# GROUP THEORY EXERCISES AND SOLUTIONS

Mahmut Kuzucuoğlu Middle East Technical University matmah@metu.edu.tr Ankara, TURKEY November 10, 2014 ii

#### TABLE OF CONTENTS

# CHAPTERS0. PREFACEv1. SEMIGROUPS2. GROUPS2. GROUPS2. SOLUBLE AND NILPOTENT GROUPS334. SYLOW THEOREMS AND APPLICATIONS475. INDEX??

iv

### Preface

I have given some group theory courses in various years. These problems are given to students from the books which I have followed that year. I have kept the solutions of exercises which I solved for the students. These notes are collection of those solutions of exercises.

> Mahmut Kuzucuoğlu METU, Ankara November 10, 2014

vi

## GROUP THEORY EXERCISES AND SOLUTIONS

M. Kuzucuoğlu

#### 1. SEMIGROUPS

**Definition** A semigroup is a nonempty set S together with an associative binary operation on S. The operation is often called multiplication and if  $x, y \in S$  the product of x and y (in that ordering) is written as xy.

**1.1.** Give an example of a semigroup without an identity element.

**Solution**  $\mathbb{Z}^+ = \{1, 2, 3, ...\}$  is a semigroup without identity with binary operation usual addition.

**1.2.** Give an example of an infinite semigroup with an identity element e such that no element except e has an inverse.

**Solution**  $\mathbb{N} = \{0, 1, 2, ...\}$  is a semigroup with binary operation usual addition. No non-identity element has an inverse.

**1.3.** Let S be a semigroup and let  $x \in S$ . Show that  $\{x\}$  forms a subgroup of S (of order 1) if and only if  $x^2 = x$  such an element x is called idempotent in S.

**Solution** Assume that  $\{x\}$  forms a subgroup. Then  $\{x\} \cong \{1\}$  and  $x^2 = x$ .

#### M. KUZUCUOĞLU

Conversely assume that  $x^2 = x$ . Then associativity is inherited from S. So Identity element of the set  $\{x\}$  is itself and inverse of x is also itself. Then  $\{x\}$  forms a subgroup of S.

#### 2. GROUPS

Let V be a vector space over the field F. The set of all linear invertible maps from V to V is called **general linear group** of V and denoted by GL(V).

**2.1.** Suppose that F is a finite field with say  $|F| = p^m = q$  and that V has finite dimension n over F. Then find the order of GL(V).

**Solution** Let F be a finite field with say  $|F| = p^m = q$  and that V has finite dimension n over F. Then  $|V| = q^n$  for any base  $w_1, w_2, ..., w_n$  of V, there is unique linear map  $\theta : V \to V$  such that  $v_i \theta = w_i$  for i = 1, 2, ..., n.

Hence |GL(V)| is equal to the number of ordered bases of V, in forming a base  $w_1, w_2, ..., w_n$  of V we may first choose  $w_1$  to be any nonzero vector of V then  $w_2$  be any vector other than a scalar multiple of  $w_1$ . Then  $w_3$  to be any vector other than a linear combination of  $w_1$  and  $w_2$  and so on. Hence

 $|GL(V)| = (q^{n} - 1)(q^{n} - q)(q^{n} - q^{2})....(q^{n} - q^{n-1}).$ 

**2.2.** Let G be the set of all matrices of the form  $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$  where a, b, c are real numbers such that  $ac \neq 0$ .

(a) Prove that G forms a subgroup of  $GL_2(\mathbb{R})$ .

Indeed

$$\left(\begin{array}{cc}a&b\\0&c\end{array}\right)\left(\begin{array}{cc}d&e\\0&f\end{array}\right) = \left(\begin{array}{cc}ad&ae+bf\\0&cf\end{array}\right) \in G$$

 $ac \neq 0, df \neq 0$ , implies that  $acdf \neq 0$  for all  $a, c, d, f \in \mathbb{R}$ . Since determinant of the matrices are all non-zero they are clearly invertible. (b) The set H of all elements of G in which a = c = 1 forms a subgroup of G isomorphic to  $\mathbb{R}^+$ . Indeed  $H = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \mid b \in \mathbb{R} \right\}$ 

$$\begin{pmatrix} 1 & b_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b_2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b_1 + b_2 \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & b_1 \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -b_1 \\ 0 & 1 \end{pmatrix} \in H. \text{ So } H \leq G.$$
Ioreover  $H \cong \mathbb{R}^+$ 

Μ

$$\varphi: H \to \mathbb{R}^+$$

$$\begin{pmatrix} 1 & b_1 \\ 0 & 1 \end{pmatrix} \to b_1$$

$$\varphi[\begin{pmatrix} 1 & b_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b_2 \\ 0 & 1 \end{pmatrix}] = b_1 + b_2 = \varphi\begin{pmatrix} 1 & b_1 \\ 0 & 1 \end{pmatrix} \varphi\begin{pmatrix} 1 & b_2 \\ 0 & 1 \end{pmatrix}$$

$$Ker\varphi = \{\begin{pmatrix} 1 & b_1 \\ 0 & 1 \end{pmatrix} | \varphi\begin{pmatrix} 1 & b_1 \\ 0 & 1 \end{pmatrix} = 0 = b_1\} = Id. \text{ So } \varphi \text{ is one-to-one.}$$
one.

Then for all  $b \in \mathbb{R}$ , there exists  $h \in H$  such that  $\varphi(h) = b$ , where h = $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ . Hence  $\varphi$  is an isomorphism.

**2.3.** Let  $\alpha \in Aut \ G$  and let  $H = \{g \in G : g^{\alpha} = g\}$ . Prove that H is a subgroup of G, it is called the fixed point subgroup of G under  $\alpha$ .

**Solution** Let  $g_1, g_2 \in H$ . Then  $g_1^{\alpha} = g_1$  and  $g_2^{\alpha} = g_2$ . Now  $(g_1g_2)^{\alpha} = g_1^{\alpha}g_2^{\alpha} = g_1g_2$  $(g_2^{-1})^{\alpha} = (g_2^{\alpha})^{-1} = g_2^{-1} \in H.$  So H is a subgroup.

**2.4.** Let n be a positive integer and F a field. For any  $n \times n$  matrix y with entries in F let  $y^t$  denote the transpose of y. Show that the map

$$\phi: GL_n(F) \rightarrow GL_n(F)$$
  
 $x \rightarrow (x^{-1})^t$ 

for all  $x \in GL_n(F)$  is an automorphism of  $GL_n(F)$  and that the corresponding fixed point subgroup consist of all orthogonal  $n \times n$  matrices with entries in F. (That is matrices y such that  $y^t y = 1$ )

Solution

$$\phi(x_1 x_2) = [(x_1 x_2)^{-1}]^t$$
  
=  $[x_2^{-1} x_1^{-1}]^t$   
=  $(x_1^{-1})^t (x_2^{-1})^t = \phi(x_1)\phi(x_2)$ 

Now if  $\phi(x_1) = 1 = (x_1^{-1})^t$ , then  $x_1^{-1} = 1$ . Hence  $x_1 = 1$ . So  $\phi$  is a monomorphism. For all  $x \in GL_n(F)$  there exists  $x_1 \in GL_n(F)$  such that  $\phi(x_1) = x$ . Let  $x_1 = (x^{-1})^t$ . So we obtain  $\phi$  is an automorphism. Let  $H = \{x \in GL_n(F) : \phi(x) = x\}$ . We show in the previous exercise that H is a subgroup of  $GL_n(F)$ . Now for  $x \in H \ \phi(x) = x = (x^{-1})^t$  implies  $xx^t = 1$ . That is the set of the orthogonal matrices.

Recall that if  $G = G_1 \times G_2$ , then the subgroup H of G may not be of the form  $H_1 \times H_2$  as  $H = \{(0,0), (1,1)\}$  is a subgroup of  $\mathbb{Z}_2 \times \mathbb{Z}_2$ but H is not of the form  $H_1 \times H_2$  where  $H_i$  is a subgroup of  $G_i$ . But the following question shows that if  $|G_1|$  and  $|G_2|$  are relatively prime, then every subgroup of G is of the form  $H_1 \times H_2$ .

**2.5.** Let  $G = G_1 \times G_2$  be a finite group with  $gcd(|G_1|, |G_2|) = 1$ . Then every subgroup H of G is of the form  $H = H_1 \times H_2$  where  $H_i$  is a subgroup of  $G_i$  for i = 1, 2.

**Solution:** Let H be a subgroup of G. Let  $\pi_i$  be the natural projection from G to  $G_i$ . Then the restriction of  $\pi_i$  to H gives homomorphisms from H to  $G_i$  for i = 1, 2. Let  $H_i = \pi_i(H)$  for i = 1, 2. Then clearly  $H \leq H_1 \times H_2$  and  $H_i \leq G_i$  for i = 1, 2. Then  $H/Ker(\pi_1) \cong H_1$  implies that  $|H_1| \mid |H|$  similarly  $|H_2| \mid |H|$ . But  $gcd(|H_1|, |H_2|) = 1$  implies that  $|H_1||H_2| \mid |H|$ . So  $H = H_1 \times H_2$ .

**2.6.** Let  $H \trianglelefteq G$  and  $K \trianglelefteq G$ . Then  $H \cap K \trianglelefteq G$ . Show that we can define a map

$$\begin{array}{rcl} \varphi & : & G/H \cap K \longrightarrow G/H \times G/K \\ & & g(H \cap K) \longrightarrow (gH,gK) \end{array}$$

for all  $g \in G$  and that  $\varphi$  is an injective homomorphism. Thus  $G/(H \cap K)$  can be embedded in  $G/H \times G/K$ . Deduce that if G/H and G/K or both abelian, then  $G/H \cap K$  abelian.

**Solution** As H and K are normal in G, clearly  $H \cap K$  is normal in G.  $\varphi: G/H \cap K \longrightarrow G/H \times G/K$ 

 $\varphi(g(H \cap K)g'(H \cap K)) = \varphi(gg'(H \cap K))$ = (gg'H, gg'K)= (gH, gK)(g'H, g'K)=  $\varphi(g(H \cap K))\varphi(g'(H \cap K)).$ 

So  $\varphi$  is an homomorphism.  $Ker\varphi = \{g(H \cap K) : \varphi(g(H \cap K)) = (\bar{e}, \bar{e}) = (gH, gK)\}$ . Then  $g \in H$  and  $g \in K$  implies that  $g \in H \cap K$ . So  $Ker\varphi = H \cap K$ . If G/H and G/K are abelian, then  $g_1Hg_2H = g_1g_2H = g_2g_1H$ . Similarly  $g_1g_2K = g_2g_1K$  for all  $g_1, g_2 \in G$ ,  $g_2^{-1}g_1^{-1}g_2g_1 \in H$ ,  $g_2^{-1}g_1^{-1}g_2g_1 \in K$ . So for all  $g_1, g_2 \in G$ ,  $g_2^{-1}g_1^{-1}g_2g_1 \in H \cap K$ .  $g_2^{-1}g_1^{-1}g_2g_1(H \cap K) = H \cap K$ . So  $g_2g_1(H \cap K) = g_1g_2(H \cap K)$ .

**2.7.** Let G be finite non-abelian group of order n with the property that G has a subgroup of order k for each positive integer k dividing n. Prove that G is not a simple group.

**Solution** Let |G| = n and p be the smallest prime dividing |G|. If G is a p-group, then  $1 \neq Z(G) \lneq G$ . Hence G is not simple. So we may assume that G has composite order. Then by assumption G has a subgroup M of index p in G. i.e. |G : M| = p. Then G acts on the right cosets of M by right multiplication. Hence there exists a homomorphism  $\phi : G \hookrightarrow Sym(p)$ . Then  $G/Ker\phi$  is isomorphic to a subgroup of Sym(p). Since p is the smallest prime dividing the order of G we obtain  $|G/Ker\phi|| p!$  which implies that  $|G/Ker\phi| = p$ . Hence  $Ker\phi \neq 1$  otherwise  $Ker \phi = 1$  implies that G is abelian and isomorphic to  $Z_p$ . But by assumption G is non-abelian.

**2.8.** Let  $M \leq N$  be normal subgroups of a group G and H a subgroup of G such that  $[N, H] \leq M$  and [M, H] = 1. Prove that for all  $h \in H$  and  $x \in N$ 

(*i*)  $[h, x] \in Z(M)$ 

(ii) The map

$$\theta_x : H \to Z(M)$$
$$h \to [h, x]$$

is a homomorphism.

(iii) Show that  $H/C_H(N)$  is abelian.

**Solution:** Let  $h \in H$  and  $x \in N$ . Then  $[h, x] = h^{-1}x^{-1}hx \in [N, H] \leq M$ . Moreover for any  $m \in M$ , we need to show m[h, x] = [h, x]m if and only if  $m^{-1}h^{-1}x^{-1}hxm = h^{-1}x^{-1}hx$  if and only if

 $m^{-1}h^{-1}x^{-1}hxmx^{-1}h^{-1}xh=1$  if and only if  $m^{-1}h^{-1}x^{-1}(xmx^{-1})hh^{-1}xh=1$  . That is true as mh = hm and M is normal in G we have,  $xmx^{-1} \in M$  and  $xmx^{-1}h = hxmx^{-1}$ 

(ii)

$$\begin{aligned} \theta_x(h_1h_2) &= [h_1h_2, x] \\ &= [h_1, x]^{h_2}[h_2, x] \\ &= [h_1, x][h_2, x] \end{aligned}$$

as  $[h_1, x] \in Z(M)$  and so  $h_2^{-1}mh_2 = m$ .

(iii) It is easy to see that  $Ker\theta_x = C_H(x)$ . Then we can define a map

$$\psi: H \to Z(M) \times Z(M) \times \ldots \times Z(M) \ldots$$
  
 $h \to [h, x_1] \times [h, x_2] \times \ldots \times [h, x_i] \ldots$ 

where all  $x_j \in N$ . Then the kernel of  $\psi$  is  $\bigcap_{x_j \in N} C_H(x_j) = C_H(N)$ . Then the map from  $H/C_H(N)$  to the right hand side is into and the right hand side is abelian we have  $H/C_H(N)$  is abelian.

**2.9.** Let G be a finite group and  $\Phi(G)$  the intersection of all maximal subgroups of G. Let N be an abelian minimal normal subgroup of G. Then N has a complement in G if and only if  $N \not = \Phi(G)$ 

**Solution** Assume that N has a complement H in G. Then G = NH and  $N \cap H = 1$ . Since G is finite there exists a maximal subgroup  $M \ge H$ . Then N is not in M which implies N is not in  $\Phi(G)$ . Because, if  $N \le M$ , then  $G = HN \le M$  which is a contradiction.

Conversely assume that  $N \nleq \Phi(G)$ . Then there exists a maximal subgroup M of G such that  $N \nleq M$ . Then by maximality of Mwe have G = NM. Since N is abelian N normalizes  $N \cap M$  hence  $G = NM \le N_G(N \cap M)$  i.e.  $N \cap M$  is an abelian normal subgroup of G. But minimality of N implies  $N \cap M = 1$ . Hence M is a complement of N in G.

**2.10.** Show that  $F(G/\phi(G)) = F(G)/\phi(G)$ .

Solution: (i)  $F(G)/\phi(G)$  is nilpotent normal subgroup of  $G/\phi(G)$  so  $F(G)/\phi(G) \leq F(G/\phi(G))$ .

Let  $K/\phi(G) = F(G/\phi(G))$ . Then  $K/\phi(G)$  is maximal normal nilpotent subgroup of  $G/\phi(G)$ . In particular  $K \trianglelefteq G$  and  $K/\phi(G)$  is nilpotent. It follows that K is nilpotent in G. This implies that  $K \le F(G)$ .  $K/\phi(G) \le F(G)/\phi(G)$  which implies  $F(G/\phi(G)) = F(G)/\phi(G)$ .

**2.11.** If F(G) is a p-group, then F(G/F(G)) is a p'-group.

**Solution:** Let K/F(G) = F(G/F(G)), maximal normal nilpotent subgroup of G/F(G). So  $K/F(G) = Dr O_q(K/F(G)) = P_1/F(G) \times P_2/F(G) \times \ldots \times P_m/F(G)$ . Since F(G) is a p-group so one of  $P_i/F(G)$ .

is a p-group, say  $P_1/F(G)$  is a p-group. Now  $P_1$  is a p-group,  $P_1/F(G)charK/F(G)charG/F(G)$  implies that  $P_1/F(G)charG/F(G)$  implies  $P_1 \triangleleft G$ . This implies  $P_1$  is a p-group and hence nilpotent and normal implies  $P_1 \leq F(G)$ . So  $P_1/F(G) = \overline{id}$ 

i.e K/F(G) = F(G/F(G)) is a p'-group.

Observe this in the following example.  $S_3$ ,  $F(S_3) = A_3$ .  $F(S_3/A_3) = S_3/A_3 \cong \mathbb{Z}_2$  is a 2-group.

**2.12.** Let  $G = \{(a_{ij}) \in GL(n, F) \mid a_{ij} = 0 \text{ if } i > j \text{ and } a_{ii} = a, i = 1, \ldots, n\}$  where F is a field, be the group of upper triangular

#### M. KUZUCUOĞLU

matrices all of whose diagonal entries are equal. Prove that  $G \cong D \times U$ where D is the group of all non-zero multiples of the identity matrix and U is the group of upper triangular matrices with 1's down diagonal.

#### Solution

It is clear that d is a homomorphism and  $Ker \ d = U$ . So U is normal  $D \cap U = 1$ . Since F is a field and a is a non-zero element every element  $g \in G$  can be written as a product g = cu where  $c \in D$  and  $u \in U$ . So DU = G. Moreover D is normal in G in fact D is central in G. So  $G = DU \cong D \times U$ .

**2.13.** Prove that if N is a normal subgroup of the finite group G and (|N| + C + N|) = 1 then N is the unique subgroup of order |N|

(|N|, |G:N|) = 1, then N is the unique subgroup of order |N|.

**Solution** If M is another subgroup of G of order |N|. Then NM is a subgroup of G as  $N \triangleleft G$ . Now  $|NM| = \frac{|N||M|}{|N \cap M|}$ . If  $N \neq M$ , then |NM| > |N| and if  $\pi$  is the set of primes dividing |N|, then N is a maximal  $\pi$ -subgroup of G. But MN is also a  $\pi$ -group containing N properly. Hence MN = N. i.e  $M \leq N$ .

**2.14.** Let F be a field. Define a binary operation \* on F by a \* b = a + b - ab for all  $a, b \in F$ .

Prove that the set of all elements of F distinct from 1 forms a group  $F^x = F \setminus \{1\}$  with respect to the operation \* and that  $F^* \cong F^x$  where  $F^*$  is the multiplicative group on  $F \setminus \{0\}$  with respect to the usual multiplication in the field.

**Solution** \* is a binary operation on  $F^x$  as a + b - ab = 1 implies (a - 1)(1 - b) = 0 but  $a \neq 1$  and  $b \neq 1$  implies image of \* is in  $F^x$ . Indeed \* is a binary operation and  $*: F^x \times F^x \to F^x$ 

(i) associativity of \*: We need to show a \* (b \* c) = (a \* b) \* cIndeed a \* (b \* c) = a \* (b + c - bc) and (a \* b) \* c = (a + b - ab) \* cThen a\*(b\*c)=a+b+c-bc-(ab+ac-abc)=a+b-ab+c-ac-bc+abc=(a \* b) \* c So associativity holds.

(ii) For the identity element, let a \* b = a for all  $a \in F$  implies b is the identity element. The equality implies that a + b - ab = a. Hence b - ab = 0 i.e b(1 - a) = 0. Since this is true for all a and  $a \neq 1$  we obtain b = 0 and 0 is the identity element.

(iii) a \* b = b \* a if and only if a + b - ab = b + a - ba if and only if -ab = -ba since we are in a field for all  $a, b \in F$  we have ab = ba. So a \* b = b \* a for all  $a \in F$ .

(iv) Now for all  $a \in F \setminus \{0\}$ , there exists  $a' \in F$  such that a \* a' = 0= a + a' - aa' implies a + a' = aa'. So  $a' = a(1 - a)^{-1}$ . Hence  $F^x$  is an abelian group with respect to \*. Let

$$\begin{array}{rcl} \phi:F^x & \to F^* \\ a \to & 1-a \end{array}$$

 $\phi(a*b) = \phi(a+b-ab) = 1-a-b+ab = (1-a)(1-b) = \phi(a)\phi(b).$  Then  $Ker\phi = \{a \in F^x : \phi(a) = 1\} = \{a \in F^x : 1-a=1\} = \{0\}.$ 

 $\phi$  is onto as for any  $b \in F^*$  so  $b \neq 0$ ,  $\phi(x) = b$  implies that 1 - x = b so x = 1 - b and  $x \neq 1$ . Hence  $\phi$  is an isomorphism.

**2.15.** Consider the direct square  $G \times G$  of G. Let  $\hat{G} = \{(g,g) : g \in G\} \subseteq G \times G$ .

(i) Show that  $\hat{G}$  is a subgroup of  $G \times G$  which is isomorphic to G.  $\hat{G}$  is called the **diagonal** subgroup of  $G \times G$ .

(ii) Show also that  $\hat{G} \leq G \times G$  if and only if G is abelian.

**Solution** i)  $\hat{G}$  is a subgroup of G. Indeed  $(g_1, g_1), (g_2, g_2) \in \hat{G}$ .  $(g_1, g_1)(g_2, g_2) = (g_1g_2, g_1g_2) \in \hat{G}$ .  $(g_1^{-1}, g_1^{-1}) \in \hat{G}$  which implies  $\hat{G}$  is a subgroup of  $G \times G$ .  $\hat{G} \cong G$ . Indeed define

$$\begin{array}{rcl} \varphi & : & G \longrightarrow \hat{G} \\ & & g \longrightarrow (g,g) \end{array}$$

 $\varphi(gg')=(gg',gg')=(g,g)(g',g')=\varphi(g)\varphi(g').$  So  $\varphi$  is a homomorphism.

 $\varphi(g) = 1 = (g, g)$ . This implies g = 1. So  $\varphi$  is a monomorphism. For all  $(g_i, g_i) \in \hat{G}$  there exists  $g_i \in G$  such that  $\varphi(g_i) = (g_i, g_i)$ . So  $\varphi$  is onto. Hence  $\varphi$  is an isomorphism.

ii)  $\hat{G} \leq G \times G$  if and only if G is abelian.

Assume  $\hat{G}$  is a normal subgroup of  $G \times G$ . Then for any  $g_1, g_2 \in G$ ,  $(g_1, g_2)^{-1}(x, x)(g_1, g_2) = (g_1^{-1}xg_1, g_2^{-1}xg_2) \in \hat{G}$ . In particular  $g_1 = 1$  implies for all  $g_2$ , and for all  $x \in G, g_2^{-1}xg_2 = x$ . Hence G is abelian.

Conversely if G is abelian, then  $G \times G$  is abelian and every subgroup of  $G \times G$  is normal in G, in particular  $\hat{G}$  is normal in G.

**2.16.** Suppose  $H \leq G$ . Show that if x, y elements in G such that  $xy \in H$ , then  $yx \in H$ .

**Solution**  $H \leq G$ , implies that every left coset is also a right coset  $Hx = xH, yH = Hy, xy \in H$  so H = xyH.

xH = Hx implies xyxH = xyHx = Hx. Then  $yxH = x^{-1}Hx = H$ . Hence  $yx \in H$ .

**2.17.** Give an example of a group such that normality is not transitive.

**Solution** Let us consider  $A_4$  alternating group on four letters. Then  $V = \{1, (12)(34), (13)(24), (14)(23)\}$  is a normal subgroup of  $A_4$ . Since V is abelian any subgroup of V is a normal subgroup of V. But  $H = \{1, (12)(34)\}$  is not normal in  $A_4$ .

Another Solution Let's consider  $G = S_3 \times S_3$ ,  $A_3 = \{1, (123), (132)\}$ .  $A_3 \triangleleft S_3$ . Let

 $A = \{ (1,1), ((123), (123)), ((132), (132)) \} \leq G, A \text{ is diagonal}$ subgroup of  $A_3 \times A_3$  and  $A \cong A_3$ .  $A \triangleleft A_3 \times A_3 \triangleleft G$ . But A is not normal in G as  $((12), 1)^{-1}((123), (123))((12), 1) = ((132), (123)) \notin A$ .

**2.18.** If  $\alpha \in AutG$  and  $x \in G$ , then  $|x^{\alpha}| = |x|$ .

**Solution** First observe that  $(x^{\alpha})^n = (x^n)^{\alpha}$ . If  $x^{\alpha}$  has finite order say n, then  $(x^{\alpha})^n = 1 = (x^n)^{\alpha} = 1^{\alpha}$ . Hence  $x^n = 1$  as  $\alpha$  is an automorphism. Hence x has finite order dividing n. If order of x is less than or equal to n, say m. Then we obtain  $x^m = 1$ . Then  $(x^m)^{\alpha} = 1^{\alpha} = 1$ . Hence  $(x^{\alpha})^m = 1$ . It follows that n = m, i.e.  $|x^{\alpha}| = |x|$  when the order is finite. But the above proof shows that if order of  $x^{\alpha}$  is infinite then order of x must be infinite. In particular conjugate elements of a group have the same order. We can consider the semidirect product of G with the Aut(G). Then in the semidirect product the elements xand  $x^{\alpha}$  becomes conjugate elements.

**2.19.** Let H and K be subgroups of G and  $x, y \in G$  with Hx = Ky. Then show that H = K.

**Solution** Hx = Ky implies  $Hxy^{-1} = K$ . As H is a subgroup,  $1 \in H$  and so  $xy^{-1} \in Hxy^{-1} = K$ . Then  $yx^{-1} \in K$ . It follows that  $K = Kyx^{-1}$ . Then  $K = Kxy^{-1} = Kyx^{-1} = H$ . Hence K = H.

**2.20.** Prove that if K is a normal subgroup of the group G, then Z(K) is a normal subgroup of G. Show by an example that Z(K) need not be contained in Z(G).

**Solution:** Let  $z \in Z(K)$ ,  $k \in K$  and  $g \in G$ . Then  $g^{-1}zg \in K$  as  $K \trianglelefteq G$  and  $(g^{-1}zg)k(g^{-1}z^{-1}g)k^{-1} = g^{-1}z(gkg^{-1})z^{-1}gk^{-1} = g^{-1}(gkg^{-1})zz^{-1}gk^{-1} = 1$ . Hence  $Z(K) \trianglelefteq G$ .

Now as an example consider  $A_3$  in  $S_3$ .  $Z(A_3) = A_3$  but  $Z(S_3) = 1$ .

**2.21.** Let  $x, y \in G$  and let xy = z if  $z \in Z(G)$ , then show that x and y commute.

**Solution:**  $xy = z \in Z(G)$  implies for all  $g \in G$ , (xy)g = g(xy). This is also true for x, hence (xy)x = x(xy). Now multiply both side by  $x^{-1}$ , we obtain yx = xy. Then x and y are commute.

**2.22.** Let UT(3, F) be the set of all matrices of the form

$$\left(\begin{array}{rrrr}1&a&b\\0&1&c\\0&0&1\end{array}\right)$$

where a, b, c are arbitrary elements of a field F, moreover 0 and 1 are the zero and the identity elements of F respectively. Prove that (i)  $UT(3, F) \leq GL(3, F)$ (ii)  $Z(UT(3, F)) \cong F^+$  and  $UT(3, F)/Z(UT(3, F)) \cong F^+ \times F^+$ 

(iii) If  $|F| = p^m$ , then  $UT(3, p^m) \in Syl_p(GL(3, p^m))$ 

Solution: (i) Let

$$A = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix}, \quad a, b, c, x, y, z \in F.$$
  
Then  $AB = \begin{pmatrix} 1 & x + a & y + az + b \\ 0 & 1 & z + c \\ 0 & 0 & 1 \end{pmatrix} \in UT(3, F)$ 
$$A^{-1} = \begin{pmatrix} 1 & -a & -b + ac \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{pmatrix} \in UT(3, F).$$

Hence UT(3, F) is a subgroup of GL(3, F).

(ii) Now if  

$$A = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \in Z(UT(3, F)), \text{ then } AB = BA \text{ for all } B \in UT(3, F) \text{ implies}$$

$$A = \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

and every element of this type is contained in the center so

$$Z(UT(3,F)) = \left\{ \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid b \in F \right\}$$

Let

$$\varphi: F^+ \longrightarrow Z(UT(3, F))$$
$$b \longrightarrow \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\varphi$  is an isomorphism.

Now to see that  $UT(3, F)/Z(UT(3, F)) \cong F^+ \times F^+$ . Let  $\theta : UT(3, F)/Z(UT(3, F)) \longrightarrow F^+ \times F^+$ .

$$\left(\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array}\right) Z \longrightarrow (a,c)$$

 $\theta$  is well defined and, moreover  $\theta$  is an isomorphism.

(iii) Now all we need to do is to compare the order of  $UT(3, p^m)$  and the order of the Sylow *p*-subgroup of  $GL(3, p^m)$ . It is easy to see that  $|UT(3, p^m)| = p^{3m}$ . And  $|GL(3, p^m)| = (p^{3m} - 1)(p^{3m} - p^m)(p^{3m} - p^{2m}) =$  $p^{3m}((p^{3m} - 1)(p^{2m} - 1)(p^m - 1))$ . Hence *p* part are the same and we are done.

**2.23.** Let  $x \in G$ ,  $D := \{x^g : g \in G\}$  and  $U_i \leq G$  for i = 1, 2. Suppose that  $\langle D \rangle = G$  and  $D \subseteq U_1 \cup U_2$ . Then show that  $U_1 = G$  or  $U_2 = G$ .

**Solution:** Assume that  $U_1 \neq G$ . Then there exists  $g \in G$  such that  $x^g \notin U_1$  otherwise all conjugates of x is contained in  $U_1$  and so  $D \subseteq U_1$  which implies  $U_1 = G$ . Then  $x^g \notin U_1$  implies  $x^g \in U_2$  as  $D \subseteq U_1 \cup U_2$ . Now for any  $u_1 \in U_1$ ,  $(x^g)^{u_1} \notin U_1$  otherwise  $x^g$  will be in  $U_1$  which is impossible. Then for any  $u_1 \in U_1$  we obtain  $(x^g)^{u_1} \in U_2$ . Now  $U_2$  is a subgroup and  $x^g \in U_2$  so we have  $(x^g)^{u_2} \in U_2$  for all  $u_2 \in U_2$ . As  $\langle U_1 \cup U_2 \rangle = G$  we obtain  $(x^g)^t \in U_2$  for all  $t \in G$ , i.e,  $D \subseteq U_2$  this implies  $\langle D \rangle \leq U_2$  but  $\langle D \rangle = G \leq U_2$  which implies  $U_2 = G$ .

**2.24.** Let  $g_1, g_2 \in G$ . Then show that  $|g_1g_2| = |g_2g_1|$ .

Solution: We will show that if  $|g_1g_2| = k < \infty$ , then  $|g_2g_1| = k$ . Let  $|g_1g_2| = k$ .  $(g_1g_2)(g_1g_2)...(g_1g_2) = 1$ . Then multiplying from left by  $g_1^{-1}$  and from right by  $g_2^{-1}$  we have  $(g_2g_1)(g_2g_1)...(g_2g_1) = g_1^{-1}g_2^{-1}$ . Now multiply from right first by  $g_2$  and then  $g_1$ , we obtain  $(g_2g_1)(g_2g_1)...(g_2g_1) = ((g_2g_1))^k = 1$ . It cannot be less than k since we

k-times

may apply the above process and then reduce the order of  $(g_1g_2)$  less than k.

**2.25.** Let  $H \leq G$ ,  $g_1, g_2 \in G$ . Then  $Hg_1 = Hg_2$  if and only if  $g_1^{-1}H = g_2^{-1}H$ .

**Solution:** ( $\Rightarrow$ ) If  $Hg_1 = Hg_2$ , then  $H = Hg_2g_1^{-1}$  hence  $g_2g_1^{-1} \in H$ . H. Then H is a subgroup implies  $(g_2g_1^{-1})^{-1} \in H$  i.e.  $g_1g_2^{-1} \in H$ . It follows that  $g_1g_2^{-1}H = H$ . Hence  $g_2^{-1}H = g_1^{-1}H$ .

( $\Leftarrow$ ) If  $g_1^{-1}H = g_2^{-1}H$ , then  $g_1g_2^{-1} \in H$  by the same idea in the first part we have  $(g_1g_2^{-1})^{-1} \in H, g_2g_1^{-1} \in H$  i.e.  $Hg_2g_1^{-1} = H$ . This implies  $Hg_1 = Hg_2$ .

**2.26.** Let  $H \leq G$ ,  $g \in G$  if |g| = n and  $g^m \in H$  where n and m are co-prime integers. Then show that  $g \in H$ .

**Solution:** The integers m and n are co-prime so there exists  $a, b \in \mathbb{Z}$  satisfying an + bm = 1. Then  $g = g^{an+bm} = g^{an}g^{bm} = (g^n)^a (g^m)^b = g^{mb} \in H$ . As H is a subgroup of  $G, g^m \in H$  implies  $g^{bm} \in H$  and  $g^{na} = 1$ . Hence  $g^{mb} = g \in H$ .

**2.27.** Let  $g \in G$  with  $|g| = n_1n_2$  where  $n_1, n_2$  co-prime positive integers. Then there are elements  $g_1, g_2 \in G$  such that  $g = g_1g_2 = g_2g_1$  and  $|g_1| = n_1, |g_2| = n_2$ .

**Solution:** As  $n_1$  and  $n_2$  are relatively prime integers, there exist a and b in  $\mathbb{Z}$  such that  $an_1 + bn_2 = 1$ . Observe that a and b are also relatively prime in  $\mathbb{Z}$ . Then  $g = g^1 = g^{an_1+bn_2} = g^{an_1}g^{bn_2}$ . Let  $g_1 = g^{bn_2}$  and  $g_2 = g^{an_1}$ . Then  $g_1^{n_1} = (g^{bn_2})^{n_1} = 1$ ,  $g_2^{n_2} = (g^{an_1})^{n_2} = 1$  $g = g_1g_2 = g^{an_1+bn_2} = g^{bn_2+an_1} = g_2g_1$ . Indeed  $|g_1| = n_1$ . If  $g_1^m = 1$ , then  $m|n_1$  and  $g_1^m = g^{bn_2m} = 1$ . It follows that  $n_1n_2|bn_2m$ . Then  $n_1|bm$  but by above observation  $n_1$  and b are relatively prime as  $an_1+bn_2=1$ , so  $n_1|m$ . It follows that  $n_1 = m$ . Similarly  $|g_2| = n_2$ .

**2.28.** Let  $g_1, g_2 \in G$  with  $|g_1| = n_1 < \infty, |g_2| = n_2 < \infty$ , if  $n_1$  and  $n_2$  are co-prime and  $g_1$  and  $g_2$  commute, then  $|g_1g_2| = n_1n_2$ .

**Solution:** The elements  $g_1$  and  $g_2$  commute. Therefore  $(g_1g_2)^{n_1n_2} = g_1^{n_1n_2}g_2^{n_1n_2} = (g_1^{n_1})^{n_2}(g_2^{n_2})^{n_1} = 1$ . Assume  $|g_1g_2| = m$ . Then  $(g_1g_2)^m = g_1^m g_2^m = 1$ . Then  $m|n_1n_2$  and  $g_1^m = g_2^{-m}$ .  $(g_1^m)^{n_1} = (g_2^{-m})^{n_1} = 1$ . Then  $n_2|mn_1$  but  $gcd(n_1, n_2) = 1$ . We obtain

 $n_2|m$ . Similarly  $n_1|m$  but  $gcd(n_1, n_2) = 1$  implies  $n_1n_2|m$ . Hence  $m = n_1n_2$ .

**2.29.** If  $H \leq K \leq G$  and  $N \triangleleft G$ , show that the equations HN = KN and  $H \cap N = K \cap N$  imply that H = K.

**Solution:**  $HN \cap K = KN \cap K = K$ . On the other hand by Dedekind law  $HN \cap K = H(N \cap K) = H(N \cap H) = H$ . Hence H = K.

**2.30.** Given that  $H_{\lambda} \triangleleft K_{\lambda} \leq G$  for all  $\lambda \in \Lambda$ , show that  $\bigcap_{\lambda} H_{\lambda} \triangleleft \bigcap K_{\lambda}$ .

**Solution:** Let  $x \in \bigcap_{\lambda} H_{\lambda}$  and  $g \in \bigcap_{\lambda} K_{\lambda}$ . Then consider  $g^{-1}xg$ . Since, for any  $\lambda \in \Lambda$ ,  $g \in K_{\lambda}$  and  $x \in H_{\lambda}$  and  $H_{\lambda} \triangleleft K_{\lambda}$ , we have  $g^{-1}xg \in H_{\lambda}$  for all  $\lambda \in \Lambda$ . i.e  $g^{-1}xg \in \bigcap_{\lambda \in \Lambda} H_{\lambda}$ .

**2.31.** If a finite group G contains exactly one maximal subgroup, then G is cyclic.

**Solution:** Let M be the unique maximal subgroup of G. Then every proper subgroup of G is contained in M. Since M is maximal there exists  $a \in G \setminus M$ . Then  $\langle a \rangle = G$ 

**2.32.** Let H be a subgroup of order 2 in G. Show that  $N_G(H) = C_G(H)$ . Deduce that if  $N_G(H) = G$ , then  $H \leq Z(G)$ .

**Solution:** Let  $H = \{1, h\}$  be a subgroup of order 2. Clearly  $C_G(H) \leq N_G(H)$ . We need to show that if |H| = 2, then  $N_G(H) \leq C_G(H)$ . Let  $g \in N_G(H)$ . Then  $g^{-1}hg$  is either 1 or h. If  $g^{-1}hg = 1$ , then h = 1 which is a contradiction. So  $g^{-1}hg = h$  i.e  $g \in C_G(H)$ . So  $C_G(H) = N_G(H)$ . Moreover if  $N_G(H) = G$  then  $C_G(H) = N_G(H) = G$ . This implies  $H \leq Z(G)$ .

**2.33.** Let  $\alpha \in AutG$ . Suppose that  $x^{-1}x^{\alpha} \in Z(G)$  for all  $x \in G$ . Then  $x^{\alpha} = x$  for all  $x \in G'$ .

**Solution:** Observe that  $x^{-1}x^{\alpha} \in Z(G)$  implies that  $x^{\alpha}x^{-1} \in Z(G)$  as Z(G) is a subgroup and x is an arbitrary element in G. Take an arbitrary generator  $a^{-1}b^{-1}ab \in G'$  where  $a, b \in G$ . Then

$$\begin{aligned} (a^{-1}b^{-1}ab)^{\alpha} &= (a^{-1})^{\alpha}(b^{-1})^{\alpha}(a)^{\alpha}(b)^{\alpha} \\ &= (a^{-1})^{\alpha}(b^{-1})^{\alpha}(a)^{\alpha}a^{-1}a(b)^{\alpha} \text{ as } a^{\alpha}a^{-1} \in Z(G) \\ &= (a^{-1})^{\alpha}(a)^{\alpha}a^{-1}(b^{-1})^{\alpha}a(b)^{\alpha} \\ &= a^{-1}(b^{-1})^{\alpha}a(b)^{\alpha} \\ &= a^{-1}b^{-1}\underbrace{b(b^{-1})^{\alpha}}_{\alpha}a(b)^{\alpha} \\ &= a^{-1}b^{-1}a\underbrace{b(b^{-1})^{\alpha}}_{\alpha}(b)^{\alpha} \\ &= a^{-1}b^{-1}ab \end{aligned}$$

For any generator  $x \in G'$  we have  $x^{\alpha} = x$ . Hence for any  $g \in G'$  we have  $g^{\alpha} = g$ 

**2.34.** Let  $G = AA^g$  for some  $g \in G$ . Then G = A.

**Solution:** It is enough to show that the specific element  $g \in G$  is contained in A. For every element  $x \in G$ , there exist  $a_x, b_x$  in A such that  $x = a_x b_x^g$ . In particular  $g = a_g b_g^g = a_g g^{-1} b_g g$ . It follows that  $a_g g^{-1} b_g = 1$  and  $g^{-1} = a_g^{-1} b_g^{-1}$ , then  $g = b_g a_g \in A$  as  $a_g$  and  $b_g$  in A.

**2.35.** Let G be a finite group and  $A \leq G$  and  $B \leq A$ . If  $x_1, x_2 \ldots x_n$  is a transversal of A in G and  $y_1, y_2 \ldots y_m$  is a transversal of B in A, then  $\{y_j x_i\}, i = 1, 2, \ldots, n$  and  $j = 1, 2, \ldots, m$  is a transversal of B in G.

**Solution:** Let  $G = \bigcup_{i=1}^{n} Ax_i$  and  $Ax_i \cap Ax_j = \emptyset$  for all  $i \neq j$  and  $A = \bigcup_{i=1}^{m} By_i$  and  $By_i \cap By_j = \emptyset$  for all  $i \neq j$ . Then we have,

 $G = \bigcup_{i=1}^{n} Ax_{i} = \bigcup_{i=1}^{n} \left( \bigcup_{j=1}^{m} By_{i} \right) x_{i} = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} By_{j}x_{i}$ 

If  $By_j x_i \cap By_r x_m \neq 0$ , then  $Ax_i \cap Ax_m \neq 0$  implying that  $x_i = x_m$ . Then  $By_j x_i \cap By_r x_i \neq 0$ . Hence  $y_r = y_j$ 

**2.36.** Suppose that  $G \neq 1$  and |G : M| is a prime number for every maximal subgroup M of G. Then show that G contains a normal maximal subgroup. (Maximal subgroups with the above properties exist by assumption).

**Solution:** Let  $\Sigma$  be the set of all primes  $p_i$  such that  $|G: M_i| = p_i$  where  $p_i$  is a prime.

(

So  $\Sigma = \{p_i : |G: M_i| = p_i, M_i \text{ is a maximal subgroup of } G\}$ . Let p be the smallest prime in  $\Sigma$ . Let M be a maximal subgroup of G such that |G: M| = p. Then G acts on the right to the set of right cosets of M in G. Let  $\Omega = \{Mx : x \in G\}$ . Then  $|\Omega| = p$  and there exists a homomorphism

$$\phi: G \to Sym(\Omega)$$

such that  $Ker \ \phi = \bigcap_{x \in G} M^x \leq M$ . Then  $G/Ker \ \phi$  is isomorphic to a subgroup of  $Sym(\Omega)$  and  $|Sym(\Omega)| = p!$ . Then  $G/Ker(\phi)$  is a finite group and there exists a maximal subgroup of G containing  $Ker(\phi)$  and index of subgroup divides p!. But p was the smallest prime |G:M| = pso this implies that  $M = Ker(\phi)$  is a normal subgroup of G.

**2.37.** If G acts transitively on  $\Omega$ , then  $N_G(G_\alpha)$  acts transitively on  $C_{\Omega}(G_\alpha)$ ,  $\alpha \in \Omega$ .

**Solution**  $G_{\alpha} = \{g \in G \mid \alpha.g = \alpha \}$  and  $C_{\Omega}(G_{\alpha}) = \{\beta \in \Omega \mid \beta.g = \beta \text{ for all } g \in G_{\alpha} \}$ . Clearly  $\alpha \in C_{\Omega}(G_{\alpha})$ . We will show that the orbit of  $N_G(G_{\alpha})$  containing  $\alpha$  is  $C_{\Omega}(G_{\alpha})$ .

Observe first that if  $\beta \in C_{\Omega}(G_{\alpha})$  and  $x \in N_G(G_{\alpha})$ , then  $\beta x \in C_{\Omega}(G_{\alpha})$ . Indeed for any  $g_{\alpha} \in G_{\alpha}, \beta x. g_{\alpha} = \beta x g_{\alpha} x^{-1} x = \beta y x$  for some  $y \in G_{\alpha}$ . Hence  $\beta x g_{\alpha} = \beta x$ . i.e.  $\beta x \in C_{\Omega}(G_{\alpha})$ . Let  $\beta \in C_{\Omega}(G_{\alpha})$ . Since G is transitive on  $\Omega$ , there exists  $g \in G$  such that  $\alpha. g = \beta$ . Then for any  $t \in G_{\alpha}, \alpha. gt = \alpha g$ . i.e  $gtg^{-1} \in G_{\alpha}$  for all  $t \in G_{\alpha}$ . i.e.  $g \in N_G(G_{\alpha})$ . Therefore the orbit of  $N_G(G_{\alpha})$  containing  $\alpha$  contains the set  $C_{\Omega}(G_{\alpha})$ .

**2.38.** Let G be a finite group. (a) Suppose that  $A \neq 1$  and  $A \cap A^g = 1$  for all  $g \in G \setminus A$ . Then  $|\bigcup_{g \in G} A^g| \geq \frac{|G|}{2} + 1$ (b) If  $A \neq G$ , then  $G \neq \bigcup_{g \in G} A^g$ 

**Solution:** (a) If A = G, then the statement is already true. So assume that A is a proper subgroup of G. The number of distinct conjugates of A in G is the index  $|G: N_G(A)| = k$ .

Observe first that as  $N_G(A) \ge A$  and  $A \cap A^g = 1$  for all  $g \in G \setminus A$ we have  $N_G(A) = A$ . Then  $A^{g_i} \cap A^{g_j} = 1$  for all  $i \ne j$  as  $A^{g_i} \cap A^{g_j} \ne 1$ implies  $A \cap A^{g_i g_j^{-1}} \ne 1$ . It follows that  $A = A^{g_i g_j^{-1}}$ . This implies  $A^{g_i} = A^{g_j}$  and we obtain i = j.

$$|G: N_G(A)| = \frac{|G|}{|N_G(A)|} = \frac{|G|}{|A|} = k$$
. Then  $|G| = k|A|$ .

Now

$$\bigcup_{g \in G} A^{g} | = |\bigcup_{i=1}^{k} A^{g_{i}}|$$
  
=  $k(|A| - 1) + 1$   
=  $k|A| - k + 1$   
=  $|G| - k + 1$   
 $\geq |G| - \frac{|G|}{2} + 1$  as  $k \leq \frac{|G|}{2}$   
=  $\frac{|G|}{2} + 1$ 

(b) By above if  $A \neq G$ , then  $|\bigcup_{g\in G} A^g| = |G| - k + 1$ . Then  $|G| = k - 1 + |\bigcup_{g\in G} A^g|$  as  $k \geq 2$  we obtain  $G \neq \bigcup_{g\in G} A^g$ .

**2.39.** If  $H \leq G$ , then  $G \setminus H$  is finite if and only if G is finite or H = G.

**Solution:** Assume that  $H \leq G$  and  $G \setminus H$  is finite. If  $G \setminus H = \phi$ then, G = H. So assume that  $G \setminus H \neq \phi$ . If  $x \in G \setminus H$ , then the left coset xH has the same cardinality as H and  $xH \cap H = \phi$ , it follows that  $xH \subseteq G \setminus H$ . Hence H is finite. Similarly  $\bigcup_{t_i \neq 1} t_i H \subseteq G \setminus H$  finite where  $t_i$  belongs to the left transversal of H in G. But  $G = \bigcup_{t_i \neq 1} t_i H \cup H$ 

where  $t_i$  belongs to the left transversal of H in G. But  $G = \bigcup_{t_i \neq 1} t_i H \cup H$ . Union of two finite set is finite. Hence G is a finite group.

Union of two finite set is finite. Hence G is a finite gro

Converse is trivial.

**2.40.** Let d(G) be the smallest number of elements necessary to generate a finite group G. Prove that  $|G| \ge 2^{d(G)}$ 

(Note: by convention d(G) = 0 if |G| = 1).

**Solution:** By induction on d(G). If d(G) = 0, then |G| = 1. The result is also true if d(G) = 1. Since the non-identity element has order at least 2. Hence  $|G| \ge 2$ . Let d(G) = n. Assume that if a group H is generated by n - 1 elements, then  $|H| \ge 2^{n-1}$ .

Let the generators of G be  $\{x_1, x_2, \dots, x_n\}$ . Then the subgroup  $T = \langle x_1, x_2, \dots, x_{n-1} \rangle$  is a proper subgroup of G and by assumption

 $|T| \ge 2^{n-1}$ . Since  $x_n \notin T$  we obtain  $x_n T$  is a left coset of T in G and  $x_n T \cap T = \phi$ . Moreover  $x_n T \cup T \subseteq G$ . Hence  $|G| \ge |x_n T \cup T| = |x_n T| + |T| = 2|T| \ge 2 2^{n-1} = 2^n$ .

**2.41.** A group has exactly three subgroups if and only if it is cyclic of order  $p^2$  for some prime p.

**Solution:** Let G be a cyclic group of order  $p^2$ . Every finite cyclic group has a unique subgroup for any divisor of the order of G. Hence G has a unique subgroup H of order p. Hence H is the only nontrivial subgroup of G. Then the subgroups are  $\{1\}$ , H and G.

Conversely let G be a group which has exactly three subgroups. Since every group has  $\{1\}$  and itself as trivial subgroups, G must have only one non-trivial subgroup, say H. So H has no nontrivial subgroups. This implies H is a cyclic group of order p for some prime p. Let  $x \in G$ . Then  $x^{-1}Hx$  is again a subgroup of order p but G has only one subgroup of order p implies that  $x^{-1}Hx = H$  for all  $x \in G$  i.e. His a normal subgroup of G. So we have the quotient group G/H. Since there is a 1-1 correspondence between the subgroups of G/H and the subgroups of G containing H we obtain G/H has no nontrivial subgroup i.e. G/H is a group of order q for some prime q. Then |G| = pqso G has a proper subgroup of order p and of order q. This implies

$$p = q$$
 and  $|G| = p^2$ .

Every group of order  $p^2$  is abelian. Then either G is cyclic of order  $p^2$  or  $G \cong Z_p \times Z_p$ . But if G is isomorphic to  $Z_p \times Z_p$  then G has 5 subgroups but this is impossible as we have only three subgroups. Hence G is a cyclic group of order  $p^2$ .

Another Solution: Let G be a group with exactly 3 subgroups. Since {1} and {G} are subgroups of G we have only one nontrivial proper subgroup H of G. Since H has no nontrivial subgroup. It is a group of order p for some prime p, say  $H = \langle x \rangle$ , since  $G \neq H$  there exists  $y \in G \setminus H$ . Then  $\langle y \rangle$  is a subgroup of G different from H. Hence  $\langle y \rangle = G$ . So G is a cyclic group, and has a subgroup H of order p. This implies G is a finite cyclic group. Since for any divisor of the order of a cyclic group, there exists a subgroup, the only prime divisor of |G| must be p. And |G| must be  $p^2$  otherwise G has a subgroup for the other divisors.

**2.42.** Let H and K be subgroups of a finite group G.

(a) Show that the number of right cosets of H in HdK equals  $|K: H^d \cap K|$ 

(b) Prove that

$$\sum_{d} \frac{1}{|H^{d} \cap K|} = \frac{|G|}{|H| |K|} = \sum_{d} \frac{1}{|H \cap K^{d}|}$$

where d runs over a set of (H, K)-double coset representatives.

Solution: (a) The function 
$$\alpha : HdK \to HdKd^{-1}$$
  
 $hdk \to hdkd^{-1}$ 

is a bijective function. Hence  $|HdK| = |HdKd^{-1}| = |H \cdot K^d|$ . Similarly  $\beta: HdK \to d^{-1}HdK$  is bijective. Hence

$$|HdK| = |HK^d| = |d^{-1}HdK| = |H^dK|$$

Since H and  $K^d$  are subgroups of G we have  $|HdK| = |HK^d|$ .

$$|HdK| = |HK^{d}| = \frac{|H| |K^{d}|}{|H \cap K^{d}|} = \frac{|H| |K|}{|H \cap K^{d}|}$$
$$\frac{|HdK|}{|H|} = \frac{|H^{d}K|}{|H|} = \frac{|H^{d}| |K|}{|H| |H^{d} \cap K|} = \frac{|K|}{|H^{d} \cap K|}$$

$$= |K: K \cap H^d|$$

(b)

$$\frac{|G|}{|H| |K|} = \sum_{d} \frac{|HdK|}{|H| |K|} = \sum_{d} \frac{|K|}{|H^{d} \cap K| |K|} = \sum_{d} \frac{1}{|H^{d} \cap K|}$$

similarly

$$\frac{|G|}{|H| \ |K|} = \sum_{d} \frac{|HdK|}{|H| \ |K|} = \sum_{d} \frac{|H| \ |K^d|}{|H \cap K^d| \cdot |H| \ |K|} = \sum_{d} \frac{1}{|H \cap K^d|}$$

**2.43.** Find some non-isomorphic groups that are direct limits of cyclic groups of order  $p, p^2, p^3, \cdots$ .

**Solution:** Let the finite cyclic group  $G_i$  of order  $p^i$  be generated by  $x_i$ . Recall that a cyclic group has a unique subgroup for any divisor of the order of the group.

$$\alpha_i^{i+1}: \begin{array}{c} G_i \hookrightarrow G_{i+1} \\ x_i \hookrightarrow x_{i+1}^p \end{array}$$

The homomorphisms  $\alpha_i^{i+1}$  is a monomorphism. So direct limit is the locally cyclic (quasi-cyclic or Prufer) group denoted by  $C_{p^{\infty}}$ .

(b) 
$$\alpha_i^{i+1}$$
:  $\begin{array}{c} G_i \hookrightarrow G_{i+1} \\ x_i \hookrightarrow 1 \end{array}$ . Then  $D = \lim_{n \to \infty} G_n = \{1\}.$ 

**2.44.** If 
$$H \leq G$$
, prove that  $H^G = \langle H^g | g \in G \rangle$  and  $H_G = \bigcap_{g \in G} H^g$ 

**Solution:** Recall that  $H^G$  is the intersection of all normal subgroups containing H. Let  $M = \langle H^g | g \in G \rangle$  we need to show that  $M = H^G$ . Every element  $x \in M$  is of the form  $x = h_1^{g_1} h_2^{g_2} \cdots h_k^{g_k}$ . Then for any element

$$g \in G, \quad x^g = (h_1^{g_1} \cdots h_k^{g_k})^g = h_1^{g_1g} h_2^{g_2g} \cdots h_k^{g_kg} \in M.$$

Hence M is a normal subgroup of G. If we choose g = 1 in  $h^g$  we obtain  $H \leq M$ . Hence M is a normal subgroup containing H i.e.  $M \supseteq H^G$ . On the other hand  $H^G$  is a normal subgroup of G containing H. Hence  $H^G$  contains all elements of the form  $h^g, g \in G$ . In particular  $H^G \supseteq M$ . Hence  $M = H^G$ .

 $H_G$  is the join of normal subgroups of G contained in H. Recall that  $H_G$  is the largest normal subgroup, contained in H.

For the second part, let,  $T = \bigcap_{g \in G} H^g$ .

If we choose g = 1 we obtain  $H^g = H$ . Hence  $T \subseteq H$ . Intersection of subgroups is a subgroup, hence T is a subgroup of G.

Let  $x \in T$ . Then  $x \in H^y$  for all  $y \in G$ . It follows that  $x^g \in H^{yg}$ for all  $y \in G$ . But  $\bigcap_{y \in G} H^y = \bigcap_{y \in G} H^{yg}$  since the function  $\alpha_g : \begin{array}{c} G \to G \\ y \to yg \end{array}$ is 1-1 and onto. Hence T is a normal subgroup of G contained in H. It follows that  $T \subseteq H_G$ .

On the other hand  $H_G$  is a normal subgroup of G contained in H. Then  $H_G^g \leq H^g$  for all  $g \in G$ . But  $H_G^g = H_G$  implies  $H_G \leq \bigcap_{g \in G} H^g = T$ .

Hence  $T = H_G$ .

**2.45.** If H is abelian, then the set of homomorphisms Hom (G, H) from G into H is an abelian group, if the group operation is defined by  $g^{\alpha+\beta} = g^{\alpha}g^{\beta}$ .

**Solution:** Let  $\alpha, \beta, \gamma \in \text{Hom } (G, H)$ . Then for any  $g \in G$ 

$$g^{\alpha+(\beta+\gamma)} = g^{\alpha} g^{\beta+\gamma} = g^{\alpha}(g^{\beta}g^{\gamma}).$$
$$= (g^{\alpha}g^{\beta})g^{\gamma}$$
$$= g^{\alpha+\beta} \cdot g^{\gamma} = g^{(\alpha+\beta)+\gamma}$$

By associativity in H.

Hence 
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$

The zero homomorphism, namely the map which takes every element g in G to the identity element in H.

For any  $\alpha \in \text{Hom } (G, H)$ 

$$g^{-\alpha} = (g^{-1})^{\alpha}$$
$$g^{\alpha-\alpha} = g^{\circ} = 1$$

Hence  $-\alpha$  is the inverse of  $\alpha$ .

 $g^{\alpha+\beta} = g^{\alpha}g^{\beta} = g^{\beta}g^{\alpha}$  since H is abelian =  $g^{\beta+\alpha}$ . Hence  $\alpha + \beta = \beta + \alpha$ 

for all  $\alpha, \beta \in \text{Hom } (G, H)$   $g^{\alpha+\beta} = g^{\alpha}g^{\beta}$ , then  $\alpha+\beta$  is a homomorphism.

$$(gh)^{\alpha+\beta} = (gh)^{\alpha}(gh)^{\beta} = g^{\alpha}h^{\alpha} g^{\beta}h^{\beta}$$
$$= g^{\alpha}g^{\beta} \cdot h^{\alpha}h^{\beta} \text{ since } H \text{ is abelian.}$$
$$= g^{\alpha+\beta}h^{\alpha+\beta}$$

Observe that commutativity of H is used in order to have  $\alpha + \beta \in \text{Hom}$ (G, H).

**2.46.** If G is n-generator and H is finite, prove that  $|Hom(G,H)| \leq |H|^n$ .

**Solution:** Let G be generated by  $g_1, g_2, \dots, g_n$  and  $\alpha$  be a homomorphism.  $\alpha$  is uniquely determined by the n tuple  $g_1^{\alpha}, g_2^{\alpha}, \dots, g_n^{\alpha}$ . For this if  $\beta$  is another homomorphism from G into H, such that  $g_i^{\alpha} = g_i^{\beta}$ . Then for any element  $g \in G$ 

$$g = g_{i_1}^{n_{i_1}} g_{i_2}^{n_{i_2}} \cdots g_{i_k}^{n_{i_k}}$$

where  $g_{i_j} \in \{g_1, \dots, g_n\}$  for all  $i_j \in \{1, 2, \dots, n\}$  and  $n_{i_j} \in \mathbb{Z}$ . Since  $\alpha$  and  $\beta$  are homomorphisms from G into H.

$$g^{\alpha} = \left( \begin{array}{c} g_{i_{1}}^{n_{i_{1}}} \end{array} \right)^{\alpha} \left( \begin{array}{c} g_{i_{2}}^{n_{i_{2}}} \end{array} \right)^{\alpha} \cdots \left( \begin{array}{c} g_{i_{k}}^{n_{i_{k}}} \end{array} \right)^{\alpha}$$
$$g^{\beta} = \left( \begin{array}{c} g_{i_{1}}^{n_{i_{1}}} \end{array} \right)^{\beta} \left( \begin{array}{c} g_{i_{2}}^{n_{i_{2}}} \end{array} \right)^{\beta} \cdots \left( \begin{array}{c} g_{i_{k}}^{n_{i_{k}}} \end{array} \right)^{\beta}$$

It follows that for any  $g \in G$ ,  $g^{\alpha} = g^{\beta}$ . Hence  $\alpha = \beta$ . *H* is finite and there are at most  $|H|^n$ , *n*-tuple. Hence the number of homomorphisms from *G* into *H* is less than or equal to  $|H|^n$ .

**2.47.** Show that the group  $T = \{\frac{m}{2^n} \mid m, n \in \mathbb{Z}\}$  is a direct limit of infinite cyclic groups.

**Solution** Let  $G_i$  be an infinite cyclic group generated by  $x_i$ . Define a homomorphism  $\alpha_i^{i+1}$ :  $G_i \hookrightarrow G_{i+1}$  $x_i \hookrightarrow x_{i+1}^2$ 

$$\alpha_i^j = \alpha_i^{i+1} \alpha_{i+1}^{i+2} \cdots \alpha_{j-1}^j$$

and

$$\alpha_i^j: \begin{array}{cc} G_i \to G_j \\ x_i \to x_j^{2^{j-i}} \end{array}$$

Then the set  $\sum_{i=1}^{n} = \left\{ (G_i, \alpha_i^j) : i \leq j \right\}$  is a direct system. Let *D* be the direct limit of the above direct system. Then

$$\overline{G}_1 = \{ [x_1^j] \mid j \in \mathbb{Z} \} \le D$$
  
$$\overline{G}_2 = \{ [x_2^j] \mid j \in \mathbb{Z} \} \le D$$

 $\overline{G}_1 \leq \overline{G}_2$ . Because

$$[x_1^j] = [(x_1)^j \alpha_1^2] = [x_2^{2j}] \in \overline{G}_2$$

Let  $D = \bigcup_{i=1}^{\infty} \overline{G}_i$ . Then D is an abelian group. Indeed assume that  $i \leq j$ .  $[x_i^n][x_j^m] = [x_i^n(\alpha_i^j)x_j^m] = [x_j^{n2^{j-i}} \cdot x_j^m] = [x_j^m \cdot x_j^{n2^{j-i}}] =$  $[x_j^m][x_j^{n2^{j-i}}] = [x_j^m][x_i^n]$ . Claim:  $D \cong T = \{\frac{n}{2^i} | n, i \in \mathbb{Z}\} \leq (\mathbb{Q}, +)$  $\varphi : D \to T$  $[x_i^k] \to \frac{k}{2^i}$  Let  $[x_i^n]$  and  $[x_j^m]$  be elements of D. Assume that  $i \leq j$ . Then  $[x_i^n][x_j^m] = [x_j^{n2^{j-i}+m}]$ 

$$\begin{split} [x_i^n] \xrightarrow{\varphi} \frac{n}{2^i} \\ [x_j^m] \xrightarrow{\varphi} \frac{m}{2^j} \\ [x_i^n] [x_j^m] = [x_j^{n2^{j-i}+m}] \xrightarrow{\varphi} \frac{n2^{j-i}+m}{2^j} \end{split}$$

Now

$$\frac{n}{2^{i}} + \frac{m}{2^{j}} = \frac{n \cdot 2^{j-i}}{2^{j}} + \frac{m}{2^{j}} = \frac{n2^{j-i} + m}{2^{j}}.$$

So  $\varphi$  is a homomorphism from D into T. Clearly  $\varphi$  is onto.

Ker 
$$\varphi = \{ [x_i^m] \mid \varphi[x_i^m] = \frac{m}{2^i} = 0 \} = \{ [x_i^\circ] \} = \{ [1] \} \in D$$

so  $\varphi$  is an isomorphism.

#### **2.48.** Show that $\mathbb{Q}$ is a direct limit of infinite cyclic groups.

**Solution:** Recall that for any two infinite cyclic groups generated by x and y the map

$$\begin{array}{l} \langle x \rangle > \to \ \langle y \rangle \\ x \to y^m \end{array}$$

for any *m* defines a homomorphism. Moreover this map is a monomorphism. Observe that the set of natural numbers  $\mathbb{N}$  is a directed set with respect to natural ordering. Let  $G_i$  be an infinite cyclic group generated by  $x_i, i = 1, 2, 3, \cdots$ 

Define a homomorphism  $\alpha_i^{i+1}$ :  $\begin{array}{c} G_i \hookrightarrow G_{i+1} \\ x_i \hookrightarrow x_{i+1}^{i+1} \end{array}$ where  $\alpha_i^i$  is identity.

$$\alpha_{i}^{i+1}\alpha_{i+1}^{i+2} = \alpha_{i}^{i+2} : \qquad x_{i} \to x_{i+1}^{i+1} \to (x_{i+2})^{(i+2)(i+1)}$$
$$\alpha_{i}^{j} = \alpha_{i}^{i+1}\alpha_{i+1}^{i+2} \cdots \alpha_{j-1}^{j}$$

The set  $\left\{ (G_i, \alpha_i^j) | i \leq j \right\}$  is a direct system. The equivalence class of  $x_1$  contains the following set

$$\begin{split} & [x_1] = \{x_1, x_2^2, x_3^6, x_4^{24}, x_5^{5!}, \cdots, x_n^{n!}, \cdots\} \\ & [x_2] = \{x_2, x_3^3, x_4^{12}, x_5^{5\cdot4\cdot3}, \cdots, x_k^{k\cdot(k-1)\cdots3}, \cdots\} \\ & [x_3] = \{x_3, x_4^4, x_5^{20}, x_6^{6\cdot5\cdot4}, \dots, x_k^{k\cdot(k-1)(k-2)\cdots4}, \cdots\} \\ & \vdots \\ & [x_{n-1}] = \{x_{n-1}, x_n^n, x_{n+1}^{(n+1)n}, \cdots\} \\ & [x_n] = \{x_n, x_{n+1}^{n+1}, x_{n+2}^{n+2\cdotn+1}, \cdots, x_k^{k\cdot(k-1)\cdots(n+1)}, \cdots\} \\ & [x_2]^2 = [x_2][x_2] = [x_1] \\ & [x_3]^3 = [x_3][x_3][x_3] = [x_2] \\ & [x_4]^4 = [x_4][x_4][x_4][x_4] = [x_3] \\ & \vdots \\ & [x_n]^n = [x_n] \cdots [x_n] = [x_n^n] = [x_{n-1}] \\ & [x_n]^{n!} = [x_1] \end{split}$$

since  $G_i = \langle x_i \rangle$ , the direct limit  $D = \lim_{n \to \infty} G_i = \langle [x_i] | i = 1, 2, 3, \cdots \rangle$ Define a map

$$\varphi: \begin{array}{c} \varphi: D \to (\mathbb{Q}, +) \\ [x_n] \to \frac{1}{n!} \end{array}$$

if m > n

$$[x_n][x_m] = [x_n^{\alpha_n^m}][x_m] = [x_m^{(n+1)(n+2)\cdots m}][x_m] = [x_m^{(n+1)(n+2)\cdots m+1}] [x_n][x_m] = [x_m^{(n+1)(n+2)\cdots m+1}] x_n \to \frac{1}{n!} x_m \to \frac{1}{m!} x_m^{(n+1)(n+2)\cdots m+1} \to \frac{(n+1)(n+2)\cdots m+1}{m!}$$

For  $m \geq n$ .

$$\frac{1}{n!} + \frac{1}{m!} = \frac{(n+1)(n+2)\cdots m}{m!} + \frac{1}{m!} = \frac{(n+1)\cdots(m)+1}{m!}$$

so  $\varphi$  is a homomorphism. For any  $\frac{m}{n} \in \mathbb{Q}$  we have  $\varphi([x_n]^{(n-1)!m}) = \frac{1}{n!}^{(n-1)!m} = \frac{m}{n}$ . Hence  $\varphi$  is onto

$$\operatorname{Ker} \varphi = \left\{ [x_{i_1}]^{k_1} [x_{i_2}]^{k_2} \cdots [x_{i_j}]^{k_j} \in D \mid \varphi([x_i]^{k_1} \cdots [x_{i_j}]^{k_j}) = 1 \right\}$$

Since the index set is linearly ordered this corresponds to, there exists  $n \in \mathbb{N}$  such that  $n = \max\{i_1, \dots, i_j\}$ . Hence  $[x_{i1}]^{k_1} \cdots [x_{i_j}]^{k_j} = [x_n]^m$  for some m. Then  $\varphi[[x_n]^m] = \frac{m}{n!} = 0$ . It follows that m = 0.

Then  $[x_n]^0 = [x_1]^0 = [x_1^0]$  which is the identity element in D. Hence  $\varphi$  is an isomorphism.

**Remark:** On the other hand observe that  $\varphi([x_n]^m) = \frac{m}{n!} = 1$  implies m = n!. Then  $[x_n]^{n!} = [x_1]$  and  $\varphi([x_1]) = \frac{1}{1!} = 1$ .

**2.49.** If G and H are groups with coprime finite orders, then Hom (G, H) contains only the zero homomorphism.

**Solution:** Let  $\alpha$  in Hom (G, H). Then by first isomorphism theorem  $G/\text{Ker}\alpha \cong Im(\alpha)$ .

By Lagrange theorem  $|\operatorname{Ker}(\alpha)|$  divides the order of |G|. Hence  $\frac{|G|}{|\operatorname{Ker}(\alpha)|}$  is coprime with |H|. Similarly  $Im(\alpha) \leq H$  and  $|Im(\alpha)|$  divides the order of H. Hence  $\frac{|G|}{|\operatorname{Ker}(\alpha)|} = |Im(\alpha)| = 1$ . Hence  $|\operatorname{Ker}(\alpha)| = |G|$ . This implies that  $\alpha$  is a zero homomorphism i.e.  $\alpha$  sends every element  $g \in G$  to the identity element of H.

**2.50.** If an automorphism fixes more than half of the elements of a finite group, then it is the identity automorphism.

**Solution** Let  $\alpha$  be an automorphism of G which fixes more than half of the elements of G. Consider the set  $H = \{g \in G \mid g^{\alpha} = g\}$ We show that H is a subgroup of G. Indeed if  $g_1, g_2 \in H$  then  $g_1^{\alpha} =$  $g_1, g_2^{\alpha} = g_2$ . Hence  $(g_1g_2)^{\alpha} = g_1^{\alpha}g_2^{\alpha} = g_1g_2$  i.e.  $g_1g_2 \in H$ . Moreover  $(g_1^{-1})^{\alpha} = (g_1^{\alpha})^{-1} = g_1^{-1}$ . Hence  $g_1^{-1} \in H$ . So H is a subgroup of Gcontaining more than half of the elements of G. By Lagrange theorem |H| divides |G|. It follows that H = G.

**2.51.** Let G be a group of order 2m where m is odd. Prove that G contains a normal subgroup of order m.

**Solution** Let  $\rho$  be a right regular permutation representation of G. By Cauchy's theorem there exists an element  $g \in G$  such that  $|\langle g \rangle| = 2$ . We write g as a permutation  $g^{\rho} = (x_1, x_1 g^{\rho})(x_2, x_2 g^{\rho}) \dots (x_m, x_m g^{\rho})$ . Since  $G^{\rho}$  is a regular permutation group it does not fix any point. It follows that any orbit of  $g^{\rho}$  containing a point x is of the form  $\{x, xg^{\rho}\}$ . Hence we have m transpositions. Since m is odd  $g^{\rho}$  is an odd permutation. Then the map

$$Sign: G^{\rho} \to \{1, -1\}$$

is onto. Hence  $Ker(Sign) \triangleleft G^{\rho}$  and |G/Ker(Sign)| = 2. It follows that |Ker(Sign)| = m.

**2.52.** Let G be a finite group and  $x \in G$ . Then  $|C_G(x)| \ge |G/G'|$  where G' denotes the derived subgroup of G.

**Solution** G acts on G by conjugation. Then stabilizer of a point is  $C_G(x)$ . Hence  $|G : C_G(x)| = |\{x^g \mid g \in G\}| = \text{length of the orbit}$ containing x. It follows that  $\frac{|G|}{|C_G(x)|} = |\{g^{-1}xg \mid g \in G\}|$ . The function

$$\phi: \{g^{-1}xg \mid g \in G\} \to \{x^{-1}g^{-1}xg \mid g \in G\}$$

is a bijective function. But G' is generated by the elements  $y^{-1}g^{-1}yg = [y, g]$  where y and g lies in G. It follows that

$$|\{x^{-1}g^{-1}xg | g \in G\} \le |\{y^{-1}g^{-1}yg | y, g \in G\}| \le |G'|.$$

Hence  $\frac{|G|}{|C_G(x)|} \le |G'|$ . Then  $|G/G'| \le |C_G(x)|$ .

**2.53.** If H, K, L are normal subgroups of a group, then [HK, L] = [H, L][K, L].

**Solution** The group [H, L] is generated by the commutators  $[h, l] = h^{-1}l^{-1}hl$  where  $h \in H$  and  $l \in L$ . Of course every generator [h, l] of [H, L] is contained in [HK, L]. Hence [H, L] is a subgroup of [HK, L]. Similarly [K, L] is contained in [HK, L] hence  $[H, L][K, L] \subseteq [HK, L]$ . On the other hand generators of [HK, L] are of the form  $[hk, l] = [h, l]^k [k, l]$  where  $h \in H$  and  $l \in L$ . The right hand side is an element of [H, L][K, L] since H, K, L are normal subgroups, hence [H, L] is normal in G and so  $[h, l]^k \in [H, L]$ . It follows that  $[HK, L] \leq [H, L][K, L]$ . Then we have the equality [HK, L] = [H, L][K, L]. **2.54.** Let  $\alpha$  be an automorphism of a finite group G. Let

$$S = \{ g \in G \mid g^{\alpha} = g^{-1} \}.$$

If  $|S| > \frac{3}{4}|G|$ , show that  $\alpha$  inverts all the elements of G and so G is abelian.

**Solution** Let  $x \in S$ . Then  $|S \cup xS| = |S| + |xS| - |S \cap xS|$ . Since  $S \cup xS \subseteq G$ , we obtain  $|S \cup xS| \le |G|$ . On the other hand the function

$$\phi_x: \begin{array}{c} S \to xS\\ s \to xs \end{array}$$

is a bijective function. Hence |xS| = |S|. It follows that  $|G| \ge |S \cup xS| = |S| + |S| - |S \cap xS|$ . Then  $|G| > \frac{3}{4}|G| + \frac{3}{4}|G| - |S \cap xS|$ . It follows that  $|S \cap xS| > \frac{3}{2}|G| - |G| = \frac{1}{2}|G|$ . This is true for all  $x \in S$ . Let  $xs_1$  and  $xs_2$  be two elements of  $S \cap xS$ , then  $xs_i \in S$  implies  $(xs_i)^{\alpha} = x^{\alpha}s_i^{\alpha} = (xs_i)^{-1} = s_i^{-1}x^{-1} = x^{\alpha}s_i^{\alpha} = x^{-1}s_i^{-1}$ . It follows that x and  $s_i$  commute. Since there are more than  $\frac{1}{2}|G|$  elements in  $|S \cap xS|$  we obtain  $|C_G(x)| > \frac{1}{2}|G|$ . But  $C_G(x)$  is a subgroup. Hence by Lagrange theorem we obtain  $|C_G(x)| = |G|$  which implies  $G = C_G(x)$  i.e.  $x \in Z(G)$ . But this is true for all  $x \in S$ . Hence  $S \subseteq Z(G)$ . So  $\frac{3}{4}|G| < |S| \leq |Z(G)|$  and Z(G) is a subgroup of G implies that Z(G) = G. Hence G is abelian. Then S becomes a subgroup of G. Hence S is a subgroup of G of order greater than  $\frac{3}{4}|G|$ . It follows by Lagrange theorem that S = G.

**2.55.** Show that no group can have its automorphism group cyclic of odd order greater than 1.

Solution Recall that if an element of order 2 in G exists, then by Lagrange theorem 2 must divide the order of the group.

We first show that the group in the statement of the question can not be an abelian group. If G is abelian, then the automorphism  $x \to x^{-1}$  is an automorphism of G of order 2 unless  $x = x^{-1}$  for all  $x \in G$ . By assumption the automorphism group is cyclic of odd order so  $x = x^{-1}$ for all  $x \in G$ . It follows that G is an elementary abelian 2-group. Then G can be written as a direct sum of cyclic groups of order 2. This allows us to view G as a vector space over the field  $\mathbb{Z}_2$ . Then  $Aut(G) \cong GL(n, \mathbb{Z}_2)$ . As  $|GL(2, \mathbb{Z}_2)| = (2^2 - 1)(2^2 - 2) = 3.2 = 6$ .

The group  $Aut(G) \cong GL(2, \mathbb{Z}_2)$  is cyclic of odd order. This group is cyclic if and only if n = 1 in that case  $G \cong \mathbb{Z}_2$  and Aut(G) = 1 which is impossible by the assumption. So we may assume that G is nonabelian. Then there exists  $x \in G \setminus Z(G)$ . The element x induces a nontrivial inner automorphism of G. Moreover  $G/Z(G) \cong Inn(G) \leq$ Aut(G). So G/Z(G) is a cyclic group But this implies G is abelian. This is a contradiction. Hence such an automorphism does not exist.

**2.56.** If  $N \triangleleft G$  and G/N is free, prove that there is a subgroup H such that G = HN and  $H \cap N = 1$ . (Use projective property).

**Solution** Let  $\pi$  be the projection from G into G/N. Then by the projective property of the free group the diagram



commutes.

Since  $\beta$  is a homomorphism,  $Im(\beta)$  is a subgroup of G. Let  $H = Im(\beta)$ . Let  $w \in H \cap N$ . Since  $w \in N$ , wN = N. The map  $\beta$  is a homomorphism implies  $(wN)\beta = (N)\beta = id_G$  so w = id.

Let g be an arbitrary element of G. Now  $gN \in G/N$  and  $(gN)\beta \in H$ , since the diagram is commutative  $(gN)\beta\pi = gN$ . By the projection  $\pi$  we have  $(gN)\beta = gn$  for some  $n \in N$ . Hence  $g = (gN)\beta \cdot n^{-1}$  where  $(gN)\beta \in H$  and  $n^{-1} \in N$  i.e. G = HN.

**2.57.** Prove that free groups are torsion free.

**Solution** Let F be a free group on a set X. We may consider the elements of F as in the normal form. i.e. every element w in F can be written uniquely in the form  $w = x_1^{l_1} \dots x_k^{l_k}$  where  $x_i \in X$  and  $l_i \in \mathbb{Z}$  for all  $i = 1, 2, \dots, k$  and  $x_i \neq x_j$  for  $i \neq j$ . Observe first that the elements  $x_i$  or  $x_i^{-1}$  have infinite orders.

Let  $w = x_1^{l_1} \dots x_k^{l_k}$  be an arbitrary non-identity element of F.  $w^2 = x_1^{l_1} \dots x_k^{l_k} x_1^{l_1} \dots x_k^{l_k}$ . If  $x_1^{l_1} \neq x_k^{-l_k}$ , then for any  $n, w^n$  is nonidentity and

we are done. If  $x_1^{l_1} = x_k^{-l_k}$ , then in  $w^2$  these two elements cancel and gives identity. But it may happen that  $x_2^{l_2} = x_{k-1}^{-l_{k-1}}$ . Then the element w is of the form  $x_1^{l_1}x_2^{l_2}\ldots x_2^{-l_2}x_1^{-l_1}$ . Then continuing like this we reach to an element  $x_1^{l_1}x_2^{l_2}\ldots x_i^{l_i}x_i^{-l_i}\ldots x_2^{-l_2}x_1^{-l_1}$ . But this implies that w is identity. So there exists i such that when we take powers of w then the powers of  $x_i$  increase. Since  $x_i$  has infinite order we obtain, w has infinite order.

**2.58.** Prove that a free group of rank greater than one has trivial center.

Let  $w = x_1^{l_1} \dots x_n^{l_n}$  be an element of a center of a free group of rank > 1. If  $x_1 \neq x_n$ . Then  $x_1^{l_1} \dots x_n^{l_n} x_1 \neq x_1 x_1^{l_1} \dots x_n^{l_n}$ . Since every element of F can be written uniquely and any two elements are equal if the corresponding entries are equal.

If  $x_1 = x_n$ , then consider  $wx_2x_1$ . By uniqueness of writing  $wx_2x_1 \neq x_2x_1w$ . This also shows that even if w contains only one symbol if rank of F is greater than one, then center of F is identity.

**2.59.** Let F be a free group and suppose that H is a subgroup with finite index. Prove that every nontrivial subgroup of F intersects H nontrivially.

**Solution** The group H has finite index in F implies that F acts on the right to the set  $\Omega = \{Hx_1, \ldots, Hx_n\}$  of the right cosets of H in F. Then there exists a homomorphism  $\phi : F \to Sym(\Omega)$  such that  $Ker\phi = \bigcap_{i=1}^{n} H^{x_i}$ . Hence  $F/Ker(\phi)$  is a finite group. Let Kbe a nontrivial subgroup of F and let  $1 \neq w \in K$ . Then  $w^{n!} \neq 1$ since every nontrivial element of F has infinite order by 2.57. But  $w^{n!} \in Ker\phi \leq H$ . Hence  $1 \neq w^{n!} \in K \cap Ker(\phi)$ .

**2.60.** If M and N are nontrivial normal nilpotent subgroups of a group. Prove from first principals that  $Z(MN) \neq 1$ . Hence give an
alternative proof of Fittings Theorem for finite groups.

**Solution** Consider  $M \cap N$ . If  $M \cap N = 1$ , then  $MN = M \times N$ and  $Z(MN) = Z(M) \times Z(N) \neq 1$ . As M and N are nilpotent. If  $M \cap N \neq 1$ , then  $[[M \cap N, M], M] \dots] = 1$  implies there exists a subgroup  $K \triangleleft (M \cap N)$  such that  $1 \neq K \leq Z(M)$ . Since  $K \triangleleft N$  we have  $[[K, N], N \dots] = 1$ . It follows that there exists a subgroup  $1 \neq L \leq K$ such that  $L \leq Z(N)$ . Hence we obtain  $1 \neq L \leq Z(M) \cap Z(N)$ . But  $1 \neq L \leq Z(M) \cap Z(N) \leq Z(MN)$ .

Let  $Z = Z(MN)CharMN \triangleleft G$  implies  $Z \triangleleft G$ . Hence MZ/Z and NZ/Z are normal nilpotent subgroups of G/Z. Then MN/Z has a nontrivial center in G/Z. Continuing like this if MN is finite we obtain a central series of MN. Hence MN is a nilpotent group in the case that MN is a finite group.

**2.61.** Let A be a nontrivial abelian group and set  $D = A \times A$ . Define  $\delta \in Aut(D)$  as follows:  $(a_1, a_2)^{\delta} = (a_1, a_1a_2)$ . Let G be the semidirect product  $\langle \delta \rangle \ltimes D$ .

(a) Prove that G is nilpotent of class 2 and  $Z(G) = G' \cong A$ 

(b) Prove that G is a torsion group if and only if A has finite exponent.

(c) Deduce that even if the center of a nilpotent group is a torsion group, the group may contain elements of infinite order.

**Solution** Let A be a nontrivial abelian group. Define  $\delta$  on  $D = A \times A$  such that  $\delta(a_1, a_2) = (a_1, a_1 a_2)$ . Then  $\delta$  is an automorphism of D. Indeed  $\delta((a_1, a_2)(b_1, b_2)) = \delta(a_1 b_1, a_2 b_2) = (a_1 b_1, a_1 b_1 a_2 b_2) = (a_1, a_1 a_2)(b_1, b_1 b_2)$  as A is an abelian group. So  $\delta$  is a homomorphism from D into D.

$$Ker(\delta) = \{(a_1, a_2) | \quad \delta(a_1, a_2) = (a_1, a_1 a_2) = (1, 1)\} = \{(1, 1)\}$$

Moreover for any  $(a_1, a_2) \in D$ ,  $\delta(a_1, a_1^{-1}a_2) = (a_1, a_2)$ . Hence  $\delta$  is an automorphism of D. Therefore we may form the group G as a semidirect product of D and  $\langle \delta \rangle$  and obtain  $G = D \rtimes \langle \delta \rangle$ 

(a) Now we show that  $Z(G) = G' \cong A$ .

An element of G is of the form  $(\delta^i, (a_1, a_2))$  for some  $i \in \mathbb{Z}$  and  $a_1, a_2$  in A. Let  $(\delta^n, (z_1, z_2))$  be an element of the center of G. Then  $(\delta^i, (a_1, a_2))^{-1}(\delta^n, (z_1, z_2))(\delta^i, (a_1, a_2) = (\delta^n, (z_1, z_2))$  for any  $i \in \mathbb{Z}$ and for any  $(a_1, a_2) \in A \times A$ .

Then

 $\begin{aligned} &(\delta^i, (a_1, a_2))^{-1} (\delta^{n+i}, (z_1, z_2)^{\delta^i} (a_1, a_2)) = (\delta^i, (a_1, a_2))^{-1} (\delta^{n+i}, (z_1, z_1^i z_2) (a_1, a_2)) \\ &= (\delta^i, (a_1, a_2))^{-1} (\delta^{n+i}, (z_1 a_1, z_1^i z_2 a_2). \end{aligned}$ 

Observe that  $(\delta^i, (a_1, a_2))^{-1} = (\delta^{-i}, (a_1^{-1}, a_1^i a_2^{-1})),$ we obtain  $(\delta^{-i}, (a_1^{-1}, a_1^i a_2^{-1}))(\delta^{n+i}, (z_1 a_1, z_1^i z_2 a_2))$ 

$$= (\delta^{n}, (a_{1}^{-1}, a_{1}^{i}a_{2}^{-1})^{\delta^{n+i}}(z_{1}a_{1}, z_{1}^{i}z_{2}a_{2})$$
  

$$= (\delta^{n}, (a_{1}^{-1}, a_{1}^{-n}a_{2}^{-1}(z_{1}a_{1}, z_{1}^{i}z_{2}a_{2}))$$
  

$$= (\delta^{n}, (a_{1}^{-1}, (a_{1}^{-1})^{n}a_{2}^{-1})(z_{1}a_{1}, z_{1}^{i}z_{2}a_{2}))$$
  

$$= (\delta^{n}, (z_{1}, a_{1}^{-n}z_{1}^{i}z_{2})$$
  

$$= (\delta^{n}, (z_{1}, z_{2}))$$

implies that  $a_1^{-n} z_1^i = 1$ . So  $z_1^i = a_1^n$  for any i and for any  $a_1 \in A$ . In particular  $a_1 = 1$  implies that  $z_1 = 1$ . It follows that  $a_1^n = 1$  for any  $a_1 \in A$ . Then  $(a_1, a_2)^{\delta^n} = (a_1, a_1^n a_2) = (a_1, a_2)$ .

Hence  $\delta^n$  is an identity automorphism of D. It follows that  $(\delta^n, (1, z_2)) = (id, (1, z_2))$ .

Hence  $Z(G) = \{(1, (1, z)) : z \in A \} \cong A$ .

The group G' is generated by commutators. The form of a general commutator is:

$$[(\delta^{i}, (a_{1}, a_{2})), (\delta^{n}, (z_{1}, z_{2}))] = (\delta^{i}, (a_{1}, a_{2}))^{-1} (\delta^{n}, (z_{1}, z_{2}))^{-1} (\delta^{i}, (a_{1}, a_{2})) (\delta^{n}, (z_{1}, z_{2}))$$
  
Since  $(\delta^{i}, (a_{1}, a_{2}))^{-1} = (\delta^{-i}, (a_{1}^{-1}, a_{1}^{i}a_{2}^{-1}))$  we obtain

$$= (\delta^{-i}, (a_1^{-1}, a_1^i a_2^{-1}))(\delta^{-n}, (z_1^{-1}, z_1^n z_2^{-1}))(\delta^{i+n}, (a_1, a_2)^{\delta^n}(z_1, z_2))$$
  
$$= (\delta^{-i-n}, (a_1^{-1} z_1^{-1}, a_1^{i+n} a_2^{-1} z_1^n z_2^{-1})(\delta^{i+n}, (a_1 z_1, a_1^n a_2 z_2))$$
  
$$= (\delta^0, (a_1^{-1} z_1^{-1} a_1 z_1, (a_1^{-1} z_1^{-1})^{i+n} a_1^{i+n} a_2^{-1} z_1^n z_2^{-1} a_1^n a_2 z_2)$$

 $= ((1, (1, z_1^{-i}a_1^n) \in Z(G)))$ . Hence  $G' \leq Z(G)$ . In particular choosing i = 1 and  $a_1 = 1$  we obtain every element of Z(G) is in G'. Hence  $Z(G) = G' \cong A$ . It follows that G/Z(G) is abelian.

 $Z(G/Z(G)) = Z_2(G)/Z(G) = G/Z(G)$  and G is clearly not abelian, it follows that G is nilpotent of class 2.

(b) Assume that G is a torsion group. Then  $(\delta^i, (a_1, a_2))$  has finite order for any  $i \in \mathbb{Z}$  and  $(a_1, a_2) \in A$ . Then

 $\begin{aligned} &(\delta^{i}, (a_{1}, a_{2}))^{n} = (1, (1, 1)). \text{ Then} \\ &(\delta^{i}, (a_{1}, a_{2}))(\delta^{i}, (a_{1}, a_{2}))(\delta^{i}, (a_{1}, a_{2})) \dots (\delta^{i}, (a_{1}, a_{2})) \\ &= (\delta^{2i}, (a_{1}, a_{2}))^{\delta^{i}}, (a_{1}, a_{2}))(\delta^{i}, (a_{1}, a_{2})) \dots (\delta^{i}, (a_{1}, a_{2})) \\ &= (\delta^{2i}, (a_{1}, a_{1}^{i}a_{2}))(a_{1}, a_{2}))(\delta^{2i}, (a_{1}^{2}, a_{1}^{i}a_{2}^{2})) \dots (\delta^{i}, (a_{1}, a_{2})) \text{ implies that} \\ \delta^{ni} = 1 \text{ and } a_{1}^{n} = 1. \text{ If order of } \delta \text{ is } m, \text{ then for any } (a, b) \in A \times A \end{aligned}$ 

 $(a,b)^{\delta^m} = (a,b) = (a,a^mb)$  implies  $a^m = 1$  for all  $a \in A$ . In particular A has finite exponent and this exponent is bounded by the order of  $\delta$ .

Conversely if A has finite exponent say m then  $(a, b)^{\delta^m} = (a, a^m b) = (a, b)$  for any  $(a, b) \in A \times A$ . Hence  $\delta^m$  is the identity automorphism of  $A \times A$ . This implies  $G = \langle \delta \rangle \ltimes D$  is a torsion group as  $D = A \times A$  is a torsion group. In particular  $(\delta^i, (a, b))^m$  is an element in  $A \times A$  since A has finite exponent we obtain  $((\delta^i, (a, b)^m)^n = (1, (1, 1)))$ .

(c) Let A be the direct product of cyclic groups  $Z_n$  for any  $n \in \mathbb{N}$ . Then by the above observation  $G = \langle \delta \rangle \ltimes D$  is a nilpotent group of class 2.

Since exponent of A is not finite by (b) we obtain that G is not a torsion group. Hence G contains elements of infinite order.

# 3. SOLUBLE AND NILPOTENT GROUPS

**3.1.** Suppose that G is a finite nilpotent group. Then the following statements are equivalent

(i) G is cyclic.

(ii) G/G' is cyclic.

(iii) Every Sylow p-subgroup of G is cyclic.

**Solution:**  $(i) \Rightarrow (ii)$ : Homomorphic image of a cyclic group is cyclic.

 $(ii) \Rightarrow (iii)$ : Assume that G/G' is cyclic. G is nilpotent so every maximal subgroup of G is normal in G. As G is nilpotent  $G' \leq G$ . For any maximal subgroup M,  $G/M \cong Z_p$  for some prime p.  $G' \leq M$ It follows that  $G' \leq \bigcap_{\substack{Mmax \text{ in } G \\ Mmax \text{ in } G}} M = \Phi(G)$ . Now  $G/G' = \langle xG' \rangle$ . Then  $\langle x, G' \rangle = G$  so  $\langle x, \Phi(G) \rangle = G$ . Hence  $\langle x \rangle = G$  as Frattini subgroup is a non-generator group in G. This implies that G is cyclic hence every Sylow subgroup is cyclic.

 $(iii) \Rightarrow (i)$  Now assume every Sylow subgroup is cyclic. G is nilpotent hence it is a direct product of its Sylow subgroups  $G = O_{p_1}(G) \times O_{p_2}(G) \times \ldots \times O_{p_k}(G)$ . Since direct product of Cyclic pgroups of different primes is cyclic we have G is cyclic.

**3.2.** Let G be a finite group. Prove that G is nilpotent if and only if every maximal subgroup of G is normal in G.

Solution: Assume that G is nilpotent. Then every maximal subgroup is normal in G as nilpotent satisfies normalizer condition.

Assume every maximal subgroup of G is normal in G. Let  $M_1, M_2, \ldots, M_k$ be the maximal subgroups of G.  $M_i \triangleleft G$ .  $G/M_i \cong Z_p$  for some prime p. Then  $G/\bigcap M_i = G/\Phi(G) \hookrightarrow G/M_1 \times G/M_2 \times \ldots \times G/M_k$  is abelian. Hence  $G/\Phi(G)$  is abelian hence  $G/\Phi(G)$  is nilpotent. It follows that Gis nilpotent.

# **3.3.** Let p, q, r be primes prove that a group of order pqr is soluble.

**Solution** If p = q = r, then the group becomes a *p*-group and hence it is nilpotent so soluble. If p = q, then the group has order  $p^2q$  these groups are soluble.

So we may assume that p, q, r are distinct primes and p > q > r.

Let |G| = pqr. Assume that G is the minimal counter example. i.e G is the smallest insoluble group of order pqr. So G has no nontrivial normal subgroup. Because any group of order product of two primes is soluble and extension of a soluble group by a soluble group is soluble. Hence we may assume that G is simple. Let P, Q, R be the Sylow p, q, r subgroups of G respectively and  $n_p$  denotes the number of Sylow p-subgroups of G.  $n_p \equiv 1 \pmod{p}$  and  $n_p$  divides qr. Since G is simple  $n_p \neq 1$  so either  $n_p = q$ , or  $n_p = r$  or  $n_p = qr$ .

If  $n_p = q = |G : N_G(P)|$  we obtain  $|N_G(P)| = pr$ . Then G acts on the cosets of  $N_G(P)$  from right. Then G over kernel of the action say  $Ker(\phi)$  is isomorphic to a subgroup of Sym(q). It follows that  $|G/Ker(\phi)|$  divides q!. Since p > q we obtain  $1 \neq Ker(\phi) \triangleleft G$  contradiction. Similarly  $n_p \neq r$ . Hence  $n_p = qr$ . So we have (p-1)qrnontrivial elements of order p.

Now consider Sylow q-subgroups of G.  $n_q \equiv 1 \pmod{q}$  and divides pr. So  $n_q = r$  is impossible because if  $|G : N_G(Q)| = r$  and r is the smallest prime in p, q, r. So kernel of the action of G on the right cosets of  $N_G(Q)$  is nontrivial and our group is simple.

Now we have (p-1)qr = pqr - qr *p*-elements.

(q-1)p = pq - p at least pq - p q-elements.

r r-elements and identity. So at least pqr-qr+pq-p+r elements. But this number is greater than pqr. This is a contradiction. Hence G is soluble.

**3.4.** A nontrivial finitely generated group cannot equal to its Frattini subgroup.

**Solution** Let  $G = \langle g_1, g_2, \ldots, g_n \rangle$ . Assume if possible that *Frat* G = G. We may discard any of the  $g_i$  if necessary and assume that n is the smallest integer such that  $G = \langle g_1, g_2, \ldots, g_n \rangle$ . Therefore the subgroup

 $K_i = \langle g_1, g_2, \dots, g_{i-1}, g_{i+1}, \dots, g_n \rangle$  is a proper subgroup of G. If Frat G = G, then every element of G is a nongenerator but  $\langle K_i, g_i \rangle = G$  and  $\langle K_i \rangle \neq G$  which is impossible.

# **3.5.** Prove that Frat(Sym(n)) = 1

**Solution** The alternating group  $\operatorname{Alt}(n)$  is a maximal subgroup of (Sym(n)) as the index of  $\operatorname{Alt}(n)$  in (Sym(n)) is 2. So Frat  $(Sym(n)) \leq \operatorname{Alt}(n)$ . On the other hand (Sym(n)) acts 2-transitively on the set  $\Omega_n = \{1, 2, \ldots, n\}$  Because for any (i, j), (k, l) where  $i \neq j$  and  $k \neq l$  the permutation (i, k)(j, l) takes (i, j) to (k, l). Every 2-transitive group is a primitive permutation group. Hence stabilizer of a point is a maximal subgroup. Hence for any  $i \in \Omega_n$  the stabilizer of a

point *i* say  $(Sym(n))_i$  is a maximal subgroup of (Sym(n)). Hence  $Frat((Sym(n))) \leq \bigcap_{i=1}^n ((Sym(n))_i = 1)$ . It follows that Frat(Sym(n)) = 1.

**3.6.** Show that  $Frat(D_{\infty}) = 1$ .

**Solution** Let  $G = \langle x, y \mid x^2 = 1, y^2 = 1 \rangle$  Let a = xy. Then  $G = \langle x, a \rangle$ ,  $x^{-1}ax = yx = a^{-1}$ . The subgroup generated by an element a is isomorphic to  $\mathbb{Z}$  and maximal in G. Hence  $D_{\infty} = \langle a, t \rangle \cong \mathbb{Z} \rtimes \langle t \rangle$ Moreover  $x \in \mathbb{Z}$  implies  $x^t = x^{-1}$ . Then  $\langle a^2, t \rangle \lhd D_{\infty}$ , Indeed  $t^a = a^{-1}ta = tt^{-1}a^{-1}ta = ta^2 \in \langle a^2, t \rangle$  and  $t^{-1}a^2t = a^{-2} \in \langle a^2, t \rangle$ ,  $D_{\infty}/\langle a^2, t \rangle$  is of order 2. So  $\langle a^2, t \rangle$  is a maximal normal subgroup of G. Then  $Frat(D_{\infty}) \leq \langle a \rangle \cap \langle a^2, t \rangle$ .

Moreover  $\langle a^p, t \rangle$  is a maximal subgroup of  $D_{\infty}$  for any prime p. Since  $|D_{\infty} : \langle a^p, t \rangle| = p$  for any prime p. Then  $Frat(D_{\infty}) \leq \langle a \rangle \cap \langle a^2, t \rangle \cap_p \langle a^p, t \rangle = \langle a \rangle \cap (\cap_p \text{ prime } \langle a^p, t \rangle)$ . If u is an element in the intersection then  $u = a^r$  for some r. Since all primes divide r we obtain r = 0. Hence  $Frat(D_{\infty}) = 1$ .

**3.7.** If G has order n > 1, then  $|Aut G| \leq \prod_{i=0}^{k} (n-2^i)$  where  $k = [log_2(n-1)].$ 

**Solution** We show that, if d(G) is the smallest number of elements to generate a finite group G, then  $|G| \ge 2^{d(G)}$ . In particular this says that  $d(G) \le \log_2 |G| = \log_2 n$ .

If G is elementary abelian 2-group, then G becomes a vector space over the field  $\mathbb{Z}_2$  hence it has a basis consisting of  $(0, \ldots, 1, 0 \ldots 0)$ . If basis contains k elements, then  $|G| = 2^k$ . The dimension of a vector space is the smallest number of elements that generate the vector space. Hence  $|G| = 2^{d(G)}$  is possible.

Now back to the solution of the problem. Let  $\alpha$  be an element in Aut(G). Then  $\alpha$  sends generators of G to generators of G. Let  $\{x_1, \ldots, x_k\}$  be the smallest set of generators of G. Then by first paragraph  $k \leq \log_2 n$  We have  $x_1^{\alpha} \in G$  and order of  $x_1^{\alpha}$  is at least 2, because  $\alpha$  is 1-1 and  $x_1$  is a generator. For  $x_1^{\alpha}$  we have at most n-1 possibilities. For  $x_2^{\alpha}$  we have  $x_2^{\alpha} \in G \setminus \langle x_1 \rangle$ . Because if  $x_2^{\alpha} = (x_1^{\alpha})^j$  we obtain  $x_2^{\alpha} \in \langle x_1^{\alpha} \rangle$  but this is impossible as  $x_2$  is a generator and we choose the smallest number of generators. Moreover  $x_2^{\alpha} = (x_1^{\alpha})^i$  case may occur as identity but since  $\alpha$  is an automorphism this is also impossible.

Hence  $x_2^{\alpha} \in G \setminus \langle x_1^{\alpha} \rangle$  as order of  $x_1$  is at least 2. Hence for  $x_2^{\alpha}$  we have at most n-2 possibilities. For  $x_3$  we have  $x_3^{\alpha} \in G \setminus \langle x_1^{\alpha}, x_2^{\alpha} \rangle$ , the order of the group  $\langle x_1^{\alpha}, x_2^{\alpha} \rangle$  is at least 4 hence for  $x_3^{\alpha}$  we have  $|G| \setminus 2^2$  possibilities. Continuing like this on the generating set we get the image of G. Observe that  $\alpha$  is uniquely determined by its image on the generating set. Hence

$$|Aut(G)| \le (n-1)(n-2)(n-2^2)\dots(n-2^{k-1}) = \prod_{i=0}^{k-1} n - 2^i.$$

**3.8.** Let G be a finitely generated group. Prove that G has a unique maximal subgroup if and only if G is a nontrivial cyclic p-group for some prime p. Also give an example of a noncyclic abelian group with a unique maximal subgroup.

**Solution** Let  $G = \langle g_1, g_2, \ldots, g_n \rangle$ . We may assume that if we discard any of the  $g_i$  the remaining elements generate a proper subgroup. Then for any i let  $H_i = \langle g_1, \ldots, g_{i-1}, g_{i+1}, \ldots, g_n \rangle$ . It is clear that by assumption  $g_i \notin H_i$  and  $H_i$  is a proper subgroup of G. Let  $\Sigma_i$  be the set of subgroups T of G such that  $T \supseteq H_i$  and  $g_i \notin T$ . Then  $\Sigma_i$  is nonempty since  $H_i \in \Sigma_i$  and  $\Sigma_i$  is partially ordered with respect to set inclusion. Then one can show by Zorn's Lemma that  $\Sigma_i$  has a maximal element  $M_i$ . Hence  $M_i \supseteq H_i$  and  $g_i \notin M_i$ . The group  $M_i$  is a maximal subgroup of G. If x is any element of  $G \setminus M_i$  then  $\langle M_i, x \rangle > M_i$  hence  $g_i \in \langle M_i, x \rangle$  it follows that  $\langle M_i, x \rangle = G$ , since  $\langle H_i, g_i \rangle = G$ . So if G is generated by two elements  $g_1$  and  $g_2$ , then we may construct two maximal subgroups  $M_1$  and  $M_2$  in G such that  $g_i \notin M_i$ . Hence it follows that  $M_1 \neq M_2$ .

So if G has a unique maximal subgroup, then G is a cyclic group. In an infinite cyclic group  $\langle a \rangle$  for any prime p,  $\langle a^p \rangle$  is a maximal subgroup of  $\langle a \rangle$ . So if G has a unique maximal subgroup, then G is a finite cyclic group. Then it can be written as a direct product of of its Sylow subgroups. Then for each prime  $p_i$ , Sylow  $p_i$  subgroup  $P_i$  has a unique maximal subgroup  $M_i$ . Hence  $P_1 \times \ldots \times M_i \times P_{i+1} \times \ldots \times P_n$  is maximal subgroup of G. It follows that n = 1 and hence G is a cyclic p-group for some prime p.

Conversely every cyclic p-group has a unique maximal subgroup is clear because every finite cyclic group G has a unique subgroup for any divisor of the order of G.

 $C_{p^{\infty}} \times \mathbb{Z}_p = G$  is a noncyclic *p*-group. It is not finitely generated since  $C_{p^{\infty}}$  is not finitely generated. But  $C_{p^{\infty}}$  is a maximal subgroup of *G*. Since  $C_{p^{\infty}}$  does not have a maximal subgroup  $C_{p^{\infty}}$  is the unique maximal subgroup of *G*.

**3.9.** Suppose G is an infinite group in which every proper nontrivial subgroup is maximal. Show that G is simple.

**Solution** Assume that G is not simple. Let N be a proper normal nontrivial subgroup of G. Then by assumption N is a maximal subgroup of G. It follows that G/N does not have any proper subgroup. Hence it is a finite cyclic group of order p for some prime p.

Let  $1 \neq x \in G$ . Then  $\langle x \rangle$  is a maximal subgroup of G. If x has infinite order, then the group  $\langle x^2 \rangle$  is a proper subgroup and by assumption it is maximal. It follows that  $G = \langle x \rangle \cong \mathbb{Z}$ . But in this group every subgroup is not maximal. Hence G is a torsion group. Again if x has order a composite number then for any prime p dividing order of x the subgroup generated by  $x^p$  is a maximal subgroup implies  $G = \langle x \rangle$  and so G is a finite cyclic group which is impossible as G is infinite . Hence every element of G is of prime order p. Let  $1 \neq x \in N$ , then  $\langle x \rangle$  is a maximal subgroup implies  $N = \langle x \rangle$  and it is of finite order p. Hence G/N and N have finite order. This implies G is a finite group. This contradicts to the assumption that G is an infinite group.

# **3.10.** A free group is abelian if and only if it is infinite cyclic.

**Solution** It is clear that an infinite cyclic group is abelian. It is also free because for any group G and a function  $\gamma : X \to G$  say  $(x)\gamma = g$ 



a map  $\beta$ ,  $(x)\sigma\beta = g$  gives a homomorphism. We may consider  $\sigma$  as identity map hence  $(x)\sigma = x$  and  $F = \langle x \rangle$ . So  $\beta$  becomes a homomorphism from the cyclic group F to the cyclic group  $\langle g \rangle$ .

Conversely, by the above problem if the rank of a free group is greater than one, then it's center is identity. Hence a free abelian group must have rank one. But indeed a free group of rank one is an infinite cyclic group as every element in the normal form is of type  $x^i$ .

**3.11.** Let B be a variety. If G is a B-group with a normal subgroup N such that G/N is a free B-group show that there is a subgroup H such that G = HN and  $H \cap N = 1$ 

**Solution** Asume that G/N is a free *B*-group on a set *X*. We know that the map  $\sigma : X \to G/N$  is an injection. Let *T* be a transversal of *N* in *G*. Define a map  $f : X \to T \subseteq G$  such that  $f(x) = g_x$  where  $g_x \in T$  and  $\sigma(x) = g_x N$ . Since *G* is a *B*-group and G/N is a free *B*-group there exists a unique homomorphism  $\gamma$  such that  $f = \sigma \gamma$ .



Since  $\gamma$  is a homomorphism  $\gamma(G/N) = H$  is a subgroup of G. We now show that H is the required subgroup. Since  $\gamma \sigma = f$  and f(X) = T we obtain  $H = \langle T \rangle$ . Now it is clear that HN = G. Now if  $y \in H \cap N$ , then y can be written as a product of transversals.  $y = (yN)\gamma = (N)\gamma = 1$  as  $\gamma$  is a homomorphism. So y = 1.

**3.12.** Prove that every variety is closed with respect to forming subgroups, images and subcartesian products.

**Solution** Let *B* be a variety and  $w = w(x_1, \ldots, x_r)$  be a law of *B*. Let  $G \in B$  and  $H \leq G$ . Since for any  $g_1, \ldots, g_r \in G$   $w(g_1, \ldots, g_r) = 1$  in particular for the elements of *H* we obtain W(H) = 1.

Let N be a normal subgroup of  $G \in B$ . Then

 $w(g_1N,\ldots,g_rN) = w(g_1,\ldots,g_r)N = N$ . Hence  $G/N \in B$ 

Now let G be a subcartesian product of the groups  $G_{\lambda} \in B$ . Let  $w = w(x_1, \ldots, x_r)$  and let  $i : G \to Cr_{\lambda \in \Lambda}G_{\lambda}$  be an injection.

For  $g_1, \ldots, g_r \in G$  we have  $w(g_1, \ldots, g_r)^i = (w(g_1^i, \ldots, g_r^i))_{\lambda \in \Lambda} = (1)_{\lambda \in \Lambda}$  since  $G_\lambda \in B$ . Since *i* is an injection this implies  $w(g_1, \ldots, g_r) = 1$ .

**3.13.** Prove that a subgroup which is generated by W-marginal subgroups is itself W-marginal.

**Solution** Let W be a nonempty set of words. Recall that a normal subgroup N of G is called W- marginal if for any  $g_i \in G$ , and  $a \in N$ ,  $w(g_1, \ldots, g_i a, \ldots, g_n) = w(g_1, \ldots, g_n)$ . Since the group Mgenerated by normal subgroups is a normal subgroup we need to show that for any element  $y \in M$ ,  $w(g_1, \ldots, g_n) = w(g_1, \ldots, g_i y, \ldots, g_n)$ . Let  $y = a_{i_1} a_{i_2} \ldots a_{i_k}$  where  $a_{i_j} \in N_{i_j}$  and  $N_{i_j}$  is a W-marginal subgroup of G. Hence for any  $g_1, \ldots, g_n \in G$  we have  $w(g_1, \ldots, g_j y, \ldots, g_n) = w(g_1, \ldots, g_j a_{i_1} a_{i_2} \ldots a_{i_k}, \ldots, g_n)$ . Since  $N_{i_1}$  is

W-marginal we obtain  $w(g_1, \ldots, g_j a_{i_2} \ldots a_{i_k}, \ldots, g_n) = w(g_1, \ldots, g_j a_{i_k}, \ldots, g_n) = w(g_1, \ldots, g_n) = w(g_1, \ldots, g_j, \ldots, g_n)$ . Hence M is W-marginal.

**3.14.** Prove that  $\mathbb{Q}$  is not a subcartesian product of infinite cyclic groups.

**Solution** Recall that a group G is subcartesian product of Xgroups if and only if G is a residually X-group. So in order to show that  $\mathbb{Q}$  is not a subcartesian product of infinite cyclic group we will show that  $\mathbb{Q}$  is not residually infinite cyclic group. Assume on the contrary that  $\mathbb{Q}$  is residually infinite cyclic. Then for any  $0 \neq \frac{m}{n} \in \mathbb{Q}$ there exists  $N_{\frac{m}{n}}$  such that  $\frac{m}{n} \notin N_{\frac{m}{n}}$  and  $\mathbb{Q}/N_{\frac{m}{n}}$  is infinite cyclic. So for any  $k \in \mathbb{Z}$   $k \cdot \frac{m}{n} \notin N_{\frac{m}{n}}$ . Clearly  $\mathbb{Q}$  is not cyclic so there exists  $0 \neq \frac{a}{b} \in N_{\frac{m}{n}}$ . Hence  $ma = bm_{\frac{a}{b}} \in N_{\frac{m}{n}}$ . It follows that  $\mathbb{Q}/N_{\frac{m}{n}}$  is finite which is a contradiction. On the other hand  $ma = an \cdot \frac{m}{n}$ . **3.15.** If p and q are distinct primes, prove that a group of order pq has a normal Sylow subgroup. If  $p \not\equiv 1 \pmod{q}$  and  $q \not\equiv 1 \pmod{p}$ , then the group is cyclic.

**Solution** Assume that the prime p < q. Let S be a Sylow q-subgroup of G where |G| = pq. Then |G : S| = p. Number of Sylow q-subgroups  $n_q$  is congruent to 1 modulo q. Moreover  $n_q$  divides |G : S| = p. So  $n_q = 1 + kq$  for some  $k \in \mathbb{N}$ . But q > p implies  $n_q = 1$ . Hence Sylow q-subgroup S is unique, it follows that S is normal in G.

For the second part consider a Sylow *p*-subgroup *P* of *G*. Let  $n_p$  be the number of Sylow *p*-subgroups. So  $n_p$  divides |G:P| = q and  $n_p \equiv 1 \pmod{p}$ . Then  $n_p = 1 + kp$  and 1 + kp divides *q*. So  $n_p$  is equal to 1 or *q*. But it is given that  $q = n_p \not\equiv 1 \pmod{p}$ . Hence  $n_p = 1$  and *P* is a normal subgroup of *G*. |P| = p, |Q| = q and  $p \neq q$  implies  $P \cap Q = 1$ . Then for any  $x \in P$  and  $y \in Q$ ,  $x^{-1}y^{-1}xy \in P \cap Q$ . Hence xy = yx for all  $x \in P$ ,  $y \in Q$ . The group G = PQ. *G* is an abelian group. Assume that  $P = \langle x \rangle$  and  $Q = \langle y \rangle$ ,  $xy \in G$  and  $\langle xy \rangle = \{x^iy^i: i \in \mathbb{N}\}$ ,  $(xy)^p = x^py^p = y^p \neq 1$ 

 $(xy)^q = x^q y^q = x^q \neq 1$  since p does not divide q.

 $(xy)^q = x^q y^q = x^q \neq 1$  So  $\langle x^q \rangle = \langle x \rangle \leq \langle xy \rangle$  and

 $(xy)^p = x^p y^p = y^p \neq 1$  so  $\langle y^p \rangle = \langle y \rangle \leq \langle xy \rangle$ . Hence p divides  $|\langle xy \rangle|$  and q divides  $|\langle xy \rangle|$  implies pq divides  $|\langle xy \rangle|$ . On the other hand  $\langle xy \rangle \leq G$  and |G| = pq. Hence  $\langle xy \rangle = G$  and G is cyclic.

**3.16.** Let G be a finite group. Prove that elements in the same conjugacy class have conjugate centralizers. If  $c_1, c_2, \ldots, c_n$  are the orders of the centralizers of elements from the distinct conjugacy classes, prove that  $\frac{1}{c_1} + \frac{1}{c_2} + \ldots + \frac{1}{c_n} = 1$ . Deduce that there exist only finitely many finite groups with given class number h. Find all finite groups with class number 3 or less.

**Solution** Let x and  $x^g$  be two elements in the same conjugacy class. Then  $C_G(x)^g = C_G(x^g)$ . Indeed if  $y \in C_G(x)^g$ , then  $y^{g^{-1}} \in C_G(x)$  and  $xy^{g^{-1}} = y^{g^{-1}} x$ . Taking conjugation of both sides by ggives  $x^g y = yx^g$ . i.e.  $y \in C_G(x^g)$ . Hence  $C_G(x)^g \subseteq C_G(x^g)$ . Similarly  $C_G(x^g) \subseteq C_G(x)^g$ . Hence  $C_G(x^g) = C_G(x)^g$ .

By class equation  $|G| = \sum_{i=1}^{n} |G : C_G(x_i)|$ . So  $|C_G(x_i)| = |C_G(x_i^g)|$ we have  $1 = \sum_{i=1}^{n} \frac{1}{|C_G(x_i)|} = \sum_{i=1}^{n} \frac{1}{c_i}$ .

So 
$$\frac{1}{c_1} + \frac{1}{c_2} + \ldots + \frac{1}{c_n} = 1$$
.

The set of all groups with only 1 equivalence class satisfy  $\frac{1}{c_1} = 1$ where  $c_1$  is the order of the centralizer of identity. Hence  $G = \{1\}$ .

The set of all groups with two equivalence class satisfy  $\frac{1}{c_1} + \frac{1}{c_2} = 1$ . Then  $c_1 = |C_G(1)| = |G|$ . Hence  $\frac{1}{c_2} = 1 - \frac{1}{|G|} = \frac{|G|-1}{|G|}$  and so  $c_2 = \frac{|G|}{|G|-1}$ (|G|, |G| - 1) = 1 implies |G| - 1 = 1. Hence |G| = 2.

The set of all groups with three equivalence class satisfy  $\frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3} = 1$ . Since the identity is an equivalence class we have

$$\frac{1}{c_2} + \frac{1}{c_3} = 1 - \frac{1}{|G|} = \frac{|G| - 1}{|G|}$$

Then  $\frac{c_2+c_3}{c_2c_3} = \frac{|G|-1}{|G|}$ .

So we obtain  $(c_2 + c_3)|G| = c_2c_3(|G| - 1)$ . As (|G|, |G| - 1) = 1 we have |G| divides  $c_2c_3$ . And  $c_2$  divides |G|,  $c_3$  divides |G| implies that (|G| - 1) divides  $c_2 + c_3$ .

First consider the case  $c_2 = c_3$ . Then  $c_2^2(|G|-1) = 2c_2|G|$ . Hence  $c_2(|G|-1) = 2|G|$ . Since (|G|-1) divides 2 we obtain |G|-1=2. Hence |G| = 3 and G is a cyclic group of order 3.

Assume without loss of generality that  $c_2 < c_3$ . Then  $(c_2 + c_3)|G| = c_2c_3(|G| - 1)$  implies that

 $2c_2|G| \leq (c_2 + c_3)|G| = c_2c_3(|G| - 1) \leq c_3^2(|G| - 1)$  and  $(c_2 + c_3)|G| = c_2c_3(|G| - 1) < 2c_3|G|$ . It follows that  $c_2(|G| - 1) < 2|G|$ . By dividing both sides with  $c_2$  we obtain  $|G| - 1 < \frac{2}{c_2}|G|$ . Then we obtain  $|G| < \frac{2}{c_2}|G| + 1$ .

 $c_2$  is the order of a centralizer of an element. Hence  $c_2 \ge 2$ .

If  $c_2 > 2$ , then  $|G| < \frac{2}{c_2}|G| + 1$  is impossible for  $|G| \ge 4$ . Hence  $c_2 = 2$ .

Then  $(2+c_3)|G| = 2c_3(|G|-1)$  implies that  $2|G|+c_3|G| = 2c_3|G|-2c_3$ 

Then we obtain  $c_3|G| = 2|G| + 2c_3$ .

But  $c_3 > 2$  implies that  $(c_3 - 2)|G| = 2c_3$  and hence  $|G| = \frac{2c_3}{c_3 - 2}$ . If  $c_3 = 3$ , then |G| = 6 and G is isomorphic to  $S_3$ .

If  $c_3 = 4$ , then |G| = 4. This is impossible as G is abelian

If  $c_3 = 6$ , then |G| = 3 which is impossible as G is abelian.

If  $c_3 > 6$ , then  $|G| = \frac{2c_3}{c_3-2} \leq 4$ . Then we are done as we reach similar groups as above.

**3.17.** Let G be a permutation group on a finite set X. If  $\pi \in G$ define  $Fix(\pi)$  to be the set of fixed points of  $\pi$  that is all  $x \in X$  such that  $x\pi = x$ . Prove that the number of G orbits equals  $\frac{1}{|G|} \Sigma_{\pi \in G} |Fix(\pi)|$ 

**Solution** Consider the following set

$$\Omega = \{ (x, \pi) | x\pi = x, \ x \in X, \ \pi \in G \}.$$

We count the number of elements in  $\Omega$  in two ways. First fix an element  $x \in X$ . Then each x appears as many as  $|Stab_G(x)|$  times in  $\Omega$ . Then  $|\Omega| = \sum_{x \in X} |Stab_G(x)|.$ 

Secondly we fix an element  $\pi \in G$ . Then  $\pi$  appears  $Fix(\pi)$  times in  $\Omega$ . Hence  $|\Omega| = \sum_{\pi \in G} |Fix(\pi)|$ . Then we have  $\sum_{x \in X} |Stab_G(x)| =$  $\sum_{\pi \in G} |Fix(\pi)|$ . But we know that  $|G : Stab_G(x)| =$  length of the orbit of G containing the element x. Let us denote it by |orbit x|. Hence  $|Stab_G(x)| = \frac{|G|}{|Orbit x|}$ . It follows that  $\sum_{x \in X} |Stab_G(x)| = \sum_{x \in X} \frac{|G|}{|Orbit x|} =$  $\Sigma_{\pi \in G} |Fix(\pi)|$ . On the other hand  $\Sigma_{x \in X} \frac{1}{|orbit x|}$  =number of orbits of G on X. This is because, if x and y belong to the same orbit, then |orbit x| = |orbit y|. We write X as a disjoint union of orbits say  $O_1, \ldots, O_k$ . Then

 $\sum_{x \in X} \frac{1}{|orbit x|} = \sum_{i=1}^{k} \sum_{x \in O_i} \frac{1}{|orbit x|} = k \text{ Since}$  $\sum_{x \in O_i} \frac{1}{|orbit x|} = 1. \text{ Hence we have } |G|k = \sum_{\pi \in G} |Fix(\pi)|. \text{ Then the}$ number of orbits  $k = \frac{1}{|G|} \sum_{\pi \in G} |Fix(\pi)|.$ 

**3.18.** Prove that a finite transitive permutation group of order greater than 1 contains an element with no fixed point.

**Solution** By previous question we have the formula

$$1 = \frac{1}{|G|} \Sigma_{\pi \in G} |Fix(\pi)|$$

Then we obtain  $|G| = \sum_{\pi \in G} |Fix(\pi)|$ . We know that the identity element of G fixes all points in X. So  $|G| = \sum_{1 \neq \pi \in G} |Fix(\pi)| + |X|$ . Since G is transitive on X, for any  $y \in X$ ,  $|G : Stab_G(y)| = |X|$ . G is a permutation group implies  $Stab_G(y) \neq G$ . It follows that  $|G : Stab_G(y)| = |X| > 1$ . Hence the formula  $|G| = \sum_{1 \neq \pi \in G} |Fix(\pi)| + |X|$ and  $|Fix(\pi)| \ge 0$  implies there exists a permutation  $\pi \in G$  such that  $|Fix(\pi)| = 0$  as the sum is over all non-identity elements of G.

Otherwise  $Stab_G(y) = G$  for all  $y \in X$  Hence G acts trivially on X. But the action is transitive implies |X| = 1 But this is impossible as G is a permutation group of order greater than 1.

**3.19.** Show that the identity  $[u^m, v] = [u, v]^{u^{m-1}+u^{m-2}+\ldots+u+1}$  holds in any group where  $x^{y+z} = x^y x^z$ . Deduce that if [u, v] belongs to the center of  $\langle u, v \rangle$ , then  $[u^m, v] = [u, v]^m = [u, v^m]$ .

**Solution** We show the equality by induction on m. If m = 1, then  $[u^1, v] = [u, v]$ . Assume that

$$[u^{m-1}, v] = [u, v]^{u^{m-2} + u^{m-3} + \dots + u + 1}.$$

Then

$$[u^{m}, v] = [uu^{m-1}, v] = [u, v]^{u^{m-1}}[u^{m-1}, v]$$

. By induction assumption we obtain

$$[u^m, v] = [u, v]^{u^{m-1}} [u, v]^{u^{m-2} + u^{m-3} + \ldots + u + 1}$$

=  $[u, v]^{u^{m-1}+u^{m-2}+\ldots+u+1}$ . Now if [u, v] belongs to the center of  $\langle u, v \rangle$ , then

 $[u^m,v] = [u,v]^m = [u,v^m]$  as  $[u,v]^u = [u,v]^v = [u,v]$ 

**3.20.** A finite p-group G will be called generalized extra-special if Z(G) is cyclic and G' has order p.

Prove that  $G' \leq Z(G)$  and G/Z(G) is an elementary abelian pgroup of even rank.

**Solution** G is a finite p-group, hence nilpotent. Then  $\gamma_2(G) = [G,G] = G'$  and  $\gamma_3(G) = [G,G'] < G'$  and G' has order p and proper implies [G,G'] = 1. It follows that  $G' \leq Z(G)$ . Then G/Z(G) is an abelian group as  $G' \leq Z(G)$ . Moreover  $[x^p, y] = [x, y]^p$  since  $[x, y] \in G' \leq Z(G)$  and |G'| = p implies that  $[x^p, y] = [x, y]^p = 1$ . Then  $x^p \in Z(G)$  for any  $x \in G$ . This implies G/Z(G) is an elementary

abelian *p*-group. So we may view G/Z(G) as a vector space over a field  $\mathbb{Z}_p$ . Let *m* be the dimension of G/Z(G). Define

$$f: G/Z(G) \times G/Z(G) \to \mathbb{Z}_p$$
$$(xZ(G), yZ(G)) \to i$$

where  $[x, y] = c^i$  and c is a generator of G'.

Firs we show that f is well defined.

Indeed if (xZ(G), yZ(G)) = (x'Z(G), y'Z(G)), then  $x = x'z_1, y = y'z_2$  where  $z_i \in Z(G), i = 1, 2$ . Then  $[x, y] = [x'z_1, y'z_2] = [x', y']$ . So  $[x, y] = c^i$  implies  $[x', y'] = c^i$ .

f(xZ(G), yZ(G)) = f(x'Z(G), y'Z(G)). Moreover f is a bilinear form.

 $f(x_1x_2Z(G),yZ(G)) = [x_1x_2,y] = [x_1,y]^{x_2}[x_2,y] = [x_1,y][x_2,y]$  as  $G' \leq Z(G).$  Moreover

 $f(x_1x_2Z(G), yZ(G)) = i+j = f(x_1Z(G), yZ(G)) + f(x_2Z(G), yZ(G)).$ and for the other component

$$f(xZ(G), y_1y_2Z(G)) = f(xZ(G), y_1Z(G)) + f(xZ(G), y_2Z(G)).$$

Finally we show that f is alternating. Indeed if  $xZ(G) \in Rad(f)$ , then f(xZ(G), yZ(G)) = 0 for all  $yZ(G) \in G/Z(G)$  implies  $[x, y] = c^0$ for all  $y \in G$  i.e  $x \in Z(G)$ . Hence xZ(G) = Z(G) so Rad(f) = 0implies f is a non-degenerate bilinear form.

Now m is even follows from the linear algebra that if f is a nondegenerate alternating form on a vector space, then the dimension will be even.

**3.21.** Let  $\mathbb{Q}_p$  be the additive group of rational numbers of the form  $mp^n$  where  $m, n \in \mathbb{Z}$  and p is a fixed prime. Describe End  $\mathbb{Q}_p$  and Aut  $\mathbb{Q}_p$ .

**Solution** Let  $\alpha$  be an endomorphism of  $\mathbb{Q}_p$ . Every element of  $\mathbb{Q}_p$  is of the form  $mp^n$  for some  $m, n \in \mathbb{Z}$ . Let  $\alpha(1) = kp^m$  for some  $k, m \in \mathbb{Z}$  and  $\alpha(0) = \alpha(1-1) = \alpha(1) + \alpha(-1) = 0$  implies  $\alpha(-1) = -kp^m$ .

For any integer n,  $\alpha(n) = n\alpha(1) = nkp^m$ . Now consider  $kp^m = \alpha(1) = \alpha(\frac{p^r}{p^r}) = p^r \alpha(\frac{1}{p^r})$  implies that  $\alpha(\frac{1}{p^r}) = \frac{kp^m}{p^r} = \frac{\alpha(1)}{p^r}$ .

So  $\alpha(\frac{i}{p^r}) = \frac{ikp^m}{p^r}$  and we observe that the endomorphism  $\alpha$  is determined by  $\alpha(1)$ 

Conversely for any  $kp^m \in \mathbb{Q}_p$ , the map

$$\begin{array}{ccc} \alpha : \mathbb{Q}_p & \to \mathbb{Q}_p \\ x & \to k p^m x \end{array}$$

is an endomorphism of the additive group  $\mathbb{Q}_p$ . Indeed  $\alpha(x+y) = kp^m(x+y) = kp^mx + kp^my$ . Since  $kp^m \in \mathbb{Q}_p$  and  $x \in \mathbb{Q}_p$ ,  $kp^mx \in \mathbb{Q}_p$ . Hence  $\alpha$  is an endomorphism. So for any element of  $\mathbb{Q}_p$  we may define an endomorphism and for any endomorphism there exists an element of  $\mathbb{Q}_p$ .

Every automorphism is an endomorphism. So if  $\alpha \in Aut(G)$ , then  $\alpha(1) = kp^m$  for some  $k, m \in \mathbb{Z}$ . Then

$$\alpha(\frac{n}{p^r}) = \frac{nkp^m}{p^r}$$
. So

$$ker(\alpha) = \{ \frac{n}{p^r} : \alpha(\frac{n}{p^r}) = 0 \} = \{ 0 \}.$$

For any element  $lp^r \in \mathbb{Q}_p$ ,  $\alpha(xp^y) = lp^r$  implies  $xkp^mp^y = lp^r$ . We need to solve x and y. In particular for l = 1,  $xkp^mp^y = p^r$  implies that  $xt = p^t$ . Then k is also a power of p and we can solve x and then solve y accordingly and we obtain automorphisms of  $\mathbb{Q}_p$  of the form  $\alpha(1) = p^s$  for some  $s \in \mathbb{Z}$ . Moreover for any  $\alpha$  satisfying  $\alpha(1) = p^s$ for some  $s \in \mathbb{Z}$  we have an automorphism of  $\mathbb{Q}_p$ . If  $\alpha(1) = kp^m$  and  $(k, p) = 1 \ \alpha(xp^m) = xkp^{m+y} = lp^r$  where  $(l, p) = 1 \ xk = l$  and so  $x = \frac{l}{k} \in \mathbb{Z}$  for any l this has a solution if  $k = \pm 1$ .

**3.22.** Prove that a periodic locally nilpotent group is a direct product of its maximal p-subgroups.

**Solution** Recall that a periodic locally nilpotent group is a locally finite group, i.e every finitely generated subgroup of G is a finite group. Let  $\Sigma$  be the set of all finite subgroups of G. If S and R are two elements in  $\Sigma$ , then  $\langle S, R \rangle \in \Sigma$ . Hence  $G = \bigcup_{S \in \Sigma} S$ . Since for any S in  $\Sigma$  the group S is finite nilpotent implies that S is a direct product of its Sylow p-subgroups.

For a fixed prime p Sylow p-subgroups of S is unique but Sylow p-subgroup of Q is also unique. By Sylow's theorem every p-subgroup of S is contained in a Sylow p-subgroup of Q but there is only one Sylow subgroup of Q implies Sylow p- subgroup of S is contained in a

Sylow *p*-subgroup of *Q*. Let  $S \leq Q$  and  $S, Q \in \Sigma$ . Let  $P = \bigcup_{S \in \Sigma} P_S$ where  $P_S$  is a unique Sylow *p* subgroup of *S*.

P is a subgroup of G. Because if  $x, y \in P$ , then there exist  $S_1 \in \Sigma$ and  $S_2 \in \Sigma$  such that  $x \in P_{S_1}$  and  $y \in P_{S_2}$  Then  $\langle S_1, S_2 \rangle \in \Sigma$  and  $P_{\langle S_1, S_2 \rangle}$  and  $P_{\langle S_1, S_2 \rangle} \supseteq P_{S_1}$  and  $P_{S_2}$ . Therefore  $x, y \in P_{\langle S_1, S_2 \rangle}$  and so  $xy^{-1} \in P_{\langle S_1, S_2 \rangle}$  and  $P_{\langle S_1, S_2 \rangle} \subseteq P$  hence P is a subgroup. In fact P is a p-subgroup of G. Indeed the above argument shows that every finitely generated subgroup of P is contained in a subgroup  $P_S$  for some  $S \in \Sigma$ .

P is a maximal subgroup. If there exists  $P_1 > P$ , then let  $x \in P_1 \setminus P$ , the element x is a p-element, hence  $\langle x \rangle \in \Sigma$  Then  $\langle x \rangle = P_{\langle x \rangle} \subseteq P$ 

The group P is normal in G, since for any  $g \in G$  and  $x \in P$  there exists an  $S \in \Sigma$  such that  $x \in P_S$  and the group  $\langle S, g \rangle \in \Sigma$  and  $x \in P_{\langle S,g \rangle}$ . Since  $P_{\langle S,g \rangle} \triangleleft \langle S,g \rangle$  we obtain  $g^{-1}xg \in P_{\langle S,g \rangle} \subseteq P$ . This is true for any prime p. Hence all maximal subgroups of G are normal for any prime p. Since every element  $g \in G$  is contained in a finite group  $S \in \Sigma$  and S is a direct product of its Sylow subgroups . We obtain  $G = \prod_p P$ .

# 4. SYLOW THEOREMS AND APPLICATIONS

**4.1.** Let S be a Sylow p-subgroup of the finite group G. Let  $S \cap S^g = 1$  for all  $g \in G \setminus N_G(S)$ . Then  $|Syl_p(G)| \equiv 1 \pmod{|S|}$ .

**Solution:** By Sylow's theorems  $|Syl_p(G)| = |G : N_G(S)|$  and any two Sylow p-subgroup of G are conjugate in G and  $|Syl_p(G)| \equiv 1($ mod p). The group S acts by right multiplication on the set  $\Omega =$  $\{N_G(S)x|x \in G\}$  of right cosets of  $N_G(S)$  in G. Now we look to the lengths of the orbits of S on  $\Omega$ . As  $S \leq N_G(S)$ ,  $N_G(S)S = N_G(S)$ . Hence the orbit of S containing  $N_G(S)$  is of length 1.  $N_G(S)xS =$  $N_G(S)x$  implies  $N_G(S)xSx^{-1} = N_G(S)$  i.e,  $xSx^{-1} \leq N_G(S)$ . But then  $xSx^{-1}$  and S are both Sylow p-subgroups of  $N_G(S)$ , and there exists only one Sylow p-subgroup of  $N_G(S)$ . This implies that  $xSx^{-1} = S$ , i.e.,  $x \in N_G(S)$ .

Moreover the length of the orbit of S on  $\Omega$  is equal to  $|S : Stab_S(N_G(S))x|$ .

 $N_G(S)xs = N_G(S)x$  implies  $xsx^{-1} \in N_G(S)$ . Then  $s \in N_G(S^x)$ .

But s is a p-element,  $\langle s \rangle$  normalizes  $S^x$  implies  $\langle s \rangle S^x$  is a subgroup,

 $S^x$  is a Sylow p-groups implies  $\langle s \rangle S^x = S^x$  i.e.  $s \in S^x$ . But then  $s \in S \cap S^x = 1$ . Hence  $N_G(S)xs \neq N_G(S)x$  for all non-trivial cosets of  $N_G(S)$  in G. Then the length of the orbit of S on  $\Omega$  is |S|.

 $|\Omega| = 1 + k|S|, \text{ i.e. } |\Omega| \equiv 1 (\mod |S|).$ 

**4.2.** Show that a group G of order  $90 = 2.3^2.5$  is not simple.

**Solution** Let  $n_i$  denote the number of Sylow *i* subgroups of *G*. Let  $S_i$  denote a Sylow *i* subgroup of *G*. If  $n_5 = 1$ , then  $S_5$  is a normal subgroup of *G* and  $|G/S_5| = 2.3^2$ . Hence it follows that *G* is soluble. If  $n_5 = 6$ , then consider  $n_3$ . If  $n_3 = 1$ , then  $S_3 \triangleleft G$  and  $|G/S_3| = 2.5$ . So  $G/S_3$  is soluble and  $S_3$  is soluble implies that *G* is soluble and we are done. So assume if possible that  $n_3 = 10$ . If the intersection of two Sylow 3-subgroup is the identity, then we have 8.10 elements of order 3 and 24 elements of order 5 so we obtain 105 elements which is impossible. Hence there exists Sylow 3-subgroups *P* and *Q* such that  $1 \neq P \cap Q \neq$  the groups *P* and *Q*. Moreover  $|P \cap Q| = 3$  and  $P \cap Q \triangleleft \langle P, Q \rangle$ . Then  $|PQ| \geq \frac{|P||Q|}{|P \cap Q|} = \frac{\$1}{3} = 27$ . So  $|\langle P, Q \rangle| \geq 27$ . So if  $|\langle P, Q \rangle| = 45$  and so *G* is soluble. If  $\langle P, Q \rangle = G$ , then  $P \cap Q \triangleleft G$  implies  $|G/(P \cap Q)| = 2.3.5$  is soluble hence we obtain *G* is soluble.

# **4.3.** Show that a group of order 144 is not simple.

**Solution** Assume that G is simple. Let  $S_3$  be a Sylow 3-subgroup of G. The number of Sylow 3-subgroups  $n_3 = 4$  implies that  $|G : N_G(S_3)| = 4$ . Then G acts on the right cosets of  $N_G(S_3)$ . This implies that there exists

$$\phi : G \to Sym(4)$$

Then  $G/Ker(\phi)$  is isomorphic to a subgroup of Sym(4). But |Sym(4)| = 24 and |G| = 144. Then  $Ker(\phi) \neq 1$ . Then  $G/Ker(\phi)$  is soluble as Sym(4) is soluble.

We may assume that  $n_3 = 16$ . If any two Sylow 3-subgroup intersect trivially, then 8.16 = 128 hence we have only one Sylow 2-subgroup. It follows that G is soluble. So there exists Sylow 3-subgroups P and Q such that  $1 \neq P \cap Q$ . So  $|P \cap Q| = 3$ . Then  $P \cap Q \triangleleft \langle P, Q \rangle$ . Then  $|PQ| \ge 27$  implies that  $|\langle P, Q \rangle| \ge 36$ . Hence  $|G/\langle P, Q \rangle| = 4$ . Then as in the first paragraph we obtain  $G/Ker(\phi)$  is isomorphic to a subgroup

of Sym(4) and  $|Ker(\phi)| \leq 36$  soluble implies G is soluble. Hence we obtain G is not simple.

**4.4.** Prove that

- (a) every group of order  $3^2.5.17$  is abelian.
- (b) Every group of order  $3^3.5.17$  is nilpotent.

**Solution** Let G be group of order  $3^2.5.17$  and let  $n_p$  denotes the number of Sylow p subgroups of G. By Sylow's theorem  $n_p \equiv 1 \pmod{p}$  and  $n_p = |G: N_G(P)|$ .

 $n_{17} \equiv 1 \pmod{17}$  and  $n_{17}$  divides  $3^2.5$  implies  $n_{17} = 1$ . This implies that Sylow 17-subgroup of G is unique and hence normal in G.

Let Q be a Sylow 5-subgroup. Then  $n_5 = 1$  or 51 and  $n_5 = |G : N_G(Q)|$  Since Sylow 17-subgroup R is normal in G we obtain  $RQ \leq G$ . The group Q is a Sylow 5-subgroup of RQ. Since |RQ| = 5.17 Sylow 5-subgroup is unique in RQ. That implies  $|RQ : N_{RQ}(Q)| = 1$ . i.e.  $N_{RQ}(Q) = RQ$ . Then  $N_{RQ}(Q) \leq N_G(Q)$ . Therefore  $|N_G(Q)| \geq |RQ| = 5.17$ . Therefore  $|G : N_G(Q)| \leq 3^2$  and  $n_5$  cannot be equal to 51. It follows that  $n_5 = 1$ . So Sylow 5-subgroup Q is normal in G. Let S be a Sylow 3-subgroup of G. Then  $n_3 = 1$ , or 85. Since  $RS \leq G$  and Sis a Sylow 3-subgroup of RS 4, 7, 10, does not divide 17. Then Sylow 3-subgroup is unique in RS. It follows that  $RS = N_{RS}(S) \leq N_G(S)$ . And  $|N_G(S)| \geq 17.3^2$ . So  $n_3 = |G : N_G(S)| \leq 5$ . So Sylow 3-subgroup of G is normal in G. Hence all Sylow subgroups of G are normal. Then G is nilpotent. Hence G is a direct product of its Sylow subgroups.

Since any group of order  $p^2$  is abelian we obtain S is an abelian group and Q and R are cyclic. Hence G is an abelian group.

(b) Every group of order  $3^3.5.17$  is nilpotent.

Let  $G = 3^3.5.17$ . Then  $n_{17} = 1$  so Sylow 17-subgroup is normal in G, say R. By the same argument above Sylow 5-subgroup is unique and so normal in G say Q.

Let S be a Sylow 3-subgroup. It is unique in RS hence  $n_3 = |G|$ :  $N_G(S)| \leq 5$  and  $n_3 \equiv 1 \pmod{3}$  and  $n_3$  does not divide 5 implies S is unique. Hence G is nilpotent. Therefore  $G = S \times Q \times R$  where  $|S| = 3^3$ .

A group G is called a **supersoluble** group if G has a series of normal subgroups  $N_i \triangleleft G$  in which each factor  $N_i/N_{i+1}$  in the series is cyclic for all *i*. The group  $A_4$  is soluble but not a supersoluble group.

**4.5.** Prove that the product of two normal supersoluble groups need not be supersoluble.

Hint: Let X be a subgroup of GL(2,3) generated by

$$a = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ and } b = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Thus  $X \cong D_8$ . Let X act in the natural way on  $A = \mathbb{Z}_3 \oplus \mathbb{Z}_3$  and write  $G = X \ltimes A$ . Show that G is not supersoluble. Let L and M be the disjoint Klein 4-subgroups of X and consider H = LA and K = MA.

**Solution** Observe that |a| = 4, |b| = 2, and  $b^{-1}ab = a^{-1}$ . Then  $|X/\langle a \rangle| = 2$ , |X| = 8. Let  $D_8 = \langle x, y \rangle$ . Then

$$\phi : D_8 \to X$$
$$x \to a$$
$$y \to b$$

By Von Dyck's theorem  $\phi$  is a homomorphism. Since  $\phi$  is onto, |X| = 8, we obtain  $\phi$  is an isomorphism.

$$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} i \\ j \end{array}\right) = \left(\begin{array}{c} -j \\ i \end{array}\right)$$

So  $G = X \ltimes A$  and |G| = 72. Moreover G has a series  $G \rhd A \rhd 1$ ,  $G/A \cong D_8$ .

If G is supersoluble, then there exists a normal subgroup of G contained in A. Let J be such a normal subgroup of order 3. Arbitrary element of J is of the form  $\begin{pmatrix} a \\ b \end{pmatrix}$ . Then J is invariant under the action of X. Let

$$J = \left\{ \left( \begin{array}{c} 0\\0 \end{array} \right), \left( \begin{array}{c} a\\b \end{array} \right), \left( \begin{array}{c} -a\\-b \end{array} \right) \right\}$$

Then

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} -b \\ a \end{pmatrix} \notin J$$
supersoluble

Therefore G is not supersoluble.

Let

$$L = \left\{ \left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \left( \begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array} \right), \left( \begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array} \right), \left( \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \right\}$$

and

$$M = \left\{ \left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \left( \begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array} \right), \left( \begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right), \left( \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \right\}$$

Then  $\langle L, M \rangle = X = LM$  and H = LA, K = MA implies |LA| = |MA| = 36. The groups H, K are normal in G hence HK = G since  $HK \ge \langle A, L, M, X \rangle = G$ . The groups H, K are supersoluble.

$$J = \left\{ \left( \begin{array}{c} 0\\0 \end{array} \right), \left( \begin{array}{c} a\\a \end{array} \right), \left( \begin{array}{c} -a\\-a \end{array} \right) \right\}$$

J is invariant under the action of L.

 $H \triangleright L_1 \triangleright A \triangleright J \triangleright 1$  so L is supersoluble.

$$B = \left\{ \left( \begin{array}{c} 0\\0 \end{array} \right), \left( \begin{array}{c} 1\\0 \end{array} \right), \left( \begin{array}{c} -1\\0 \end{array} \right) \right\}$$

is invariant under the action of M.  $B \lhd K$ 

 $K \triangleright K_1 \triangleright A \triangleright B \triangleright 1$ . Hence K is supersoluble.

**4.6.** Let G = GL(2,3) and  $G_1 = SL(2,3)$ .

(a) Find |G| and  $|G_1|$ . Moreover show that  $|G/G_1| = 2$  and |Z(G)| = 2 and  $Z(G) \leq G_1$ 

(b) Show that  $G_1/Z(G) \cong Alt(4)$  and that  $G_1$  has a normal Sylow 2-subgroup say J.

(c) Show that J is nonabelian. Deduce that  $G'_1 = J$ .

(d) Deduce that  $G' = G_1$ . Hence  $G_1$  has derived length 3 and G has derived length 4.

**Solution (a)**  $|G| = (3^2 - 1)(3^2 - 3) = 8.6 = 48$ . Consider determinant homomorphism  $det : G \to Z_3^* = \{1, -1\}$ . Then  $Ker(det) = G_1$  and  $G/G_1 \cong \{1, -1\}$ . Hence  $|G_1| = 24 = 3.2^3$ .

$$Z(G) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \le G_1$$

(b) Sylow 3-subgroup of G (and  $G_1$ ) has order 3. Then

$$U_1 = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, x \in \mathbb{Z}_3 \right\}, \text{ and } U_2 = \left\{ \begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix}, y \in \mathbb{Z}_3 \right\}$$

are Sylow 3-subgroups.  $n_3 \equiv 1 \pmod{3}$  and  $n_3 = |G_1 : N_{G_1}(U_1)|$ . Since the number of Sylow 3-subgroups is greater than or equal to 2 and  $n_3 = |G_1 : N_{G_1}(U_1)|$  we obtain  $n_3 = 4$  and  $|N_{G_1}(U_1)| = 6$ . Since  $Z(G) \leq N_{G_1}(U_1)$  we obtain  $N_{G_1}(U_1)$  is a cyclic subgroup of order 6 as Sylow 2-subgroup is in the center and any group of order 6 is either isomorphic to  $S_3$  or cyclic group of order 6. Then  $G_1$  acts by right multiplication on the set of right cosets of  $N_{G_1}(U_1)$  in  $G_1$ . The homomorphism  $\phi : G_1 \to Sym(4)$  gives;  $G_1/Ker \phi$  is isomorphic to a subgroup of Sym(4). Then  $Ker \phi = \bigcap_{x \in G_1} N_{G_1}(U_1)^x$ . As  $Z(G) \leq$  $Ker \phi$  and

$$N_{G_1}(U_1) \cap N_{G_2}(U_2) = \{ \begin{pmatrix} a & c \\ 0 & a \end{pmatrix} \} \cap \{ \begin{pmatrix} x & 0 \\ z & x \end{pmatrix} \} \le Z(G_1)$$

we obtain  $Z(G_1) = Ker \phi$ .

 $G_1/Z(G_1)$  is isomorphic to a subgroup of Sym(4). Since Sym(4) has only one subgroup of order 12 we obtain  $G_1/Z(G_1) \cong Alt(4)$ .

The group Alt(4) has a normal subgroup of order 4, we have  $J/Z(G_1) \triangleleft G_1/Z(G_1) \cong Alt(4)$  and we obtain  $|J/Z(G_1)| = 4$  and |J| = 8, Sylow 2-subgroup J of  $G_1$  is a normal 2-subgroup.

Moreover J/Z(G) char  $G_1/Z(G) \lhd G/Z(G)$  implies  $J/Z(G) \lhd G/Z(G)$ . Hence  $J \lhd G$ . In fact

$$J = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$$

(c) Observe that

$$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right) \neq \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$$

So J is non-abelian.

For  $G'_1 = J$ ; as  $J \triangleleft G_1$  and  $G_1/J \cong \mathbb{Z}_3$  we obtain  $G'_1 \leq J$  and  $J' \neq 1$ as J is non-abelian. Then  $J/Z(G_1) \leq G_1/Z(G_1) \cong Alt(4)$ . Then J is non-abelian of order 8, implies that J'' = 1 and  $J' \leq Z(G_1)$ . Recall that  $(1 \triangleleft V \triangleleft Alt(4), Alt(4)'' = 1)$ .

The order  $|G'_1Z(G_1)/Z(G_1)| = 4$  implies  $G'_1 \neq 1$  and  $G''_1 \leq Z(G_1)$ . So  $G_1^{(3)} = 1$ . If  $G'_1 = J$  we are done. Now  $|G'_1| = 2$  or  $|G'_1| = 4$ .  $|G'_1| = 2$  implies  $G_1$  is nilpotent hence Sylow 3-subgroup is unique which is impossible as we already found two distinct Sylow 3-subgroup.

If  $|G'_1| = 4$ , then Sylow 2-subgroup is a quaternion group of order 8 implies that  $G'_1$  is cyclic. Hence  $|Aut(G'_1)| = 2$ . Therefore  $G_1/C_{G_1}(G'_1)$ is isomorphic to a subgroup of  $Aut(G'_1)$ . Since  $N_{G_1}(G'_1) = G_1$  and 3 divides  $|C_G(G'_1)|$  we obtain Sylow 3-subgroup is unique in  $C_{G_1}(G'_1) \triangleleft G_1$ . Then Sylow 3-subgroup is unique in  $G_1$  This is a contradiction. Hence  $G'_1 = J$ .

As  $[1 + xe_{12}, ye_{11} - ye_{22}] = 1 - 2xe_{12}$  and  $[1 + xe_{21}, ye_{11} - ye_{22}] = 1 + 2xe_{21}$  we obtain  $U_1$  and  $U_2$  are contained in G'. And hence the subgroup  $\langle U_1, U_2 \rangle \leq G'$ . Then the elements of the form

$$\left(\begin{array}{cc}1 & x\\ 0 & 1\end{array}\right)\left(\begin{array}{cc}1 & 0\\ y & 1\end{array}\right) = \left(\begin{array}{cc}1+xy & x\\ y & 1\end{array}\right) \in G'$$

In particular for x = y = 1 the elements

$$a = \left(\begin{array}{cc} -1 & 1\\ 1 & 1 \end{array}\right) \in G'$$

|a| = 4 and for x = y = -1

$$b = \left(\begin{array}{cc} -1 & -1 \\ -1 & 1 \end{array}\right) \in G'$$

is an element of order 4. Moreover a and b are contained in J. Since these elements generate J we obtain  $J \leq G'$ . Hence 3 divides |G'| and 8 divides |G'| and  $G' \leq G_1$  implies that |G'| = 24 and  $G' = G_1$ .

**4.7.** Let G be a finite group with trivial center. If G has a nonnormal abelian maximal subgroup A, then show that G = AN and  $A \cap N = 1$  for some elementary abelian p-subgroup N which is minimal normal in G. Also A must be cyclic of order prime to p.

**Solution** Let A be an abelian maximal subgroup of G such that A is not normal in G. Then for any  $x \in G \setminus A$ . So we obtain  $\langle A, x \rangle = G$ . Therefore for any  $x \in G \setminus A$ , we have  $A^x \neq A$  otherwise A would be normal in G. But then consider  $A \cap A^x$ . Since  $A^x \neq A$  and A is maximal,  $\langle A, A^x \rangle = G$ . If  $w \in A \cap A^x$ , then  $C_G(w) \geq \langle A, A^x \rangle = G$ . Since A is abelian and  $A^x$  is isomorphic to A so that  $A^x$  is also maximal and abelian in G. But  $C_G(w) = G$  implies  $w \in Z(G) = 1$ . Hence  $A \cap A^x = 1$ . This shows that A is Frobenius complement in G. Hence there exists a Frobenius kernel N such that G = AN and  $A \cap N = 1$ . By Frobenius Theorem, Frobenius kernel is a normal subgroup of G. So G = AN implies  $G/N = AN/N = A/A \cap N$ , hence G is soluble. It follows from the fact that minimal normal subgroup of a soluble group is elementary abelian p-group for some prime p, N is an elementary abelian p-group.

If there exists a normal subgroup M in G such that G = AM and  $M \leq N$ . Then  $A \cap M \leq A \cap N = 1$ . Moreover  $|G| = \frac{|A||M|}{|A \cap M|} = \frac{|A||N|}{|A \cap N|} = |A||M| = |A||N|$ . Hence |M| = |N|, this implies M = N. Hence N is minimal normal subgroup of G.

Since N is elementary ableian p-group if A contains an element gof order power of p, then the group  $H = N\langle g \rangle$  is a p-group. Hence  $Z(H) \neq 1$ . Let  $x \in Z(H)$ . If  $x \in A$ , then  $C_G(x) \geq \langle A, N \rangle = G$ . This implies that  $x \in Z(G) = 1$  which is impossible. So  $x \in G \setminus A$ . Then  $\langle g \rangle \cap \langle g \rangle^x \leq A \cap A^x = 1$ . But  $\langle g \rangle \cap \langle g \rangle^x = \langle g \rangle$ . Hence (|A|, p) = 1. i.e.  $p \nmid |A|$ .

Claim: A is cyclic: By Frobenius Theorem, Sylow q-subgroups of Frobenius complement A are cyclic if q > 2 and cyclic or generalized quaternion if p = 2 (Burnside Theorem, Fixed point free Automorphism in [?]). Since A is abelian Sylow subgroup can not be generalized quaternion group. Hence all Sylow subgroups of A are cyclic. This implies that A is cyclic.

**4.8.** Let G be a finite group. If G has an abelian maximal subgroup, then show that G is soluble with derived length at most 3.

**Solution** Let A be an abelian maximal subgroup of G. If A is normal in G, then for any  $x \in G \setminus A$ , we have  $A\langle x \rangle = G$ . Hence  $G/A \cong$  $A\langle x \rangle / A \cong x \rangle / \langle x \rangle \cap A$ . Then G/A is cyclic and A is abelian implies G'' = 1 and hence G is soluble. Now consider Z(G). If Z(G) is not a subgroup of A, then AZ(G) = G. This implies that G is abelian. Hence we may assume that Z(G) is a subgroup of A. Then  $A \cap A^x \ge Z(G)$ , on the other hand if  $w \in A \cap A^x$ , then  $C_G(w) \ge \langle A, A^x \rangle = G$ . Hence  $w \in Z(G)$ . It follows that  $A \cap A^x = Z(G)$ .

Now, consider the group  $\overline{G} = G/Z(G)$ . Then  $\overline{G}$  has an abelian maximal subgroup  $\overline{A}$ . Then for any  $\overline{x} \in \overline{G} \setminus \overline{A}$ . We obtain  $\overline{A} \cap \overline{A}^x =$  $\overline{1}$ . Hence  $\overline{G}$  is a Frobenius group with Frobenius complement  $\overline{A}$  and Frobenius kernel  $\overline{N}$ . Then  $\overline{G} = G/Z(G) = (A/Z(G))(N/Z(G))$ . The group  $\overline{G}$  is soluble hence G is soluble. As in [?] Lemma 2.2.8  $\overline{N}$  is an elementary abelian p-group and  $\overline{N}$  is a minimal normal subgroup of  $\overline{G}$ .

Since  $\overline{G} = \overline{AN}$  and A is abelian, we obtain  $\overline{G}' \leq \overline{N}$  and  $\overline{G}'' \leq Z(\overline{G})$ as  $\overline{N}$  is abelian. Hence  $(G/Z(G))' \leq N/Z(G)$  and  $G''Z(G)/Z(G) \leq Z(G)/Z(G)$ . i.e  $G'' \leq Z(G)$ . Hence  $G^{(3)} = 1$ .

**4.9.** Let  $\alpha$  be a fixed point free automorphism of a finite group G. If  $\alpha$  has order a power of a prime p, then p does not divide |G|. If p = 2, infer via the Feit-Thompson Theorem that G is soluble.

**Solution:** Recall that a fixed point free automorphism  $\alpha$  stabilizes a Sylow *p*-subgroup of *G*. The point is  $P_0^{\alpha} = P_0^g$  for some  $g \in G$  where  $P_0$  is a Sylow *p*-subgroup of *G*. Since the map

$$\begin{array}{ccc} G \to & G \\ x \to & x^{-1} x^{\alpha} \end{array}$$

is a bijective map we may write every element  $g = h^{-1}h^{\alpha}$  for some  $h \in G$ . Let  $P = P_0^{h^{-1}}$ . Then

$$P^{\alpha} = ((P_0^{h^{-1}})^{\alpha} = (P_0^{\alpha})^{(h^{-1})^{\alpha}} = (P_0^g)^{(h^{-1})^{\alpha}} = (P_0^{h^{-1}h^{\alpha}})^{(h^{-1})^{\alpha}} = P^{h^{\alpha}(h^{-1})^{\alpha}} = P^{h^$$

So  $\alpha$  becomes an automorphism of P. Then let  $H = P \rtimes \langle \alpha \rangle$ . If  $\langle \alpha \rangle$  is a *p*-group, then H is a *p*-group. So  $Z(H) \neq 1$ . This implies that if  $1 \neq Z(H)$ , then  $z^{\alpha} = z$  which is impossible by fixed point free action. Hence  $\alpha$  can not be a power of a prime dividing |G|. i.e.  $(|\alpha|, |G|) = 1$ .

So if a group G has a fixed point free automorphism of order  $2^n$ for some n, then (2, |G|) = 1. Hence by Feit-Thompson theorem |G|

is odd and G is soluble. It follows that a group has a fixed point free automorphism  $\alpha$  of order power of a prime 2 is soluble.

**4.10.** If X is a nontrivial fixed point free group of automorphisms of a finite group G, then  $X \ltimes G$  is a Frobenius group.

**Solution:** We need to show that for any

$$\alpha \in (X \ltimes G) \setminus X, \qquad X \cap X^{\alpha} = 1.$$

Let  $\alpha = xg$  where  $g \neq 1$  and assume that  $w \in X \cap X^{\alpha} = X \cap X^{xg} = X \cap X^{g}$ . Then  $w = x = y^{g}$  for some  $x, y \in X$ . The element  $yy^{-1}g^{-1}yg = x = w \in X$  implies that  $y^{-1}g^{-1}yg = y^{-1}x \in X$  as  $x, y \in X$ . Moreover  $y(g^{-1})^{y}g = x \in GX$ . Then  $(g^{-1})^{y}g \in X \cap G = 1$ . Hence  $(g^{-1})^{y}g = 1$  which implies  $(g^{-1})^{y} = g^{-1}$ . But y is a fixed point free automorphism, this implies that g = 1 which is a contradiction.

Hence  $X \cap X^{\alpha} = 1$  for all  $\alpha \in (X \ltimes G) \setminus X$ . It follows that  $X \ltimes G$  is a Frobenius group with Frobenius Kernel G and Frobenius complement X.

# **4.11.** A soluble p-group is locally nilpotent.

**Solution:** A group G is called a p-group if every element of G has order a power of a fixed prime p. A periodic soluble group is a locally finite group. One can see this by induction on the derived length n of G. For n = 1, then G is a periodic abelian group which is clearly locally nilpotent. Assume n > 1 and let S be a finitely generated subgroup of G. Then SG'/G' is finite as it is abelian and finitely generated pgroup. Moreover  $SG'/G' \cong S/S \cap G'$ . As S is finitely generated and  $S/(S \cap G')$  is finite we have  $S \cap G'$  is a finitely generated subgroup of the p-group G'. By induction assumption  $S \cap G'$  is finite and  $S/S \cap G'$ is finite implies S is finite. It follows that G is locally finite.

A locally finite p-group is locally nilpotent because every finitely generated subgroup is a finite p-group. Hence it is nilpotent.

**4.12.** A finite group has a fixed-point-free automorphism of order 2 if and only if it is abelian and has odd order.

**Solution:** Let G be an abelian group of odd order.

$$\alpha: G \to G$$

$$x \to x^{-1}$$

 $\alpha$  is a fixed-point-free automorphism of G. Indeed if  $\alpha(x) = x$  implies  $x = x^{-1}$ . Then  $x^2 = 1$ . Hence there exists a subgroup of order 2. This implies |G| is even. Hence x = 1.

Conversely let  $\alpha$  be a fixed point free automorphism of a finite group G. Then the map

$$\beta: G \to G$$
$$x \to x^{-1}\alpha(x)$$

is a 1-1 map. Indeed  $\beta(x) = \beta(y)$  implies  $x^{-1}\alpha(x) = y^{-1}\alpha(y)$ . Then  $yx^{-1} = \alpha(y)\alpha(x)^{-1} = \alpha(yx^{-1})$ . Since  $\alpha$  is fixed-point-free we obtain x = y. Now, for any  $g \in G$ , there exists  $x \in G$  such that  $g = x^{-1}\alpha(x)$ . Then  $\alpha(g) = \alpha(x^{-1}\alpha(x)) = \alpha(x)^{-1}\alpha^2(x) = \alpha(x)^{-1}x = g^{-1}$ . Now  $\alpha(g_1g_2) = (g_1g_2)^{-1} = \alpha(g_1)\alpha(g_2) = g_1^{-1}g_2^{-1} = (g_1g_2)^{-1} = g_2^{-1}g_1^{-1}$ . It follows that  $g_1g_2 = g_2g_1$ . Hence G is an abelian group.

Moreover if there exists an element y of order 2, then  $\alpha(y) = y^{-1} = y$ . Which is impossible as  $\alpha$  is a fixed-point-free automorphism of order 2.

**4.13.** Let G be a finite Frobenius group with Frobenius kernel K. If |G:K| is even, prove that K is abelian and has odd order.

**Solution:** Frobenius kernel K is a normal subgroup of G. Let X be a Frobenius complement. Then G = KX and  $K \cap X = 1$ . Since order of G/K is even, we obtain  $|G/K| = |XK/K| = |X/X \cap K| = |X|$ . Then there exists an element  $x \in X$  of order 2. Then

$$\alpha_x: K \to K$$
$$g \to x^{-1}gx$$

is an automorphism of K. Moreover  $|\alpha_x| = 2$  and  $\alpha_x$  is fixed-point-free.

If  $x^{-1}kx = k$  for some  $k \in K$ . Then  $kxk^{-1} = x$  and  $X \cap X^k \neq 1$ where  $k \in G \setminus X$ . Which is impossible. Hence  $\alpha_x$  is a fixed point free automorphism of K of order 2. Then by question 4.12 K is abelian of odd order.

Recall that if G is a finite group and  $p_1, \dots, p_k$  denote the distinct prime divisors of |G| and  $Q_i$  is a Hall  $p'_i$ -subgroup of G. Then the set  $\{Q_1, \dots, Q_k\}$  is called a Sylow system of G. By Hall's theorem every soluble group has a Sylow-system.  $N = \bigcap_{i=1}^{k} N_G(Q_i)$  is called system normalizer of G.

**4.14.** Locate the system normalizers of the groups:  
(a) 
$$S_3$$
 (b)  $A_4$  (c)  $S_4$  (d)  $SL(2,3)$ 

# Solution:

(a)  $S_3$  is soluble and  $H_1 = \{(1), (12)\}, H_2 = \{1, (13)\}, H_3 = \{1, (23)\}$ . are Hall 2-subgroups of  $S_3$  or Hall 3'-subgroup of  $S_3$ , and  $A_3 = \{1, (123), (132)\}$  is a Hall 2'-subgroup or Hall 3-subgroup of  $S_3$ . Then  $\{H_1, A_3\}$  is a Sylow system of G.  $N_{S_3}(H_i) \cap N_{S_3}(A_3) = H_i \cap S_3 = H_i$  system normalizer of  $S_3$  i = 1, 2, 3.

(b) Observe that  $V = \{1, (12)(34), (13)(24), (14)(23)\}$  is a Hall 2-subgroup or Hall 3'-subgroup of  $A_4$ . The group  $V \triangleleft A_4$ , hence there is only one Hall 2-subgroup of  $A_4$ .

$$H_1 = \{(1), (123), (132)\}, H_2 = \{(1), (124), (142)\}$$
$$H_3 = \{(1), (134), (143)\}, H_4 = \{1, (234), (243)\}$$

are Hall 3-subgroups or Hall 2'-subgroups of  $A_4$ .

Since  $A_4$  has no subgroup of index 2 and  $H_i$  is not normal in  $A_4$  we obtain  $N_{A_4}(H_i) = H_i$ .  $\{H_i, V\}$  is Sylow System of  $A_4$  and  $N_{A_4}(H_i) \cap N_{A_4}(V) = H_i \cap A_4 = H_i$ , System normalizers of  $A_4$ .

(c)  $S_4$  is a soluble group of derived length 3. Sylow 2-subgroup becomes Hall 2-subgroup or equivalently Hall 3'-subgroup.

Sylow 3-subgroup of  $S_4$  becomes Hall 3-subgroup equivalently Hall 2'-subgroup of  $S_4$ . Let  $H_1$  be a Sylow 2-subgroup of order 8 in  $S_4$ . Then  $H_1$  is not normal in  $S_4$ . Hence  $N_{S_4}(H_1) = H_1$ . There are 4 Sylow 3-subgroups. Hence  $K_1 = \{1, (123), (132)\}$  as in  $A_4$  every 3-cycle generates a Sylow 3-subgroup of  $S_4$ . But  $|S_4 : N_{S_4}(K_i)| = 4$  implies  $|N_{S_4}(K_i)| = 6$ .

Namely  $N_{S_4}(K_1) \cong S_3$ . Similarly  $N_{S_4}(K_i) \cong S_3$ . For  $K_1$  we obtain  $N_{S_4}(K_1) = \{1, (13), (12), (23), (123), (132)\}, \{K_1, H_1\}$  is a Sylow System. Since  $V \triangleleft S_4$  every Sylow 2-subgroup contains V.

$$H_1 = \{1, (12), (34), (13)(24), (14)(23), (23), (1342), (1243), (14)\}$$

$$|SL(2,3)| = \frac{(3^2 - 1)(3^2 - 3)}{2} = \frac{8 \cdot 6}{2} = 24.$$

$$H_1 = \left\{ \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \middle| x \in \mathbb{Z}_3 \right\} \text{ is a Sylow 3-subgroup}$$

$$H_2 = \left\{ \begin{bmatrix} 1 & 0 \\ y & 1 \end{bmatrix} \middle| y \in \mathbb{Z}_3 \right\} \text{ is a Sylow 3-subgroup}$$

$$H_3 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, y = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}, y^2 = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

is a Sylow 3-subgroup of SL(2,3).

Then the number of Sylow 3-subgroups is 4.

(d)

$$Z(SL(2,3)) = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$$

 $N_{SL(2,3)}(H_1) \ge \langle Z(SL(2,3)), H_1 \rangle = H_1 \times Z(SL(2,3))$ 

The index  $|SL(2,3) : N_{SL(2,3)}(H_1)| = 4$  implies  $|N_{SL(2,3)}(H_1)| = 6$ . So  $N_{SL(2,3)}(H_1)$  is a cyclic group of order 6 and generated by the element

$$t = \left[ \begin{array}{rrr} -1 & 1 \\ 0 & -1 \end{array} \right]$$

All Sylow 2-subgroup contains Z(SL(2,3)). Let S be a Sylow 2subgroup of order 8. Then  $N_{SL(2,3)}(S) = SL(2,3)$  since by Question 4.6 S is normal in SL(2,3),  $\{S, H_1\}$  is a Sylow system.

$$N_{SL(2,3)}(S) \cap N_{SL(2,3)}(H_1) = Z(SL(2,3)) \times H_1.$$

So  $Z(SL(2,3)) \times H_1$  is a System normalizer of SL(2,3).

**4.15.** Let G be a finite soluble group which is not nilpotent but all of whose proper quotients are nilpotent. Denote by L the last term of the lower central series. Prove the following statements:

(a) L is minimal normal in G.

- (b) L is an elementary abelian p-group.
- (c) there is a complement  $X \neq 1$  of L which acts faithful on L
- (d) the order of X is not divisible by p.

**Solution:** (a) Let  $\gamma_1(G) \geq \gamma_2(G) \geq \cdots > \gamma_k(G) = L \neq 1$ . Since G is not nilpotent, there exists k such that  $L = \gamma_k(G) = \gamma_{k+1}(G) \neq 1$ . The group L is a normal subgroup of G as each term in the lower central series is a characteristic subgroup of G. If there exists a normal subgroup  $N \triangleleft G$ , and  $N \leq L$ , then by assumption G/N is a nilpotent group. Hence  $\gamma_n(G/N) = 1$ . Equivalently  $\gamma_n(G/N) \leq N$ . But this implies  $N/N = \gamma_n(G/N) = \gamma_n(G)N/N = L/N$ . This implies L = N contradiction. Hence L is a minimal normal subgroup of G.

(b) For a finite soluble group minimal normal subgroup is an elementary abelian p-group for some prime p.

(c) Now by Gaschutz-Schenkman, Carter Theorem, if G is a finite soluble group and L is the smallest term of the Lower central series of G. If N is any system normalizer in G, then G = NL. If in addition L is abelian, then also  $N \cap L = 1$  and N is a complement of L.

Now by the above theorem L has a complement N where N is a system normalizer in G. For solvable groups system normalizer exists. Hence there exists X such that G = XL. By the same theorem since L is abelian we obtain  $X \cap L = 1$ , so X is a complement of L in G.

Claim X acts faithfully on L.

Since L is a minimal normal subgroup of G, the group X acts on L by conjugation. Let K be the kernel of the action of X on L. Then  $K \triangleleft X$  and K commutes with L. Hence  $N_G(K) \ge XL = G$ . It follows that K is normal in G. Then G/K is nilpotent by assumption. Hence  $L = \gamma_n(G) \le K \le X$ . But  $X \cap L = 1$ . Hence K = 1 and X acts on L faithfully.

(d) Assume that  $p \mid |X|$ . Let P be a Sylow p-subgroup of G containing L. Then for  $x \in P \setminus L$  and  $x \in X$ ,  $\langle x \rangle$  acts an L faithfully. Consider  $T = L \langle x \rangle$ . Then T is a p-group  $Z(T) \neq 1$ . Let  $1 \neq w \in Z(T)$ ,  $w = \ell x^i$  for some i. Then for any  $g \in L$ ,  $g^{\ell x^i} = g^{x^i} = g$  as L is abelian.

Then  $x^i$  acts trivially on L implies  $x^i = 1$ . This implies  $Z(T) \leq L$ . X system normalizer is nilpotent, implies that G = XL.

Let  $X = P_1 \times P_2 \times \cdots \times P_n$ , where  $P_i$ 's are Sylow  $p_i$ -subgroups of X. Let  $LP_1 = P$  Sylow p-subgroup of G.

Since G = LX and  $P_1 \triangleleft X$  we obtain  $N_G(P) = G$  so  $P \triangleleft G$ . Then Z(P) char  $P \triangleleft G$  so  $Z(P) \triangleleft G$ . Then G/Z(P) is nilpotent hence  $L = \gamma_n(G) \leq Z(P)$ . So  $[L, P_1] = 1$ . Since X normalizes  $P_1$  and  $[L, P_1] = 1$  we obtain  $P_1 \triangleleft G$ . If  $P_1 \neq 1$ , then  $G/P_1$  is nilpotent. Hence  $L = \gamma_n(G) \leq P_1$  but  $L \cap P_1 = 1$ . Hence  $L \leq P_1$  is impossible. So  $P_1 = 1$ .

**4.16.** Write H asc K to mean that H is an ascendant subgroup of a group K. Establish the following properties of ascendant subgroups.

(a) H asc K and K asc G imply that H asc G.

(b) H asc K ≤ G and L asc M ≤ G imply that H ∩ L asc K ∩ M
(c) If H asc K < G and α is a homomorphism from G, then H<sup>α</sup>

is asc  $K^{\alpha}$ . Deduce that HN asc KN if  $N \triangleleft G$ .

**Solution:** (a) H asc K implies, there exists a series  $H = H_0 \triangleleft$  $H_1 \triangleleft \cdots \triangleleft H_{\alpha} = K$  for some ordinal  $\alpha$ . Similarly there exists an ordinal  $\beta$  such that  $K = K_0 \triangleleft K_1 \triangleleft \cdots \triangleleft K_{\beta} = G$ . Then

$$H = H_0 \triangleleft H_1 \cdots \triangleleft H_\alpha = K \triangleleft K_{\alpha+1} \triangleleft \cdots \triangleleft K_{\alpha+\beta} = G$$

be an ascending series of H in G.

(b) Let  $L = L_0 \triangleleft H_1 \triangleleft \cdots \triangleleft L_\beta = M$  be a series of L in M. Then

$$L \cap H = L_0 \cap H \triangleleft L_1 \cap H \triangleleft \cdots \triangleleft L_\beta \cap H = M \cap H$$

Moreover

$$M \cap H \triangleleft M \cap H_1 \triangleleft \cdots \triangleleft M \cap H_\alpha = M \cap K$$

Hence  $L \cap H$  asc  $M \cap K$ .

(c) If H asc K, then there exists an ordinal  $\gamma$  such that  $H = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_{\gamma} = K$ . Then  $H^{\alpha} \leq H_1^{\alpha} \leq \cdots \leq H_{\gamma}^{\alpha} = K^{\alpha}$  is an ascending series of  $H^{\alpha}$  in  $K^{\alpha}$ .

 $HN = H_0N \triangleleft H_1N \triangleleft \cdots \triangleleft H_{\gamma}N = KN$ . Hence HN asc KN. Observe that  $H \triangleleft H_1$  and  $N \triangleleft G$  implies  $HN \triangleleft H_1N$ 

**4.17.** A group is called radical if it has an ascending series with locally nilpotent factors. Define the upper Hirsch Plotkin series of a group G to be the ascending series  $1 = R_0 \leq R_1 \leq \ldots$  in which  $R_{\alpha+1}/R_{\alpha}$  is

the Hirsch-Plotkin radical of  $G/R_{\alpha}$  and  $R_{\lambda} = \bigcup_{\alpha \langle \lambda} R_{\alpha}$  for limit ordi-

nals  $\lambda$ . Prove that the radical groups are precisely those groups which coincide with a term of their upper Hirsch-Plotkin series.

**Solution:** It is clear by definition of a radical group that, if a group coincides with a term of its upper Hirsch Plotkin series then it is an ascending series with locally nilpotent factors. Hence it is a radical group.

Conversely assume that G is a radical group with an ascending series  $1 \leq H_0 \leq H_1 \leq \cdots \leq H_\beta = G$  such that  $H_i \triangleleft H_{i+1}$  and  $H_{i+1}/H_i$  is locally nilpotent.

Recall from [?, 12.14] that if G is any group the Hirsch-Plotkin radical contains all the ascendent locally nilpotent subgroups.

Let  $R_i$  denote  $i^{th}$  term in Hirsch-Plotkin series of G.

**Claim:**  $H_i \leq R_i$  for all *i*. For i = 0 clear.

Assume that  $H_{i-1} \leq R_{i-1}$  we know that  $H_i/H_{i-1}$  is locally nilpotent. Then  $H_iR_{i-1}/R_{i-1} \leq G/R_{i-1}$ . Moreover  $H_iR_{i-1}/R_{i-1}$  is an ascendent subgroup of  $G/R_{i-1}$  and  $H_iR_{i-1}/R_{i-1}$  is locally nilpotent. Hence by [?, 12.1.4] it is contained in the Hirsch Plotkin radical of  $G/R_{i-1}$  i.e.  $H_iR_{i-1} \leq R_i$ . It follows that  $H_i \leq R_i$ .

**4.18.** Show that a radical group with finite Hirsch-Plotkin radical is finite and soluble.

**Solution:** Let H be a Hirsch-Plotkin radical of a radical group G. By previous question  $C_G(H) = Z(H)$ . Now consider  $G/C_G(H) = G/Z(H)$  which is isomorphic to a subgroup of Aut H. If H is finite, then Aut H is finite. Hence G/Z(H) is a finite group. Hence G/Z(H) is finite and H is finite implies G is a finite group. Then  $1 \leq H_1 \leq H_2 \leq \cdots \leq H_n = G$  implies G is soluble as  $\gamma_k(H_n) \leq H_{n-1}$ . So  $G^{(k)} \leq H_{n-1}$  and so on.

**4.19.**  $T(2,\mathbb{Z}) \cong D_{\infty} \times \mathbb{Z}_2$  where  $D_{\infty}$  is the infinite dihedral group.

Solution:

$$T(2,\mathbb{Z}) = \left\{ \left[ \begin{array}{cc} \mp 1 & t \\ 0 & \mp 1 \end{array} \right] \middle| t \in \mathbb{Z} \right\}$$

$$C = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\} \text{ is equal to the center of } T(2, \mathbb{Z}).$$
  
Indeed  $\begin{bmatrix} a & c \\ 0 & b \end{bmatrix}$  is in the  $Z(T(2, \mathbb{Z}))$ 
$$\begin{bmatrix} a & c \\ 0 & b \end{bmatrix} \begin{bmatrix} 1 & t \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & t \\ 0 & -1 \end{bmatrix} \begin{bmatrix} a & c \\ 0 & b \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} a & at - c \\ 0 & -b \end{bmatrix} = \begin{bmatrix} a & c + tb \\ 0 & -b \end{bmatrix}, \quad \forall t \in \mathbb{Z}$$
$$at - c = c + tb \Rightarrow (a - b)t = 2c \text{ Since } t \text{ is arbitrary}$$
for  $t = 0$  we have  $c = 0$  and so  $a = b$ 

Hence the center  $C \cong \mathbb{Z}_2$ .

Now consider

$$H = \left\langle \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \mid b \in \mathbb{Z} >$$

H is a subgroup of  $T(2,\mathbb{Z})$ 

$$N = \left\{ \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \mid b \in \mathbb{Z} \right\} \le H$$

$$N \cong \mathbb{Z}$$

$$\varphi : N \to \mathbb{Z}$$

$$\begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \to b$$

$$\varphi \left( \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \right) = \varphi \left( \begin{bmatrix} 1 & a+b \\ 0 & 1 \end{bmatrix} \right) = a+b$$

$$\varphi \left( \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \right) + \varphi \left( \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \right) = a+b \Rightarrow \varphi \text{ is a homomorphism}$$

$$N \lhd H. \text{ Indeed}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & b \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} =$$

$$= \begin{bmatrix} 1 & -b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}^{-1} \in N$$

 $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \text{ is an element of order 2.}$ So  $H = N \rtimes \langle \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \rangle$  Let  $a = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ 

Every element of N is inverted by a and  $a^2 = 1$ . The group N is a cyclic group isomorphic to Z. So, H is isomorphic to infinite dihedral group.

{ The dihedral group  $D_{\infty}$  is a semidirect product of infinite cyclic group and a group of order 2 }.  $H \cap C = \{1\}$ 

$$[H, C] = 1$$
$$H \times C \le T(2, \mathbb{Z})$$

We take an arbitrary element from  $T(2,\mathbb{Z})$ . If the entry  $a_{11} = -1$  by multiplying

$$\begin{bmatrix} -1 & b \\ 0 & \mp 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -b \\ 0 & \mp 1 \end{bmatrix} \in H$$

Therefore, every element in  $T(2,\mathbb{Z})$  can be written as a product of an element from H.

**4.20.** Show that  $Q_{2^n}/Z(Q_{2^n})$  is isomorphic to  $D_{2^{n-1}}$  for n > 2.

Solution: Recall that

 $Q_{2^n} = \langle x, y \mid x^2 = y^{2^{n-2}}, y^{2^{n-1}} = 1, x^{-1}yx = y^{-1}, n > 2 \rangle$  $(y^{2^{n-2}})^x = (y^{-1})^{2^{n-2}} = (x^2)^x = x^2 y^{2^{n-2}} \text{ as } y^{2^{n-2}} \text{ has order 2. So } y^{2^{n-2}}$ commutes with x and y hence  $y^{2^{n-2}}$  is in the center of  $Q_{2^n}$ . The group  $\langle y \rangle$  has index 2 in  $Q_{2^n}$  as  $x^2 \in \langle y \rangle$ . Hence  $\langle y \rangle$  is normal in  $Q_{2^n}$ . Moreover  $x \langle y \rangle \neq \langle y \rangle$  and  $|Q_{2^n}| = 2^n$  and every element of  $Q_{2^n}$  can be written as  $x^i y^j$  where i = 0, 1 and  $0 \le j \le 2^{n-1}$ .

The writing of every element is unique, as

$$x^{i}y^{j} = x^{m}y^{k}, \ 0 \le i, m \le 1, \ 0 \le k, j \le 2^{n-1}$$

implies  $x^{m-i} = y^{k-j}$ . Then m-i = 0 or 1 but if m-i = 1 we obtain  $x \in \langle y \rangle$  which is impossible. Hence m-i = 0 and k-j = 0. This

implies every element of  $Q_{2^n}$  can be written uniquely in the form  $x^i y^j$ .

Now assume that an element  $x^i y^j \in Z(Q_{2^n})$ . Then  $(x^i y^j)^x =$  $x^{i}(y^{j})^{x} = x^{i}y^{-j} = x^{i}y^{j}$ . Hence  $y^{2j} = 1$ . Since there exists a unique subgroup of order 2 in  $\langle y \rangle$  we obtain  $j = 2^{n-2}$ . Then  $(x^{i_{j_{l}}2^{n-2}})^{y_{l}} - (x^{i_{j_{l}}2^{n-2}} - x^{-1})^{j_{j_{l}}2^{n-2}}$ .

$$(x^{i}y^{2})^{y} = (x^{i})^{y}y^{2} = y^{-1}x^{i}yy^{2}$$
  
=  $x^{i}x^{-i}y^{-1}x^{i}yy^{2^{n-2}} = x^{i}(y^{-1})^{x^{i}}yy^{2^{n-2}} = x^{i}y^{2^{n-2}}.$ 

It follows that  $(y^{-1})^{x^*}y = 1$  and so  $(y)^{x^*} = y$ . Since i = 0 or 1, in case i = 1 we obtain  $y^2 = 1$  and  $Q_{2^n} = Q_4$  abelian case.

So the center  $Z(Q_{2^n}) = \langle y^{2^{n-2}} \rangle$  and  $|Z(Q_{2^n})| = 2$ . Moreover  $|Q_{2^n}/Z(Q_{2^n})| = 2^{n-1}.$ 

$$Q_{2^n}/Z(Q_{2^n}) = \langle x, y \mid x^2 = y^{2^{n-2}}, y^{2^{n-1}} = 1, \ x^{-1}yx = y^{-1} > /Z(Q_{2^n}).$$
  
Let  $\overline{x} = x \ Z(Q_{2^n} \text{ and } \overline{y} = y \ Z(Q_{2^n}).$  Then  $\overline{x}^2 = 1 \text{ and } \overline{y}^{2^{n-2}} = 1$   
Moreover  $\overline{x}^{-1}\overline{yx} = \overline{y}^{-1}.$ 

The map

$$\varphi: Q_{2^n}/Z(Q_{2^n}) \longrightarrow D_{2^{n-1}}$$

where

$$D_{2^{n-1}} = \langle a, b \mid a^2 = 1 = b^{2^{n-2}}, a^{-1}ba = b^{-1} \rangle.$$

$$\overline{x} \longrightarrow a$$
$$\overline{y} \longrightarrow b$$

 $\varphi$  is an epimorphism both groups have the same order hence  $Q_{2^n}/Z(Q_{2^n}) \cong D_{2^{n-1}}$ 

**4.21.** Let  $G = \langle x, y \mid x^3 = y^3 = (xy)^3 = 1 \rangle$ . Prove that  $G \cong A \ltimes \langle x \rangle$  $t > where t^3 = 1$  and  $A = \langle a \rangle \times \langle b \rangle$  is the direct product of two infinite cyclic groups, the action of t being  $a^t = b$ ,  $b^t = a^{-1}b^{-1}$ .

*Hint: prove that*  $\langle xyx, x^2y \rangle$  *is a normal abelian subgroup.* 

**Solution:** Let  $N = \langle xyx, x^2y \rangle$ . The group N is a normal subgroup of G. Indeed,  $x^{-1}(xyx)x = yx^2 = yx^{-1}$ .

The product of two elements of N is  $xyx \cdot x^2y = xy^2 = xy^{-1} =$  $(yx^{-1})^{-1} = (yx^2)^{-1} \in N$  hence  $yx^{-1} \in N$ 

$$x(xyx)x^{-1} = x^2y \in I$$

 $(x^2y)^x = x^{-1}x^2yx = xyx \in N$ , and  $x(x^2y)x^{-1} = yx^{-1} \in N$ . Hence  $N \lhd G.$ 

By previous paragraph  $xyx \cdot x^2y = xy^2 = xy^{-1}$  and now  $x^2y \cdot xyx = x \cdot (xy)(xy) \cdot x = x \cdot (xy)^2 \cdot x = x \cdot y^2x^2 \cdot x = xy^2 = xy^{-1}.$ 

Hence  $x^2y$  and xyx commute.

Observe that

$$xy \cdot xy = (xy)^{-1} = y^{-1}x^{-1} = y^2x^2.$$

Hence N is abelian normal subgroup of G. For the order of the element xyx we have

$$(xyx)^2 = xyx \cdot xyx = xyx^2yx = xyx^{-1}yx$$

Since  $xy^{-1} \in N$  we obtain xN = yN. But  $x^3 = 1$  implies  $x^3N = N$ . It is clear that  $x \notin N$ ; otherwise N = G, then G is abelian, but  $xy \neq yx$ ,  $\langle xN \rangle$  has order 3; otherwise  $x^2 \in N$  implies  $y \in N$  as  $yx^2 \in N$ . So xN has order 3 and  $\langle x \rangle \cap N = 1$ 

$$(x^2y)^x = x^{-1}x^2yx = xyx$$

Moreover

$$(xyx)^{x} = yx^{2} = y^{-1}(x^{-2}x^{-1})y^{-1}x^{-1}$$
 as  $y^{3} = 1$  and  $x^{2} = x^{-1}$   
=  $y^{-2}x^{-1} = yx^{-1} = yx^{2} = (x^{2}y)^{-1}(xyx)^{-1}$ as  $y^{-2} = y$  and  $x^{2} = x^{-1}$   
Now let  $x^{2}y = a$ , and  $xyx = b$ . Then  
 $a^{x} = (x^{2}y)^{x} = x^{-1}x^{2}yx = xyx$  and

$$b^{x} = (xyx)^{b} = yx^{2} = (x^{2}y)^{-1} = y^{-1}x^{-2}x^{-1}y^{-1}x^{-1}$$

 $= y^{-2}x^{-1} = yx^{-1} = yx^2 = a^{-1}b^{-1}.$ 

Then by von Dyck's theorem we obtain the isomorphism.

**4.22.** Show that  $S_3$  has the presentation

$$\langle x, y \mid x^2 = y^3 = (xy)^2 = 1 \rangle$$

**Solution:** Let  $G = \langle x, y | x^2 = y^3 = (xy)^2 = 1 \rangle$ . Then  $(xy)^2 = xyxy = 1$ . This implies  $xyx = y^{-1} = x^{-1}yx$  as  $x^2 = 1$ . Hence the subgroup generated by y is a normal subgroup of order 3. Let  $N = \langle y \rangle$ . Since G is generated by x and y,  $G = \langle x, N \rangle$ ,  $N \triangleleft G$  implies  $|G| \leq 6$  on the other hand  $x^iy^j = x^ry^s$  implies  $x^{-r+i} = y^{s-j} \in \langle x \rangle \cap \langle y \rangle = 1$  as  $|\langle x \rangle| = 2$  and  $|\langle y \rangle| = 3$ . This implies
$x^{i-r} = 1$  i.e.  $x^i = x^r$  and  $y^s = y^j$ . Hence two possibilities for *i* and three possibilities for *j* implies we have 6 elements of the form  $x^i y^j$ . Hence |G| = 6.

Recall that  $S_3 = \langle (12), (123) \rangle$ 

 $(12)(123)(12) = (132) = (123)^{-1}$ 

(12)(123)(12)(123) = (132)(123) = 1.

Now let  $\alpha = (12)$ ,  $\beta = (123)$ . Then every relation in G holds in  $S_3$ . So by Von Dycks Theorem there exists an epimorphism

$$\varphi \quad S_3 \longrightarrow G$$

$$x \longrightarrow \alpha$$

$$y \longrightarrow \beta$$

$$Ker(\varphi) = \{\alpha^i \beta^j) \mid \varphi(\alpha^i \beta^j) = x^i y^j = 1\}$$

$$= \{\alpha^i \beta^j) \mid x^i = y^{-j} \in \langle x \rangle \cap \langle y \rangle = 1\}$$

$$= \{1\}.$$

Hence  $G \cong S_3$ 

**4.23.** Let G be a finite group with trivial center. If G has a nonnormal abelian maximal subgroup A, then G = AN and  $A \cap N = 1$  for some elementary abelian p-subgroup N which is minimal normal in G. Also A must be cyclic of order prime to p.

**Solution:** Let A be an abelian maximal subgroup of G such that A is not normal. Then for any  $x \in G \setminus A$ . So we obtain  $\langle A, x \rangle = G$ . Therefore for any  $x \in G \setminus A$ , we have  $A^x \neq A$  otherwise A would be normal in G. But then consider  $A \cap A^x$ . Since  $A^x \neq A$  and A is maximal,  $\langle A, A^x \rangle = G$ . If  $w \in A \cap A^x$ , then  $C_G(w) \geq \langle A, A^x \rangle = G$ . Since A is abelian and  $A^x$  is isomorphic to A so that  $A^x$  is also maximal and abelian in G. But  $C_G(w) = G$  implies  $w \in Z(G) = 1$ . Hence  $A \cap A^x = 1$ . This shows that A is Frobenius complement in G. Hence there exists a Frobenius kernel N such that G = AN and  $A \cap N = 1$ . By Frobenius Theorem, Frobenius kernel is a normal subgroup of G. So G = AN implies  $G/N = AN/N = A/A \cap N$ , hence G is soluble as Frobenius kernel N is nilpotent. It follows from the fact that minimal normal subgroup of a soluble group is elementary abelian p-group for some prime p N is an elementary abelian p-group.

If there exists a normal subgroup M in G such that G = AM and  $M \leq N$ . Then  $A \cap M \leq A \cap N = 1$ . Moreover  $|G| = \frac{|A||M|}{|A \cap M|} = \frac{|A||N|}{|A \cap N|} =$ 

|A||M| = |A||N|. Hence |M| = |N|, this implies M = N. Hence N is minimal normal subgroup of G.

Since N is elementary abelian p-group if A contains an element gof order power of p, then the group  $H = N\langle g \rangle$  is a p-group. Hence  $Z(H) \neq 1$ . Let  $x \in Z(H)$ . If  $x \in A$ , then  $C_G(x) \geq \langle A, x \rangle = G$ . This implies that  $x \in Z(G) = 1$  which is impossible. So  $x \in G \setminus A$ . Then  $\langle g \rangle \cap \langle g \rangle^x \leq A \cap A^x = 1$ . But  $\langle g \rangle \cap \langle g \rangle^x = \langle g \rangle$ . Hence (|A|, p) = 1. i.e.  $p \nmid |A|$ .

Now we show that A is cyclic. Indeed by Frobenius Theorem, Sylow q-subgroups of Frobenius complement A are cyclic if q > 2 and cyclic or generalized quaternion if p = 2 (Burnside Theorem, Fixed point free Automorphism in [?]). Since A is abelian Sylow subgroup can not cannot be generalized quaternion group. Hence all Sylow subgroups of A are cyclic. This implies that A is cyclic.

**4.24.** Let G be a finite group. If G has an abelian maximal subgroup, then G is soluble with derived length at most 3.

**Solution:** Let A be an abelian maximal subgroup of G. If A is normal in G, then for any  $x \in G \setminus A$ , we have  $A\langle x \rangle = G$ . Hence  $G/A \cong A\langle x \rangle / A \cong \langle x \rangle / \langle x \rangle \cap A$ . Then G/A is cyclic and A is abelian implies G'' = 1.

Consider Z(G). If Z(G) is not a subgroup of A, then AZ(G) = G. This implies that G is abelian. Hence we may assume that Z(G) is a subgroup of A. Then  $A \cap A^x \ge Z(G)$ , on the other hand if  $w \in A \cap A^x$ , then  $C_G(w) \ge \langle A, A^x \rangle = G$ . Hence  $w \in Z(G)$ . It follows that  $A \cap A^x = Z(G)$ .

Now, consider the group  $\overline{G} = G/Z(G)$ . Then  $\overline{G}$  has an abelian maximal subgroup  $\overline{A}$ . Then for any  $\overline{x} \in \overline{G} \setminus \overline{A}$ . We obtain  $\overline{A} \cap \overline{A}^x =$  $\overline{1}$ . Hence  $\overline{G}$  is a Frobenius group with Frobenius complement  $\overline{A}$  and Frobenius kernel  $\overline{N}$ . Then  $\overline{G} = G/Z(G) = (A/Z(G))(N/Z(G))$ . The group  $\overline{G}$  is soluble hence G is soluble. As in [?, Lemma 2.2.8 ]  $\overline{N}$  is an elementary abelian p-group and  $\overline{N}$  is a minimal normal subgroup of  $\overline{G}$ .

Since  $\overline{G} = \overline{AN}$  and A is abelian, we obtain  $\overline{G'} \leq \overline{N}$  and  $\overline{G''} \leq Z(\overline{G})$ as  $\overline{N}$  is abelian. Hence  $(G/Z(G))' \leq N/Z(G)$  and  $G''Z(G)/Z(G) \leq Z(G)/Z(G)$ . i.e  $G'' \leq Z(G)$ . Hence G''' = 1.

68

**4.25.** Let M be a maximal subgroup of a locally finite group G. If M is inert and abelian, then G is soluble.

**Solution:** If M is normal, then for any  $x \in G \setminus M$ , we have  $\langle M, x \rangle = G$  implies that  $G/M = \langle x \rangle M/M \cong \underbrace{\langle x \rangle / \langle x \rangle \cap M}_{abelian}$ .

Then  $[G,G] \leq M$ . So [G,G] is abelian. Therefore,  $G \geq [G,G] \geq 1$ . So that G is soluble of derived length 2.

Assume M is not normal in G. Then  $N_G(M) = M$  as M maximal. Then for any  $x \in G \setminus M$  we have  $M^x \neq M$ . Hence  $\langle M, M^x \rangle = G$ . By inertness we have  $|M : M \cap M^x| < \infty$  and  $|M^x : M \cap M^x| < \infty$ . Then by [?, Belyaev's Paper] this implies that  $|G : M \cap M^x| = |\langle M, M^x \rangle :$  $M \cap M^x| < \infty$ . So  $M \cap M^x \notin G$ . Indeed,  $N_G(M \cap M^x) \geq \langle M, M^x \rangle = G$ . Then the group  $G/M \cap M^x$  is a finite group with abelian maximal subgroup, then by [?, Theorem 2.2.1]  $G/M \cap M^x$  is soluble. It follows that G is soluble as  $M \cap M^x$  is abelian.

**4.26.** Let G be soluble and  $\Phi(G) = 1$ . If G contains exactly one minimal normal subgroup N, then N = F(G).

**Solution:** Let N be a minimal normal subgroup of the soluble G. Then N is an elementary abelian group and so it is a normal nilpotent subgroup of G. Hence  $N \leq F(G)$ .

The group F(G) is a characteristic nilpotent subgroup of G so

$$F(G) = O_{p_1}(F(G)) \times \ldots \times O_{p_k}(F(G))$$

where each  $O_{p_i}(F(G)) \triangleleft G$  and G contains only one minimal normal subgroup implies that, there exists only one prime p.

Z(F(G))charF(G)charG implies there exists a minimal normal subgroup in Z(F(G)). Uniqueness of N implies every element of order p in Z(F(G)) is contained in N. So  $\Omega_1(Z(F(G))) \leq N$ . Moreover every maximal subgroup of F(G) is contained in a maximal subgroup of G. Hence  $\Phi(F(G)) \leq \Phi(G) = 1$ . Then

$$F(G) \cong F(G)/\Phi(F(G)) \to Dr F(G)/M_i$$

 $M_i$  is maximal in F(G). Since each  $F(G)/M_i$  is cyclic of order p we obtain F(G) is an elementary abelian p group. Then  $\Omega_1(Z(F(G))) \leq N$  implies  $F(G) \leq N$  and hence we have the equality F(G) = N.

## M. KUZUCUOĞLU

**4.27.** Let G be a group of order 2n. Suppose that half of the elements of G are of order 2 and the other half form a subgroup H of order n. Prove that H is of odd order and H is an abelian subgroup of G.

**Solution:** Since *H* is a subgroup of index 2 in *G* we have *H* is a normal subgroup of *G*. There is only one coset of *H* in *G* other than itself say xH is the second coset and  $xH \neq H$ . Hence by assumption every element in xH has order 2. In particular G/H is of order 2 and x is an element of *G* of order 2. Then for any  $h \in H$  we have  $(xh)^2 = (xh)(xh) = 1$ . It follows that  $xhx = x^{-1}hx = h^{-1}$  as x has order 2. Then the inner automorphism  $i_x$  is of order 2 and inverts every element  $h \in H$ . Then for any  $h_1, h_2 \in H$  we have  $x^{-1}(h_1h_2)x = (h_1h_2)^{-1} = h_2^{-1}h_1^{-1} = (x^{-1}h_1x)(x^{-1}h_2x) = h_1^{-1}h_2^{-1}$ . Hence  $h_2^{-1}h_1^{-1} = h_1^{-1}h_2^{-1}$  for all  $h_1, h_2 \in H$ . By taking inverse of each side we have  $h_1h_2 = h_2h_1$ . Hence *H* is abelian. If |H| is even, then by Cauchy theorem there will be an element of order 2 in *H*. But then there will be n + 1 elements of order 2 in *G* which is impossible. Hence *H* is a subgroup of odd order.

**4.28.** Show that Sym(6) has an automorphism that is not inner,  $Out(Sym(6)) \neq 1$ 

**Solution:** (a) We first show that there is a faithful, transitive representation of Sym(5) of degree 6.

First we show that there exists a subgroup of Sym(5) of order 20 hence the index |Sym(5) : G| = 6. Then the action of Sym(5) on the right cosets of G is

 $\gamma: Sym(5) \hookrightarrow Sym(6), \gamma$  is faithful and transitive on 6 letters.

Let

$$G = \{ f_{a,b} : GF(5) \to GF(5) \mid f_{a,b}(x) = ax + b \text{ where } a, b \in GF(5) \text{ and } a \neq 0 \}$$

Then we may consider G as a subgroup of Sym(5) as each element being a permutation on 5 elements. Then  $G \leq Sym(5)$  and |G| = 20 as there are 4 choices for a and 5 choices for b. Therefore |Sym(5) : G| =6. Then Sym(5) acts on the right cosets of G in Sym(5) by right multiplication.

70

Then we may write the element of G as permutations of 5 elements and then G contains both even and odd permutations. For example,  $f_{2,2}$  corresponds to the permutation of GF(5) as 2x + 2. Then  $f_{2,2} =$ (1,4,0,2) so  $f_{2,2}$  defines an odd permutation. On the other hand

 $f_{1,1}$ : (1,2,3,4,0) which is an even permutation and  $f_{2,0}$ : (1,2,4,3) which is an odd permutation.

If K is the kernel of the action of Sym(5) on the cosets of G in Sym(5), then  $K \leq Sym(5)$ . Since the kernel of the action is  $\bigcap_{x \in Sym(5)} G^x$  which lies inside G and  $G \leq Sym(5)$  and the only normal subgroup of Sym(5) is either Alt(5) or  $\{1\}$ . Since  $|K| \leq |G| \leq |Alt(5)|$ , we have  $K = \{1\}$ . Hence Sym(5) acts faithfully and transitively on the set of cosets of G in Sym(5) where degree of the action is 6.

(b) The groups  $Sym(6)_1, Sym(6)_2, \ldots, Sym(6)_6$  which are mutually conjugate and isomorphic to Sym(5), but these subgroups fixes a point as a subgroup of Sym(6).

The symmetric group Sym(6) has a subgroup  $H \cong Sym(5)$  which is transitive on 6 elements.

Sym(5) has 6 Sylow 5-subgroups. Indeed the number of Sylow 5subgroups  $n_5 \equiv 1 \pmod{5}$  so it can be 1, 6, 11, 16 or 21 and moreover  $n_5|24 = |Sym(5) : N_{Sym(5)}(C_5)|$  implies that  $n_5 = 6$  as we have 6 Sylow subgroup and so Sylow 5-subgroup is not normal in Sym(5). So Sym(5) acts on the set of Sylow 5-subgroups by conjugation. Hence there exists a homomorphism

$$\varphi: Sym(5) \hookrightarrow Sym(6)$$

representing members of Sym(5) as permutation of Sylow 5-subgroups. Kernel of the action is either Alternating group Alt(5) or  $\{1\}$ . Kernel cannot be Alt(5) since the set of the Sylow 5-subgroups of Sym(5)are also the set of Sylow 5-subgroups of Alt(5) and Alt(5) can act on this set transitively. Hence the kernel of the action is  $\{1\}$ . Hence  $H = Im(\varphi) \cong Sym(5)$  and  $Im(\varphi) \leq Sym(6)$  and  $Im(\varphi)$  acts transitively and faithfully on the set of Sylow 5-subgroups. One can observe that the subgroup G of order 20 corresponds to  $N_{Sym(5)}(C_5)$  and recall that  $N_{Sym(5)}(C_5)$  does not lie in Alt(5) as it contains odd and even permutations.

(c) Let

$$\pi_1 : Sym(6) \hookrightarrow Sym\{Sym(6)_1y_1, Sym(6)_1y_2, ..., Sym(6)_1y_6\}$$

The natural representation of Sym(6) on the cosets of  $Sym(6)_1$  gives an isomorphism

$$Sym(6) \quad \hookrightarrow \quad \pi_1(Sym(6))$$
$$\sigma \quad \longrightarrow \quad \pi_1(\sigma)$$

The representation of Sym(6) on the cosets of  $H = Im(\varphi) \cong Sym(5)$ is faithful since the kernel is as in first lemma, a normal subgroup of Sym(6) smaller than Alt(6). Hence kernel is  $\{1\}$ . Thus one obtains a second isomorphism

$$\pi_2: Sym(6) \longrightarrow Sym(6) = Sym(Hx_1, Hx_2, \ldots, Hx_6)$$

 $Hx'_{i}$ s are cosets of H in Sym(6). The correspondence

$$Sym(6) \longrightarrow Sym(6)$$
$$\pi_1(\sigma) \longrightarrow \pi_2(\sigma)$$

is then an automorphism of Sym(6).

$$\pi_1(\sigma\delta) = \pi_1(\sigma)\pi_1(\delta) = \pi_2(\sigma\delta) = \pi_2(\sigma)\pi_2(\delta)$$

This automorphism associates  $\langle \pi_1(\sigma) \mid \sigma \in H \rangle$  with  $\langle \pi_2(\sigma) \mid \sigma \in H \rangle$ .

However,  $\langle \pi_2(\sigma) \mid \sigma \in H \rangle$  fixes all the elements in H while  $\langle \pi_1(\sigma) \mid \sigma \in H \rangle$ fixes no elements, indeed if  $(Sym(6))_1\tau = Sym(6)_1\tau\sigma$  for all  $\sigma \in H$ then  $\tau\sigma\tau^{-1} \in Sym(6)_1$  for all  $\sigma \in H$ , it follows that,  $\tau H\tau^{-1} = Sym(6)_1$ which makes  $Sym(6)_1$  and H conjugate. Both H and  $Sym(6)_1$  are isomorphic to Sym(5) as a subgroup of Sym(6) but they cannot be conjugate since  $Sym(6)_1$  is transitive on 5 elements and H on 6 elements. This automorphism of Sym(6) is not inner.

72

Observe that  $\pi_1$  and  $\pi_2$  gives two inequivalent permutation representation of the group Sym(6) but the representations  $\pi_1$  and  $\pi_2$  are permutational isomorphic.