	GuruAanklan Fou GuruAanklar	Guru Foundation	/ MHT-	et-A/Physics	Chemistry / QP
		Physics + Set ·	Chemis - [A]	stry	
		PHYSICS +		RY	
Gen	eral Instructions :				
(i) (ii) (iii) (iv)	The test is of 1½ hou This paper consists of There is TWO part in The distribution of ma Q. No.1 - 50 – Q. No.51 - 100 – Each question has 4 co will be awarded TWO	rs duration. This Quest f 100 questions. The the question paper. arks subjectwise in eac PHYSICS CHEMISTRY hoices (A), (B), (C) and marks each for indicati	stion Paper i maximum n th part is as (+2, 0) (+2, 0) (D), out of w ng correct r	s of total 11 F narks are 200 under for eac (100 mark (100 mark /hich ONLY O	Pages ch correct response. s) – 50 questions s) – 50 questions NE is correct. Candidates ach question & there is no
	negative marking. PHYSICS [Single Answer Choice Type]				
This	Section contains <u>50</u> and (D) out of which	Single choice quest	ions. Each d ect.	question has	5 4 choices (A), (B), (C)
1.	A bomb of mass 9 kg e 16m/s. The KE of mass	xplodes into two pieces 6 kg in joule is :	= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	kg and 6 kg. t	= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$
2.	[A] 96 The second hand of a c during slow down is	[B] 384 lock slows down to 50 r	[C] 192 rotation per h	our in 7 minut	[D] 768 tes. The angluar retardation
	(A) $4.15 \times 10^{-5} \text{ rad/s}^2$	(B) $4.15 \times 10^{-3} \text{ rad/s}^2$	(C) 4.15	$\times 10^{-4}$ rad/s ²	(D) $4.15 \times 10^{-2} \text{ rad/s}^2$
3.	Binding enegry of satel	lite is 4×10^8 J. Its pote	ntial energy i	S	
	(A) -4×10^8 J	(B) -8×10^8 J	(C) 8×10) ⁸ J	(D) 4×10 ⁸ J
4.	Kepler's second law sta equal times. This stater	tes that the straight-line nent is equivalent to say	joining the p ring that	lanet to the su	n sweeps out equal areas in
	(A) Total acceleration i	s Zero	(B) Tang	ential accelera	ition is zero
	Guru Aankla	ation is zero	(D) Area	Website	: www.guruaanklan.com

	GuruAanklar	Foundation / MHT-CET / Exa	mination / Set-A / Phys	ics + Chemistry / QP	
12.	Strain energy of a wire is $1.8 = 10^{-3}$ J and strain energy per unit volume under the same coditions is				
	6×10^{-3} SI unit. If the radius of wire is $\frac{1}{\pi}$ SI units. Then the length of wire is				
	(A) 0.3m	(B) 0.942 m	(C) 10.46 m	(D) 9.42 m	
13.	Which of the follow	wing is used in case of rain c	oat		
	(A) Low adhesion		(B) High cohesion		
	(C) Angle of conta	ct is reduced	(D) Low cohesion		
14.	A film of soap solutis 0.035J/m, the su	ttoin is formed in a metal ring rrface energy of the film is	of radius 1cm. If the	surface tension of soap solution	
	(A) 2.19×10^{-5} J	(B) 2.19×10^{-2} J	(C) 3.45×10^{-3} J	(D) 4.19×10^{-2} J	
15.	A square wire fran surface tension is '	me of side 'L' is dipped in a T', the force acting on the fr	liquid. On taking out ame will be	a membrane is formed. If the	
	(A) 2 TL	(B) 4TL	(C) 8 TL	(D) 10TL	
16.	A rigid body of ma	ss m is moving in a circle of r	adius r with a constant	speed v. The force on the body	
	is $\frac{mv^2}{r}$ and is directly directly and $\frac{mv^2}{r}$	ected towards the centre. Wh	at is the work done by	y this force in moving the body	
	over half the circu	mference of the circle.			
	$[A] \frac{mv^2}{\pi r^2}$	[B] zero	$[C] \frac{mv^2}{r^2}$	$[D] \frac{\pi r^2}{mv^2}$	
17.	Two progressive w travelling along th intensities will be	waves of same frequencies have a same line and superpose	ave amplitude 4cm an over each other, the n	d 3cm respectively. If they are ratio of maximum to minimum	
	(A) 4:3	(B) 6 :9	(C) 7:1	(D) 49:1	
18.	The equation of a s	stationary wave is $y = 5\sin\frac{\pi}{3}$	$\frac{x}{2}\cos 40\pi t$ where x &	y are in cm & t in sec. Then the	
	separation between	n two consecutive nodes is			
	(A) 1.5 cm	(B) 6 cm	(C) 3 cm	(D) 12 cm	
19.	What is the phase of is same as that of t	difference between two wave he waves ?	s, if the resultant ampl	itude due to their superposition	
	(A) π/2	(B) π	(C) $2\pi/3$	(D) π/3	
20.	When an open pipe of air column is 40 300Hz. Then the le	e is vertically dipped in water 0 Hz and when it is 6 cm insi ength of pipe will be	10 cm is inside the wa de water then fundame	ter, then fundamental frequency ental frequency of the column is	
	(A) 14 cm	(B) 12 cm	(C) 22 cm	(D) 2 cm	
21.	A body of mass 2 k of static friction be	g rests on a rough inclined plate tween the block and the plan	ne making an angle with the is 0.7. The frictional	th the horizontal. The coefficient force on the block is :	
	[A] 9.8 N	[B] $0.7 \times 9.8 \times \sqrt{3}$ N	$[C] 9.8 \times \sqrt{3}N$	[D] 0.7×9.8N	
	Guru Aa	nklan 3	Web	site : www.guruaanklan.com	

	GuruAanklan Foundation / MHT-CET / Examination / Set-A / Physics + Chemistry / QP				
22.	Change in pressure of a	n ideal gas causes			
	(A) Change in rms velo	city	(B) Change in velocity	of sound through gas	
	(C) Change in mean free	e path	(D) Change in the ratio	of pressure to density of gas	
23.	Two bodies A and B are	painted with red and blac	ek colours respectively. If	$f E_{R}$ and E_{R} are their emis-	
	sive power then			K D	
	(A) $E_{p} < E_{p}$	(B) $E_p > E_p$	(C) $E_{p} = E_{p}$	(D) Cannot predicted	
24.	A tungesten filament of	an electric bulb has surfac	the area of 0.30 cm ² , and is	s raised to a temperature of	
-	2727°C by applying ele	ectric power to it. Emissi	vity of the filament is 0.	35 and stefan's constant is	
	$5.7 \times 10^{-5} \text{ erg/cm}^2 \text{sec } K^4$	The rate of supply of ele	ctric power to maintain t	be temperature of the fila-	
	ment constant is		F		
	(A) 0.482 watt	(B) 4.82 watt	(C) 48.2 watt	(D) 482 watt	
25.	Emissive power of any	surface			
	(A) Decreases with tem	perture			
	(B) Does't change with	temperture			
	(C) Increase with tempe	prature			
	(D) Decreases initially u	pto a certain temperature	and then increases		
26.	A U-tube of uniform cro	oss-section is partially fille	ed with a liquid I. Anothe	er liquid II which does not	
	mix with liquid I is pour	ed into right side of U-tub while the level of liquid in	e, it is found that the liqu	id levels of the right side of	
	liquid I is 1.1, the specifi	fic gravity of liquid II mus	st be :	II. If the specific gravity of	
	[A] 2.2	[B] 1.1	[C] 4.4	[D] 1.0	
27	If λ is wavelength of light	sht in medium of R L 11	is wavelength in media	um of R I II. Then which	
_,.	of the following is corre	ect.			
	μ λ	11			
	(A) $\frac{\mu_1}{\mu} = \frac{\lambda_1}{\lambda}$	(B) $\frac{\mu_1}{\mu_1} = 1$	(C) $\mu_1 \lambda_1 = \mu_2 \lambda_2$	(D) $\mu_1 \lambda_2 = \mu_1 \lambda_2$	
28	Using following diagram	n the refractive index of	olass wrt air is		
20.					
		X X B	air		
			<u></u>		
		A			
			glass		
			, <u> </u> ,		
			BD		
	(A) BD/AC	(B) AB/CD	(C) $\frac{DD}{AD}$	(D) AC/AD	
29.	The colour of bright fri	nge nearest central fringe	in the interference patter	n with white light will be	
	(A) violet	(B) red	(C) green	(D) yellow	
30.	The path difference betw	ween two waves is 3.75 u	m and the wavelength is	5000 Å. The point is	
	(A) Uncertain	(B) Dark	(C) Partically bright	(D) Bright	
	· · ·				
	Guru Aankla	an 4	Website :	www.guruaanklan.com	

31.	A cut diamond sparkles because of its :				
011	[A] Hardness		[B] High refractive inde	ex	
	[C] Emission of light h	by the diamond	[D] Absorption of light	by the diamond	
32.	Two interfering beams intensity in interference	have intensities in the rational sector is	o of 9 : 4. Then the ratio of maximum to minimum		
	(A) 25 : 1	(B) 13:5	(C) 5:1	(D) 3:2	
33.	If n drops each of capa- energy stored in big dro	citance C and charged to a op to that in each drop will	potential V coalesce to fo ll be	rm a big drop. The ratio of	
	(A) n:1	(B) $n^{\frac{4}{3}}:1$	(C) $n^{\frac{5}{3}}:1$	(D) $n^{\frac{2}{3}}:1$	
34.	Two wires of same mat of radii is 2 : 3. The ra	terial are connected in para	llel with cell. The ratio of ough wires is	their length is 4 :3 and that	
	(A) 2:3	(B) 4:3	(C) 1:3	(D) 1 : 2	
35.	A potentiometer wire of potential difference be	of length 3m has resistance tween two points on wire	of 100Ω . It is connected separated by 50 cm will b	to a battery of 6 volt. The	
	(A) 1 volt	(B) 1.5 volt	(C) 2 volt	(D) 2.5 volt	
36.	Where should an objec ?	t be placed in front of a co	nvex lens to get a real ima	ge of the size of the object	
	[A] At the principal for	cus of the lens			
	[B] At twice the focal	length			
	[C] At infinity				
	[D] Between the optica	al centre of the lens and its	s principal focus.		
37.	In an ammeter, 4% of n resistance of galvanom	nain current is passing thro leter will be	ugh the galvanometer. Shu	ant resistance is 5 Ω hence	
	(A) 60Ω	(B) 120Ω	(C) 240Ω	(D) 480Ω	
38.	A coil has resistance 30 200 volt, 100 Hz is con) ohm and inductive reacta nnected across the coil, the	nce 20 ohm at 50 Hz freque current in the coil will be	uency. If an A.C. source, of e	
	(A) $\frac{20}{\sqrt{13}}$ A	(B) 2.0 A	(C) 4.0 A	(D) 8.0 A	
39.	Dimensions of magnet	ic potential are			
	$(\mathbf{A})\left[\mathbf{M}^{1}\mathbf{L}^{2}\mathbf{T}^{-2}\mathbf{A}^{-2}\right]$	$(B)\left[M^{1}L^{1}T^{2}\right]$	$(C)\left[M^{1}L^{1}T^{-2}A^{-1}\right]$	$(D)\left[M^2L^2T^{-2}A^{-1}\right]$	
40.	LCR circuit produces t 60 volt respectively. Th	he phase difference of 60° ne average power consum	between current and emf ed in circuit will be.	f of maximum values 4A &	
	(A) 20 Watt	(B) 40 Watt	(C) 60 Watt	(D) 80 Watt	
	Guru Aankl	an 5	Website :	www.guruaanklan.com	

	GuruAanklai	n Foundation / MHT-CET / Exa	mination / Set-A / Pl	hysics + Chemistry / QP	
41.	Two long parallel	wires carrying current 1 A an	nd 2 A as shown in	figure. The ratio of magnitude of	
	magnetic field at the point P due to 1 A to 2 A is:				
			1 A		
		1	-		
		20 cm			
		Ļ			
		10 cm ∱	2 A		
			<u> </u>		
	[A] 1 : 1	[B] 1 : 2	[C] 2 : 1	[D] 1 : 4	
42.	A rectangular coil	of 20 turns and area of cros	as section is 25 cm ²	has a resistance of 100Ω . If the	
	magnetic field, is p will be.	erpendicular to plane of the co	oil changes at the rat	te of 1000 T/S, the induced current	
	(A) Zero	(B) 5A	(C) 0.5 A	(D) 500 A	
43.	A transfomer has e	efficiency of 70%. The primar	y coil is connected	to a.c. mains of 210 volts & draws	
	a current of 0.1A.	The maximum power of a l	oad that the can be	e connected with secondary coil is	
	approxmately. (A) 2.1 W	$(\mathbf{B}) 10 \mathbf{W}$	(C) 15 W	(D) 10 W	
44	Photoelectric effec	(B) IV w	(C) 13 W	(D) 19 W	
	(A) UV rays	(B) X- rays	(C) γ - rays	(D) Radiowaves.	
45	An electron of mas	s_{s} m and proton of mass m.	are accelerated thro	ugh same potential difference The	
	ratio of deBroglie wavelength associated with electron and proton is				
			F		
	(A) 1·1	(B) $\frac{m_p}{m_p}$	(C) $\frac{m_e}{m}$	(D) $\sqrt{\frac{m_p}{m_p}}$	
	() 1.1	m _e	() m _p	$\bigvee \bigvee m_{e}$	
46.	The energy of elec	etron in third orbit is -1.51 eV	'. The energy of ele	ectron in fourth orbit will be	
	(A) 8.5 eV	(B) 0.85 eV	(C) 1.51 eV	(D) -0.85 eV	
47.	Work function of	a metal of 2 eV. The maximu	um wavelength of p	bhotons required to emit electrons	
	from its surface is				
	(A) 6215 Å	(B) 6500 Å	(C) 5700 Å	(D) 5900 Å	
48.	For working of an	y type of transistor, emitter ju	nction and collecto	r junction should be	
	(A) Reverse and f	orward bias respectively	(B) Forward and	d reverse bias respectively	
	(C) Forward an fo	rward bias respectively	(D) Reverse and	d reverse bias respectively	
49.	Troposphere layer	of atmosphere is nearly up to	height from	earth surface :	
	(A) 12 Km to 50 H	Km (B) 50 Km to 80 Km	(C) 12 Km	(D) 12 Km to 80 Km	
50.	The magnetic lines	s of force inside a bar magnet	::		
	[A] are from north [B] do not exist	-pole to south-pole of the ma	ignet.		
	[C] depend upon t	he arc of cross-section of the	bar magnet		
	[D] are from south	n-pole to north-pole of the ma	gnet		
	Guru Aa	nklan	N N	Vebsite : www.guruaanklan.com	

	GuruAanklan F	oundation / MHT-CET / Exar	nination / Set-A / Physics +	Chemistry / QP	
59	'Alkanone' is the IU!	PAC name of the following	compounds		
	(A) Aldehyde	(B) Ethers	(C) Alcohols	(D) Ketones	
60.	If a salt bridge is rem	noved between, the voltage	of the cell		
	(A) drops to zero	(B) does not change	(C) increases reapidly	(D) increases gradually	
61.	What is the mass p	er cent of carbon in carbo	on dioxide?		
	(A) 0.034%	(B) 3.4%	(C) 27.27%	(D) 28.7%	
62.	The basic character c	of hydrides of the 15-group	elements decreases in the	order	
	(A) $SbH_3 > PH_3 > Ast$	$H_3 > NH_3$	(B) $NH_3 > SbH_3 > PH_3 >$	>AsH ₃	
	(C) $NH_3 > PH_3 > AsH$	$H_3 > SbH_3$	(D) $SbH_3 > AsH_3 > PH_3$	>NH ₃	
63.	Graphite is a soft lubr graphite	ricant extremely difficult to	melt. The reason for this a	nomalous behaviour is that	
	(A) is a non-crystalling (\mathbf{R}) is a non-crystalling (\mathbf{R})) is a non-crystalline substance			
	(B) is an allotropic in (C) become local and (C)	orm of diamond	11 1		
	(D) has carbon atoms	s arranged in large plates of	rings of strongly bound C-	atoms with weak interplate	
64	DUIIUS. Some statements reg	ording defects in solids are	givan halaw		
U - T.	(P) Frenkel defect in usually favoured by a very small difference in sizes of cation and anion				
 (P) Frenkel defect in usually lavoured by a very small difference in sizes of cation and anoth (Q) Frenkel defect is a dislocation defect. (R) Trapping of an electron in the lattice leads to formation of F-center. 				I cution und union.	
	(S) Schottky defects have no effect on the physical properties of solids.				
	Among these the correct statement(s)				
	(A) P, Q and R	(B) Q and R	(C) Only Q	(D) Q and S	
65.	5. Equimolar solutions of two non-electrolytes in the same solvent should have			ve	
	(A) same boiling point	nt but different freezing po	int (B) same freezing point	but different boiling point	
	(C) same boiling point	nt and same freezing point	(D) different boiling po	bint and different freezing	
66.	The differential rate of	expression for the reaction,	$H_2 + I_2 \longrightarrow 2HI$, is		
	(A) $\frac{-d[H_2]}{dt} = \frac{-d[I_2]}{dt}$	$-\frac{-d[HI]}{dt}$	(B) $\frac{d[H_2]}{dt} = \frac{d[I_2]}{dt} - \frac{d[H_2]}{dt}$	[<u>1]</u>	
	(C) $\frac{1}{2} \cdot \frac{d[H_2]}{dt} = \frac{1}{2} \cdot \frac{d[I]}{dt}$	$\frac{d[HI]}{dt} = \frac{d[HI]}{dt}$	(D) $-2\frac{d[H_2]}{dt} = -2\frac{d[I_2]}{dt}$	$\frac{d[HI]}{dt}$	
67.	The shape of BrF_5	is			
	(A) octahedral		(B) pentagonal bipyra	midal	
	(C) trigonal bipyrar	midal	(D) square pyramidal		
68.	Mole fraction of the	solute in a 1 molal aqueous	solution is		
	(A) 1.770	(B) 0.177	(C) 0.0177	(D) 0.0344	
	Guru Aanl	klan 🛛 🖉	Website :	www.guruaanklan.com	

	GuruAanklan Fou	Indation / MHT-CET / Exa	mination / Set-A / Physics +	Chemistry / QP
69.	The Coordination numb are respectively.	er and oxidation state of	the element "M" in the com	plex $[M(en)_2(C_2O_4)]NO_2$
	(A) 6 and + 2	(B) 4 and + 2	(C) 6 and + 3	(D) 4 and + 3
70.	In the reaction, H_2O_2	$+ Na_2CO_3 \longrightarrow Na_2O_2 +$	$+CO_2 + H_2O$ the substance	e undergoing oxidation is
	(A) H ₂ O ₂	(B) Na_2CO_3	(C) Na_2O_2	(D) None of these
71.	Which one of the follow	wing is a mineral of iron		
	(A) Cassiterite	(B) Magnetite	(C) Pyrolusite	(D) Malachite
72.	Which of the following	, reactions can be brough	it about by acidified potass	ium dichromate?
	(A) $SO_2 \longrightarrow H_2SO_4$		(B) $NO_3^- \longrightarrow NO_2^-$	
	(C) $CH_3CHO \longrightarrow CH_3CHO$	H ₃ CH ₂ OH	(D) both (A) and (B)	
73.	Li ₂ CO ₃ decomposed at	t a lower temperature wh	hereas Na_2CO_3 at higher te	mperature. This is due to
	(A) small Li ion		(B) large CO_3^{2-} ion	
	(C) high hydration enth	alpy of Li	(D) All of the above	
74.	In the following sequen	ice of reactions, D is		
	$C_2H_4 \xrightarrow{HBr} A \xrightarrow{aq.Nat}$	$\xrightarrow{OH} B \xrightarrow{Na} C \xrightarrow{CH_3I}$	≻D	
	(A) butane	(B) ethane	(C) ethyl methyl ether	(D) propane
75	The organic chloro con	npound which shows cor	mplete sterochemical invers	sion during SN ²
	(A) $(C_2H_5)_2$ CHCl	(B) (CH ₃) ₃ C.Cl	(C) $(CH_3)_2$ CHCl	(D) CH ₃ Cl
76.	Silicon has a strong tend be controlled by adding	dency to form polymers l	ike silicones. The chain leng	gth of silicone polymer can
	(A) MeSiCl ₃	(B) Me ₂ SiCl ₂	(C) Me ₃ SiCl	(D) Me ₄ Si
77.	Arrange the following;			
l	(I) CH ₃ NH ₂	(II) (CH ₃) ₂ NH	(III) $C_6H_5NH_2$	(IV) (CH ₃) ₃ N
	In increasing order of t	basic nature in aqueous n	nedium	
	(A) II < I < IV < III	(B) III < IV < I < II	(C) I < II < III < IV	(D) $II < III < I < IV$
78.	Clemmensen reduction	of a ketone is carried ou	it in the presence of which	of the following?
	(A) H_2 and Pt as cataly	yst	(B) Glycol with KOH	(C) Zn – Hg with HCl
	(D) LiAlH ₄			
79.	What is the mass ratio	o of isotopes of hydrog	gen?	
	(A) 1 : 1 : 1	(B) 1 : 2 : 1	(C) 1 : 2 : 3	(D) 1 : 3 : 2
80.	A well stoppered therm	hosflask contains some ic	e-cubes, this is example of	· -
	(A) closed system		(B) open system	
	(C) Isolated system		(D) non thermodynamic	: system
	Guru Aankl	an 🦻	Website :	www.guruaanklan.com

81	Among the compounds	ndation / MHT-CET / Exam	ination / Set-A/ Physics +	Chemistry / QP
01.	Among the compounds			
	OH I	OH I	OH I	OH I
			(c) NO_2	
		CH3	NO_2	I NO ₂
	the strength of acidity i	s in the order.		
	(A) b > a > c > d	(B) $c > d > a > b$	(C) $a > d > c > b$	(D) $d > c > a > b$
82.	Which of the following	is an example of absorpt	ion?	
	(A) Water on silica gel		(B) Water on calcium of	chloride
	(C) Hydrogen on finely	v divided nickel	(D) Oxygen on metal s	urface
83.	Which of the following	is a secondary cell?		
	(A) lead storage battery	I	(B) nickel cadmium sto	orage cell
	(C) mercury cell		(D) both (A) and (B)	
84.	Which of the following	is a heterocyclic compou	nd?	
	(A) Phenanthrene	(B) Thiophene	(C) Phenol	(D) Aniline
85.	If concentration of reac	tant is increased, the rate	of reaction :	
	(A) Remains unaffected	d	(B) Increases	
	(C) Decreases		(D) may increase or de	crease
	O II			
86.	-C - C = G groups in ketone	e is called		
	(A) Carboxyl group	(B) Acetyl group	(C) Formo group	(D) Oxo group
87.	The osmotic pressure o	of 15% black cane sugar so	olution at 150°C is	
	(A) 12.05 atm	(B) 18.55 atm	(C) 17.05 atm	(D) 15.05 atm
88.	In the reaction, $C_2H_5I_7$	$\xrightarrow{\text{alc. KOH}} X \xrightarrow{\text{Br}_2} Y \xrightarrow{\text{I}}$	$\xrightarrow{\text{KCN}}$ Z; X, Y and Z are	e respectively.
	(A) CH CHBrCF	H CN		1 2
	(P) $C H O H C H Pr$	C H CN		
	(B) $C_2 \Pi_5 O \Pi, C_2 \Pi_5 D \Pi,$	$C_2 \Pi_5 C \Pi$		
	(C) C_2H_4 , CH_2Br-CH_2	Br, CH_2CN, CH_2CN		
	(D) C_2H_4 , $C_2H_4Br_2$,	₂ H ₅ CN		
89.	Which one of the follow	wing reagents may be used	d to distinguish between	phenol and benzoic acid?
	(A) Aq. NaOH	(B) Tollen's reagent	(C) Neutral FeCl ₃	(D) Molisch reagent
90.	Suspension of slaked li	me in water is known as		
	(A) lime water		(B) quick lime	
	(C) milk of lime		(D) aqueous solution o	f slaked lime
	-			
	Guru Aankla	an ¹⁰	Website	: www.guruaanklan.com

	GuruAanklan Fo	oundation / MHT-CET / Ex	xamination / Set-A / Physic	cs + Chemistry / QP		
91.	A solution containing $10g \text{ dm}^{-3}$ of urea (Mol. Mass = 60) is isotonic with a 5% (w/v) solution of a					
	non-volatile solute. The molecular mass $(in g mol^{-1})$ of the non-volatile solute is					
	(A) 350	(B) 200	(C) 250	(D) 300		
92.	On heating ozone, its	volume				
	(A) Decreases to half		(B) Becomes double	2		
	(C) Increases to 3/2 th	imes	(D) Remain unchang	ged		
93.	Alumina is					
	(A) acidic	(B) amphoteric	(C) basic	(D) None of these		
94.	Binary solution conta	ins				
	(A) solute and solven	t in same phase				
	(B) solute and two so	lvent in different phase				
	(C) one solvent in sol	id and two solute in liqu	uid phase			
	(D) solute and solven	t may be have same or c	lifferent phase			
95.	Chlorobenzene on hea	ating with aq. NH_3 under	er pressure in the presence	e of Cu_2Cl_2 , gives		
	(A) benzamide		(B) aniline			
	(C) o-aminochlorober	nzene	(D) dichlorobenzene	e		
96.	2, 3-dimethylbutane can be obtained from wurtz reaction by using					
	(A) n- iodine alone		(B) ethyl chloride and methyl chloride			
	(C) iso-propyl iodide	alone	(D) 2-iodobutane al	(D) 2-iodobutane alone		
97.	If two gram equivaler	nt solute present in one of	dm ³ of solvent, it is			
	(A) one molal sol^n	(B) one normal sol ⁿ	(C) two normal sol ⁿ	(D) 2 molal sol ⁿ		
98.	Carbolic acid is					
	(A) C_6H_5OH	(B) C ₆ H ₅ COOH	(C) $C_6H_6Cl_6$	(D) $p - C_6 H_4 C l_2$		
99.	Heat of combustion o	$f C (s), H_{2(g)} \& CH_{4(g)} a$	re –393.71, –285.77 and -	-890.36 KJ respectively. What		
	will be heat of format	ion of $CH_{4(g)}$?				
	(A) –74.86 KJ	(B) +748.9 KJ	(C) –1855.61 KJ	(D) +1855.6 KJ		
100.	The vapour pressure	of the solution is highest	for			
	(A) 0.1 M sugar sol ⁿ		(B) 0.1 M KCl sol ^r	1		
	(C) $0.1 \text{MBa} (\text{NO}_3)_2 \text{s}$	Sol ⁿ	(D) 0.1 M silver nitr	rate sol ⁿ		
	Guru Aank	lan	11 Webs	ite : www.guruaanklan.com		