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] Compiled models ideal here

PyTorch Python Models are ideal here

platform to create and experiment with models.

Ease of deployment

Suitable for Graph NNs

Python provides a flexible development

Just-in-time compiled models can be serialized,
deployed, and optimized on any platform with a compiler backend.

Graph neural networks (GNNs) are

extremely fluid differentiable programs with rich control flow.

see: https://program-transformations.github.io/slides/pytorch neurips.pdf
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Py Torch Geometric #

of import torch
efat from torch.nn import Sequential as Seq, Linear as Lin, RelU

Con\lo\u'(:\O\’\a\ \ from torch_geometric.nn import MessagePassing

class EdgeConv(MessagePassing):

def __init_ (self, F_in, F_out):
¢ (%1, X2 &) ' super(EdgeConv, self)._ init_ (aggr='max') # "Max" aggregation.
—==========! self.mlp = Seq(Lin(2 * F_in, F_out), ReLU(), Lin(F_out, F_out))

SEE=EETEEEE def forward(self, x, edge_index):
X1, X4, € -
e gather (I) _‘p_(__l__“__f’_)_; scatter. (1) e # x has shape [N, F_in]
4 # edge_index has shape [2, E]

return self.propagate(edge_index, x=x) # shape [N, F_out]

def message(self, x_i, x_j):
# x_i has shape [E, F_in]
# x_j has shape [E, F_in]
edge_features = torch.cat([x_i, x_j - x_i], dim=1) # shape [E, 2 * F_in]
return self.mlp(edge_features) # shape [E, F_out]

https://pytorch-geometric.readthedocs.io/

Follows PyTorch Principles Pythonic and experimentation centric
with clear API for concisely writing GNNs, backed by well-performing code.

Well Adopted |00s of citations and over 1000 forks to date, with an
active community of contributors.

Incredibly flexible  Can implement graph convolutional operators

with variety of inputs/outputs. So flexible that Torch-JIT couldn’t handle it!
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JIT'ing PyTorch Geometric Operators ne

class EdgeConv(MessagePassing): class EdgeConv(MessagePassing):
def __init_ (self, nn, aggr='max', **kwargs): def __init_ (self, nn: Callable, aggr: str = 'max', **kwargs):
super(EdgeConv, self). init_ (aggr=aggr, **kwargs) super(EdgeConv, self).__init__(aggr=aggr, **kwargs)
self.nn = nn self.nn = nn

self.reset_parameters() self.reset_parameters()

def reset_parameters(self): def reset_parameters(self):

reset(self.nn) reset(self.nn)

‘taadah’ ;)

> def forward(self, x: Union[Tensor, PairTensor], edge_index: Adj) -> Tensor:

def forward(self, x, edge_index):
if isinstance(x, Tensor):

X = X.unsqueeze(-1) if x.dim() == 1 else X .

x: PairTensor = (x, X)

# propagate_type: (x: PairTensor)

return self.propagate(edge_index, x=x) return self.propagate(edge_index, x=x, size=None)

def message(self, x_i, x_j): def message(self, x_i: Tensor, x_j: Tensor) -> Tensor:

return self.nn(torch.cat([x_i, x_j - x_i], dim=1)) return self.nn(torch.cat([x_i, x_j - x_i], dim=-1))
def __repr__(self): def __repr__ (self):
return "{}(nn={})"'.format(self.__class__.__name__, self.nn) return '{}(nn={})'.format(self.__class__.__name__, self.nn)

+ EdgeConv().jittable() call in model code.

Use Python Type-hinting  Stay pythonic as possible while making
inputs and outputs of operators more concrete so they can be analyzed.

Simple Static Analysis At runtime, dynamically rewrite user code
into jit-friendly version of itself while maintaining expected operation.

Minimal Model Changes For a model to be |IT compatible, all that
needs to be done is to call “jittable()’ when constructing the operator!

4 Lindsey Gray, FNAL



o

First Results from Deployment e

Task - proof of concept clustering for an imaging calorimeter (HGCAL).

Experiment software - CMSSW cuom
No pytorch and no native GPU support for DL frameworks. (CMSSW)

Pyton/C++ Client library

Model Repository
(Persistent Volume)

HGCal Geometry
Client Application can

Generated Particles Management
Hits CAPI

Cluster Centers

NVIDIA Triton

hit data > Inference Server Per-mo del Framework V I OO server
at FNAL
cluster
as s ign m e nts Status/Health Metrics Export

<

Seamless GPU Integration Via nVidia Triton Inference as a Service
(laaS) engine, hardware used as available. ~100x speedup on GPU for GNN.

Framework independence Did not need to integrate PyTorch into

CMSSW (experiment software), instead use abstraction layer for laaS.

model: https://github.com/tklijnsma/hgcal Idrd/blob/dev-jittable/src/models/EdgeNetWVithCategories.py#L68

expt. sw: https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton
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Concluding Remarks ‘th
(® GNNs becoming more widely used tools in HEP
® highly effective at processing point clouds

® can successfully describe reconstruction tasks in HEP

® GNNs in PyTorch widely accessible via PyTorch Geometric
(® The PyTorch jit makes deploying models easy and portable

(® Moving from GNN research to deployment can be difficult

® Wrote extensions to PyTorch Geometric which make this
transition automated and easy, check out the example

® All currently implemented (~30) convolutional operators supported

= straightforward to add more operators if you need something special

® Inference as a service tools like nVidia Triton make deployment
of neural networks scalable and easy

® Additions to PyG layered on top of typical triton container

® Scalable event processing on GPUs in experiment software
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Extras
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First Results on Throughput #

i NVIDIA T4 GPU, using 30 cores
Avg. throughput: 139.67 + 8.73 infs/min
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