GRADE 8 MATH

FSA Practice Problems Answer Key

- DEPARTMENT -

Grade 8 Mathematics

Turnkey Educator Resources
Equation Editor Item Tutorial
FSA Scientific Calculator
FSA Mathematics Reference Sheet Packet
Grade 8 Mathematics Test Item Specifications

TABLE OF CONTENTS

Practice Test	Standard	Problems	Page
FSA Grade 8 Practice NONCALCULATOR			2
	MAFS.8.EE.1.1	1,2	3
	MAFS.8.EE.1.2	3, 4	4
	MAFS.8.EE.1.3	5,6	4,5
	MAFS.8.EE.1.4	7,8	5
	MAFS.8.EE.3.8b	9	6
	MAFS.8.F.1.1	10,11	6,7
	MAFS.8.F2.4	12,13	7,8
	MAFS.8.F.2.5	14	9
	MAFS.8.G.1.1a	15,16	10,11
	MAFS.8.G.1.1b	16	11
	MAFS.8.G.1.2	17,18	12
	MAFS.8.G.1.3	19-21	13,14
	MAFS.8.G.1.5	22,23	14,15
	MAFS.8.G.2.8	24	15
	MAFS.8.SP.1.1	25,26	16,17
	MAFS.8.SP.1.2	27,28	18,19
	MAFS.8.SP.1.3	29,30	20
	MAFS.8.NS.1.1	31,32	21
	MAFS.8.NS.1.2	33,34	22
FSA Grade 8 Practice CALCULATOR	MAFS.8.EE.2.5	1-3	23-25
	MAFS.8.EE.2.6	4-6	25,26
	MAFS.8.EE.3.7a	7	26
	MAFS.8.EE.3.7b	8	27
	MAFS.8.EE.3.8a	9	27
	MAFS.8.EE.3.8b	10	28
	MAFS.8.EE.3.8c	11	28
	MAFS.8.F.1.2	12,13	29
	MAFS.8.F.1.3	14,15	30,31
	MAFS.8.G.1.4	16,17	31,32
	MAFS.8.G.2.6	18,19	32,33
	MAFS.8.G.2.7	20,21	33,34
	MAFS.8.G.2.8	22	34
	MAFS.8.G.3.9	23,24	35
	MAFS.8.SP.1.4	25,26	36,37

FSA Grade 8 Practice (NONCALCULATOR)

	MAFS.8.EE.1.1
1	Select all of the expressions that are equivalent to $\left(2^{2}\right)^{4} \div 2^{2}$. (A) 2^{10} (B) 2^{4} (C) $\left(2^{2}\right)^{3}$ (D) $\frac{2^{6}}{2^{2}}$ (E) 2^{6}
Answer	C, E
	MAFS.8.EE.1.1
2	An equation is shown. $\left(5^{a}\right)^{b}=5^{-8}$ Select all of the possible values for a and b. (A) $a=-6, b=-2$ (B) $a=-1, b=8$ (C) $a=-6, b=2$ (D) $a=-4, b=-4$ () $a=-2, b=4$
Answer	B, E

	MAFS.8.EE.1.2
3	What is the value of x in the equation shown? $x^{3}=125$ $x=$
Answer	5
	MAFS.8.EE.1.2
4	Which number has an irrational square root? (A) $\frac{1}{9}$ (B) 4 (C) 0.01 (D) 2
Answer	D
	MAFS.8.EE.1.3
5	The number 0.0000657 can be estimated by 7 times a power of 10 . What is the power of 10 ?
Answer	-5

	MAFS.8.F.1.1
11	Select all of the sets of ordered pairs that represent a function. (A) $(2,6),(-7,-4),(10,3),(0,3)$ (B) $(6,7),(-7,8),(-3,8),(3,-5)$ (C) $(-2,-6),(-6,-10),(-6,7),(3,2)$ (D) $(-9,-1),(3,-5),(-9,1),(5,9)$ () $(-8,-6),(-5,5),(4,7),(4,-7)$
Answer	A, B
	MAFS.8.F.2.4
12	A musician has a linear pricing plan. The total cost, y, of hiring the musician for x hours is shown. Part A. What is the hourly rate for the pricing plan? \$ \qquad Part B. Complete the equation that represents the pricing plan. $y=\quad x+$ \qquad
Answer	Part A: 65 Part B: $y=65 x+20$

	MAFS.8.F.2.4
13	The graph shows the height y of a giraffe at age x months. Select all of the true statements. (A) The equation $y=6 x+0.25$ represents the giraffe's height over time. (B) The rate of change is 0.25 ft per month. This means that at 2 months, the giraffe is 0.5 ft tall. (c) The initial value is 6 ft . This means that the giraffe was 6 ft tall when he was born. (D) When he is 3 years old, the giraffe will be 15 ft tall. () When he is 3 years old, the giraffe will be 6.75 ft tall.
Answer	C, D

	MAFS.8.G.1.1a					
15	Pentagon pentagon Match each	th its le	vertex	flected	vertical	roduce
		7 cm	4 cm	6 cm	3 cm	5 cm
	MN	(A)	(B)	(c)	(${ }^{\text {a }}$	(®)
	NO	(F)	(${ }^{\text {a }}$	①+	(1)	(1)
	$O P$	(®)	(1)	(1)	(1)	(
	$P Q$	(®)	((5)	(T)
	MQ	(1)	(1)	(1)	*	(1)
Answer	C, G, N, T, U					

	MAFS.8.F.G.1.1a, MAFS.8.G.1.1b
16	Rectangle $A B C D$ and its transformation $E F G H$ are shown. Select all of the transformations of rectangle $A B C D$ that can produce rectangle $E F G H$. (A) A reflection over a vertical line and a translation. (B) A rotation about point D. (c) A rotation about a point between the two rectangles. (D) A reflection over a horizontal line. (E) A vertical and horizontal translation.
Answer	A, C, E

	MAFS.8.G.1.2
17	A sequence of transformations maps Figure 1 onto Figure 2. Figure 2 Figure 1 Which sequence could have been used? (A) A 90-degree rotation clockwise, then a translation up and left. (B) A reflection over a horizontal line, then a translation left. (c) A reflection across a vertical line, then a translation up. (D) A translation left and up.
Answer	B
	MAFS.8.G.1.2
18	Select all of the sequences of transformations that always maintain congruence. (A) A translation and then a rotation. (B) A rotation and then a translation. (c) A translation and then a reflection. (D) A rotation and then a reflection. (E) A reflection and then a translation. (®) A reflection and then a rotation.
Answer	A, B, C, D, E, F

	MFAS.8.G.1.5
23	Select all of the statements that are true about $\triangle J K L$ and $\Delta L M N$. (A) They have only one pair of congruent angles. (B) The triangles are similar. (C) $m \angle J K L=m \angle L N M$ (D) $m \angle K J L=65^{\circ}$ (®) $m \angle L N M=58^{\circ}$
Answer	A, D, E
	MFAS.8.G.2.8
24	Krystal lives 12 miles south of the school. Howard lives 5 miles east of the school. How far does Howard walk if he takes the shortest path to Krystal's house? mi
Answer	13

	MFAS.8.G.SP.1.1
25	The scatter plot shows the number of subscribers a sewing video channel has in relation to the number of videos created. How can this association be described? (A) The association is positive, non-linear, and has an outlier. (B) The association is positive, linear, and has an outlier. (C) The association is positive, linear, and without outliers. (D) The association is negative, linear, and has an outlier.
Answer	B

	MFAS.8.SP.1.1
26	A chef is calculating if it is cheaper (per person) to cook for more people at once. The scatter plot shows cost per person to cook a meal in relation to the number of people being served that meal. Select the correct description for the general trend of the plot. (A) As the number of people increases, the cost per meal increases. (B) As the number of people decreases, the cost per meal decreases. © As the number of people increases, the cost per meal stays the same. (D) As the number of people increases, the cost per meal decreases.
Answer	D

	MFAS.8.SP.1.2
27	Which graph represents the line of best fit for the scatter plot?
	(A)
	(B)
	(C)
	(D)
Answer	D

	MFAS.8.SP.1.2
28	Can you use a trend line to describe the relationship between the two sets of data for this graph? Explain. (A) Yes, because there is a negative linear association, although it is weak. (B) No, because no line could be drawn that passes through all of the points on the scatter plot. (c) No, because there is no linear association. (D) Yes, because there is a positive linear association, although it is weak.
Answer	D

	MFAS.8.SP.1.3	
29	The data\boldsymbol{x} 5 5 3 6 The equ this situ (A) T (B) T (c) F \$2 (D) For	e table show the sale price of homes with different numbers of bedrooms. of the trend line is $y=25,789 x+30,000$. What does the slope represent in dicted sale price of a house with 0 bedrooms is $\$ 25,789$. dicted sale price of a house with no bedrooms is $\$ 30,000$. additional bedroom a house has, the sale price is predicted to increase by additional bedroom a house has, the sale price is predicted to increase by
Answer		
	MFAS.8.SP.1.3	
30	The scatter plot shows how much water 7 people drink (in glasses) given different temperatures (in degrees Fahrenheit). The equation of the trend line $y=0.09 x-3.77$. If a person drank 3 glasses of water, what was the temperature? Round your answer to the nearest tenth, if needed. \qquad ${ }^{\circ} \mathrm{F}$	
Answer	75.2	

	MFAS.8.NS.1.1
31	Which number represents $1 . \overline{18}$ written as a fraction? (A) $\frac{59}{50}$ (B) $\frac{107}{90}$ (C) $\frac{118}{100}$ (D) $\frac{13}{11}$
Answer	D
	MFAS.8.NS.1.1
32	Select all numbers that are rational. (A) $9 . \overline{812}$ (B) 4π (C) $\sqrt{11}$ (D) 7.4 (巨) $-\frac{748}{3}$
Answer	A, D, E

	MFAS.8.NS.1.2
33	In which list are the numbers in order from least to greatest? (A) $\frac{5}{6}, \sqrt{5}, 4.57, \pi^{2}$ (B) $\frac{5}{6}, 4.57, \sqrt{5}, \pi^{2}$ (c) $\sqrt{5}, \frac{5}{6}, 4.57, \pi^{2}$ (D) $\pi^{2}, 4.57, \sqrt{5}, \frac{5}{6}$
Answer	A
	MFAS.8.NS.1.2
34	Which value is closest to the point shown on the number line? (A) $-\pi$ (B) $-\sqrt{5}$ (c) $-\sqrt{10}$ (D) -2
Answer	B

FSA Grade 8 Practice (CALCULATOR)

	MAFS.8.EE.2.5
1	Lehana and Shani are having a competition to see who can type a 1,000-word essay faster. The results are shown. Select all of the true statements. Shani's Typing Speed (A) Lehana will finish typing in approximately 11 minutes and 7 seconds. (B) Lehana's unit rate is 90 words per minute. © A graph of Lehana's words per minute would have a greater slope. (D) Shani will finish typing in 41 minutes and 40 seconds. (®) Lehana will finish typing first.
Answer	C, D, E

	MAFS.8.EE.2.5 ${ }^{\text {围 }}$
2	This question has two parts. Water is poured into a large bucket at a rate of 2.4 gallons in 5 minutes. Part A. Which graph models the situation? (B) (D) Part B. At what rate is the bucket filling with water? Enter your answer as a decimal number.
Answer	Part A: B, Part B: 0.48

	MAFS.8.EE.2.5 ${ }^{\text {每 }}$				
3	Juan and Ca The number equation $y=$ The number Hours Number of Planes How many	are er air er air lanes 0.25 2 aper ore pl	makin lanes lanes Made 0.5 4 plan nes	paper that Ju Carme 0.75 6 s does hour	irplanes for n makes in ta makes is he faster p
Answer	2				
	MAFS.8.EE.2.6葍				
4	Write an equ answers as $y=$ \qquad	hat re ls. 4 $x+$	rese	ts the s	ame relatio
Answer	$y=x+20$				

	MAFS.8.EE.2.6葍
5	A plant requires 4 cups of water when it is first brought inside and then 2 cups of water each week for the rest of its life. Write a linear equation for the number of cups of water used after x months. $y=\quad x+$ \qquad
Answer	$y=2 x+4$
	MAFS.8.EE.2.6棈
6	What is the equation of the line representing the proportional relationship in the table? Enter your answers as decimals. $y=$ \qquad $x+$ \qquad
Answer	$y=1 / 2 x+0$
	MAFS.8.EE.3.7a ${ }^{\text {\# }}$
7	Select all equations that have exactly one solution. (A) $2 x-4=x+1+x$ (B) $6 x-2 x=4 x$ (C) $5 x-2=2 x+6-x$ (D) $2 x+6=x$ (E) $4 x-x=9$
Answer	C, D, E

	MAFS.8.EE.3.7b ${ }^{\text {(}}$
8	Solve the equation shown for x. $4 x+8+\frac{1}{2}(2 x-4)=6 x+6-4 x$ (A) No solution (B) $x=\frac{2}{3}$ (c) $x=0$ © $x=-3$
Answer	C
MAFS.8.EE.3.8a	
9	A graph of a system of two equations is shown. What is the solution of the system?
Answer	$(1,2)$

	MAFS.8.EE.3.8b ${ }^{\text {包 }}$
10	Select all of the systems of equations that do not have exactly one solution. (A) $\begin{aligned} & -4 x+6 y=-10 \\ & 5 x-6 y=11 \end{aligned}$ (B) $\begin{aligned} & 3 x+8 y=0 \\ & 3 x+8 y=14 \end{aligned}$ (C) $\begin{aligned} & y=2 x+1 \\ & y=2 x-1 \end{aligned}$ () $\begin{aligned} & 2 y+2=4 x \\ & y=2 x-1 \end{aligned}$ © ${ }^{\text {E }}$ $\begin{aligned} & y=-2 x+2 \\ & y=2 x+3 \end{aligned}$
Answer	B, C, D
	MAFS.8.EE.3.8c国
11	At Katya's fruit stand, a basket of strawberries costs $\$ 4$ and a basket of raspberries costs $\$ 9$. In one morning, Katya sells 96 baskets for $\$ 644$. How many baskets of strawberries were sold? baskets
Answer	44

	MAFS.8.F.1.2 ${ }^{\text {亚 }}$
12	The savings accounts of two people can be modeled by linear functions. Zahava has $\$ 200$ and saves $\$ 20$ per week. Andre's savings are shown in the graph. Select the true statement. (A) Zahava has less money initially. The rate of change of her account is less than that of Andre's. (B) Zahava has less money initially. She saves more per week than Andre. © Zahava has a greater initial amount saved. She saves less per week than Andre. (D) Zahava has a greater initial amount. The rate of change of her account is greater than that of Andre's.
Answer	C
	MAFS.8.F.1.2 ${ }^{\text {画 }}$
13	Select the statement that accurately compares the two linear functions. Function 1 Function 2 $y=\frac{5}{3} x+3$ (A) Function 2 has the greatest rate of change and the greatest initial value. (B) Function 2 has the greatest rate of change and Function 1 has the greatest initial value. (c) Function 1 has the greatest rate of change and the greatest initial value. (D) Function 1 has the greatest rate of change, and Function 2 has the greatest initial value.
Answer	D

	MAFS.8.F.1.3 ${ }^{\text {國 }}$
14	Select all of the functions that are linear. (A) $5 x+3 y=9$ (B) (C) $y=(9+4) x+4$ (D) (E)
Answer	A, C, E

	MAFS.8.F.1.3 ${ }^{\text {国 }}$
15	Laila runs 3 mi the first week. The next week, she runs 6 mi . Every week after, she runs 3 mi more than the week before. Select all of the true statements. (A) This is a nonlinear relationship because it cannot be written as an equation of the form $y=m x+b$. (B) This is a nonlinear relationship. If the number of miles Laila ran per week was graphed, it would be a curve. (C) This relationship contains the point $(3,6)$. (D) This relationship can be modeled as a linear function and can be expressed as $y=3 x$, where x is the number of weeks and y is the number of miles Laila runs. (E) This is a linear relationship because if the number of miles Laila ran each week was graphed, it is a straight line.
Answer	D, E
	MFAS.G.8.1.4 ${ }^{\text {國 }}$
16	Which sequence of transformations results in figures that are similar but not congruent? (A) 270° rotation, reflection across the x-axis. (B) Translation 3 units up, 180° rotation. (c) Reflection across the line $y=2$, translation 2 units left. (D) Translation 3 units up, dilation with a factor of 3 .
Answer	D

	MFAS.8.G.1.4 ${ }^{\text {星 }}$
17	Is $\triangle D E F$ similar to $\triangle G H I$? Explain. Yes, because $\triangle G H$ I can be obtained by dilating $\triangle D E F$ by a scale factor of $\frac{1}{2}$ and then translating to the right. (B) No, because $\triangle G H I$ cannot be obtained from $\triangle D E F$ through a sequence of rotations, translations, reflections, and dilations. (c) Yes, because $\triangle G H I$ can be obtained by dilating $\triangle D E F$ by a scale factor of 2 and then translating to the right. (D) No. The triangles are not the same size, so they are not similar.
Answer	C
	MFAS.8.G.2.6 ${ }^{\text {國 }}$
18	Which set of side lengths forms a right triangle? (A) 5 in., 12 in., 11 in. (B) $2 \mathrm{~cm} ; 4 \mathrm{~cm} ; 5 \mathrm{~cm}$ (C) $6 \mathrm{~m} ; 8 \mathrm{~m} ; 5 \mathrm{~m}$ (D) $9 \mathrm{ft} ; 12 \mathrm{ft} ; 15 \mathrm{ft}$
Answer	D

	MFAS.8.G.2.6 ${ }^{\text {囲 }}$
19	A right triangle has a hypotenuse of length 25 inches and a leg of length 15 inches. What is the length of the remaining side? \qquad in.
Answer	20
	MFAS.8.G.2.7 ${ }^{\text {國 }}$
20	The size of a television screen is usually described by the length of its diagonal. If a 32" television has a width of 28 inches, what is the height of the screen? Round your answer to the nearest tenth of an inch. inches
Answer	15.5

	MFAS.8.G.3.9 ${ }^{\text {星 }}$
23	A three-dimensional figure has a volume of 314 cubic centimeters rounded to the nearest cubic centimeter. Select all of the figures that match this description. Use 3.14 for π. (A) A cone with a radius of 10 cm and a height of 3 cm . (B) A cylinder with a radius of 1 cm and a height of 10 cm . (C) A sphere with a diameter of 4.217 cm . (D) A sphere with a radius of 4.217 cm . (E) A cylinder with a radius of 4.47 cm and a height of 5 cm .
Answer	A, D, E
	MFSA.8.G.3.9 ${ }^{\text {星 }}$
24	If you inflate a beach ball with 14,130 cubic inches of air, what will its diameter be? Use 3.14 for π. inches
Answer	30

	MFAS.8.SP.1.4 ${ }^{\text {國 }}$						
25	Naomi polled 50 students at school on their favorite animal.						
		Cats		Dogs	Tota		
	Fourth-Grade Students	8		16			
	Fifth-Grade Students	12		14			
	Total						
	For each value described	selec	the corr	correct p	percent	age (ro	unded
		47\%	33\%	20\%	40\%	54\%	52\%
	Percentage of fourth-grade students that preferred cats.	(A)	(B)	©	(1)	(E)	${ }^{\text {® }}$
	Percentage of students that were fifth-grade students.	(${ }^{\text {a }}$	$\stackrel{(H)}{ }$	(1)	(1)	®	(L)
	Percentage of fifthgrade students that preferred dogs.	(1)	(1)	©		©	®
	Percentage of students that preferred cats.	(5)	(T)	(1)	(1)	(1)	®
Answer	B, L, Q, V						

	MFAS.8.SP.1.4 ${ }^{\text {围 }}$			
26	An amusement park surveys 260 customers to help them decide whether to add a rollercoaster or bumper cars to the park.			
		Like Bumper Cars	Do Not Like Bumper Cars	Total
	Like Rollercoasters	123	45	168
	Do Not Like Rollercoasters	60	32	92
	Total	183	77	260
	What is the best numbers to the nea (A) The amusem surveyed like (B) The amusem surveyed like (C) The amusem surveyed like (D) The amusem surveyed like	cision based on arest percent. nt park should rollercoasters nt park should bumper cars and nt park should bumper cars a nt park should bumper cars a	the relative freq add a rollercoas and 35% like bum add bumper cars, 17% of custom add bumper cars 30\% like roller add bumper cars 65\% like roller	uencies in the table? Round all , because 65% of the customers er cars. because 23% of the customers ers like roller coasters. because 70% of the customers oasters. because 70% of the customers oasters.
Answer	D			

