
HIGH PERFORMANCE COMPUTING CLUSTER

An Efficient Global Network

	
�Deepak Chaturvedi
	
�Kashish Gupta

	
�B.Tech-Computer Science Engineering with specialization in Oil & Gas (III Year)
	
�B.Tech-Computer Science Engineering with specialization in Oil & Gas (III Year)

University of Petroleum and Energy Studies, Bidholi via Prem Nagar, Dehradun, Uttarakhand, India

	
�deepakchaturvedi728@gmail.com

	
�kashish.gupta45@yahoo.com

Abstract

What is the limit of technology? It is impossible to
judge where the technology will extend its feet in
next span of time. In present times most of the
technological utilities are functioning due to the IT
inputs; which reduces the human efforts and is the
backbone of the most of the modern technological
systems. As the technology is getting upgraded so
computerized systems must also be upgraded by the
time and one way to achieve this, is by improving the
networks in computing system and this can be done
by bringing in use the HPCC networks.

HPCC is the use of parallel processing for running
advanced application programs efficiently, reliably
and quickly. And the purpose of HPC Cluster is to
provide a group of computers which can handle
massive jobs easily and are able to process jobs
parallely, so that one can save time and money.

A HPC Cluster can be defined as an interconnected
network system of information, communication
technologies and control systems used to interact
with automation and business processes across the
entire IT sector encompassing fast data generation,
transmission, distribution and consumption with the
help of networking.

Hence, our paper lays an objective that after
installing a High Performance Computing Cluster we
are able to run heavy jobs by reducing the time

consumption of its complete process. As it makes
system more efficient in point of time and space.
HPC system in cluster will overcome all the existing
problems in processing, transferring, storing and
functioning of data in any interconnected network, as
it makes the system and its network more efficient to
process the data parallely.

Keywords: HPCC, network system, automation,
supercomputing, node, parallel processing.

Introduction

High-performance computing (HPC) is the use
of parallel processing for running advanced
application programs efficiently, reliably and quickly.
The term HPC is occasionally used as a synonym for
supercomputing, although technically
a supercomputer is a system that performs at or near
the currently highest operational rate for computers.

The most common users of HPC systems are
scientific researchers, engineers and academic
institutions. Some government agencies, particularly
the military, also rely on HPC for complex
applications. As demand for processing power and
speed grows, HPC will likely interest businesses of
all sizes, particularly for transaction processing
and data warehouses.

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014
ISSN 2229-5518

117

IJSER © 2014
http://www.ijser.org

IJSER

High-Performance Computing (HPC) is used to
describe computing environments which utilize
supercomputers and computer clusters to address
complex computational requirements, support
applications with significant processing time
requirements, or require processing of significant
amounts of data. Supercomputers have generally
been associated with scientific research and compute-
intensive types of problems, but more and more
supercomputer technology is appropriate for both
compute-intensive and data-intensive applications.

Mechanism: Many computing problems are suitable
for parallelization; often problems can be divided in a
manner so that each independent processing node can
work on a portion of the problem in parallel by
simply dividing the data to be processed, and then
combining the final processing results for each
portion. The most important reason for developing
data-parallel applications is the potential for scalable
performance in high-performance computing, and
may result in several orders of magnitude
performance improvement.

Architecture: The HPCC system architecture
includes two distinct cluster processing
environments, each of which can be optimized
independently for its parallel data processing
purpose. The first of these platforms is called a Data
Refinery whose overall purpose is the general
processing of massive volumes of raw data of any
type for any purpose but typically used for data
cleansing and hygiene, ETL processing of the raw
data, record linking and entity resolution.

The second of the parallel data processing platforms
is called Roxie and functions as a rapid data delivery
engine. This platform is designed as an online high-
performance structured query and analysis platform
or data warehouse delivering the parallel data access
processing requirements of online applications
through Web services interfaces supporting
thousands of simultaneous queries and users with
sub-second response times queries and users with
sub-second response times. Roxie utilizes a
distributed indexed file system to provide parallel
processing of queries using an optimized execution
environment and file system for high-performance
online processing.

Requirement Specification

Hardware Requirement:

Installer Node/Head
Node Minimum
Requirements

2 GB of physical
memory (RAM)
80 GB of free disk
space
Two Ethernet
interfaces.(public
network and compute
node connections)
DVD drive

Compute
Node Minimum Requireme
nts for Package-based
Installation

1 GB of physical
memory (RAM)
40 GB of free disk
space
One Ethernet
interface

Compute
Node Minimum Requireme
nts for Image-based
Installation

3 GB of physical
memory (RAM)
40 GB of free disk
space
One Ethernet
interface

Compute
Node Minimum Requireme
nts for Diskless Installation

4 GB of physical
memory (RAM)
One Ethernet
interface

Compute
Node Minimum Requireme
nts without using
Platform HPC provisioning

512 MB of physical
memory (RAM)
10 GB of free disk
space
One Ethernet
interface

Max Number of Compute
Nodes

Platform HPC Work
group: 32 nodes
Platform HPC Enterp
rise: Unlimited

Software Requirement:

� Centos 6
� Condor
� Dependencies for condor
� MPI Libraries

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014
ISSN 2229-5518

118

IJSER © 2014
http://www.ijser.org

IJSER

Configuration

Block Diagram

Steps to Follow

• Install head node and compute node with
proper Operating System with all required
packages.

• Install and configure condor, MPI (Message
Passing Interface) libraries and other
required dependencies on each node.

• Check the connectivity between nodes and
run the jobs.

Job Submission

In order to submit a job on cluster you have to
follow these steps:

• Compile the source code to obtain object file
(gcc -c hello.c -o hello.o).

• Link in the Condor libraries
(condor_compile gcc hello.o -o hello).

• Create a submit file and this submit
description file is placed in the same
directory as the executable.

• Submit the program for execution under
Condor (condor_submit submit.hello).

Common Commands

• condor_q.

• condor_submit.

• condor_status.

• condor_rm.

• condor_compile.

Features of proposed system

Computer clusters that utilize numerous commodity
servers have replaced expensive parallel
supercomputers. However, the concerns related to
data and its complexities seem to have increased in
number. This makes companies invest huge capital
on fixed-sized clusters that has their own
conventional challenges of increasing the utilization,
lessening time-to-result for users and bringing down
operational expenses.

HPC clusters or Cloud HPC clusters can create
clusters without worrying about having different
operating systems, applications, encryption, security
and other allied software application. Scientists are
able to create clusters that can add servers
automatically and turn the servers off when the work
is done. This allows the science researchers to carry
on calculations only when they require computing
power.

In order to have a clear understanding of expenses,
let us have a look at the HPC Clusters prior to cloud
computing. When purchasing a cluster, researchers
would size it to finish their largest calculation suite
efficiently in a time they have fixed. Along with

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014
ISSN 2229-5518

119

IJSER © 2014
http://www.ijser.org

IJSER

storage, the same sizing and planning would take
place to assure that there is sufficient space to support
the working data and the outcome of the calculations.
Buying the cluster needs heavy capital investments
for machines and filers are needed to carry on
calculations. Hence, when a cluster is being operated
for the first time, it is not in its full capacity.

In the recent past, eminent IT and other companies
have come up with built-to-order HPC
cluster solutions that offer the customers with speed
access to data, manage growth efficiently and
seamlessly and bring down risk factors. The design
will benefit a wide array of application environments
comprising the ones optimized for financial services,
manufacturing, industrial design, government, life
sciences and education.

Whether your workloads requires a huge complex
cluster or an office cluster, eminent service providers
allows you in establishing well-integrated and
dynamic HPC cluster infrastructure that is simple to
manage and implement. Furthermore, the market
players in HPC cluster solutions have an alliance
with the hardware providers and HPC middleware
technologies. This assists the users to have a contact
point for a complete cluster application that assures
less risk.

Implementation

Condor: Condor is an open source high-throughput
computing software framework for coarse-grained
distributed parallelization of computationally
intensive tasks. It can be used to manage workload on
a dedicated cluster of computers, and/or to farm out
work to idle desktop computers — so-called cycle
scavenging. Condor runs on Linux, UNIX, Mac OS
X, FreeBSD, and contemporary Windows operating
systems. Condor can seamlessly integrate both
dedicated resources (rack-mounted clusters) and non-
dedicated desktop machines (cycle scavenging) into
one computing environment.

After installing condor, we will run the jobs on our
head node and will divide the load on compute nodes
of cluster which makes a cluster to run their jobs
parallel on each node. This division of load or load
balancing is done by condor itself.

Before installing condor we have to make a file
system which is accessible from each node in the
cluster network, for that we will create a Network
File System (NFS). After creating this file system we
can easily share data across the cluster, after creating
NFS we will install condor and then run the
application.

After running the application we have to monitor the
load and CPU utilization on each node of cluster, for
this we have to install webmin.

Webmin is a web-based system configuration tool
for Unix-like systems, although recent versions can
also be installed and run on Windows. With it, it is
possible to configure operating system internals, such
as users, disk quotas, services or configuration files,
as well as modify and control open source apps, such
as the Apache HTTP Server, PHP or MySQL.

�Install head node and compute node with proper
Operating System.

�Install Condor, MPI libraries and other required
dependencies.

�Run the applications on head node and parallely
divide the load on each compute node.

There are a wide range of high performance
computing applications, including:

� Geological analysis for oil and gas
exploration

� Bioscience and genome mapping
� Nanotechnology research and development
� Financial analysis
� Fluid dynamics
� DoD testing and simulation
� Weather forecasting
� Data mining/predictive optimization

Testing

First Job ���� The Vanilla Universe:

A first example submits a run of the
program mathematica as a vanilla universe job. The
vanilla universe does not require a re-compilation of
the program using condor_compile. Where the source
and/or object code to a program is not available, as

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014
ISSN 2229-5518

120

IJSER © 2014
http://www.ijser.org

IJSER

well as for job execution on a Windows machine
(where the standard universe is not available),
execution under the vanilla universe is the simplest
choice.

A very simple submit description file goes with this
example. It queues up program mathematica to run
one time under Condor.

 ########################
 # submit description file for mathematica
 ########################
executable = mathematica
universe = vanilla
input = test.data
output = test.out
error = test.error
log = test.log

queue

The contents of the submit description file identify
the executable, the universe, and they specify files for
input, output, error, and logging. This submits
description file is placed in the same directory as the
executable (mathematica). The input file, test.data, is
utilized as standard input for job execution. The
output file, test.out, is similar in function, but is used
for standard output. Standard error goes to test.error.
A log file,test.log, will be produced that contains
events the job had during its lifetime inside of
Condor. When the job finishes, its exit conditions
will be noted in the log file.

Use of a log file is always recommended, as it
permits the job submitter to keep track of what
happened to the job. No platform (architecture and
operating system) is specified, so Condor will use its
default assumption: that the executable is meant to
run on a machine with the same platform as the
machine from which it was submitted. The queue
command tells Condor to submit the job for
execution one time. Note that the capitalization
within the submit description file is unimportant for
the commands, but it is preserved for file names.

Second Job ���� The Standard Universe

This second example job uses the standard universe.
Therefore, the program must be linked with the
Condor libraries to provide the remote system call

technology. The standard universe is supported on a
subset of Unix platforms. Preparing this simple job
starts with writing, compiling, and submitting the
"hello, world" program. The C language source code
is written:

#include <stdio.h>
int main(void)
{
printf("hello, Condor\n");
return 0;
}

This code is compiled to produce object files:

gcc -c hello.c -o hello.o

Use of the standard universe requires that the
program be linked with the Condor libraries to
provide the remote system call technology. This I/O
support will be needed to send the program's output
to a file. Link in the Condor libraries (again
using gcc):

condor_compilegcchello.o -o hello

A very simple submit description file goes with this
example. It queues up program hello to run one time
under Condor. The submit description file is
called submit.hello for this example.

 ########################
 # submit description file for hello program
 ########################
 Executable = hello
 Universe = standard
 Output = hello.out
 Log = hello.log
 Queue

This submits description file is placed in the same
directory as the executable, hello. The executable is
specified, as it must be for every job submission. A
file where output it to be sent is specified for this
program. No input or error commands are given in
the submit description file, so there will be no input,
and any error messages will be thrown away.
(Files stdin, and stderr refer to /dev/null on Unix by
default). A log file, hello.log, will be produced that
contains events the job had during its lifetime inside
of Condor. When the job finishes, its exit conditions

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014
ISSN 2229-5518

121

IJSER © 2014
http://www.ijser.org

IJSER

will be noted in the log file. It is recommended to
always have a log file to keep track of what happened
to the jobs. No platform (architecture and operating
system) is specified, so Condor will use its default,
which is to run the job on a machine with the same
platform as the machine from which it was submitted.
The Queue command tells Condor to submit the job
for execution one time.

The program is submitted for execution under
Condor using the program condor_submit.

condor_submitsubmit.hello

Node failure management

When a node in a cluster fails, strategies such as
"fencing" may be employed to keep the rest of the
system operational. Fencing is the process of
isolating a node or protecting shared resources when
a node appears to be malfunctioning. There are two
classes of fencing methods; one disables a node itself,
and the other disallows access to resources such as
shared disks.

The STONITH method stands for "Shoot the Other
Node in the Head", meaning that the suspected node
is disabled or powered off. For instance, power
fencing uses a power controller to turn off an
inoperable node.

The resources fencing approach disallows access to
resources without powering off the node. This may
include persistent reservation fencing via the SCSI3,
fibre Channel fencing to disable the fibre
channel port or global network block device (GNBD)
fencing to disable access to the GNBD server.

Conclusion

After installing a High Performance Computing
Cluster we are able to run a heavy jobs on a HPC
Cluster over which we will notice the change in time
consumed after whole execution, the time consumed
in running job on a HPC Cluster is less than a normal
single computer.

HPC Cluster provides flexibility and reliability to
users, saves time and/or money, and provides
concurrency.

Applications of HPCC

� WRF (Weather Research Forecasting).
� SCADA (Supervisory Control and Data

Acquisition).
� Other heavy applications.

Bibliography

� http://research.cs.wisc.edu/condor/yum/
� http://www.cis.upenn.edu/~amir/cis501-

F04/simplescalar/condor.html
� http://research.cs.wisc.edu/condor/quick-

start.html
� http://research.cs.wisc.edu/condor/
� http://spinningmatt.wordpress.com/2011/06/

12/getting-started-creating-a-multiple-node-
condor-pool/

� http://research.cs.wisc.edu/condor/manual/v
6.7/2_11Parallel_Applications.html

� http://research.cs.wisc.edu/condor/manual/v
6.7/2_11Parallel_Applications.html#SECTI
ON003113000000000000000

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014
ISSN 2229-5518

122

IJSER © 2014
http://www.ijser.org

IJSER

