
Hacking AES-128
Timothy Chong

Stanford University
ctimothy@stanford.edu

Kostis Kaffes
Stanford University

kkaffes@stanford.edu

Abstract—Advanced Encryption Standard, commonly known
as AES, is one the most well known encryption protocols. It is
used in a large variety of applications ranging from encrypting
classified documents in government agencies to allowing secure
data transfer in everyday transfer protocols, such as HTTPS
and FTPS. In this paper, we use template attack and Support
Vector Machine to perform a side-channel attack on AES-128
and recover the cipher key from a power trace of a hardware
encrypting device. Using SVM, we achieve an overall prediction
accuracy of 35%, which is more than sufficient to retrieve
the entire cipher key. In addition, we use a balanced SVM to
counteract the skewing of our prediction classes.

I. INTRODUCTION

The ubiquitous need for cryptography in a large number
of tasks today has led to the development and usage of
commodity cryptographic hardware modules. These modules
are preferred to software implementations of cryptosystems
due to their higher speed and lower power consumption. Most
encryption algorithms today have been well studied and proved
to be impervious to attacks in the information flow. How-
ever, the hardware that implements the encryption/decryption
algorithms has to be studied more in depth as it can be
vulnerable to side channel attacks. In cryptography, a side-
channel attack is any attack based on information gained from
the physical implementation of a cryptosystem, rather than
brute force or theoretical weaknesses in the algorithms. For
example, such an attack can exploit the power consumption
of a cryptographic device which depends on the manipulated
data and the executed instructions. The power consumption
can be easily monitored on an oscilloscope by inserting a
resistor in series with the ground. The obtained measurement
is called a power trace. In this work we perform a side channel
attack against the AES-128 encryption standard [1] using
the power traces obtained from a large vendor’s commercial
hardware security module. We use statistical and machine
learning techniques to extract information from the power trace
that can be used to get the key. More particularly, our goal
is to employ multinomial Gaussian distribution modeling and
Support Vector Machine methods to get information about
the output of a specific stage of the AES-128 encryption
algorithm.

The rest of this paper is structured as follows. First, we
present some relevant work on the topic. In section III we
describe the AES-128 encryption algorithm. In section IV we
discuss our attack methodology, the machine learning methods
we use, and several adjustments to further improve them. In
sections V and VI, we present the data set we use and the

results of our attack. We conclude with some remarks and
future directions.

II. RELATED WORK

Template attacks, introduced by Chari et al. [2], deal with
many of the shortcomings of the Simple and the Differential
Power attacks although there are some countermeasures that
can prevent them. Machine learning has been recently used
extensively in side channel attacks since the better under-
standing of the physical behavior of a cryptosystem makes
machine learning algorithms an important component of an
attack strategy. Hospodar et al. [3] use the Least-Squares
Support Vector Machine and compare between different fea-
ture selection methods and kernel parameters. However, they
only consider a single S-Box look-up and do not perform
actual key recovery. Lerman et al. [4] empirically evaluate
the effectiveness of both several feature selection methods
and of different supervised learning approaches such as Self
Organizing Map, Support Vector Machine and Random Forest.
Finally, He, Haffe, and Zou [5], after analyzing DES, conclude
that the type of feature selection method used is not very
important regarding key extraction.

III. AES-128

AES-128 uses a 128-bit cipher key to encrypt 128-bit input
blocks. The encryption flow of the algorithm is shown in
Figure 1.

Fig. 1. Block diagram of AES encryption

In the beginning, the round key is added to the initial
input text using bit-wise XOR. This operation is known as
Key Addition, which is also used in subsequent phases. The
encryption then enters a chain of 10 rounds of operations.
The cipher key generates a different round key for each round
using the Rijndael key schedule as well as for the beginning

key addition. Each of the next 9 rounds contains four phases,
which includes Byte Substitution, Shift Row, Mix Columns,
and Key Addition. In Byte Substitution operation, each byte
of the matrix is substituted using an 8-bit substitution box, the
Rijndael S-box. In Shift Row operation, the rows perform a
left shift in an ascending order with the first row performing
no shift at all and the fourth row shifting 3 positions. In Mix
Columns, each column is transformed using the Rijndael mix
columns function. The final round is identical to the previous
rounds with the exception that Mix Columns operation is
skipped. The output of each round is used as the input of the
next round, while the output of the final round is the encrypted
cipher text.

IV. ATTACK METHODOLOGY

In this work, our goal is to use machine learning tech-
niques to predict the key used by an encryption device that
implements AES-128 in hardware. We assume that the power
trace P depends on the cipher key C and the input text I , i.e.
P = f(C, I). However, instead of trying to directly predict the
key from the power trace, we target the hamming weight of
each byte of the output of the Byte Substitution operation of
the first round (OBFS) of the encryption algorithm (Figure 1).
The term hamming weight refers to the number of 1’s in the
binary representation of a number. For example, the decimal
number 9(10) is 1001(2) in binary, which has a hamming
weight of 2 because it has two 1’s. The hamming weight of
the output of this particular phase of the encryption algorithm
is a good target for AES side-channel power analysis for two
main reasons. First, the power trace is highly correlated with
the hamming weight of a value stored to the internal registers
of a hardware device. In the AES case, the OBFS is the first
time where registers are used to store some value related to the
key, so it is a good target for our attack. Secondly, the input
key is expanded and key additions are performed at the end of
each round. If we wanted to target values in later rounds of the
algorithm, the complexity of our side-channel analysis would
grow because operations such as Shift Row and Key Addition
would have to be taken into account. All operations in the AES
algorithm run in 8-bit granularity, and each 8-bit sub-number
is in-place until the first Shift Row operation. Therefore, with
the hamming weight of each 8-bit sub-number in the output
of the first Byte Substitution phase, one can retrieve the secret
key since this hamming weight output is a function of the
input secret key and the plain text. In the following section, we
will describe the procedure by which we predict the hamming
weight of the first 8-bit of the OFBS given the power trace,
the first 8-bit of the input cipher text, and the first 8-bit of the
plain text. It is important to note that the same analysis can
be done on all subsequent 8-bit sub-numbers to retrieve the
entire 128-bit key.

A. Feature Selection

Machine learning techniques usually require some kind of
data processing before the training phase. In our case, each
power trace consists of thousands of time-series values, most

of which are not correlated with the cipher key. Thus, if
every point of a power trace was considered a feature of the
training set, the training phase would take too long and lead
to overfitting and increased variance no matter which machine
learning algorithm is used. To address that, we use point of
interest selection and principal component analysis (PCA) to
reduce the dimensionality of our input data.

1) Point of interest selection: We use two methods in order
to identify d points of interest in our long power traces, which
are then used for template attack as described in Section IV-B.

In the first method, we calculate the average for each point
among all traces associated with a specific OFBS hamming
weight. Since a 8-bit output has only 9 possible hamming
weights, we obtain 9 mean power traces. We then calculate
the sum of the absolute pairwise difference among all combi-
nations of these 9 traces to obtain only one ”trace”. Finally,
we select the d highest peaks in this trace as our points of
interest.

In the second method, the Pearson correlation between each
point in the power trace and the OFBS hamming weight
is calculated. This metric represents the linear relationship
between two data sets. We choose the d points with the highest
Pearson correlation to be our point of interest.

2) Principal component analysis: PCA tries to identify
the subspace in which the input data lie and to get rid of
redundant dimensions. First, we need to preprocess the data
by zeroing out the mean and rescaling each coordinate to have
zero variance. If we assume that we want to project the data
to only one dimension then we need to find a unit vector u so
that when the data is projected onto u’s direction the variance
of the projected data is maximized. i.e. we need to maximize:

uT (
1

m

m∑
i=1

x(i)x(i)
T

)u

Given the constraint ||u||2 = 1, the minimizer is the principal
eigenvector of Σ = 1

m

∑m
i=1 x

(i)x(i)
T

. In order to get the d-
dimensional subspace of the data that maximizes variance, we
choose u1, . . . , ud to be the top d eigenvectors of Σ and we
get:

y(i) =

uT1 x(i). . .
uTd x

(i)


B. Template Attack

Template attacks [2] are a very successful type of profiling
side-channel attacks. The method uses a multinomial Gaussian
distribution as its underlying model. It assumes that given the
OFBS hamming weight of a given power trace, the power
values (x) of the d points of interest (IV-A1) are going to
vary according to a d dimensional Gaussian distribution with
probability:

p(x;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp(−1

2
(x− µ)TΣ−1(x− µ))

where µ ∈ Rd is the mean vector, and Σ ∈ Sd++ is the
covariance matrix.

To generate the model for a particular hamming weight
class, we collect the power values of the d points of interest
pertaining to that hamming weight. We can then generate a
mean vector and a co-variance matrix for power values of
that hamming weight class at these points of interest. With
9 possible hamming weight, we generate 9 such Gaussian
distributions, each of d dimensions. To make a prediction given
an input power trace, we simply calculate the probability of the
d points of interest with our generated models assuming that
they are generated from each of the 9 models. The model with
the highest probability is chosen to be our hamming weight
prediction.

C. Support Vector Machine

The Support Vector Machine (SVM) family of machine
learning algorithms performs classification by finding a deci-
sion boundary that maximizes the geometric margin. In other
words, given training vectors xi ∈ Rp, i = 1, ...,m, in two
classes, and a vector y ∈ {1,−1}m, we train the SVM by
solving the following primal linear programming problem:

minw,b,ζ
1

2
wTw + C

m∑
i=1

ζi

subject to yi(wTφ(xi)+b) ≥ 1−ζi and ζi ≥ 0, i = 1, . . . ,m.
One of the problems with any SVM method is that it is

designed to perform binary classification. There are two basic
approaches on how one can perform multi-class classification
using SVM, ”one-against-one” and ”one-against-all”[6]. In the
”one-against-one” approach a classifier is constructed for each
pair of classes and the class which receives the most votes
is selected. In the event of a tie, the class with the highest
aggregate classification score, i.e. the sum of the pair-wise
classification confidence levels for all the binary classifiers,
is selected. For this method if we have n classes, n∗(n−1)

2
classifiers are required. In the ”one-against-all” approach a
classifier is constructed for each class, i.e. n classifiers and
makes a binary decision between that class and the rest of
the class. The class that has the decision function with the
highest value is selected. We use the ”one-against-one” method
because we have a relatively small number of classes (9) and
the O(n2) classifier number is manageable. Furthermore, Hsu
and Lin [7] have shown that it provides higher accuracy for a
wide range of problems and data sets.

Another problem that we have to deal with is that the
distribution of hamming weights for numbers with a set length
is inherently skewed. For example, for an 8-bit binary number,
there is only one number with hamming weight 0 (0(10)) and
one number with hamming weight 8 (255(10)), whereas the
frequency of other hamming weight classes is much higher.
This observation drives us to adjust our algorithm to ensure
balanced precision among hamming weight classes by adding
weights to the samples. Thus, for each binary classifier that
we train, we assign weights inversely proportional to class
frequencies in the input data.

Our first step is to do a design space exploration for different
kernel functions and parameters. An initial attempt to use a

simple linear or polynomial kernel is quickly abandoned since
the data set is clearly not separable by such kinds of functions.
After fine tuning of the parameters of the SVM, the radial
basis function kernel (rbf), K(x1, x2) = exp{−||x1−x2||22

σ2 }
proofs to be successful. The parameters that we use are C
and γ = 1

σ2 . The C parameter trades off misclassification of
training examples against simplicity of the decision surface.
Thus, the lower the C parameter, the smoother the decision
surface while a high value of C means that the labels of
all training data points, even outliers, are taken strictly into
account. The γ parameter defines how far the extent of the
influence of each training example. Low values mean ”far”
and high values mean ”close”. In our experiments we have
chosen C = 100 and γ = 10−6, values that seem to provide
the highest prediction accuracy. Intuitively, the high value of
C and low value of γ we have chosen mean that every data
point (trace) is important and decisive for the outcome of the
prediction.

In order to avoid the issue of the skewed hamming weight
distribution altogether, we also try to predict the value of the
OBFS directly. More specifically, we target the first bit of the
OBFS and use both balanced and unbalanced SVM with linear
and rbf kernels.

D. Data Set and Evaluation

Our data set consists of 20k power traces collected from
a hardware security module1 when it is actively performing
AES encryption. Each trace contains 80k power values along
the time axis. We divide our data set into a 17.5k training set
and a 2.5k testing set. All traces have the same key and random
plain texts, but our algorithm should work either random keys
because the OFBS is a function of both the plain text and key.

We implement both template attack and Support Vector
Machine in Python using packages such as numpy and sklearn.
Points of interest selection method is used for template attack,
while Principal Component Analysis is used for Support
Vector Machine.

V. RESULTS

Fig. 2. 25 Points of interest example

Figure. 2 shows an example plot of the points of interest
selected by maximizing the differences across OFBS hamming
weight classes. This particular plot shows the normalized

1The exact model and specifications of the module is unknown due to non-
disclosure agreement from Google Inc., where the data set was collected.

power trace of the class with hamming weight 4 and 25 points
of interest. The plot is zoomed into the region where the points
of interest are selected for clarity. As one may have expected,
the points of interest are found to be located around the peaks
and valleys of the power values because these points can
correspond to power numbers when values are being stored
to registers, which deviate the most for different hamming
weight classes.

Fig. 3. Overall accuracy of our algorithms with different number of points of
interest/ feature dimension. a) Template attack with point of interest selection
method 1. b) Template attack with point of interest selection method 2. c)
SVM with PCA. d) balanced SVM with PCA.

The overall accuracy of our algorithm is shown in Figure 3.
The left two sub-bars represent template attack with different
number of points of interest along the horizontal axis, while
the right two sub-bars represent the SVM results with the
number of PCA features along the horizontal axis.

Looking at template attack alone, the two point of interest
selection method seem to have similar overall performance,
with accuracy at around 20% to 25% with 25 points of interest.
SVM in general gives better, although not significantly higher,
accuracy. Perhaps due to over-fitting, the accuracy of template
attack becomes abysmal as we further increase the number
of points of interest beyond 50, whereas the performance of
SVM continues to increase as we increase the number of PCA
features to 200, even though the accuracy seems to plateau at
higher number of features.

It is important to note that even though the accuracy is less
than 40%, the actual key retrieval involves the prediction of
hamming weight with a number of input traces of the identical
key and random plain texts. As long as our classifier performs
better than a random guess (1/9), we should still be able
to guess the correct key given a sufficient number of power
traces.

The precision (true positive divided by the sum of true
positive and false negative) across the 9 classes of OBFS
hamming weights is shown in figure 4. The two point of in-
terest selection methods seem to have similar precision across
different hamming weights. On the other hand, the precision

for the unbalanced SVM is much higher for hamming weight
classes 1 and 4, while the other classes are doing very poorly.
In the balanced SVM case, however, the precision performance
is more balanced among all the different classes. The balanced
case sacrifices overall accuracy but retains higher overall
precision across different hamming weight classes, which can
be helpful if we want to sustain reasonable accuracy for all
classes.

Fig. 4. Precision of OBFS hamming weight prediction. a) Template attack
with 25 points of interest selected by method 1. b) Template attack with 25
point of interest selected by method 2. c) SVM with 200 PCA features. d)
balanced SVM with 200 PCA features.

Fig. 5. One-bit prediction accuracy. a) Un-balanced SVM with RBF kernel.
b) Balanced SVM with RBF kernel. c) Un-balanced SVM with linear kernel.
d) Balanced SVM with linear kernel.

The accuracy of the one-bit prediction with Support Vector
Machine is shown in Figure. 5. Since we are using SVM as
a binary classifier, we expect there is no significant difference
between the balanced and unbalanced implementation. SVM
with linear kernel performs nothing better than a random
classifier, with an accuracy of 50%, possibly because our data
set is not linearly separable. The RBF kernel case gives an
accuracy of 70% probably due to the infinite numbers of

features it uses. Such an accuracy allows the prediction of
the key if enough attack traces are available.

VI. CONCLUSION AND FUTURE WORK

In our work we use multinomial Gaussian distribution
modeling and Support Vector Machine to predict either the
hamming weight or directly the value of the OBFS. To our
knowledge, this is the first time that a direct prediction of
the hamming weight is attempted. We have shown that it is
not a trivial task to predict the hamming weight using a single
attack trace. It is worth noting that the inherent skewing of the
hamming weight distribution makes it harder to sustain high
accuracy while taking into account low frequency hamming
weights. To alleviate this problem, we implemented the one-bit
predictor which does not have to deal with hamming weights.
The performance of this prediction has proved to be on par
with similar attacks against the DES encryption standard [5].

This work can be expanded to two different directions: im-
proving the accuracy of the prediction of the hamming weight
and exploring other methods of attack. The former includes
the isolation of the part of the power trace corresponding
to the phase of the encryption algorithm we are attacking
as well as the use of other machine learning techniques in
addition to SVM such as Random Decision Forests. Another
promising direction could employ neural networks where each
trace could be associated with a neuron, and the network
would be organized to group similar traces together. Finally, it
would be interesting to test the methods proposed in this paper
against side-channel resistant hardware encryption devices.
Countermeasures implemented in such devices include, but
are not limited to, adding random noise, shifting substitution
box and using constant weight code so that any value written
in the registers has always the same hamming weight.

ACKNOWLEDGMENT

The authors would like to thank Kevin Nicholas Kiningham
for the initial idea for the project and for providing us the trace
data set.

REFERENCES

[1] J. Daemen and V. Rijmen, The Design of Rijndael. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2002.

[2] S. Chari, J. R. Rao, and P. Rohatgi, Template Attacks. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 13–28.

[3] G. Hospodar, B. Gierlichs, E. De Mulder, I. Verbauwhede, and
J. Vandewalle, “Machine learning in side-channel analysis: a first study,”
Journal of Cryptographic Engineering, vol. 1, no. 4, p. 293, 2011.
[Online]. Available: http://dx.doi.org/10.1007/s13389-011-0023-x

[4] L. Lerman, G. Bontempi, and O. Markowitch, “Power analysis
attack: An approach based on machine learning,” Int. J. Appl.
Cryptol., vol. 3, no. 2, pp. 97–115, Jun. 2014. [Online]. Available:
http://dx.doi.org/10.1504/IJACT.2014.062722

[5] H. He, J. Jaffe, and L. Zou, “Side channel cryptanalysis using machine
learning,” CS229 Project.

[6] V. N. Vapnik, The Nature of Statistical Learning Theory. New York,
NY, USA: Springer-Verlag New York, Inc., 1995.

[7] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass
support vector machines,” Trans. Neur. Netw., vol. 13, no. 2, pp. 415–425,
Mar. 2002. [Online]. Available: http://dx.doi.org/10.1109/72.991427

