
Graph Convolutional
Operators in the PyTorch JIT

Lindsey Gray, Thomas Klijnsma (FNAL)
Matthias Fey (TU - Dortmund)

23 October 2020 - 4th CERN IML Workshop

Lindsey Gray, FNAL

The JIT

2
see: https://program-transformations.github.io/slides/pytorch_neurips.pdf

Compiled models ideal here

Ease of experimentation Python provides a flexible development  
platform to create and experiment with models.

Ease of deployment Just-in-time compiled models can be serialized,
deployed, and optimized on any platform with a compiler backend.

Suitable for Graph NNs Graph neural networks (GNNs) are
extremely fluid differentiable programs with rich control flow.

https://program-transformations.github.io/slides/pytorch_neurips.pdf
https://program-transformations.github.io/slides/pytorch_neurips.pdf

Lindsey Gray, FNAL

PyTorch Geometric

3

Follows PyTorch Principles Pythonic and experimentation centric
with clear API for concisely writing GNNs, backed by well-performing code.

Well Adopted 100s of citations and over 1000 forks to date, with an
active community of contributors.

Incredibly flexible Can implement graph convolutional operators
with variety of inputs/outputs. So flexible that Torch-JIT couldn’t handle it!

Convolutional Operator

https://pytorch-geometric.readthedocs.io/

https://pytorch-geometric.readthedocs.io/
https://pytorch-geometric.readthedocs.io/

Lindsey Gray, FNAL

JIT’ing PyTorch Geometric Operators

4

‘taadah’ :)

+ EdgeConv().jittable() call in model code.

Use Python Type-hinting Stay pythonic as possible while making
inputs and outputs of operators more concrete so they can be analyzed.

Simple Static Analysis At runtime, dynamically rewrite user code
into jit-friendly version of itself while maintaining expected operation.

Minimal Model Changes For a model to be JIT compatible, all that
needs to be done is to call ‘.jittable()’ when constructing the operator!

Lindsey Gray, FNAL

First Results from Deployment

5

model: https://github.com/tklijnsma/hgcal_ldrd/blob/dev-jittable/src/models/EdgeNetWithCategories.py#L68

Framework independence Did not need to integrate PyTorch into
CMSSW (experiment software), instead use abstraction layer for IaaS.

expt. sw: https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton

Seamless GPU Integration Via nVidia Triton Inference as a Service
(IaaS) engine, hardware used as available. ~100x speedup on GPU for GNN.

Task - proof of concept clustering for an imaging calorimeter (HGCAL).

Experiment software - CMSSW
No pytorch and no native GPU support for DL frameworks. (CMSSW)

V100 server
at FNAL

hit data

cluster
assignments

https://github.com/tklijnsma/hgcal_ldrd/blob/dev-jittable/src/models/EdgeNetWithCategories.py#L68
https://github.com/tklijnsma/hgcal_ldrd/blob/dev-jittable/src/models/EdgeNetWithCategories.py#L68
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton
https://github.com/cms-sw/cmssw/tree/master/HeterogeneousCore/SonicTriton
https://github.com/cms-sw/cmssw
https://github.com/cms-sw/cmssw

Lindsey Gray, FNAL

Concluding Remarks

๏GNNs becoming more widely used tools in HEP

• highly effective at processing point clouds

• can successfully describe reconstruction tasks in HEP

• GNNs in PyTorch widely accessible via PyTorch Geometric

๏The PyTorch jit makes deploying models easy and portable

๏Moving from GNN research to deployment can be difficult

• Wrote extensions to PyTorch Geometric which make this
transition automated and easy, check out the example

• All currently implemented (~30) convolutional operators supported
- straightforward to add more operators if you need something special

๏Inference as a service tools like nVidia Triton make deployment
of neural networks scalable and easy

• Additions to PyG layered on top of typical triton container

• Scalable event processing on GPUs in experiment software

6

https://github.com/rusty1s/pytorch_geometric/blob/master/examples/jit/gat.py
https://github.com/rusty1s/pytorch_geometric/blob/master/examples/jit/gat.py

Lindsey Gray, FNAL

Extras

7

Lindsey Gray, FNAL

First Results on Throughput

8

0 10 20 30 40 50
Time since start (min)

0

50

100

150

200

250

In
fe

re
nc

es
 /

m
in

NVIDIA T4 GPU, using 30 cores
Avg. throughput: 139.67 ± 8.73 infs/min

preliminary

