Santa Rosa County District Schools

GRADE 8 MATH

FSA Practice Problems Answer Key

Department of Math & Science

Grade 8 Mathematics

Turnkey Educator Resources

Equation Editor Item Tutorial

FSA Scientific Calculator

FSA Mathematics Reference Sheet Packet

Grade 8 Mathematics Test Item Specifications

TABLE OF CONTENTS

Practice Test	Standard	Problems	Page
FSA Grade 8 Practice NONCALCULATOR			2
	MAFS.8.EE.1.1	1, 2	3
	MAFS.8.EE.1.2	3, 4	4
	MAFS.8.EE.1.3	5,6	4,5
	MAFS.8.EE.1.4	7,8	5
	MAFS.8.EE.3.8b	9	6
	MAFS.8.F.1.1	10,11	6,7
	MAFS.8.F2.4	12,13	7,8
	MAFS.8.F.2.5	14	9
	MAFS.8.G.1.1a	15, 16	10,11
	MAFS.8.G.1.1b	16	11
	MAFS.8.G.1.2	17,18	12
	MAFS.8.G.1.3	19-21	13,14
	MAFS.8.G.1.5	22,23	14,15
	MAFS.8.G.2.8	24	15
	MAFS.8.SP.1.1	25,26	16,17
	MAFS.8.SP.1.2	27,28	18,19
	MAFS.8.SP.1.3	29,30	20
	MAFS.8.NS.1.1	31,32	21
	MAFS.8.NS.1.2	33,34	22
FSA Grade 8 Practice CALCULATOR	MAFS.8.EE.2.5	1-3	23-25
	MAFS.8.EE.2.6	4-6	25,26
	MAFS.8.EE.3.7a	7	26
	MAFS.8.EE.3.7b	8	27
	MAFS.8.EE.3.8a	9	27
	MAFS.8.EE.3.8b	10	28
	MAFS.8.EE.3.8c	11	28
	MAFS.8.F.1.2	12,13	29
	MAFS.8.F.1.3	14,15	30,31
	MAFS.8.G.1.4	16,17	31,32
	MAFS.8.G.2.6	18,19	32,33
	MAFS.8.G.2.7	20,21	33,34
	MAFS.8.G.2.8	22	34
	MAFS.8.G.3.9	23,24	35
	MAFS.8.SP.1.4	25,26	36,37
	2.0.0.7	-,	
	1	l	

FSA Grade 8 Practice (NONCALCULATOR)

	MAFS.8.EE.1.1
1	Select all of the expressions that are equivalent to $\left(2^2\right)^4 \div 2^2$.
	(A) 2 ¹⁰
	® 2 ⁴
	(-)
	© 2 ⁶
Answer	C, E
	MAFS.8.EE.1.1
2	An equation is shown.
	$\left(5^{a}\right)^{b}=5^{-8}$
	Select all of the possible values for <i>a</i> and <i>b</i> .
	Select all of the possible values for a and b.
	(A) $a = -6, b = -2$
	(B) $a = -1, b = 8$
	© $a = -6, b = 2$
	① $a = -4, b = -4$
	(E) $a = -2, b = 4$
Answer	B, E

	MAFS.8.EE.1.2
3	What is the value of <i>x</i> in the equation shown?
	$x^3 = 125$
	<i>X</i> =
	<u> </u>
Answer	5
,	
	MAFS.8.EE.1.2
4	Which number has an irrational square root?
T	Willow Hamber has all intational square root:
	_ 1
	\bigcirc $\frac{1}{9}$
	9
	B 4
	© 0.01
	© 2
	© -
Answer	D
	MAFS.8.EE.1.3
5	The number 0.0000657 can be
	estimated by 7 times a power of 10.
	What is the power of 10?
	E
Answer	-5

	MAFS.8.EE.1.3
6	The Pacific Ocean contains about 170,000,000 mi ³ of water. The Atlantic Ocean contains
	about 78,000,000 mi ³ of water. Which expression can you use to estimate how many
	times more water is in the Pacific Ocean than the Atlantic Ocean?
	0.407
	$ \frac{2 \times 10^9}{8 \times 10^8} $
	$\frac{-1}{8 \times 10^8}$
	© $\frac{8 \times 10^8}{2 \times 10^9}$
	2×10 ⁹
	2×10 ⁸
	6×10
Answer	D
	MAFS.8.EE.1.4
7	What is the sum of 5.42×10^5 and 7.62×10^5 written in standard form?
Answer	1,304,000
	MAFS.8.EE.1.4
8	A beehive can contain 1.5×10 ⁴ bees. How many bees can 80 beehives contain?
	Express your answer in exponent form.
	bees
Answer	1.2 x 10 ⁶

	MAFS.8.EE.3.8b
9	Solve the system of equations.
	6x-4y=15
	4x-8y=2
Answer	(3.5, 1.5)
10	MAFS.8.F.1.1 Choose the description of the graph shown.
	Choose the description of the graph shown.
	2
	X X
	<u>-4</u> -2 0 2 4 6 8 →
	The graph represents a function because each input has exactly one output.
	The graph does not represent a function because not every input has an output.
	© The graph does not represent a function because two inputs, $x = -2$ and $x = 0$,
	have the same output $y = -3$.
	\odot The graph does not represent a function because the input $x = 8$ has two outputs,
	y = -3 and $y = 2$.
Answer	D

	MAFS.8.F.1.1
11	Select all of the sets of ordered pairs that represent a function.
	(a) $(2,6),(-7,-4),(10,3),(0,3)$ (b) $(6,7),(-7,8),(-3,8),(3,-5)$ (c) $(-2,-6),(-6,-10),(-6,7),(3,2)$ (d) $(-9,-1),(3,-5),(-9,1),(5,9)$ (e) $(-8,-6),(-5,5),(4,7),(4,-7)$
Answer	A, B
	NAAFC O F 2 A
12	MAFS.8.F.2.4 A musician has a linear pricing plan. The total cost, <i>y</i> , of hiring the musician for <i>x</i> hours is
12	shown.
	Hourly Rates
	Hours Cost
	(x) (y)
	1 85
	2 150
	3 215
	4 280
	5 345
	Part A. What is the hourly rate for the pricing plan?
	\$
	Part B. Complete the equation that represents the pricing plan.
	y =x +
Answer	Part A: 65 Part B: $y = 65x + 20$

MAFS.8.F.2.4

13

The graph shows the height *y* of a giraffe at age *x* months.

Select all of the true statements.

- A The equation y = 6x + 0.25 represents the giraffe's height over time.
- The rate of change is 0.25 ft per month. This means that at 2 months, the giraffe is 0.5 ft tall.
- © The initial value is 6 ft. This means that the giraffe was 6 ft tall when he was born.
- When he is 3 years old, the giraffe will be 15 ft tall.
- © When he is 3 years old, the giraffe will be 6.75 ft tall.

Answer

C, D

	MAFS.8.F.2.5			
14		speed of a car as time ach interval.	increases. Select the	correct description o
	Time	X		
	Time	Decreasing	Constant	Nonlinear
	Time		Constant	Nonlinear ©
		Decreasing		

15

Pentagon *HIJKL* is rotated about vertex *K* and reflected over a vertical line to produce pentagon *MNOPQ*.

Match each side with its length.

	7 cm	4 cm	6 cm	3 cm	5 cm
MN	A	В	©	D	E
NO	F	G	H		J
OP	K	(L)	M	N	0
PQ	P	Q	R	S	T
MQ	U	V	W	X	(Y)

Answer

C, G, N, T, U

	NAAFC O F C 1 10 NAAFC O C 1 1h
10	MAFS.8.F.G.1.1a, MAFS.8.G.1.1b
16	Rectangle ABCD and its transformation EFGH are shown.
	G H Select all of the transformations of rectangle ABCD that can produce rectangle EFGH.
	A reflection over a vertical line and a translation.
	⊕ A rotation about point D.
	© A rotation about a point between the two rectangles.
	A reflection over a horizontal line.
	A vertical and horizontal translation.
Answer	A, C, E

	MAFS.8.G.1.2
17	A sequence of transformations maps Figure 1 onto Figure 2.
	Figure 2
	Figure 1
	Which sequence could have been used?
	 A 90-degree rotation clockwise, then a translation up and left.
	A reflection over a horizontal line, then a translation left.
	© A reflection across a vertical line, then a translation up.
	A translation left and up.
Answer	В
	MAFS.8.G.1.2
18	Select all of the sequences of transformations that always maintain congruence.
	A translation and then a rotation.
	A rotation and then a translation.
	© A translation and then a reflection.
	A rotation and then a reflection.
	© A reflection and then a translation.
	© A reflection and then a rotation.
Answer	A, B, C, D, E, F

MAFS.8.G.1.3 Quadrilateral ABCD is dilated with a center of (0,0) and a scale factor of 4. It is then 19 translated 2 units to the left. The resulting figure is A'B'C'D'. Match each point with its coordinates. C D 2 В 2 0 (14,4)(10,4)(10,8)(2,8)(4,4)(2,4)A' \bigcirc \bigcirc B (C) D E B' L G (H)J (K)C' \mathbb{M} \bigcirc 0 P Q R D' (s) T \bigcirc V W (x)F, H, O, V **Answer** MAFS.G.8.1.3 Figure GHJK is rotated 180° about (0,0) and then translated 2 units up. What are the 20 coordinates K'? 0 -2 Н (4,7)B (-5, 6) © (-5, 2)

В

Answer

	MAFS.8.G.1.3					
21	A quadrilateral is reflected over the <i>y</i> -axis. Which of the following statements about the coordinates of the image are true?					
l	Both the <i>x</i> -values and <i>y</i> -values change.					
	Both the x-values and y-values change.					
	© Only the <i>y</i> -values change.					
	Only the x-value	alues change.				
Answer	D					
	MFAS.8.G.1.5					
22	In the figure, p and	q are parallel lines.	what are the value	s of <i>a</i> , <i>b</i> , <i>c</i> , and <i>d</i> ?		
	r					
	*					
	$\leftarrow \qquad \qquad \downarrow a \qquad b/d \qquad \rightarrow p$					
	$\leftarrow 62^{\circ} \nearrow 57^{\circ} \rightarrow q$					
		\.				
	1	*				
	<i>\</i>	123°	57°	61°	62°	
	a	123°	57°	61°	62°	
	a b					
		A	B	©	D	
	ь	(A) (E)	(B) (F)	© ©	D H	
	b c	(A) (E)	B F	© © K	(D) (H) (L)	
	b c	(A) (E)	B F	© © K	(D) (H) (L)	

	MFAS.8.G.1.5
23	Select all of the statements that are true about ΔJKL and ΔLMN .
	K 60° M 55° N
	They have only one pair of congruent angles.
	The triangles are similar.
	© $m \angle JKL = m \angle LNM$
Answer	A, D, E
	MFAS.8.G.2.8
24	Krystal lives 12 miles south of the school. Howard lives 5 miles east of the school. How far does Howard walk if he takes the shortest path to Krystal's house?
	mi
Answer	13

	MFAS.8.G.SP.1.1
25	The scatter plot shows the number of subscribers a sewing video channel has in relation to the number of videos created. 60,000 50,000 40,000 20,000 10,000 0 10 20 30 40 50 Videos
	How can this association be described?
	The association is positive, non-linear, and has an outlier.
	The association is positive, linear, and has an outlier.
	© The association is positive, linear, and without outliers.
	The association is negative, linear, and has an outlier.
Answer	В

	MFAS.8.SP.1.1
6	A chef is calculating if it is cheaper (per person) to cook for more people at once. The scatter plot shows cost per person to cook a meal in relation to the number of people being served that meal. 10 8 4 2 0 1 2 3 4 5 People
	Select the correct description for the general trend of the plot. As the number of people increases, the cost per
	meal increases. B As the number of people decreases, the cost per meal decreases.
	 As the number of people increases, the cost per meal stays the same.
	As the number of people increases, the cost per meal decreases.
Answer	D

MFAS.8.SP.1.2 Which graph represents the line of best fit for the scatter plot? **27** \bigcirc 60 ₽ 50 € 40 30 20 10 2 3 4 5 60 € \bigcirc B 50 40 30 20 10 0 _ 5 6 2 3 4 (C) 60 ● 50 40 30 20 10 0 1 2 3 4 5 D 60 q 50 40 30 20 10 0 1 2 3 4 Answer D

	MFAS.8.SP.1.2
28	Can you use a trend line to describe the relationship between the two sets of data for this graph? Explain. 60 40 30 20 10 12 34 56 7
	 A Yes, because there is a negative linear association, although it is weak. B No, because no line could be drawn that passes through all of the points on the scatter plot.
	© No, because there is no linear association.
	Yes, because there is a positive linear association, although it is weak.
Answer	D

MFAS.8.SP.1.3 The data in the table show the sale price of homes with different numbers of bedrooms. 29 X y 5 150,000 5 130,000 3 120,000 6 210,000 The equation of the trend line is y = 25,789x + 30,000. What does the slope represent in this situation? The predicted sale price of a house with 0 bedrooms is \$25,789. The predicted sale price of a house with no bedrooms is \$30,000. © For each additional bedroom a house has, the sale price is predicted to increase by \$25,789. © For each additional bedroom a house has, the sale price is predicted to increase by \$30,000. C **Answer** MFAS.8.SP.1.3 The scatter plot shows how much water 7 people drink (in glasses) given different 30 temperatures (in degrees Fahrenheit). The equation of the trend line y = 0.09x - 3.77. 6 5 4 3 2 1 0 10 20 30 40 50 60 70 80 90 100 110 Temperature If a person drank 3 glasses of water, what was the temperature? Round your answer to the nearest tenth, if needed.

ne nearest tenth, if needed.

____°F

Answer | 75.2

	MFAS.8.NS.1.1
31	Which number represents 1.18 written as a fraction?
	$\bigcirc A \qquad \frac{59}{50}$
	® $\frac{107}{90}$
	© $\frac{118}{100}$
	© 13/11
Answer	D
	MFAS.8.NS.1.1
32	Select all numbers that are rational.
	$^{\circ}$ 4 π
	© √11
	© 7.4 © $-\frac{748}{3}$
	. 748
	$\frac{\mathbb{E}}{3}$
Λησινοτ	A D E
Answer	A, D, E

	MFAS.8.NS.1.2
33	In which list are the numbers in order from least to greatest?
	$\bigcirc 5 \sqrt{5} \sqrt{5} \sqrt{5} \sqrt{7} = 0$
	6, 70, 1101, 11
	E
	$\mathbb{B} = \frac{5}{2}, 4.57, \sqrt{5}, \pi^2$
	(a) $\frac{5}{6}$, $\sqrt{5}$, 4.57 , π^2 (b) $\frac{5}{6}$, 4.57 , $\sqrt{5}$, π^2 (c) $\sqrt{5}$, $\frac{5}{6}$, 4.57 , π^2 (d) π^2 , 4.57 , $\sqrt{5}$, $\frac{5}{6}$
	<u> </u>
	© $\sqrt{5}, \frac{1}{6}, 4.57, \pi^2$
	O Company of the comp
	© σ^2 4.57 /5 5
	$0 \frac{\pi}{4.57, \sqrt{5}, \frac{\pi}{6}}$
Answer	A
Aliswei	A
	MFAS.8.NS.1.2
34	Which value is closest to the point shown on the number line?
	<
	-3 -2 -1 0 1 2 3
	$_{lacklack}$ $-\pi$
	(B) $-\sqrt{5}$
	© $-\sqrt{10}$
	© -2
Answer	В

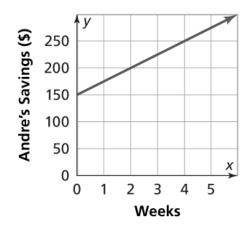
FSA Grade 8 Practice (CALCULATOR)

	MAFS.8.EE.2.5 ^H
1	Lehana and Shani are having a competition to see who can type a 1,000-word essay faster. The results are shown.
	Lehana's Typing Speed Shani's Typing Speed
	Minutes 3 6 9 12
	Words 90 180 270 360 \$\frac{5}{8} 160
	Words 90 180 270 360 Sp 12
	Select all of the true statements.
	A Lehana will finish typing in approximately 11 minutes and 7 seconds.
	Lehana's unit rate is 90 words per minute.
	© A graph of Lehana's words per minute would have a greater slope.
	Shani will finish typing in 41 minutes and 40 seconds.
	E Lehana will finish typing first.
Answer	C, D, E

MAFS.8.EE.2.5 This question has two parts. 2 Water is poured into a large bucket at a rate of 2.4 gallons in 5 minutes. Part A. Which graph models the situation? A © 15 12 2 9 6 1 3 0 10 15 20 25 \bigcirc B D 20 15 12 16 9 12 6 8 3 4 0 10 15 20 25 2 Part B. At what rate is the bucket filling with water? Enter your answer as a decimal number. gallons per minute Part A: B, Part B: 0.48 Answer

	MAFS.8.EE.2.5
3	Juan and Carmelita are making paper airplanes for a school project. The number of paper airplanes that Juan makes in x hours can be modeled by the equation $y = 6x$.
	The number of paper airplanes Carmelita makes is shown in the table.
	Paper Airplanes Made
	Hours 0.25 0.5 0.75
	Number of 2 4 6 Planes
	How many more paper airplanes does the faster person make per hour?
	more planes per hour
Answer	2
	MAFS.8.EE.2.6
4	Write an equation that represents the same relationship as the graph shown. Enter your answers as decimals.
	30 y 25
	20
	15
	10 5
	0 1 2 3 4 5 6 7 8 9 10
	y = x +
Answer	y = x + 20

	6
	MAFS.8.EE.2.6 ^{III}
5	A plant requires 4 cups of water when it is first brought inside and then 2 cups of water each week for the rest of its life. Write a linear equation for the number of cups of water used after <i>x</i> months.
	y =x +
Answer	y = 2x + 4
	MAFS.8.EE.2.6
6	What is the equation of the line representing the proportional relationship in the table? Enter your answers as decimals. x y 2 1 8 4 14 7 20 10 y =x +
Ананган	V = 1/2× + 0
Answer	y = 1/2x + 0
	MAFS.8.EE.3.7a ==
7	Select all equations that have exactly one solution.
	(a) $2x-4=x+1+x$ (b) $6x-2x=4x$ (c) $5x-2=2x+6-x$ (d) $2x+6=x$ (e) $4x-x=9$
Answer	C, D, E


	MAFS.8.EE.3.7b
8	Solve the equation shown for x.
	$4x+8+\frac{1}{2}(2x-4)=6x+6-4x$ (A) No solution
	\odot $x=0$
	x = -3
Answer	С
	MAFS.8.EE.3.8a
9	A graph of a system of two equations is shown.
	What is the solution of the system?
	What is the solution of the system?
Answer	(1, 2)

	MAFS.8.EE.3.8b
10	Select all of the systems of equations that do <i>not</i> have exactly one solution.
	-4x+6y=-10
	5x-6y=11
	3x + 8y = 0
	3x + 8y = 14
	y=2x-1
	y = 2x - 1
	y = 2x + 3
Answer	B, C, D
	MAFS.8.EE.3.8c
11	At Katya's fruit stand, a basket of strawberries costs \$4 and a basket of raspberries costs \$9. In one morning, Katya sells 96 baskets for \$644. How many baskets of strawberries
	were sold?
	baskets
Answer	44
Allowel	

MAFS.8.F.1.2

12

The savings accounts of two people can be modeled by linear functions. Zahava has \$200 and saves \$20 per week. Andre's savings are shown in the graph. Select the true statement.

- Zahava has less money initially. The rate of change of her account is less than that of Andre's.
- Zahava has less money initially. She saves more per week than Andre.
- © Zahava has a greater initial amount saved. She saves less per week than Andre.
- Zahava has a greater initial amount. The rate of change of her account is greater than that of Andre's.

Answer

C

MAFS.8.F.1.2

Select the statement that accurately compares the two linear functions.

Function 1

i unc	LIOII I			
X	1	2	3	4
У	5	8	11	14

$$y = \frac{5}{3}x + 3$$

- A Function 2 has the greatest rate of change and the greatest initial value.
- Function 2 has the greatest rate of change and Function 1 has the greatest initial value.
- © Function 1 has the greatest rate of change and the greatest initial value.
- © Function 1 has the greatest rate of change, and Function 2 has the greatest initial value.

Answer

D

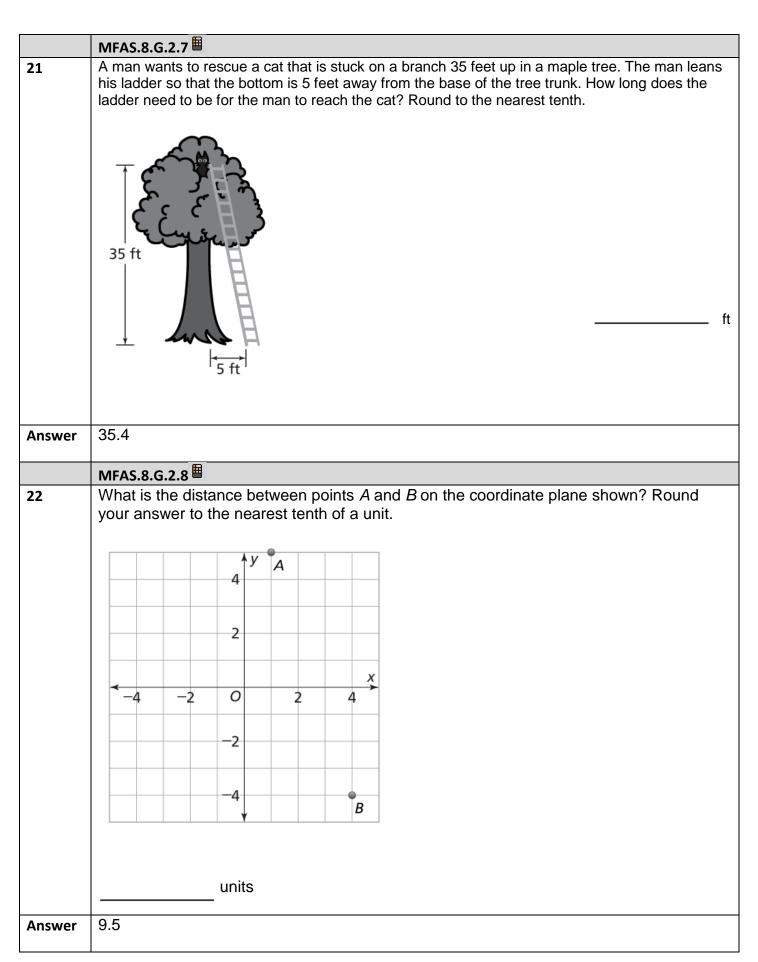
MAFS.8.F.1.3

14

Select all of the functions that are linear.

- x
 0
 1
 2
 3
 4

 y
 0
 1
 8
 27
 64
- © y = (9+4)x+4
- 10 8 6 4 2 0 0 2 4 6 8 10
- E 5 4 3 2 1 0 0 1 2 3 4 5


Answer

A, C, E

	MAFS.8.F.1.3 =				
15	Laila runs 3 mi the first week. The next week, she runs 6 mi. Every week after, she runs 3 mi more than the week before.				
	Select all of the true statements.				
	A This is a nonlinear relationship because it cannot be written as an equation of the form $y = mx + b$.				
	This is a nonlinear relationship. If the number of miles Laila ran per week was graphed, it would be a curve.				
	© This relationship contains the point $(3,6)$.				
	$_{\odot}$ This relationship can be modeled as a linear function and can be expressed as $y=3x$, where x is the number of weeks and y is the number of miles Laila runs.				
	This is a linear relationship because if the number of miles Laila ran each week was graphed, it is a straight line.				
Answer	D, E				
	MFAS.G.8.1.4 H				
16	Which sequence of transformations results in figures that are similar but not congruent?				
	270° rotation, reflection across the x-axis.				
	® Translation 3 units up, 180° rotation.				
	© Reflection across the line $y = 2$, translation 2 units left.				
	Translation 3 units up, dilation with a factor of 3.				
Answer	D				

	MFAS.8.G.1.4 E					
17	Is $\triangle DEF$ similar to $\triangle GHI$? Explain.					
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
	Yes, because $\triangle GHI$ can be obtained by dilating $\triangle DEF$ by a scale factor of $\frac{1}{2}$ and then translating to the right.					
	[®] No, because $\triangle GHI$ cannot be obtained from $\triangle DEF$ through a sequence of rotations, translations, reflections, and dilations.					
	© Yes, because $\triangle GHI$ can be obtained by dilating $\triangle DEF$ by a scale factor of 2 and then translating to the right.					
	No. The triangles are not the same size, so they are not similar.					
Answer	С					
	MFAS.8.G.2.6					
18	Which set of side lengths forms a right triangle?					
	® 2 cm; 4 cm; 5 cm					
	© 6 m; 8 m; 5 m					
	© 9 ft; 12 ft; 15 ft					
Answer	D					

	MFAS.8.G.2.6 E
19	A right triangle has a hypotenuse of length 25 inches and a leg of length 15 inches. What is the length of the remaining side? in.
Answer	20
	MFAS.8.G.2.7 ¹⁰
20	The size of a television screen is usually described by the length of its diagonal. If a 32" television has a width of 28 inches, what is the height of the screen? Round your answer to the nearest tenth of an inch.
	inches
Answer	15.5

	MFAS.8.G.3.9 ¹⁰
23	A three-dimensional figure has a volume of 314 cubic centimeters rounded to the nearest cubic centimeter. Select all of the figures that match this description.
	Use 3.14 for π .
	A cone with a radius of 10 cm and a height of 3 cm.
	A cylinder with a radius of 1 cm and a height of 10 cm.
	© A sphere with a diameter of 4.217 cm.
	A sphere with a radius of 4.217 cm.
	© A cylinder with a radius of 4.47 cm and a height of 5 cm.
Answer	A, D, E
	MFSA.8.G.3.9 E
24	If you inflate a beach ball with 14,130 cubic inches of air, what will its diameter be? Use 3.14 for π .
	inches
Answer	30

MFAS.8.SP.1.4 # Naomi polled 50 students at school on their favorite animal. 25 Cats Dogs Total Fourth-Grade 8 16 **Students** Fifth-Grade 14 12 **Students** Total For each value described, select the correct percentage (rounded to the nearest percent). 47% 33% 20% 40% 54% **52%** Percentage of fourth-grade (A) B (C) D E F students that preferred cats. Percentage of students that were G (H)J K L fifth-grade students. Percentage of fifthgrade students that \mathbb{M} \bigcirc 0 P Q R preferred dogs. Percentage of students that S T U \vee W (X)preferred cats.

B, L, Q, V

Answer

An amusement park surveys 260 customers to help them decide whether to add a rollercoaster or bumper cars to the park.					
	Like Bumper Cars	Do Not Like Bumper Cars	Total		
Like Rollercoasters	123	45	168		
Do Not Like Rollercoasters	60	32	92		
Total	183	77	260		
	•	add a rollercoastond 35% like bum		se 65% of the custon	
surveyed like	rollercoasters a	nd 35% like bump	oer cars.	use 65% of the custon e 23% of the custome	
surveyed like B The amusem surveyed like	rollercoasters a ent park should bumper cars an	nd 35% like bump add bumper cars id 17% of custom	per cars. , becaus ers like r	e 23% of the custome oller coasters.	
surveyed like B The amusem surveyed like The amusem	e rollercoasters a nent park should e bumper cars an nent park should	nd 35% like bump add bumper cars id 17% of custom	per cars. , becaus ers like r , becaus	e 23% of the custome	
surveyed like The amusem surveyed like The amusem surveyed like The amusem	e rollercoasters a nent park should e bumper cars an nent park should e bumper cars an nent park should	nd 35% like bump add bumper cars id 17% of custom add bumper cars id 30% like rollerd	per cars. , becaus ers like r , becaus coasters. , becaus	e 23% of the custome oller coasters.	