** training set
- randomly sampled 12080 person-free negative
- retraining using 12080 + "hard examples"

Results

Navneet Dalal and Bill Triggs

Implementation

Implementation

Implementation

Performance Analysis

- 1. fine-scale gradients
- 2. fine orientation binning
- 3. relatively coarse spatial binning
- 4. high-quality local contrast normalization in overlapping descriptor blocks

Conclusion

- Locally Normalized HOG Orientation Features

- good results for person detection
- significantly reduce false positive rate
- Influence of Descriptor Parameters
 - gradients
 - orientation / spatial binning
 - local contrast normalization in descriptor blocks
- More Challenging Pedestrian Database
 - publicly available

Future Work

- Optimize speed for efficiency

- Incorporate motion information

- Include parts-based model for performance

Q & A Thank you!