

GPU Implementation of the Feynman Path-
Integral Method in Quantum Mechanics
Bachelor of Science Thesis for the Engineering Physics Programme

OLOF AHLÉN, GUSTAV BOHLIN, KRISTOFFER CARLSSON,
MARTIN GREN, PATRIC HOLMVALL, PETTER SÄTERSKOG

Department of Fundamental Physics
Division of Subatomic Physics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden, 2011
Bachelor Thesis No. FUFX02-11-01

GPU Implementation of the Feynman Path-Integral Method in Quantum Mechanics.
Olof Ahléna, Gustav Bohlinb, Kristoffer Carlssonc, Martin Grend, Patric Holmvalle,
Petter Säterskogf

Email:
aaolof@student.chalmers.se
bbohling@student.chalmers.se
ckricarl@student.chalmers.se
dgmartin@student.chalmers.se
eholmvall@student.chalmers.se
fspetter@student.chalmers.se

© Olof Ahlén, Gustav Bohlin, Kristoffer Carlsson, Martin Gren, Patric Holmvall,
Petter Säterskog, 2011.

FUFX02 - Bachelor thesis at Fundamental Physics
Bachelor Thesis No. FUFX02-11-01

Supervisor: Christian Forssén, Division of Subatomic Physics
Examiner: Christian Forssén

Department of Fundamental Physics
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
+46 (31) 772 1000

Printed by Chalmers reproservice
Göteborg, Sweden 2011

Cover: Probability distribution of six bosons calculated with the Monte Carlo Path
Integral method. The interaction potential consists of a short-range repulsion and a
mid-range attraction modelled by Gaussian functions. See Chapter 8 for details.

Abstract

The Path-Integral Formulation of Quantum Mechanics is intro-
duced along with a detailed mathematical description of how it is
used in quantum computations. The important concept of the kernel
is explained, along with the free particle and harmonic oscillator as
examples. Furthermore, the method for calculating expectation values
of quantum operators is explained.

The expectation values are naturally calculated by importance
sampled Monte Carlo integration and by use of the Metropolis al-
gorithm. This is due to the discretization of the path integral results
in an integral with a high number of integration variables. The math-
ematical concepts of this calculation are explained. Also, a method for
obtaining the probability density of the treated system is presented.

The calculations are performed by a GPU, due to its high ca-
pabilities for numerical operations. This requires the mathematical
computations to be parallelized and is done by use of the free software
PyOpenCL. A thorough introduction to these concepts are given.

The resulting ground state energies and probability densities for
many particle systems interacting with harmonic as well as attrac-
tive and repulsive gaussian potentials are presented. The calculations
worked exceedingly well for many particle systems.

Source code is available at https://sourceforge.net/projects/
feynmangpu/files/

https://sourceforge.net/projects/feynmangpu/files/

Contents

1 Introduction 1

1.1 Purpose . 1

1.2 Method . 2

1.3 Reading Guide . 2

2 Theory 4

2.1 Feynman’s Approach To Quantum Mechanics 4

2.2 The Double Slit Experiment . 4

2.3 The Least-action Principle . 7

2.4 The Probability Amplitude for Each Trajectory 8

2.5 Path Integrals . 9

2.5.1 Many Degrees of Freedom 10

2.5.2 The Composition Theorem 11

2.6 The Propagator for Short Times 12

2.7 Euclidean Time . 13

2.8 The Schrödinger and the Heisenberg Pictures 14

2.9 Expectation Values of Operators in Path Integrals 15

2.9.1 Ground-state Expectation Values of Operators 18

2.10 The Quantum Virial Theorem and Ground-state Energy 18

2.11 Calculating the Ground-state Probability Density from the Kernel 21

3 Analytical Examples 23

3.1 The Free Particle Propagator . 23

3.2 The Harmonic Oscillator . 23

3.2.1 Verifying the Propagator and Ground State for the Har-
monic Oscillator . 24

3.3 The Perturbed Harmonic Oscillator 24

3.4 Few-particle Systems and Jacobi Coordinates 25

3.4.1 Two Particles with a Harmonic Potential 26

3.4.2 Three Particles with Harmonic Potentials 27

3.4.3 Many Particles with Harmonic Potentials 28

4 Numerical methods 29

4.1 Monte Carlo Integration . 29

4.1.1 Brute Force Approach to Monte Carlo Integration 29

4.1.2 Importance Sampled Monte Carlo Integration 32

4.1.3 Markov Chains and the Metropolis-Hastings Algorithm . . 34

4.2 Discretization of the Path Integral 35

4.3 Algorithm for Operator Mean and Probability Density 36

4.4 Explanation of algorithm . 38

4.5 Generalization to More Particles 39

4.6 Choice of parameters . 39

5 Implementation in C 40

5.1 Random Number Generators . 40

5.1.1 Quality of Pseudo Random Number Generators 40

5.1.2 Xorshift . 41

5.2 Example: C-program to Evaluate Mean of an Operator 42

5.2.1 Theory for the System . 42

5.2.2 Construction of C-program 44

6 Parallelization and GPU Programming 49

6.1 GPU versus CPU Programming Concepts 49

6.1.1 Background . 49

6.1.2 Multiprocessors, Work groups, Threads and Global Sizes . . 50

6.1.3 Memory . 51

6.1.4 ATI versus nVidia . 52

6.1.5 CPU versus GPU Calculation: A Brief Example 53

6.1.6 Speed-up Factor of Parallelization 53

6.2 OpenCL Description . 54

6.2.1 Background . 54

6.2.2 OpenCL versus CUDA . 54

6.2.3 OpenCL Programs . 55

6.2.4 PyOpenCL . 55

6.3 OpenCL Programming in Python: A Brief Guide 56

6.3.1 Best Practices: Writing Optimized OpenCL Code 56

6.3.2 A Simple OpenCL Application 57

6.4 Challenges with GPU Implementation 60

6.4.1 5 second Kernel Run-Time Limitation 60

6.4.2 Memory Limitation and Random Numbers 61

7 Implementation in OpenCL 63

7.1 OpenCL Kernel Code . 63

7.2 Python Host Code . 65

7.3 Example of Python Application Code 66

8 Results 68

8.1 Theoretical Results . 68

8.2 Numerical Algorithms . 69

8.3 Implementation Calculations . 69

8.4 Harmonic oscillator . 69

8.4.1 Uncoupled Harmonic Oscillators 69

8.4.2 Perturbed single harmonic oscillator 71

8.4.3 Coupled Harmonic Oscillators 71

8.5 Gaussian potential . 72

8.6 Choice of parameters . 73

9 Discussion 75

9.1 Theory . 75
9.2 Numerical methods . 76
9.3 Implementation . 76

10 Acknowledgements 78

A Formula 82

B Derivation of examples 83

B.1 Free-particle propagator . 83
B.2 The harmonic oscillator . 85

B.2.1 Finding the propagator . 86
B.2.2 Finding the eigenstates . 90

C Perturbation theory 94

D Python 96

D.1 Background . 96
D.2 Modules . 96
D.3 Why Python 2.6 . 97

E Source code 98

E.1 C-code . 98
E.2 PyOpenCL code . 101

E.2.1 OpenCL Kernel Code . 101
E.2.2 PyOpenCL Host Code . 105
E.2.3 Example of Application Code 108

E.3 Device Dump Properties . 112
E.4 Device Benchmark Properties . 114

1 INTRODUCTION 1

1 Introduction

In 1948 R. P. Feynman presented a new way to describe quantum mechanics math-
ematically in his famous paper The Space-Time Formulation of Non-relativistic
Quantum Mechanics [1]. This is called the Path-Integral Formalism. Prior to this
achievement two different approaches to quantum mechanics existed: These where
the Schrödinger equation and Heisenberg’s matrix algebra. Feynman’s aim with
his new approach was to make the connection between quantum mechanics and
classical mechanics more clear than the other two approaches did. The general idea
of Feynman’s approach is that all possible paths in space and time, which starts
and ends at fixed points, for a system adds up with specific probability amplitudes.
The sum over the probability amplitudes for all paths gives the total probability
amplitude for the system. The absolute square of the probability amplitude gives
the probability distribution.

The path-integral formalism describes how to perform the sum over all paths.
The method to find a probability amplitude results in an integral over an infinite
number of variables. In numerical approximations, this results in a high dimen-
sional integral. Therefore, even simple problems like a harmonic oscillator in one
dimension, becomes a rather long computation. As we see in this report the ben-
efit of path-integral formalism appears when the number of degrees of freedom is
high. For example, path integrals have been used to investigate non-relativistic
many-body physics such as helium superfluidity and Bose condensation [3]. Even
more important is the use of path integrals for solving quantum field equations.
In particular, K. G. Wilson formulated a discretized version of Quantum Chro-
modynamics [4] that he used to simulate quark confinement. Today, this area of
research is very active [5].

1.1 Purpose

Our main purpose is to use the path-integral formalism to find ground-state ener-
gies of different quantum-mechanical systems composed of one or many particles.
We will restrict ourselves to the study of systems with distinguishable particles
and avoid the additional difficulties of treating boson and (in particular) fermion
statistics, see [6]. We will also find probability distributions using path integrals.

A specific aim has been that the numerical calculations presented in this work
should be tractable on a desktop computer. The design of computational devices
in the more recent years has shifted from increasing clock speeds to increasing the
number of cores performing calculations. The computational unit on a graphics
card, the GPU, is designed with a very large amount of computational cores and
is thus capable of performing many more calculations per second than a modern
CPU. It is therefore very interesting to explore the possibility of performing the
calculations on a GPU. Utilizing a GPU as the computational device requires one
to parallelize the computations that are to be performed, which in essence means

2 1 INTRODUCTION

that many path integrals will be computed simultaneously, and will prove to be a
challenge. We will verify our computational algorithm by solving various examples
analytically and comparing the analytical and numerical results.

1.2 Method

First we introduce Feynman’s path-integral formalism of quantum mechanics. Our
main source of theoretical background on path integrals is Feynman’s lecture notes
written by A. R. Hibbs [2]. We then theoretically derive expressions involving
path integrals to calculate the expectation value of operators (in particular the
Hamiltonian) and the probability density for the ground state. These expressions
are high-dimensional integrals of a form that can be evaluated efficiently using
Monte-Carlo methods.

1.3 Reading Guide

The first section, Theory, focuses on the theory of the path-integral formalism.
The path-integral formalism is motivated by the double-slit thought experiment
and the method to calculate probability amplitudes for each path is introduced. We
define the path integrals and introduce important concepts such as the least action
principle and Euclidean time. We also theoretically derive expressions involving
path integrals to calculate the expectation value of the energy and the probability
density for the ground state. The Quantum Virial Theorem is proved. The reader
is assumed to have basic knowledge of quantum mechanics and to understand the
bra-ket notation.

In the next section, Analytical Examples, we present some analytical solutions
for the energy and probability density for some simple quantum-mechanical sys-
tems. In particular we study a free particle, a particle in a harmonic potential
and several particles with harmonic interaction. The Jacobi coordinates, that are
useful to describe few body systems, are also introduced.

Next, in Numerical Methods, we introduce numerical Monte Carlo methods
and sketch the outline of an algorithm to evaluate the ground-state energies and
probability densities.

The Monte Carlo methods introduced in the above section will be implemented
in OpenCL for performing the calculations on a GPU. This is done in two steps.
First, in the section Implementation in C, a C-program is presented that performs
the calculations outlined in the Numerical Methods-section on a CPU. Since C is
such a widely used programming language for calculations, this should be a natural
way of introducing how the path integral formalism is used in computer calcula-
tions. The transition to OpenCL is then made by first discussing some important
concepts of parallel programming and going into detail about the functionality
of the Python implementation OpenCL, PyOpenCL, in the section Parallelization
and GPU programming. After that, the source code for the parallelized compu-

1 INTRODUCTION 3

tation is explained in section Implementation in OpenCL. Here, the C-program
presented earlier can be recycled with only minor modifications.

In the Result section, we present some different results from our program. Here
are also comparisons with the analytical methods presented.

4 2 THEORY

2 Theory

In this section, the theory behind the path-integral formalism will be introduced.
There will be a thought experiment that motivates the introduction of the path-
integral formalism. Important concepts such as the least-action principle and Eu-
clidean time will be introduced. Expressions involving path integrals to calculate
the energy and the probability density for the ground state will be derived.

2.1 Feynman’s Approach To Quantum Mechanics

In the standard approach to quantum mechanics the probability amplitude (wave
function) for a quantum mechanical system is given by the Schrödinger equation.
This Schrödinger viewpoint focuses on the wave properties of quantum mechanical
particles. It is not very well connected with classical mechanics since classical
particles are not described as waves, but rather as point-like entities. Feynman
introduces his path integral formalism in order to use more of the classical point-
like entity properties of quantum mechanical particles to calculate the probability
amplitude [1]. He also wanted classical mechanics to emerge in the limit h → 0,
where h is the Planck constant.

2.2 The Double Slit Experiment

The double-slit experiment is an important experiment that shows the difference
between classical mechanics and quantum mechanics [2]. Moreover, it gives a
conceptual motivation for introducing the path integral formalism.

Consider a source S of almost monoenergetic particles placed at A, see figure
1. The particles could be protons, electrons etc. The particles come out in all
directions. The flux of particles is measured on a screen placed at B. A screen
with two slits, that can be opened and closed, is placed in between A and B at
position C. When the first slit is opened and the second slit is closed a flux P1 is
measured, when the second slit is opened and the first slit is closed a flux P2 is
measured, and when both are opened a flux P is measured. The flux at a specific
position on the detector represents the probability density for the particles to reach
the screen at that position.

In classical mechanics each particle is expected to go through either slit 1 or
slit 2 since these are excluding events. Therefore, the fluxes at C are expected to
satisfy the relation P1 + P2 = P . Experimental data tells us that this is not the
case. The general result is P1+P2+Pinterference = P , where Pinterference corresponds
to the interference between two waves, φ1 and φ2, that goes through slits 1 and 2
respectively according to

P = |φ1 + φ2|2 = |φ1|2
︸︷︷︸

P1

+ |φ2|2
︸︷︷︸

P2

+2Re(φ∗1φ2)
︸ ︷︷ ︸

Pinterference

. (2.1)

2 THEORY 5

A B

S

1

2

C

Figure 1: Double-slit experiment set-up

The result is the same as a double slit experiment with light where the ”particles”
are photons. Moreover, the interference holds even when the intensity of the source
is so low that the detector records pulses, at specific positions on the screen, that
are separated by gaps in time during which nothing happens. This represents
individual particles arriving at the detector and it is the reason why for example
electrons are referred to as particles. Still, because of the interference it seems like
the particle is a de-localized object that passes through both slits. If an attempt
is done to detect through which slit the particle went through the result is that
it either goes through slit 1 or 2. However, when performing this intermediate
observation at C the interference at B vanishes. This particle/wave duality seems
contradictory and it require some explanation.

The flux of particles represents the probability for the particles to reach the
detector. The intensity |φ|2 should therefore be interpreted as the probability
density for the position of the particles. It is the probability amplitude φ that
adds up, not the density. Heisenberg’s quantum uncertainty principle says that
any determination of the alternative taken by a process capable of following more
than one alternative destroys the interference between the alternatives. Therefore,
when an attempt to observe which slit the particle went through, the interference
between the two options disappear.

The double-slit experiment tells us that the probability amplitude for an event,
here particles arriving at the detector, is the sum of the probability amplitudes
for which the event can happen. This result can be used to get the probability
amplitude for the particles to go from the source to the detector, and this will be
explained below.

Imagine that more holes are drilled in the screen at C until there are N slits
in the screen at positions yC(i), where i goes from 1 to N , see figure 2. From the
results above one can see that the total probability density is given by

Φ =
N∑

i=1

φ(yC(i)) , (2.2)

where φ(yC(i)) is the amplitude for the wave going through the slit at yC(i). If

6 2 THEORY

A B

S

C

yC(1)

yC(i)

yC(N)

y

x

Figure 2: Set-up for thought experiment with N slits

the number of holes goes toward infinity, so that they fill the whole screen, the
screen becomes a purely fictive device. The sum then transforms into an integral
over all values for yC

Φ =

∫

dyCφ(yC) . (2.3)

Now imagine the case with M number of screens between A and B, placed
at xj and each with an infinite number of slits. The source and the detector are
placed at xA and xB respectively. The total probability amplitude is then given
by

Φ =

∫ M∏

j=1

(dyj)φ(y1, x1; y2, x2; . . . yM , xM) , (2.4)

where φ(y1, x1; y2, x2; . . . yM , xM) is the probability amplitude for the particle to
go through the screens at specific values of xj , yJ .

If the number of screens between A and B goes towards infinity so that the
distance between two screens are infinitesimally small a specific set of (yi, xi) rep-
resent one single path the particle can take between A and B. This is only true
if the motion along the x-axis is not restricted in the direction from xA to xB as
before, but allowed to be in both the positive and the negative directions. A path
between A and B can be parametrised with respect to time as x(t) = (x(t), y(t))
where each point along the path has a given x and y value for a given time t see
figure 3. The time goes from tA to tB for all paths.

The total probability amplitude is thus

Φ =
∑

all paths
from A to B

φ[x(t)] , (2.5)

where φ[x(t)] is the probability amplitude for the given path. Since all of these
screens are purely fictive, this represent the probability amplitude for a particle to

2 THEORY 7

S

[x(t), y(t)]

x

y

xA xB

Figure 3: A complete path between A and B

go from A to B in the time interval tB−tA when there are no screens in between A
and B. This gives an alternative way of calculating the total probability amplitude
that emphasizes the particle properties of a particle rather than the wave properties
as in the Schrödinger approach.

The path integral formalism gives a method of calculating the probability am-
plitude for each path and how to make the sum over all paths.

2.3 The Least-action Principle

To make things easier to understand the path integral formalism will be introduced
with one particle in one space dimension x. The transition to more particles and
more space dimensions is not hard and it will be shown later in section 2.5.1. An
event for a particle is its position x at a given time t. The event (xi, ti) will be
referred to as event i. In classical mechanics there is only one trajectory a particle
can take between two events [2]. In this section, an equation to find the classical
path will be introduced. In classical mechanics the trajectory is defined by the
principle of least action1. The action S is given by the expression

S[x(t)] =

∫ tb

ta

L(ẋ, x, t)dt , (2.6)

where L is the Lagrangian for the system. The Lagrangian is given by

L = T − V (2.7)

where T is the kinetic energy and V is the potential energy. The condition that
the action should have an extremum gives the equation

d

dt

(
∂L

∂ẋ

)

− ∂L

∂x
= 0 . (2.8)

1The real condition is actually that the action should have an extremum and not
necessarily a minimum.

8 2 THEORY

This is the classical Lagrangian equation of motion. A proof that the least action
gives the Lagrangian equation of motion is found in [2]. The solution is named the
classical path and is here denoted x̄(t). The quantum of action is the Planck con-
stant h, and this is important when the probability amplitude for each trajectory
is introduced.

2.4 The Probability Amplitude for Each Trajectory

In this section, the form of the amplitude for each trajectory shall be given.
As said before, classical mechanics should emerge when the quantum of action

h→ 0. In classical mechanics only the classical path, with an extremum in action,
should contribute to the probability amplitude. Feynman postulated that the
magnitude of the probability amplitude for each trajectory is the same, but they
have different phases [1]. The phase given in radians is the action in units of the
quantum of action times 2π. The probability amplitude from each path is then
expressed as

φ[x(t)] = C · ei2π
S[x(t)]

h = C · ei
S[x(t)]

~ , (2.9)

and the total probability amplitude K(b, a) to go from event a to event b can be
expressed as

K(b, a) =
∑

all paths
from a to b

φ[x(t)] = C ·
∑

all paths
from a to b

ei
S[x(t)]

~ . (2.10)

The constant C is chosen to normalize K correctly.

2.4.1 The Classical Limit

Now an argument that the classical limit h→ 0 works for this choice of probability
amplitude will be given. For larger systems a small change in the trajectory cor-
responds to a relatively large change in the action in comparison to h and thus a
big change in phase [2]. Because the phase changes rapidly, the contributions from
paths other than the classical path tend to cancel each other. Because of this one
can let h → 0 so that S[x(t)] ≫ h to get classical mechanics. For small systems
the action will take small values. Therefore, small changes in the trajectory give
relative small change in the action in comparison to h and thus a small change
in phase. Because there is only small changes in phase for trajectories close to
the classical path these trajectories give a net contribution to the total probability
amplitude.

2.4.2 Probability

The probability P to go from a to b is related to the probability amplitude by

P (b, a) = |K(b, a)|2 . (2.11)

2 THEORY 9

2.5 Path Integrals

In this section, the path integrals will be defined. The basic idea to sum the
contributions from all paths is quite simple, but a more precise mathematical
definition of such a sum must be given. Because the number of paths is a high order
of infinity it is not evident what measure the space of paths should be given [2].
The path integrals are analogous to the Riemann integral. In Riemann integration
the area A under a curve is approximated by using a subset {xi} of all points in
the interval over which the area is calculated. The approximation is the sum of
the given function’s values taken at evenly spaced points xi times a normalization
factor that depends upon the space between the points. The normalization factor
ensures that the sum approaches the right value when the spacing between the
points becomes smaller. For Riemann integration the normalization factor is just
the space between the points, referred to as h, and thus

A = lim
h→0

h
∑

i

f(xi) . (2.12)

An analogous procedure can be followed when defining the sum over all paths.
In order to construct the path integrals a subset of all paths must be found. Divide
the independent variable time into N steps of width ǫ which gives a set of values
ti evenly spaced between ta and tb. For each time ti there is a position xi. For
each path there is a specific set of xi, ti. (x0, t0) is the starting point (xa, ta), and
(xN , tN) is the end point (xb, tb). A path is constructed by connecting all the
points selected according to this, see figure 4. One can define a sum over all paths
constructed in this manner by taking multiple integrals over all values of xi for
i between 1 and N − 1. The integrals should be multiplied with a normalization
factor that ensures that the path integral approaches the right value when the
time step ǫ becomes smaller. The normalization factor is a function of ǫ and it is
therefore denoted N(ǫ). The integration does not go over x0 and xN because these
are fixed end points. If the magnitude C of the probability amplitude is collected
in N(ǫ) the Kernel can be written as

K(b, a) = C ·
∑

all paths
from a to b

ei
S[x(t)]

~

= lim
ǫ→0

N(ǫ) ·
∫

ei
S[x(t)]

~ dx1 . . . dxN−1 . (2.13)

Unlike the case of Riemann integrals it is hard to find a general expression for the
normalization factor, but one can find definitions for many situations which have
practical value. However, this leads into rather long calculations. The normaliza-
tion factors in this paper are therefore taken directly from Feynman [2].

For a particle in a potential the Lagrangian has the form

L =
m

2
ẋ2 − V (x, t) . (2.14)

10 2 THEORY

time

x

t1 tnt0 . . .

Figure 4: A discrete path

The normalization factor is then A−N , where

A =

(
2πi~ǫ

m

) 1
2

[2]. (2.15)

When the normalization factor is A−N the probability amplitude can be expressed
as

K(b, a) = lim
ǫ→0

1

A

∫

φ[x(t)]
dx1
A

. . .
dxN−1

A
. (2.16)

With the definition of φ[x(t)] this is

K(b, a) = lim
ǫ→0

1

A

∫

ei
S[x(t)]

~

dx1
A

. . .
dxN−1

A
, (2.17)

where x(t) is the path constructed in the manner above. This is defined, in a more
compact form, as

K(b, a) =

∫

ei
S[x(t)]

~ Dx(t) . (2.18)

This is referred to as a path integral. K(b, a) has many names: kernel, propagator,
Greens function, time-evolution operator etc.

Feynman proved that this way of calculating the probability amplitude satisfies
the time-dependent Schrödinger equation [1]. This proof will not be shown in this
report.

2.5.1 Many Degrees of Freedom

The path integrals can be generalized into more degrees of freedom. The degrees
of freedom grows when adding more particles as well as adding more space dimen-
sions. xi then becomes a vector xi of dimension d = m · n, for m particles in n
space dimensions. The path is thus a vector valued function of time, describing all

2 THEORY 11

the particles coordinates in all dimension. The integrals in the path integral are
thus d-dimensional. Using vector notation the general path integral can be written
as

K(b, a) =

∫

ei
S[x(t)]

~ Dx(t) . (2.19)

This only works for many particles if the particles are distinguishable. If they
are identical it is necessary to integrate over paths for the system where particles
change places because the final states they lead to are the same states as when
they don’t change places.

2.5.2 The Composition Theorem

In this section, the composition theorem for events occurring in succession for the
propagators shall be derived. Suppose there is an event c at point (xc, tc) where
ta < tc < tb so that it is between the events a and b. The kernel K(b, a) can be
related to the kernels K(b, c) and K(c, a).

Since the action is an integral of the Lagrangian over time the action between
a and b can be written as

S[b, a] = S[b, c] + S[c, a] . (2.20)

According to equation (2.18) the kernel can be written as

K(b, a) =

∫

ei
S[b,a]

~ Dx(t) =
∫

ei
S[b,c]+S[c,a]

~ Dx(t) . (2.21)

Now one can use the fact that any path can be split into two paths, and split the
path at c. After this one can first integrate over all paths from a to c, then over
all paths from c to b and finally integrate the result over all possible values of xc.
Because S[b, c] is constant when integrating from a to c the result after the first
integration can be written as

K(b, a) =

∫ ∞

−∞

∫ b

c
ei

S[b,c]
~ K(c, a)Dx(t)dxc . (2.22)

Now the integral between c and b is taken for a general xc, which leaves only an
integral over all possible values of xc so that

K(b, a) =

∫ ∞

−∞
K(b, c)K(c, a)dxc . (2.23)

This says that the probability amplitude to go from a to c and then to b is the
probability amplitude to go from a to c times the probability amplitude to go
from c to b. If this is extended by adding more events between a and b it leads
to the conclusion that probability amplitudes for events occurring in succession in
time multiply. This is called the composition theorem. If the process of adding

12 2 THEORY

more events between a and b is continued so the time scale is divided into N equal
intervals, K(b, a) can be expressed as

K(b, a) =

∫

xN−1

. . .

∫

x2

∫

x1

K(b,N − 1)K(N − 1, N − 2) (2.24)

· · ·K(j + 1, j) · · ·K(1, a)dx1dx2 · · · dxN−1 .

With this result in hand it would be fortunate if one could find an approximation
of the propagator for short time evolution and then multiply these and integrate
to get an approximation of longer time propagators.

2.6 The Propagator for Short Times

In this section, an approximation for the short time propagator shall be derived.
Let us start with equation (2.17). Since the action is an integral one can split it
over time. The action between a and b can be expressed as the sum of the actions
in each time interval (tj , tj+1)

S[b, a] =
N−1∑

j=0

S[j + 1, j] . (2.25)

If this is put into equation (2.17) one gets

K(b, a) = lim
ǫ→0

1

A

∫

ei
∑N−1

j=0
S[j+1,j]

~

dx1
A

. . .
dxN−1

A
= (2.26)

= lim
ǫ→0

∫ N−1∏

j=0

ei
S[j+1,j]

~

A
dx1 . . . dxN−1 .

where ǫ = tj+1 − tj . If this is compared to equation (2.24) one can identify under
the limit ǫ→ 0 that

K(j + 1, j) =
ei

S[j+1,j]
~

A
. (2.27)

Since ǫ is small, it is interesting to see how the action grows with ǫ. Therefore,
expand the action in a Taylor series

S[x(t)] =

∫ tj+ǫ

tj

Ldt = 0 + L(j)ǫ+O(ǫ2) . (2.28)

This tells us that to the first order of ǫ the action along any path grows as the
Lagrangian at the starting point times ǫ. This means that the action can be
replaced by L(j)ǫ in equation (2.27)

lim
ǫ→0

K(j + 1, j) = lim
ǫ→0

ei
L(j)ǫ

~

A
. (2.29)

2 THEORY 13

The short-time evolution propagator is therefore approximated as

K(j + 1, j) ≈ ei
L(j)ǫ

~

A
. (2.30)

This method of approximating the propagator requires that the value of the La-
grangian is known at each point along the path. The method of making the path
described in section 2.5 makes the velocity discontinuous at each point along the
path. It would therefore be better to take the value of the Lagrangian at the mid-
point of each time interval where the velocity is given exactly by

xj+1−xj

ǫ . This
procedure gives the same result as above when the limit ǫ→ 0 is taken, see equa-
tion (2.29). It can therefore also be used to approximate the short time evolution
operator. If the potential energy is only dependent on the position and the time
the approximation for the action between j and j + 1 is given by

S[j + 1, j] ≈ L

(

x =
xj+1 + xj

2
, ẋ =

xj − xj+1

ǫ
, t =

(
tj + tj+1

2

)

ǫ

)

ǫ . (2.31)

The long time propagator is thus

K(b, a) =

∫

xN−1

. . .

∫

x2

∫

x1

K(b,N − 1)K(N − 1, N − 2) (2.32)

· · ·K(j + 1, j) · · ·K(1, a)dx1dx2 · · · dxN−1 ,

where

K(j + 1, j) =
e

i
~
L
(

x=
xj+1+xj

2
, ẋ=

xj+1−xj
∆t

, t=(j+ 1
2)ǫ

)

ǫ

A
. (2.33)

A more formal proof for the short-time evolution operator is found in Path Integrals
in Quantum Mechanics by J. Zinn-Justin [6].

2.7 Euclidean Time

The exponents in the expressions for the kernel are imaginary and thus the kernel
is non-real. It will make calculation on computer much easier if the kernel was
real. As will be shown later it also makes the excited energy states decay and
is therefore essential when calculating the energy and probability distribution of
the ground state. Here follows a method that makes the kernel real [14]. If the
Lagrangian is expressed in Euclidean time τ = it one gets

L

(

x,
dx

dt
, t

)

=L

(

x,− dx

idτ
,−iτ

)

=
m

2

(

− dx

idτ

)2

− V (x,−iτ) (2.34)

=− m

2

(
dx

dτ

)2

− V (x,−iτ) = −T − V = −H .

14 2 THEORY

Therefore, the Lagrangian becomes the Hamiltonian when Euclidean time is in-
troduced. By a simple variable substitution the kernel becomes

K(b, a) =

∫

e−
∫ b
a Hdτ

~ Dx(t) =
∫

e−
SE [b,a]

~ Dx(t) , (2.35)

where the SE [b, a] is the action expressed in Euclidean time. If the Euler approxi-
mation of the action is expressed in Euclidean time one gets

SE [j + 1, j] ≈ H(j + 1, j)ǫ

= H
(

x =
xj+1+xj

2 , ẋ =
xj+1−xj

ǫ , t = −
(
j + 1

2

)
iǫ
)

ǫ . (2.36)

K(j + 1, j) can then be approximated by

K(j + 1, j) ≈ 1

A
e−

H(j+1,j)ǫ
~ . (2.37)

An approximation for the long-time propagator in Euclidean time is thus

K(b, a) =

∫ N−1∏

j=0

1

A
e−

H(j+1,j)ǫ
~ dx1dx2 · · · dxN−1 . (2.38)

These propagators are real and they will be used in calculations.

2.8 The Schrödinger and the Heisenberg Pictures

In the next sections the Dirac bra-ket notation will be used. An introduction to
the bra-ket notation can be found in Modern Quantum Mechanics by J.J. Sakurai
[7]. A time-dependent state |α〉 at a time t will be denoted as |α, t〉. The time-
evolution operator Û(tb, ta) for a system evolves the states from an initial time ta
to a final time tb. For a system with a time independent Hamilton operator Ĥ the
time-evolution operator is given by

Û(tb, ta) = exp

(

−iĤ(tb − ta)

~

)

[7] . (2.39)

and thus

|α, tb〉 = exp

(

−iĤ(tb − ta)

~

)

|α, ta〉 . (2.40)

Often the initial time ta ≡ 0 and the final time is just called t. The time evolution
operator then becomes

Û(t) = exp

(

−iĤt
~

)

. (2.41)

This way of evolving the states with the time-evolution operator is referred to
as the Schrödinger picture. There is another way of describing time evolution of

2 THEORY 15

systems. Instead of evolving the state the operator is evolved in time. This is
known as the Heisenberg picture. A time-depending operator Â(t) can be written
as

Â(t) = Û †(t)Â(t = 0)Û(t) [7] . (2.42)

This is equivalent to

Â(t) = exp

(

i
Ĥt

~

)

Â(t = 0) exp

(

−iĤt
~

)

. (2.43)

In the next section the Schrödinger and Heisenberg pictures will be used to derive
expressions for expectation values for operators using path integrals.

2.9 Expectation Values of Operators in Path Integrals

Path integrals can be used to calculate expectation values of operators. In this
section, the procedure of this will be shown. First consider an operator Â. The
operator has eigenvalues A(x) to the position eigenstates2 according to

Â|x〉 = A(x)|x〉 . (2.44)

The position eigenstates can have a time dependence, as they do along a path.
The operator Â can therefore be denoted as Â(x̂(t)). Now consider the matrix
element Aba

Aba = 〈xb, tb|Â(x̂(t1))|xa, ta〉 . (2.45)

With the definition of the time-evolution operator, equation (2.40), this can be
written as

Aba = 〈xb|e−i
Ĥtb
~ Â(x̂(t1))e

i Ĥta
~ |xa〉 . (2.46)

The operator can be rewritten using the Heisenberg picture definition, equation
(2.43), and the matrix element becomes

Aba = 〈xb|e−i
Ĥ(tb−t1)

~ Âe−i
Ĥ(t1−ta)

~ |xa〉 . (2.47)

Use the continuous identity operator for the position x1 at time t1 and the eigen-
values A(x1) to get

Aba =

∫

dx1 〈xb|e−i
Ĥ(tb−t1)

~ |x1〉
︸ ︷︷ ︸

K(xb,tb;x1,t1)

A(x1) 〈x1|e−i
Ĥ(t1−ta)

~ |xa〉
︸ ︷︷ ︸

K(x1,t1;xa,ta)

. (2.48)

Here two propagators can be identified and because of the composition theorem
this is equal to

Aba =

∫

Dx(t)ei
S[x(t)]

~ A(x(t1)) . (2.49)

2x̂|x〉 = x|x〉

16 2 THEORY

Now express Aba using Euclidean time instead and set (tb − ta)i ≡ βba and
ta ≡ 0 to get

Aba(βba) = 〈xb, βba|Â(x̂(τ1))|xa, 0〉 . (2.50)

With the same procedure as above one gets

Aba(βba) =

∫

dx1〈xb|e−
Ĥβb1

~ |x1〉A(x1)〈x1|e−
Ĥβ1a

~ |xa〉 (2.51)

where the notations βb1 ≡ τb − τ1 and β1a ≡ τ1 − τa have been introduced.
The time-independent Schrödinger equation gives a spectrum of energy eigen-

states |ψn〉 with energy eigenvalues En according to

Ĥ|ψn〉 = En|ψn〉 . (2.52)

Because the Hamiltonian is hermitian the energy eigenstates |ψn〉 form a complete
orthonormal basis. Express Aba(βba) in the energy eigenstates using the discrete
identity operator from equation (A.1)

Aba(βba) =

∫

dx1

(
∑

n

〈xb|e−
Ĥβb1

~ |ψn〉〈ψn|x1〉
)

A(x1)

·
(
∑

m

〈x1|e−
Ĥβ1a

~ |ψm〉〈ψm|xa〉
)

.

(2.53)

Now the exponents can be expanded into a Taylor series

e−
Ĥβ
~ = 1− Ĥβ

~
+

(

Ĥβ

~

)2

−
(

Ĥβ

~

)3

. . . . (2.54)

For each term in the sums above the Hamilton operators can be interchanged with
the energy eigenvalues for the given eigenstates in the term. This means that
the Taylor expansion can be reversed using the energy eigenvalue instead of the
Hamiltonian. The result is

Aba(βba) =

∫

dx1

(
∑

n

〈xb|ψn〉〈ψn|x1〉e−
Enβb1

~

)

A(x1)

·
(
∑

m

〈x1|ψm〉〈ψm|xa〉e−
Emβ1a

~

)

.

(2.55)

Now take the trace, i.e. set x ≡ xa ≡ xb and integrate over all values for x

Atr(βba) =

∫

dxbdxaδ(xb − xa)Aba(β) (2.56)

=

∫

dx1

∫

dx
∑

n,m

〈x|ψn〉〈ψm|x〉
︸ ︷︷ ︸

δmn

〈ψn|x1〉A(x1)〈x1|ψm〉e−
Enβb1

~ e−
Emβ1a

~ .

2 THEORY 17

The Kronecker δ-function can be identified because of the orthogonality between
eigenstates, see equation (A.5). This reduces the sum over both n and m to a
single sum over n

Atr(βba) =

∫

dx1
∑

n

〈ψn|xn〉A(x1)〈x1|ψn〉 .e−
Enβba

~ (2.57)

The integral can be put inside the sum and there one can identify the continuous
identity operator, see equation (A.2), for the position x1 acting on Â and thus

Atr(βba) =
∑

n

〈ψn|Â|ψn〉e−
Enβba

~ . (2.58)

For the identity operator this is

Ztr(βba) =
∑

n

e−
Enβba

~ . (2.59)

This is often referred to as the partition function as in statistical physics. In
statistical physics energy eigenstates are distributed according to the Boltzmann
exponentials if the system is in thermal equilibrium [6]. The probability of finding
a system in energy eigenstate |ψn〉 for a given temperature T is given by

Pn(T) =
e
− En

kBT

∑

n

e
− En

kBT

. (2.60)

If one defines
βba
~

≡ 1

kBT
(2.61)

then

Atr(βba)

Ztr(βba)
=
∑

n

〈ψn|Â|ψn〉Pn(T) . (2.62)

The introduction of Euclidean time has apparently lead us to statistical physics
where the energy eigenstates are distributed according to the Boltzmann distribu-
tion Pn(T). The sum above is therefore the expectation value of the operator Â
at temperature T

Atr(βba)

Ztr(βba)
= 〈ψ|Â|ψ〉 . (2.63)

According to equation (2.49), A(βba) and Z(βba) can be expressed as

Atr(βba) =

∫ ∞

−∞
dx′
∫ x′

x′

Dx(t)e−
SE [x(t)]

~ A(x(t1)) (2.64)

Ztr(βba) =

∫ ∞

−∞
dx′
∫ x′

x′

Dx(t)e−
SE [x(t)]

~ (2.65)

18 2 THEORY

and thus

〈ψ|Â|ψ〉 =
∫∞
−∞ dx′

∫ x′

x′ Dx(t)e−
SE [x]

~ A(x(t1))
∫∞
−∞ dx′

∫ x′

x′ Dx(t)e−
SE [x(t)]

~

. (2.66)

Here x(t1) represents a position at an arbitrary time along each path in the path
integral.

2.9.1 Ground-state Expectation Values of Operators

This paper focuses on calculating the ground state energy and it is therefore nec-
essary to find an expression for the expectation value on the ground state. In
statistical physics only the ground state is populated when the temperature is
zero. According to equation (2.61) βba = ∞ when T = 0. The expectation value
of the operator on the ground state can therefore be expressed as

〈ψ0|Â|ψ0〉 = lim
βba→∞

Atr(βba)

Ztr(βba)
. (2.67)

This can easily be verified. From equations (2.58) and (2.59) one can see that

lim
βba→∞

Atr(βba) = 〈ψ0|Â|ψ0〉e−
E0βba

~ (2.68)

and

lim
βba→∞

Ztr(βba) = e−
E0βba

~ . (2.69)

The ratio between these gives the expectation value on the ground-state. The
expectation value on the ground state can be expressed using path integrals as

〈ψ0|Â|ψ0〉 = lim
βba→∞

∫∞
−∞ dx′

∫ x′

x′ Dx(t)e−
SE [x(t)]

~ A(x(t1))
∫∞
−∞ dx′

∫ x′

x′ Dx(t)e−
SE [x(t)]

~

. (2.70)

This equation will be used in the computer calculations. This method demands
that the ground-state is non-degenerate. If the ground-state is degenerate this
method will give the mean of the expectation values for the operator on the different
ground-states.

2.10 The Quantum Virial Theorem and Ground-state

Energy

Equation (2.70) gives the expectation value of an operator Â on the ground state
of a system. The operator must be of the form

Â =

∫

|x〉A(x)〈x|dx (2.71)

2 THEORY 19

where A(x) is a complex-valued function of position in space. If the energy of the
ground state is sought one would like to have Â = Ĥ where Ĥ is the Hamiltonian
of the system. But the Hamiltonian of systems consisting of particles in potentials
are of the form

Ĥ =
p̂21
2m1

+ . . .+ V̂ (x1, . . .) (2.72)

where xi and pi are position and momentum of the n different particles in the d
different dimensions, i = 1, 2, . . . , nd. This cannot be written as equation (2.71).
The expectation value of the energy is the sum of the expectation values of the
potential energy and the kinetic energy. The potential energy operator can be
written

V̂ =

∫

|x〉V (x)〈x|dx (2.73)

and can thus be computed with equation (2.70). The expectation value of the
kinetic energy can, as now will be shown3, be written as the expectation value of
another operator which can be written as equation (2.71).
The ground-state of the system is a stationary state and expectation values of all
operators on it will be constant in time, thus

0 =
d

dt
〈x̂ip̂i〉. (2.74)

Ehrenfests theorem gives

0 =
1

i~
〈[x̂ip̂i, Ĥ]〉. (2.75)

Equation (2.72) gives

0 =
1

i~
〈[x̂ip̂i,

p21
2m1

+ ...+ V̂]〉. (2.76)

The position and momentum operators of different particles commute, the position
and momentum operators of the same particles follow the canonical commutation
relation thus

[x̂i, p̂j] = δiji~. (2.77)

Equation (2.76) now becomes

0 =
1

i~
〈[x̂ip̂i,

p21
2m1

+ ...] + [x̂ip̂i, V̂]

=
1

i~
〈[x̂ip̂i,

p2i
2mi

] + [x̂ip̂i, V̂]〉. (2.78)

The commutation relations in equation (2.77) gives for the first commutator:

[x̂ip̂i,
p2i
2mi

] =
1

2mi
(x̂ip̂ip̂ip̂i − p̂ip̂ix̂ip̂i) =

i~p̂2i
mi

. (2.79)

3Idea for beginning of proof from [16]

20 2 THEORY

The momentum operator p̂i acts as a derivation operator on the xi-wavefunction

〈x|p̂i|ψ〉 = −i~ d

dxi
〈x|ψ〉 , (2.80)

and thus

p̂i|ψ〉 =
∫

|x〉〈x|p̂|ψ〉dx =

∫

|x〉(−i~) d

dxi
〈x|ψ〉dx. (2.81)

The second commutator is by use of equation (2.83)

[x̂ip̂i, V̂] =

= x̂ip̂i

∫

|x〉V (x)〈x|dx−
∫

|x〉V (x)〈x|x̂ip̂idx

= x̂i

∫

|x′〉(−i~) d

dx′i
〈x′|x〉V (x)〈x|dxdx′

−
∫

|x〉V (x)〈x|x̂i|x′〉(−i~)
d

dx′i
〈x′|dxdx′

=

∫

|x〉xi(−i~)
d

dxi
V (x)〈x|dx

−
∫

|x〉V (x)xi(−i~)
d

dxi
〈x|dx

=

∫

|x〉xi(−i~)
(
dV (x)

dxi
〈x|+ V (x)

d

dxi
〈x|
)

dx

−
∫

|x〉V (x)xi(−i~)
d

dxi
〈x|dx

= −i~x̂i
dV̂

dxi
. (2.82)

Where dV̂
dxi

is defined by

dV̂

dxi
=

∫

|x〉dV (x)

dxi
〈x|dx. (2.83)

Thus by equation (2.78)
〈
p̂2i
mi

〉

=

〈

x̂i
dV̂

dxi

〉

. (2.84)

This is true for all i, which gives

2〈T̂ 〉 = 〈x̂ · ∇V̂ 〉. (2.85)

Which will be true for all stationary states. The expectation value of the energy
of the ground state system can now be found through equation (2.70) by finding
the expectation value of the operator Ô

Ô = V̂ +
1

2
x̂∇V̂ (2.86)

2 THEORY 21

because Ô can be written in the form specified by equation (2.71). The quantum
virial theorem only works for stationary states so it cannot be used in (2.66).
Taking the expectation value of the operator O for temperatures above zero doesn’t
work because a linear combination of stationary states is not a stationary state.

2.11 Calculating the Ground-state Probability Den-

sity from the Kernel

The propagator gives the probability amplitude to go from event (xa, ta) to event
(xb, tb). The wave function gives the probability density for a given position xa for
a specific state |ψ〉 at time ta. Therefore an integral over all values of xa for the
propagator, that evolves from event (xa, ta) to (xb, tb), times the wave function for
events at time ta for the state, must give the probability density for position xb of
the state at time tb. The kernel K(xb, tb;xa, ta) should therefore evolve the wave
function 〈xa, ta|ψ〉 to 〈xb, tb|ψ〉 according to

〈xb, tb|ψ〉 =
∫

K(xb, tb;xa, ta)〈xa, ta|ψ〉dxa . (2.87)

One can easily see from the definition of the continuous identity operator that the
kernel can be expressed as

K(xb, tb;xa, ta) = 〈xb, tb|xa, ta〉 . (2.88)

This is equal to

K(xb, tb;xa, ta) = 〈xb, tb|Î|xa, ta〉 , (2.89)

where I is the identity operator. Now introduce Euclidean time and set βba ≡
(tb − ta)i and ta ≡ 0. From equation (2.55) one can see that

K(xb, βba;xa, 0) =

∫

dx1
∑

n,m

〈xb|ψn〉〈ψn|x1〉e−
Enβb1

~ 〈x1|ψm〉〈ψm|xa〉e−
Emβ1a

~ .

(2.90)
The identity operator, see equation (A.2), for x1 can be removed and then one
can identify 〈ψn|ψm〉 = δmn. The double sum thus becomes a single sum and the
energy exponents can be put together to get

K(xb, βba;xa, 0) =
∑

n

〈xb|ψn〉〈ψm|xa〉e−
Enβba

~ . (2.91)

When the start and end points are the same, x ≡ xb ≡ xa, this is

K(x, βba;x, 0) =
∑

n

〈x|ψn〉〈ψn|x〉e−
Enβba

~ =
∑

n

|ψn|2e−
Enβba

~ . (2.92)

22 2 THEORY

Multiply both sides by e
E0βba

~ and let βba → ∞ to get

lim
βba→∞

K(x, βba;x, 0)e
E0βba

~ = lim
βba→∞

(

|ψ0(x)|2 + |ψ1(x)|2e−
E1−E0βba

~ + . . .
)

.

(2.93)
Because E0 is the smallest energy eigenvalue only the term without an exponential
will survive the limit and thus

lim
βba→∞

K(x, βba;x, 0)e
E0βba

~ = |ψ0(x)|2 . (2.94)

This cannot be used directly since the ground-state energy is not known. Instead
use the fact that the ground-state wave function is normalized

∫ ∞

−∞
|ψ0(x)|2dx = 1 . (2.95)

Integrate equation (2.94) and use equation (2.95) to get

∫ ∞

−∞
lim

βba→∞
K(x, βba;x, 0)e

E0βba
~ dx = 1 . (2.96)

Now shift the integral and the limit. Because e
Enτ
~ has no x-dependence this can

be moved outside the integral so that

lim
βba→∞

e
E0βba

~

∫ ∞

−∞
K(x, βba;x, 0)dx = 1 . (2.97)

The exponential can now be identified as

lim
βba→∞

e
E0βba

~ =
1

limβba→∞
∫∞
−∞K(x, βba;x, 0)dx

. (2.98)

If this is put into equation (2.94) the result is

|ψ0(x)|2 = lim
βba→∞

K(x, βba;x, 0)
∫∞
−∞K(x, βba;x, 0)dx

[14]. (2.99)

Using path integrals this can be written as

|ψ0(x)|2 = lim
βba→∞

∫ x′

x′ Dx(t)e−
SE [x(t)]

~

∫∞
−∞ dx′

∫ x′

x′ Dx(t)e−
SE [x(t)]

~

(2.100)

With the knowledge of the kernel the probability distribution of the ground state
can be calculated.

3 ANALYTICAL EXAMPLES 23

3 Analytical Examples

Some examples have been solved analytically in order to verify the computer calcu-
lations. Detailed derivations of the formulas presented below are found in appendix
B.

3.1 The Free Particle Propagator

The free particle propagator is

K(b, a) =

√
m

2iπ~(tb − ta)
exp

(
im(xb − xa)

2

2~(tb − ta)

)

. (3.1)

3.2 The Harmonic Oscillator

The propagator for the one dimensional harmonic oscillator is given by

K(b, a) =

√
mω

2iπ~ sin(ω(tb − ta))
exp

(

imω
(
(x2a + x2b) cos (ω(tb − ta))− 2xaxb

)

2~ sin(ω(tb − ta))

)

.

(3.2)
This can be expressed in dimensionless form by introducing

• a characteristic length xc =
√

~

mω

• a characteristic time Tc =
1
ω

• a characteristic energy Ec = ~ω

and expressing physical quantities as multiples of them

x = ξxc (3.3)

tb − ta = τTc (3.4)

E = εEc , (3.5)

Equation (3.2) becomes

K(b, a) =
1

xc

√

1

2iπ sin(τ)
exp

(

i
(
(ξ2a + ξ2b) cos (τ)− 2ξaξb

)

2 sin(τ)

)

. (3.6)

The eigenstates for the harmonic oscillator are the Hermite functions. These are
given by

gn(ξ) = (−1)n(2nn!
√
π)−1/2 exp

(
ξ2

2

)
dn exp

(
−ξ2

)

dξn
. (3.7)

The energy eigenvalues of the system are En = ~ω
(
n+ 1

2

)
.

24 3 ANALYTICAL EXAMPLES

3.2.1 Verifying the Propagator and Ground State for the Har-

monic Oscillator

In this section, the propagator and the ground state for the harmonic oscillator
will be verified using equation (2.99). The propagator for the harmonic oscillator
expressed in dimensionless coordinates is

K(ξb, t; ξa, 0) =
1

xc

√

1

2iπ sin(t)
exp

(

i
(
(ξ2a + ξ2b) cos (t)− 2ξaξb

)

2 sin(t)

)

. (3.8)

In Euclidean time this is

K(ξb, τ ; ξa, 0) =
1

xc

√

1

2iπ sin(−iτ) exp
(

i
(
(ξ2a + ξ2b) cos (−iτ)− 2ξaξb

)

2 sin(−iτ)

)

. (3.9)

If ξa = ξb = ξ this becomes

K(ξb, τ ; ξa, 0) =
1

xc

√

1

2iπ sin(−iτ) exp
(

−ξ2 tanh
(τ

2

))

. (3.10)

According to equation (2.99) the square of the ground state wave function should
be given by

|ψ0(ξ)|2 = lim
τ→∞

K(ξ, τ ; ξ, 0)
∫∞
−∞K(ξ, τ ; ξ, 0)dξ

= lim
τ→∞

exp
(
−ξ2 tanh

(
τ
2

))

∫∞
−∞ exp

(
−ξ2 tanh

(
τ
2

))
dξ

= lim
τ→∞

exp
(
−ξ2 tanh

(
τ
2

))

√
π

tanh(τ
2)

=
exp

(
−ξ2

)

√
π

. (3.11)

This is equal to |g0(ξ)|2, for go given in the previous section.

3.3 The Perturbed Harmonic Oscillator

In this section, a perturbed harmonic oscillator will be studied. The perturbing
term is proportional to x4. The Hamiltonian for the harmonic oscillator is given
by

Ĥ(0) =
p̂2

2m
+

1

2
mω2x̂2 . (3.12)

With dimensionless parameters the Hamiltonian becomes

Ĥ(0) =
Ec

2

(

− ∂2

∂ξ2
+ ξ2

)

. (3.13)

The eigenstates are the Hermite functions

gn(x) = (−1)n

√

1

2nn!
√
π
e

ξ2

2
dn

dξn

(

e−ξ2
)

. (3.14)

3 ANALYTICAL EXAMPLES 25

Now introduce a perturbation

Ĥ(1) = λEcξ
4 . (3.15)

The new Hamiltonian becomes

Ĥ = Ĥ(0) + Ĥ(1) =
Ec

2

(

− ∂2

∂ξ2
+ ξ2

)

+ λEcξ
4 . (3.16)

The new energies can be calculated using perturbation theory. This is described
in the appendix C. The ground state energy for the disturbed harmonic oscillator
to the second order is found to be

E0 = E
(0)
0 + E

(1)
0 + E

(2)
0 = Ec

(
1

2
+

3

4
λ− 21

8
λ2
)

. (3.17)

3.4 Few-particle Systems and Jacobi Coordinates

A system of particles with a potential that only depends on the relative positions
of the particles can be reduced by one degree of freedom through a change of
coordinates. This makes numerical calculations simpler. How to do this will be
described below.

A system of n particles with positions xi (in any number of dimensions) and
masses mi can be described with so called Jacobian coordinates, [12] page 102.
The new coordinates are defined by a linear transformation

y1 = x1 − x2

...

yi =

1

m0i

i∑

j=1

mjxj

− xi+1

...

yn =
1

m0n

i∑

j=1

mjxj , (3.18)

where m0i is defined as

m0i =
i∑

j=1

mj . (3.19)

The kinetic energy expressed in these new coordinates is, [12] page 103

T =
n∑

i=1

mi

2
ẋ2
i =

n∑

i=1

Mi

2
ẏ2
i , (3.20)

26 3 ANALYTICAL EXAMPLES

where Mi is defined as

M1 =
m1m2

m1 +m2

...

Mi =
m0i

m0i+1
mi+1

...

Mn = m0n. (3.21)

The coordinate yi gives for i < n the relative position of particle i from the mass
center of all particles with index less than i. So given the position x1 the position
of all other particles are given if yi is given for i < n. Thus if the potential
energy V of the system only depends on the relative positions of the particles it
can always be expressed by just the first n− 1 new coordinates because they can
always give all relative positions of the particles. This together with (3.20) gives
that if the particles are free of any external forces the system can be considered
as two separate systems, one (1) with kinetic energy T1 =

Mn

2 ẏ2
n and no potential

energy, V1 = 0. The other system (2) having the potential of the original system,
V2(y1, ...,yn−1) = V and kinetic energy

T2 =
n−1∑

i=1

Mi

2
ẏ2
i . (3.22)

The original system thus has kinetic energy T = T1 + T2 and potential energy
V = V1 + V2. System 1 only depends on coordinate yn while system 2 only
depends on coordinates yi where i < n, the systems are thus independent and can
be separated and viewed individually.
A normlization of variables is useful,

ỹi = yi
√

Mi. (3.23)

This makes the calculation of kinetic energy treat all coordinates the same weight

T =
n∑

i=1

1

2
˙̃y2
i . (3.24)

3.4.1 Two Particles with a Harmonic Potential

Now study the case of two particles, both with mass m, in one dimension having
an harmonic potential V between them:

V (x1, x2) =
mω2

2
(x2 − x1)

2 . (3.25)

3 ANALYTICAL EXAMPLES 27

The kinetic energy T of the system is

T (x1, x2) =
m

2

(
ẋ21 + ẋ22

)
. (3.26)

Now change the coordinates to Jacobi coordinates:

ỹ1 =
x2 − x1√

2

ỹ2 =
x1 + x2√

2
. (3.27)

The inverse transformation is

x1 =
ỹ2 − ỹ1√

2

x2 =
ỹ1 − ỹ2√

2
. (3.28)

The kinetic energy of the system in Jacobi coordinates is

T (ỹ1, ỹ2) =
m

2

(
˙̃y21 + ˙̃y22

)
. (3.29)

The potential in the new coordinates is

V (ỹ1, ỹ2) = mω2ỹ21 . (3.30)

The Hamiltonian is thus

H(η1, η2) =
m

2
˙̃y21 +mω2ỹ21 +

m

2
˙̃y22 . (3.31)

One can see that this is the same as a free particle ỹ2 plus a particle ỹ1 in an
external harmonic potential mω2ỹ21. The free particle has a continuous energy
spectrum and the particle in the potential has the energy eigenvalues

En =

(

n+
1

2

)

~
√
2ω . (3.32)

The factor
√
2 comes from the harmonic potential beingmω2ỹ21, rather than

mω2

2 ỹ21
as before. The ground-state energy is ~ω√

2
.

3.4.2 Three Particles with Harmonic Potentials

Consider a system consisting of three particles in one dimension with positions xi

and equal masses m. The potential energy V of the system is:

V =
mω2

2

(
(x1 − x2)

2 + (x2 − x3)
2 + (x3 − x1)

2
)

(3.33)

28 3 ANALYTICAL EXAMPLES

Performing the changes of coordinates described in section 3.4 gives new coordi-
nates

ỹ1 =
x1 − x2√

2m
(3.34)

ỹ2 =

(
1

2
x1 +

1

2
x2 − x3

)√

2

3m
(3.35)

ỹ3 =

(
1

3
x1 +

1

3
x2 +

1

3
x3

)√

3

m
. (3.36)

The potential is only dependent on the relative positions of the particles and the
system can thus be separated into a free particle part and a system of two particles,
see section 3.4. The system of two particles have kinetic energy, (3.20)

T2 =
1

2
˙̃y21 +

1

2
˙̃y22. (3.37)

where the derivative is taken in dimensionless time t̃. The relative positions of all
particles can be expressed with ỹ1 and ỹ2

x1 − x2 =
√
2ỹ1 (3.38)

x2 − x3 = − 1√
2
ỹ1 +

√

3

2
ỹ2 (3.39)

x3 − x1 = − 1√
2
ỹ1 −

√

3

2
ỹ2. (3.40)

The potential energy thus becomes

V =
mω2

2

2ỹ21 +

(

− 1√
2
ỹ1 +

√

3

2
ỹ2

)2

+

(

− 1√
2
ỹ1 −

√

3

2
ỹ2

)2

 (3.41)

=
m3ω2

2
ỹ21 +

m3ω2

2
ỹ22. (3.42)

This means that the system can be regarded as composed of a independent free
particle and two independent harmonic oscillators, the harmonic oscillators having
frequencies ω1 =

√
3ω and ω2 =

√
3ω and thus the total energy of the ground state

of the system is
√
3~ω.

3.4.3 Many Particles with Harmonic Potentials

We have in the same way as above shown that the kinetic energy for 4-8 particles
of mass m in 1 dimension with potential defined as

V =
mω2

2

∑

i<j

(xi − xj)
2 (3.43)

have ground-state energies as shown in table 1.

4 NUMERICAL METHODS 29

Table 1: The ground-state energies for different number of particles coupled
with harmonic oscillator potentials.

Number of particles Ground-state energy

2 1/
√
2~ω

3
√
3~ω

4 3~ω

5 2
√
5~ω

6 5
√

3/2~ω

7 3
√
7~ω

8 7
√
2~ω

4 Numerical methods

First, some theory about Monte Carlo integration and generation of generating
samples from a probability distribution using the Metropolis algorithm will be
presented. An algorithm will then be presented that gives the operator mean and
the square of the wavefunction for a system that can contain many interacting
distinguishable particles.

4.1 Monte Carlo Integration

Monte Carlo methods are a general class of algorithms using random numbers. We
can use Monte Carlo methods to evaluate integrals as expected values of functions
of continuous random variables. The point of Monte Carlo integration is faster
convergence for multidimensional integrals compared to conventional methods.

4.1.1 Brute Force Approach to Monte Carlo Integration

For a continuous random variable X with a probability density function (PDF)
given by p(x) the expected value of f(X) is given by

E p[(f(X)] =

∫ ∞

−∞
f(x)p(x) dx. (4.1)

The PDF of a uniform distribution is given by

30 4 NUMERICAL METHODS

p(x) =

{
1

b−a a < x < b

0 otherwise,
(4.2)

and in the case of X being uniformly distributed on the interval [a, b] the expec-
tation value is given by

E U(a,b)[(f(X)] =

∫ b

a

f(x)

b− a
dx. (4.3)

In this way we can express an integral I of one variable as an expectation value.

I =

∫ b

a
f(x) dx = (b− a)E U(a,b)[f(X)] (4.4)

As an estimator of the expectation value[9] you can generate an ensemble of
samples {Xi} ∼ U(a, b) and calculate the sample mean of the function as

〈f〉 = 1

n

n∑

i=1

f(Xi). (4.5)

In this way you can approximate an integral as

I =

∫ b

a
f(x) dx ≈ b− a

n

n∑

i=1

f(Xi), (4.6)

where the Xi are uniformly randomly distributed. Note the similarity to a rectan-
gular integration given by

I =

∫ b

a
f(x) dx ≈ b− a

n

n∑

i=1

f(xi), (4.7)

where the xi are evenly spaced lattice points on the integration interval.

We can see that for large n the two methods should yield similar results (since
theXi are uniformly randomly distributed they should cover the integration inerval
quite evenly for large n, see figure 5). In fact, the law of large numbers [8][9] states
that

lim
n→∞

〈f〉 = E U(a,b)[f(X)], (4.8)

while the Riemann sum given by equation (4.7) converges to the integral in the
limit n→ ∞.

The approximation in equation (4.6) can easily be generalised to multidimen-
sional integrals as

4 NUMERICAL METHODS 31

f(x)

x

(a) Rectangular integration.

f(x)

x

(b) Monte Carlo integration.

Figure 5: Comparing rectangular integration with simple Monte Carlo inte-
gration.

I =

∫ b1

a1

dx1

∫ b2

a2

dx1...

∫ bD

aD

dxDf(x1, x2, ..., xD)

=

∫

V
f(x) dx (4.9)

≈ V

n

n∑

i=1

f(Xi),

where V is the volume of the integration region.
Next, we will see why we bother with this seemingly complicated way of eval-

uating integrals. The variance of f(X) is given by

σ2f = E p

[

(f(X)− E p[f(X)])2
]

= E p[f(X)2]− (E p[f(X)])2 . (4.10)

The central limit theorem [8] states that the mean of a large number of independent
samples is approximatly normally distributed with the variance

σ2n =
σ2f
n
, (4.11)

which gives the standard deviaton

σn =
σf√
n
. (4.12)

32 4 NUMERICAL METHODS

The standard deviation is effectivly a measure of the error in the sample mean of
the function. If one ensemble {Xi} of samples is called one measurement, then a
series of measurements will be approximatly normally distributed. About 68.3% of
the measurements will generate a sample mean of the function within one standard
deviation ±σn of the true mean (expectation value), and 95.4% will be within
±2σn.

The error σn is independet of the dimension [8] of the random variable (or the
dimension of the integral) and goes like

σn ∝ 1√
n
. (4.13)

This can be compared with for example a simple trapezoidal rule whose error goes
like n−2/d where d is the dimension [8].

To estimate the variance of f(X) you can use the biased estimator

σ2f ≈
〈
(f − 〈f〉)2

〉
= 〈f2〉 − 〈f〉2 (4.14)

(since our n are always large the difference from an unbiased estimator is negligi-
ble).

4.1.2 Importance Sampled Monte Carlo Integration

To get a good estimation of the integral with a Monte Carlo evaluation you want
to make the error σn as small as possible. As seen in equation (4.12), one way
of doing this is of course to increase the number of samples n. Another way of
achieving this is decreasing the variance σf .

The expectation value of f(X) can be rewritten as

E p[f(X)] =

∫ ∞

−∞
f(x)p(x) dx

=

∫ ∞

−∞
g(x)

p(x)

g(x)
︸ ︷︷ ︸

w(x)

f(x) dx (4.15)

= E g [w(X̃)f(X̃)],

where X̃ ∼ g(x). The function g(x) must of course be a proper PDF fulfilling the
normalization condition

∫ ∞

−∞
g(x) dx = 1. (4.16)

In this way we can instead approximate the integral as

4 NUMERICAL METHODS 33

I =

∫ b

a
f(x) dx =

∫ b

a
g(x)

1

g(x)
︸ ︷︷ ︸

w(x)

f(x) dx (4.17)

= E g [w(X̃)f(X̃)] ≈ 1

n

n∑

i=1

w(X̃i)f(X̃i),

where X̃i are chosen at random with probability g(x) within the integration inter-
val.

By choosing a g(x) that resembles f(x) you can drastically decrease the new
variance

σ2g = E g [w(X̃)2f(X̃)2]−
(

E g [w(X̃)f(X̃)]
)2
, (4.18)

making the error

σn =
σg√
n

(4.19)

smaller (thus decreasing the number n of samples needed).

In a sense you can say that we, when using the brute-force approach, might
be wasting time generating samples in areas where the function f(x) gives very
small contributions to the integral. By generating more samples in regions where
f(x) gives large contributions, we can dramatically decrease the number of needed
samples n. We must of course weight (with w(X̃i)) the values of f(X̃i) to get the
right answer.

The method of importance sampling will later be used when evaluating the
ground-state expectation value of quantum mechanical operators by the path-
integral expression, derived in Section 2.9, given by

〈ψ0|Â|ψ0〉 ≈
∫∞
−∞ dx′

∫ x′

x′ Dx(t)e−
SE [x(t)]

~ A[x]
∫∞
−∞ dx′

∫ x′

x′ Dx(t)e−
SE [x(t)]

~

, (4.20)

where x now denotes a path starting and ending in x′. We will identify

p[x] =
e−

SE [x(t)]

~

∫∞
−∞ dx′

∫ x′

x′ Dx(t)e−
SE [x(t)]

~

(4.21)

as our (properly normalized) PDF of paths and in this way approximate the path
integral as

34 4 NUMERICAL METHODS

〈ψ0|Â|ψ0〉 ≈
∫ ∞

−∞
dx′
∫ x′

x′

Dx(t)p[x]A[x]

≈ 1

n

∑

{xi}
A[x]. (4.22)

Note that we have discretisized the paths in the approximation, and that {xi} is
an ensemble of paths where each path is represented by a set of coordinates.

4.1.3 Markov Chains and the Metropolis-Hastings Algorithm

A stochastic process is a process that transitions from one state to another in a
random and chainlike manner, and thus generates a sequence of states (or samples)
{..., Xi, Xi+1, ...}. The process is called stationary if the probabilistic laws remain
unchanged in time. In other words, if the joint probability distribution of a series
of n samples {Xi, Xi+1, ..., Xi+n} is equal to the joint PDF of a series of n later
samples {Xi+h, Xi+h+1, ..., Xi+h+n}.

A Markov chain is a simple stochastic process that depends only on the current
state, and it is called ergodic if it always converges to a unique stationary distribu-
tion. Thus far we have assumed the samples to be statistically independent of each
other but the samples generated from a Markov chain are generally correlated. It
can fortunatly be shown that the law of large numbers, used in equation (4.8),
hold for a stationary stochastic process [10].

The Metropolis-Hastings algorithm is a way of generating samples from a PDF
using an ergodic Markov chain [10][11]. The algorithm uses relative probabilities,
so we only need to be able to calculate a function f(x) proportional to the wanted
PDF p(x) according to

1

C
f(x) = p(x). (4.23)

Suppose the last sampled value is xi, and we want to generate a new sample
xi+1. The process can be summarized as follows:

1. Generate a proposal sample x′ by displacing xi with a number taken from a
symmetric probability distribution.

2. Calculate the relative probability ratio α = p(x′)
p(xi)

= f(x′)
f(xi)

.

3. Accept or reject the proposal sample:

if α ≥ 1 : xi+1 = x′

else xi+1 =

{
x′ with probability α;
xi with probability 1− α.

4 NUMERICAL METHODS 35

f(x)

xx′xi

Figure 6: An illustration of one random step in the Metropolis-Hastings
algorithm.

Note that the normalization constants cancel out, so we can use f(x) directly for
sampling.

In our application we will be using a Random Walk Metropolis-Hastings al-
gorithm, which takes a uniformly randomly distributed step from the initial state
xi. We will use an initial state x0 and then let the algorithm run to stabilize
(sometimes called thermalizing), discarding the ”burn-in” samples.

One important parameter to the algorithm is the acceptance rate of new sam-
ples. A too high or too low acceptance rate will make the chain converge slowly.
You can understand the effect of the acceptance rate by looking at Figure 6. By
taking too large steps, you might probe outside the likely areas, get a low accep-
tance rate, and thus move around the PDF slowly. If you have a too small stepsize,
and thus a high acceptance rate, you might get stuck probing only one area of the
PDF for a very long time.

4.2 Discretization of the Path Integral

We will now connect all the theoretical derivations and results to see how we can
discretisize a path integral in a way suitable for computer calculations.

As we have previously seen, in Section 2.5, the kernel to go from xa at time ta
to xb at time tb can be approximated as

K(xb, tb;xa, ta) ≈
1

AN

∫

ei
S[xb,xa]

~ dx1 dx2... dxN−1. (4.24)

36 4 NUMERICAL METHODS

We have divided the time interval tb − ta in N short intervals with length ǫ =
(tb − ta)/N , making xi the coordinate for time ti. When working in Euclidean
time, setting ta = 0 and defining β = i(tb − ta), this becomes

K(xb, β;xa, 0) ≈
1

AN

∫

e−SE [xb,xa] dx1 dx2... dxN−1, (4.25)

as shown in Section 2.7, where SE is the Euclidean action. This allows us to
discretisize a path as an array of coordinates {x0, x1, ..., xN}, where x0 = xa and
xN = xb.

We have also seen, in Section 2.6, that the action (or the Euclidean action) can
be written as

SE [xb, xa] =

N−1∑

i=0

SE [xi+1, xi]. (4.26)

For short times it has been shown that

SE [xi+1, xi] ≈ ǫH(xi, ẋi) (4.27)

where the Hamiltonians we work with can be written as

H(xi, ẋi) = T (ẋi) + V (xi). (4.28)

To discretisize the velocity at time ti we use a simple Eulers rule

ẋj ≈
xi+1 − xi

ǫ
. (4.29)

This then gives

SE [xb, xa] ≈ ǫ
N−1∑

i=0

[

T

(
xi+1 − xi

ǫ

)

+ V (xi)

]

. (4.30)

As a final note, the expressions for the expectation value of a quantum me-
chanical operator, derived in Section 2.9, and expression for the squared ground-
state wave function, derived in Section 2.11, utilize periodic boundary conditions
xa = xb. This allows us to store only {x0, x1, ..., xN−1} and use x0 whenever xN
is needed.

4.3 Algorithm for Operator Mean and Probability Den-

sity

In this section will start with describing the algorithm used to find the quan-
tum mechanical expectation value of an operator and the squared wave function
(probability density) without too much consideration why it works. The actual
implementation of this algorithm is discussed later in the report.

4 NUMERICAL METHODS 37

1. Generate an initial path. This can be done by choosing N numbers at
random between two integers or it can simply be N zeros.

2. Make a suggested modification to the path. This is done by displacing the
i-th node in the path where i is a random integer between 1 and N . The
displacement take the form

x′i = xi + δ(2σ1 − 1) (4.31)

where σ1 is a random number between 0 and 1 and δ is a parameter that
determines the greatest distance we can move a node in a path in one dis-
placement.

3. Calculate the differences in energy ∆E[x] between the modified and unmod-
ified paths. If we define the energy for one path link, using equation (4.30),
as

E(xi, xi+1) =

(

1

2
m

(
xi+1 − xi

ǫ

)2

+ V (xi)

)

xN=x0

(4.32)

then the full energy of a path is given by

Epath =
N∑

i=1

E(xi, xi+1). (4.33)

Again, notice that xN = x0 which means that the start and end point is the
same in the path. We want the paths to be distributed as exp(−ǫE[x]/~)
which can be done by using the Metropolis algorithm. We first calculate

exp(−ǫEmod/~)

exp(−ǫEunmod/~)
= exp(−ǫ∆E[x]/~). (4.34)

The modification to the path is then accepted if ∆E < 0. Otherwise we
accept it with probability exp(−ǫ∆E[x]/~). This can be done by generating
a random number, σ2, between 0 and 1 and accept the modified path if
exp(−ǫ∆E[x]/~) > σ2. Accepting the modified path means that we change
the xi in the path to x′i.

Since we are only changing one node of the path it is not necessary to do the
whole sum in (4.33). Instead, the differences in energies can be calculated
as

∆E[x] = E(xi−1, x
′
i) + E(x′i, xi+1)− E(xi−1, xi)− E(xi, xi+1). (4.35)

This is useful for saving computation time since we are now calculating
E(xi, xi+1) four times for a new path instead of 2N times.

38 4 NUMERICAL METHODS

4. Depending on if we want the squared wave function or the operator mean
two different things is done in this step.

(a) If we want to calculate the squared wave function we store the displaced
x′i if we accepted the suggested modification else xi is stored. These
can for example be saved in an array and for further references to this
array of saved values it will be denoted X where Xi is the i’th element
in X.

(b) If the desired quantity is the mean of an operator O(x) we save the
value

∑N
i=1O(xi) in an array O. This can then be used to calculate

the average value of the operator for the path.

5. Repeat steps 2 to 4 until convergence.

6. Remove some of the values saved from the first iterations since the Metropo-
lis need some iterations to thermalize. The number of iterations for ther-
malization can not be given generally and depends on the system and the
parameters of the path.

7. (a) The wave function squared is calculated by first doing a histogram of
the saved xi-values. This can be done by dividing an interval into
subintervals. We call these subintervals bins. Next, a count is added
to the bin for every xi whose value is inside the interval of the bin. If
a value is outside all bins the total interval should be increased, or if
one just want to see a specific interval of the
ction the data point should be disregarded. This can be regarded as
a function that assigns the midpoint of a bin to the number of counts
in that bin. We then divide with the normalizing factor that is the
number of bins multiplied with the total amount of counts in the bins.
The now normalized function will be the probability density.

(b) The mean of the operator is the mean of the saved values in step 5.

8. The whole process can then be repeated multiple times to get the mean and
standard error of the results.

4.4 Explanation of algorithm

The explanation that the normalized histogram created in step 7a will give the
probability density is as follows. From the Metropolis algorithm we know that the
xi values will be distributed as the probability density function that is proportional
to exp(−ǫE[x]/~). We can thus write

xi ∼
e−

SE [x(t)]

~

∫∞
−∞ dx′

∫ x′

x′ Dx(t)e−
SE [x(t)]

~

. (4.36)

4 NUMERICAL METHODS 39

From equation (2.99) we can see that for large times this is equal to the probability
density of the system. A normalized histogram of the saved xi-values will thus give
probability distribution of the ground state.

The operator mean is calculated using importance sampling. For the derivation
of how it works we refer to the latter parts of section 4.1.2 in particular equations
eqn:OperatorMean to (4.22).

4.5 Generalization to More Particles

The generalization of the algorithm to more than one particle is not very difficult. If
we for n particles in the system define the path of the system as {x0,x1, . . . ,xN−1}
where xi = (x1i, x2i, x2n) the algorithm is basically the same. We chose a random
node and a random particle and do the displacement like we did in step . To get
the probability density one do a n-dimensional normalized histogram of saved xi.
The mean of the operator is computed the same way as before.

4.6 Choice of parameters

Since we are interested in the ground state probability density and operator mean
the time duration of a path needs to be set large enough so that excited states
have decayed. We found that the number of nodes in a path, N , should be quite
large (in the order of 100-1000). Too large N causes the time step to be very small,
making the kinetic energy term in the energy estimator (4.32) to diverge. Better
energy estimators would be needed to solve this problem. For discussion about
better energy estimators in the path integral formalism see [32]. With increased N
one also needs to increase the number of iterations for thermalization. The choice
of good parameters have from our experience not been the same between when
finding the probability density and the operator mean. In general a greater node
count, N , of a path and higher end time ,tb, is needed to get a good value for
the probability density than the operator mean. For some results about different
choice of parameters see section 8.6.

40 5 IMPLEMENTATION IN C

5 Implementation in C

This section will present a full C-program that implements that Feynman path
integral formalism with use of the Metropolis algorithm as discussed earlier in this
report. Since random numbers play a big role in Monte Carlo calculations, this
section will begin with a discussion about how random numbers are generated in
computer calculations, and what random number generator is used for this work.
To help understand the program, the source code is explained on a line by line
basis. Understanding the C-program presented here will help a great deal when
making the transition to the parallelized computations in OpenCL.

5.1 Random Number Generators

Since the Monte Carlo method for integration utilizes the theory of mathematical
statistics, a source for random numbers is needed. Having access to random num-
bers uniformly distributed in the interval [0, 1] suffices to produce samples from
any other distribution. Computers are deterministic machines and have no pos-
sibility whatsoever to produce truly random numbers in the sense that tossing a
dice would. What can be done however is producing a sequence of numbers that
to an outside observer appear random. If there is no way for that observer to
determine that the set of numbers are calculated deterministically instead of gen-
erated by tossing a dice, then that set of numbers will work as as a substitute to
true random numbers. These kind of numbers are called Pseudo Random Numbers
and are generated by a Pseudo Random Number Generator, which in essence is a
sequence of mathematical operations with numbers that result in a single pseudo
random number. In order for a PRNG to produce a sequence of pseudo random
numbers, an initial number (or set of numbers) is required, on which to build the
subsequent calculation of pseudo random numbers. This initial number is called
the seed for the PRNG.

There are many PRNG’s available for use, one of the most common types is
the linear congruential generator, where given a seed X0, pseudo random numbers
are generated with the calculation

Xn+1 = (aXn + b) mod m

where the paramteters a, b and m can be tuned to obtain a sequence of random
numbers with good quality.

5.1.1 Quality of Pseudo Random Number Generators

What characterizes a good PRNG is a long period (the number of pseudo random
numbers that can be generated before the sequence is repeated), low correlation
(the degree to which new random numbers depend on previously generated random
numbers) and speed (the amount of computation necessary to generate a new

5 IMPLEMENTATION IN C 41

sample). To test for randomness (low correlation), a number of statistical tests
have been developed, among them are the Diehard Battery of Tests [17]. One
example of these tests is the Gorilla test, considered one of the harder tests. This
is a strong version of a monkey test with the analogy that the PRNG is a ”monkey”
sitting at a typewriter and typing ”letters of an alphabet” at random (the alphabet
in this case consists of a range of numbers) to produce a long string. The number of
”k-letter words” that don’t appear in this string should be approximately normally
distributed. Poor PRNG seem to fail when the string of ”letters” gets very long
[18].

When using the Monte Carlo method, it is very important that the PRNG is
of good quality, otherwise the results will not be very credible. With demands on
quality, certain PRNGs have been developed and others have been discarded. The
linear congruential generator does not do very well in statistical tests 4. Instead, a
popular PRNG is the Mersenne Twister, developed in 1997 by Makoto Matsumoto
with a periods up to a whooping 219937 − 1. Implementing the Mersenne Twister
as the PRNG used in this work would bring about an unnecessary large amount
of extra code. Instead, the simpler Xorshift PRNG is used.

5.1.2 Xorshift

The Xorshift PRNG was developed in 2002 by George Marsaglia at Florida State
University [19]. It works by applying the bitwise XOR-operation on a number with
a bit shifted version of itself.

The logical operator XOR (exclusive OR) is defined by it’s truth table

a b a XOR b

0 0 0

0 1 1

1 0 1

1 1 0

The operator that performs XOR bit by bit on two numbers in C is represented
by the ^-operator. For example, two 8-bit unsigned integers a and b with binary
representations a = 001100112 = 51 and b = 010101012 = 85 would give the new
number a ^ b = 011001102 = 102.

Bit shifting a number involves shifting all the bits in the binary representation
of that number a certain number of steps either to the left or the right. Bits that
are shifted out of place are discarded and new bits come in as zeros. The left-
and right-shift operators in C are represented by the << and >>-operators. For

4A classic example is the infamous RANDU PRNG that fails tests of randomness
dramatically. As a result, scientific publications that makes use of RANDU does not carry
a large amount of credibility.

42 5 IMPLEMENTATION IN C

example shifting the 8-bit unsigned integer a = 001100112 = 51 3 steps to the
left is written as a << 3 = 100110002 = 152.

An example of an Xorshift PRNG is

Listing 1: Xorshift PRNG with period 2128 − 1.
1 unsigned int xor128 (void) {
2 stat ic unsigned int x = 123456789;
3 stat ic unsigned int y = 362436069;
4 stat ic unsigned int z = 521288629;
5 stat ic unsigned int w = 88675123;
6 unsigned int t ;
7
8 t = x ˆ (x << 11) ;
9 x = y ; y = z ; z = w;

10 return w = w ˆ (w >> 19) ˆ (t ˆ (t >> 8)) ;
11 }

Calling xor128() will return a random unsigned 32-bit integer, meaning an integer
in the interval [20 − 1, 232 − 1] = [0, 294967295]. A uniformly distributed random
floating point number in the interval [0, 1] can be obtained by dividing this unsigned
integer with 232−1, or multiplying with it’s inverse (232−1)−1 ≈ 2.32830644·10−10.

5.2 Example: C-program to Evaluate Mean of an Op-

erator

In this example, the Metropolis algorithm is used to calculate the ground state
energy of a system of three particles interacting with a harmonic potential.

5.2.1 Theory for the System

Consider the system of three particles in one dimension with coordinates x1, x2
and x3 interacting with a harmonic potential as described in section 3.4.2, each
particle with mass m = 1 and frequency ω = 1. Performing the change of variables

ỹ1 =
x1 − x2√

2
(5.1)

ỹ2 =

(
1

2
x1 +

1

2
x2 − x3

)√

2

3
(5.2)

ỹ3 =

(
1

3
x1 +

1

3
x2 +

1

3
x3

)√
3 (5.3)

(5.4)

implies that Hamiltonian of the system can be separated into one free particle part
and a system of two particles. Considering that the ground state energy of a free
particle is 0, one may disregard this and focus only on the system of two particles5.

5Actually, referring to this as a system of two particles is not entirely accurate. It is
better to refer to it as a quantum mechanical system with two degrees of freedom.

5 IMPLEMENTATION IN C 43

The kinetic energy for this system is given by

T =
1

2
˙̃y21 +

1

2
˙̃y22 (5.5)

and the potential is given by

V =
3

2
ỹ21 +

3

2
ỹ22. (5.6)

Employing the virial theorem yields

〈Ĥ〉 =〈T 〉+ 〈V 〉 = 1

2
〈(ỹ1, ỹ2) · ∇V 〉+ 〈V 〉 = (5.7)

=
1

2
〈(ỹ1, ỹ2) · (3ỹ1, 3ỹ2)〉+

3

2
〈ỹ21 + ỹ22〉 = 3〈ỹ21 + ỹ22〉 (5.8)

(5.9)

Thus, in order to find the ground state energy of the system, it is enough to find
the mean of the operator A = 3(ỹ21 + ỹ22), in accordance with (2.86). The use of
the virial theorem is motivated by the desire to find an operator that is local in
time and therefore can be written in the form (2.71) and whose mean gives the
energy of the system.

The mean of an operator in terms of Feynman Path Integrals is given by equa-
tion (4.20). Calculating this by use of the Metropolis algorithm and importance
sampling is discussed in section 4.1.2. One arrives at the expression (4.22). In
order to make computations on a computer, one always needs to discretize a con-
tinuous expression. Here the question rises, what is the functional A[x] used in
expression (4.22) for representing the operator A = 3(ỹ21 − ỹ22)?

Assume that the paths ỹi(t) where t ∈ [0, T] and i = 1, 2 for particle 1 or 2
have been discretized into a lattice with N + 1 points ỹji , j = 0, . . . , N for each
particle with j corresponding to times tj = jε where ε = T

N , so that ỹ0i = ỹi(0)
and ỹNi = ỹi(T), and that the particle moves in straight lines between the lattice
points. It is then sufficient to take for example

A[ỹ] = 3((ỹj1)
2 + (ỹj2)

2) (5.10)

for any j. This is because the operator in question is local in time and therefore
does not depend on what point in time it is evaluated. It is however better for
convergence to use

A[ỹ] =
1

N

j=N
∑

j=1

3((ỹj1)
2 + (ỹj2)

2). (5.11)

Notice here that the lattice points ỹ0i are omitted. This is because when applying

the periodic boundary conditions ỹi(0) = ỹi(T) required by the
∫ x′

x′ D(x)-part of
equation (4.22), the points ỹ0i and ỹNi are in some sense the same and counting
them twice would bias the value for A (think about it in the sense that there are
N +1 lattice points but only N links between the lattice points, where the particle
spends ε of it’s total time T).

44 5 IMPLEMENTATION IN C

5.2.2 Construction of C-program

In appendix E.1, a complete C-program is presented that calculates the mean of
the operator A for the two particles in the harmonic potential, i.e. the ground
state energy. This program will be explained here.

First, some general concepts need to be clear. path is a field with path-

Length=nbrOfParticles*N floats. This corresponds to the spacial coordinates of
the N first lattice points of the 2 particles.. Since periodic boundary conditions
are employed, the coordinate for lattice point number N + 1 will be the same as
the coordinate for lattice point number 0, therefore this lattice point is not stored
explicitly in path. Also, whenever the text below mentions iterations, they refer
to the iterations of the loop at line 83.

Lines 1—8: Relevant C-libraries are included and problem specific constants
are chosen. In particular, the number of particles is set to 2 and the time interval
for which the particles travel in one path is set to 10. The choice of time affects
how much higher energy states have decayed. The choice of 10 can be motivated
by solving the problem analytically and examining how T affects the mean of the
operator A. If that is not possible, one will need to proceed empirically.

Lines 10—24: The Xorshift PRNG works through these two methods. Calling
xorshift() performs the bit shifts and XOR operations discussed in section 5.1.2
with the result that a fresh random unsigned 32-bit integer is stored in w for use
in randFloat().

Lines 26—36: These two funtions return the value of the operator A and
potential V respectively for one lattice point (one discrete point in time, as for
example in equation (5.10) for a specified j). To understand how this works, let’s
say that the lattice point being modified in the Metropolis algorithm has index j
where j = 0 . . . N − 1 (corresponding to time tj = jε). The spacial coordinate for
the first particle for this point in time is stored in path[j] and the corresponding
spacial coordinate for the second particle is stored in path[j + N]. Examining
the functions operator() and potential(), it’s apparent that they take a poiner
x to a float. If this pointer is the pointer to path[j] then x[0] will be the value
stored in in path[j] and x[N] will be the value stored in path[j + N] that is,
the spacial coordinate corresponding to time tj for the second particle.

Lines 38—46: Changing a spacial coordinate in a lattice point from an old
value to a new changes two links. The particle moves in straight lines between the
lattice points and hence there is a slight change in the kinetic part of the action
between the old path and the new. This change is calculated here, by specifying
the old and new spacial coordinates as well as the coordinates to the left and right
of the modified points.

Line 49: This is the header for the metropolis()-function which performs
roughly nbrOfLoopings metropolis steps. Evidently, the arguments for metropo-
lis() are five pointers. The reason for using pointers will be evident when going
into the parallelization part to perform the calculations on a GPU.

Lines 51—59: The variables that are utilized throughout the calculation are

5 IMPLEMENTATION IN C 45

initialized here. modPathPoint will keep track of the index of the element in path

that is being modified in each of the iterations starting at line 79. modPoint hold
the index corresponding to the point in time that is being modified in each of
the iterations, hence modPoint = modPathPoint % N (an integer in the interval
[0, N − 1]). leftIndex and rightIndex will hold the index for the two adjacent
lattice points, that is, the index for spacial coordinates for the two points occurring
ε before and after the point in time tj for the point being modified. modx hold the
new proposed spacial coordinate for the point being modified while oldX stores the
spacial coordinate before modifying it. loopLimit stores the number of iterations
should be performed. This value is obtained from the argument nbrOfLoopings
and is thus modifiable (to handle burn in as well as regular runs).

Lines 61—62: The idea with partialOp is that for each iteration in the loops
a new sample (path) is generated with the Metropolis algorithm. The operator is
then evaluated for this path according to equation (5.11). This calculated value
is then added to partialOp. To prevent risk of cancellation when adding a small
floating point number to a large floating point number — something that could be
the case after say 400000 iterations (partialOp would then be rather large) — a
buffer opMeanBuffer is created, to where every once in a while (specifically every
threeLoopRuns) the value in partialOp is transfered.

Lines 65—68: The Xorshift PRNG needs four seeds to function, these are set
here. Note also that x, y, z and w are changed whenever xorshift() gets called. In
order to be able to run metropolos() several times in sequence and have each run
pick up where the last run finished, these seeds are stored outside of metropolis()
and are exported at the end of metropolis() in lines 127—130.

Lines 70—71: Since only one spacial coordinate is changed in each iteration,
it is unnecessary to calculate the value of A for the whole path in each iteration.
Instead, the value of A for the initial path (before the iterations begin) is calculated
and then updated when a spacial coordinate is changed. These two lines calculate
A for the initial path.

Lines 73—74: opMean[0] will eventually store the calculated mean of the en-
tered operator after nbrOfLoopings Metropolis steps have been performed. ac-

cepts[0] will hold the number of accepted changes to calculate the acceptance
rate of the Metropolis algorithm.

Lines 79—83: One iteration of the loop at line 83 performs a Metropolis step
and hence produces a sample from the desired PDF (a path distributed as (4.21)).
New paths are generated by proposing a change of one spacial coordinate in a
lattice point in the current path and then accept the change with a certain prob-
ability. The lattice points are looped through sequentially from with increasing j,
particle by particle. One full loop for all lattice points and all particles correspond
through one full loop through the pathSize elements paths field. This is done
in the two loops at lines 80—84. The purpose of the loop at line 79 is to repeat
this calculation. The outer loop runs threeLoopRuns times (threeLoopRuns =
nbrOfLoopings/pathSize (integer division)) and thus in reality the total number

46 5 IMPLEMENTATION IN C

of Metropolis steps will not equal nbrOfLoopings, but rather the closest lower mul-
tiple of pathSize. This ensures that all lattice points undergo the same number
of proposed modifications.

Lines 88—96: These important lines of code are responsible for setting ỹ0i = ỹNi
(remember that these are the boundary conditions for the Feynman Path Integral
∫
D[ỹ] . . .). Since the value for ỹNi is not stored (only spacial coordinates with

index j between 0 and N − 1 are stored), the variable rightIndex is set to 0 if
modPoint happens to equal N − 1. Likewise, if modPoint equals 0, leftIndex
is set to N − 1. In other cases, leftIndex and rightIndex are just the integers
adjacent to modPoint.

Lines 98—99: The spacial coordinate that is proposed to change is stored in
oldX. The new proposed value is stored in modx and is simply a step of length α
in either direction (positive or negative) from the current value.

Lines 102—106: These lines calculate the difference in energy (from which later
the difference in action is obtained by multiplication with the time step ε). The
difference in energy is stored in diffE and contains one term for kinetic energy
and one for potential energy. Again, the change in kinetic energy depends on the
change of the two links that are changed when modifying the spacial coordinate
for one lattice point, while the change in potential energy is dependent solely on
the change of the single spacial coordinate (the virial theorem cannot be employed
here!).

Lines 109—114: This is the condition for accepting the change in the path. If
the new path is accepted, the value for partialOp needs to be updated (remember
that partialOp contains the value for the given operator evaluated for the whole
current path). partialOp is updated by subtracting the value of A for the now
old spacial coordinate and adding the value of A for the new spacial coordinate
(hence the two calls to operator()). Also, accepts[0] is incremented.

Lines 116—124: At the end of each iteration, the calculated value of A for
the sample path (stored in partialOp) is added to a pool opMeanBuffer of com-
pleted functional values. Once every pathSize iteration, this pool is emptied
into opMean to avoid numerical cancellation (lines 119—120). Lastly, on line
124 the value in opMeanBuffer is normalized, in the sense that the values al-
ready stored in opMeanBuffer are functional values A for different paths x dis-
tributed as (4.21) with the exception that the division with N in equation (5.11)
is not performed when calculating partialOp (this saves roughly nbrOfLoopins

divisions by N .), instead this is done once and for all on this line. This cor-
responds to one of the factors of N in the denominator, the other factor three-

LoopRuns*nbrOfParticles*N is there to return the mean of A instead of returning
the sum of threeLoopRuns*nbrOfParticles*N values of A for different paths.

The metropolis()-function is now complete and the calculated mean of the
opefootnotesrator is stored in opMean. The lines 133—169 constitute a simple
C-program that calls metropolis() runs times and use the results to compute
65%- and 95% confidence intervals. This assumes that the calculated means are

5 IMPLEMENTATION IN C 47

independent and identically distributed random variables (otherwise a t-test would
be needed). This is a good assumption however, since the resulting means are
sums of a very large amount of random variables that follow some (unknown)
distribution. The Central Limit Theorem then yield that opMean are normally
distributed random variables. Some sample output from the program follows here

Listing 2: Sample output from C-program in appendix E.1.
1 Doing burn in . . .
2 Run 1 :
3 Mean o f operator : 1 .741713
4 Acceptance ra t e : 35.09%
5
6 Run 2 :
7 Mean o f operator : 1 .723673
8 Acceptance ra t e : 35.02%
9

10 Run 3 :
11 Mean o f operator : 1 .719937
12 Acceptance ra t e : 35.06%
13
14 Run 4 :
15 Mean o f operator : 1 .719481
16 Acceptance ra t e : 35.06%
17
18 Run 5 :
19 Mean o f operator : 1 .708518
20 Acceptance ra t e : 35.03%
21
22 Run 6 :
23 Mean o f operator : 1 .718654
24 Acceptance ra t e : 35.07%
25
26 Run 7 :
27 Mean o f operator : 1 .716800
28 Acceptance ra t e : 35.05%
29
30 Run 8 :
31 Mean o f operator : 1 .729634
32 Acceptance ra t e : 35.02%
33
34 Run 9 :
35 Mean o f operator : 1 .722076
36 Acceptance ra t e : 35.06%
37
38 Run 10 :
39 Mean o f operator : 1 .762898
40 Acceptance ra t e : 35.01%
41
42 Mean : 1 .726338
43 Standard e r r o r : 0 .004660
44 65% CI : [1 . 7 21678 , 1 . 730999]
45 95% CI : [1 . 7 17017 , 1 . 735659]

The analytical solution for the ground state energy of a system of three particles
interacting with harmonic potentials is given at the end of section 3.4.2, and with
~ = ω = 1 it is E0 =

√
3 ≈ 1.732 which is in good agreement with the calculated

value.

48 5 IMPLEMENTATION IN C

It should be noted that examining the expression for V and T above show that
the system can be treated as two independent and identical harmonic oscillators,
and thus it would be sufficient to calculate the ground state energy for only one
of them and then multiply this value by 2. This was not done however, since the
purpose of this section was to demonstrate how the path integral formalism is used
in computer code.

6 PARALLELIZATION AND GPU PROGRAMMING 49

6 Parallelization and GPU Programming

In section 5.2, a C-program was presented that calculates the mean of an operator
according to the outlines of the algorithm in section 4.3. This section will cover
the background for parallelizing the code and implementing it in OpenCL. The
final OpenCL code will be presented in section 7.

In section 6.1, GPU programming concepts will be introduced and compared
with CPU programming. This will be related to the GPU architecture. This is a
good starting point if not familiar with GPU terminology and concepts.

Section 6.2 covers OpenCL background, how OpenCL programs are designed
and how they are implemented in Python through PyOpenCL. A short comparison
will be carried out between OpenCL and CUDA. This section offers some useful
background, but is not imperative for further reading.

Section 6.3 is a brief guide to OpenCL programming in Python. It will cover
the essentials in order to understand the code later on in the report. It also includes
a very condensed list of best practices when writing OpenCL code that will hugely
improve performance.

Section 6.4 covers two of the biggest challenges that emerged when imple-
menting the code on a GPU with OpenCL, and how they were dealt with.

6.1 GPU versus CPU Programming Concepts

The purpose of this section is to introduce some of the concepts that make GPU
programming different from CPU programming. The differences will be related to
the architecture of the GPU. Furthermore, some basic terminology will be defined,
like work group, work unit, thread, global size and folding. For the sake of sim-
plicity, the scope of this section will only cover current series of ATI and nVidia
Graphics cards. A brief comparison will be made between the two brands.

6.1.1 Background

What mainly sets Graphical Processing Units apart from Central Processing Units
is the amount of cores. This amount represent how many calculations that can be
carried out simultaneously. A GPU contain several Multi Processors (MP), each
having an array of cores. Until quite recently, it was very unusual for CPUs to even
have more than one core. GPUs have meanwhile had up to several hundred physical
cores for a long time. The reason as to why the CPU is the main computational
device is that the clock frequency is so much higher than on the GPU. Since the
CPU has few cores and a very high clock frequency, it performs serial computations
efficiently. This is even more true when the calculations are based on previous
results. The GPU on the other hand is excellent at handlig many small routine
tasks with little to no correlation to eachother. A typical example is the matrix
and vector operations behind what colors each pixel on a screen shall use when
representing three-dimensional objects.

50 6 PARALLELIZATION AND GPU PROGRAMMING

Altough the CPU have seen an insane trend in increased clock frequency the
last decade, more focus has recently been diverted toward implementing more
cores. The clock frequency has pretty much stagnated around 3500MHz per core.
This will probably lead to an increased interest in parallelization in the nearest
future.

6.1.2 Multiprocessors, Work groups, Threads and Global Sizes

As previously stated, each GPU consist of a number of multiprocessors. The
amount varies heavily between different companies and architectures, but what
they all have in common is that they consist of arrays of smaller single processors.
These are also known as cores, work units and threads. Together they form a work
group, or thread grid, on each multiprocessor. All the multiprocessors will together
compromise a thread grid.

Figure 7: Representation of GPU and CPU compute units, as well as desired
thread computations in software. Figure taken from[31].

Different work groups will generally not be able to use the same memory or
communicate with eachother. This is due to the fact that the GPU is meant
to execute similair instructions in parallel over the different work groups. When
each instruction is finished, a new instruction will be handed to the work group.
Since there is no way of knowing which work group finishes first, writing to the
same memory is often out of the picture. This is either resolved by using Memory
Barriers, but that goes beyond the scope of this project. The GPU is a nifty little
device, because the work units can continue to perform their next set of instructions
while waiting for memory. Thus, it is very important to make sure that the total
amount of instructions is a factor of the total amount of available cores on the
graphics card. Another advantage of this is that some cores will finish slower than
others, and the probability of having the whole array of cores waiting for a slow

6 PARALLELIZATION AND GPU PROGRAMMING 51

core decreases with a larger set of instructions. This total amount of instructions is
often called global size or thread strides. In some cases, it is important to instruct
the device how to split the global size in order to assign the multiprocessors with
the correct amount of instructions. These divisions will be called block sizes or
local sizes, each being a 2-dimensional list. OpenCL often does this automatically,
as opposed to CUDA where local size and block size needs to be defined explicitly.
Local size is always set according to hardware, and global size is set as a factor of
the local size.

6.1.3 Memory

There are basically four memory types available on the device. These are __global,
__constant, __local and __private.

Figure 8: OpenCL Memory Hierarchy. Figure taken from[30].

global is the memory of the entire GPU, the slowest to work toward. This
is usually somewhere above 1GB for newer graphics cards. This entire memory
will not be available for allocation if not using Image2D[40] variables. For regular
variables, roughly a third of this will be available for allocation. The global memory
is very useful if the kernel code is designed to be re-run, saving the user the effort
of having to transfer the data back and forth between the device and host for each
run.

52 6 PARALLELIZATION AND GPU PROGRAMMING

constant is read only memory, optimized for being widely accessed. Con-
stant should always be used with variables that are read only. Constant memory
can be combined with the other memory types.

local memory is basically restricted to each work group, or more exactly
each Streaming Multiprocessor (SM). The local memory is much faster to access
than the global memory, and thus a better option for frequently used data. The
draw back is the size, being typically 16 kB for new graphics cards.

private is a register-like memory, tailored for individual work items/threads.
This is by far the fastest memory, but also the smallest. It should be used for
frequently used control data.

6.1.4 ATI versus nVidia

It is very hard to compare performance of AMD/ATI6 and nVidia graphics cards
on paper. The big difference is mainly due to the different architectures they are
basing their hardware on. Take two of their cards as an example, ATI Radeon
HD 5850 [25] and nVidia GeForce GTX 470 [26] (these happen to be two of the
cards used during the project). GTX 470 has 14 Streaming Multiprocessors (SM),
each consisting of 32 Shader Processors (SP). That is a total of 14·32 = 448 so
called CUDA Cores. HD 5850 on the other hand has 288 multiprocessors, each
having 5 Arithmetic Logical Units (ALU). This leads to a total of 5·288 = 1440
Stream Processing Units (SPU). Some would argue that only 4 ALUs should be
counted as the 5th ALU is transcendental, lacking some functionalities. 4 or 5
ALUs aside, HD 5850 SPUs are a lot more than GTX 470s CUDA cores. These
numbers basically represent the amount of threads/work units, thus determining
how many computations the graphics card can perform in parallel. Bear in mind
though that these numbers alone says nothing about performance. GTX 470 has
a higher clock frequency and the CUDA cores are generally a bit better optimized
than the SPUs. Add to this a whole bunch of other parameters and you end up
in a very confusing situation, as is customary with GPU architectures. How then
can a global size be determined that works well with both ATI and nVidia? There
is no rule that fit all sizes. Generally though, a global size/total thread count that
is a factor of 32 is a good choice since it is a very reoccuring number in different
dimensions (32 work units, 32·45 = 1440 stream processors etc). If unsure though,
refer to AMD[24] and nVidias[23] recommendations respectively. With GTX 470
as an example, the local size is beneficially set to (14,32), relating to (SM,SP).
The global size could then be set to (4*448,1) or something similair, depending
on the application. Note: OpenCL has another way of counting ATI multiproces-
sors, called compute units. The HD 5850 has 18 compute units with 80 OpenCL
processing elements each. Notice that 18·80 = 1440, the same amount as SPUs.

A side note for someone interested in determining performance between different

6AMD bought ATI in 2006, but still label their graphic cards with ATI Technologies.

6 PARALLELIZATION AND GPU PROGRAMMING 53

kinds of graphics cards. Benchmarking with some kind of software or calculation-
heavy program is generally the best approach. Bear in mind that different bench-
marks give varying results, as the graphics cards and multiprocessors are optimized
for different kinds of calculations and instructions. Some of the most common
benchmarks are performed with DirectX, OpenCL, 3D Mark or FPS measure-
ments in games.

6.1.5 CPU versus GPU Calculation: A Brief Example

Up to this point, some concepts have been introduced that makes GPU calculations
different from CPU calculations. A practical example might be in place. Take for
example the evaulation of equation (6.1). It represents the function f of two
variables x and y, summed over i values of x and y. For complete source code of
a GPU implementation of this problem, please refer to section 6.3.2, page 57.

n∑

i=0

f(xi, yi) = e−
x2i+y2i

2 (6.1)

A typical CPU program would simply loop over i, calculate the exponent and
sum the results to a variable. A GPU on the other hand could instruct each of
its multiprocessors G to calculate as many values of f simultaneously as there
are work units U . In effect, that would be G·U evaluations simultaneously. If
i is greater than G·U , work units will simply be assigned new calculations of x
and y once they are done with their current ones. The summation of the result
would have to be carried out a bit differently though, as the work groups generally
do not have access to the same memory. There are several different approaches
to this issue. If a pure GPU implementation is required, there exist a method
called reduction[37][38] or folding [39]. This method is not used in the project, but
instead the result of the GPU is typically a vector or matrix. The summation is
then carried out on the CPU.

6.1.6 Speed-up Factor of Parallelization

Previously, it was claimed that the amount of cores is not enough to determine
the performance. The amount of cores generally needs to be combined with other
factors in order to be useful. Take for example Amdahl’s law(6.2), which is an
estimation of the maximum speed-up factor S for parallelization on N cores. It
also uses a factor P , which is the fraction of the total serial execution time taken
by the portion of code that can be parallelized [23].

S =
1

(1− P) + P
N

(6.2)

If N happens to be a very large number, the speed-up factor will act like
equation (6.3). That means with P = 75% parallelization, the maximum speed-up

54 6 PARALLELIZATION AND GPU PROGRAMMING

factor will be S = 4. Thus, the greater P is, the greater the speed-up.

S =
1

1− P
(6.3)

In the guide, nVidia argues that if P is a small number, increasing the amount of
available cores does little to improve the overall performance. That is, an expensive
GPU will not out-perform a single core CPU if the code is poorly parallelized.
nVidia thus argues that the most bang for the buck lies in increasing P before
spending too much resources on increasing N.

6.2 OpenCL Description

The previous section covered GPU concepts, architecture and terminology. These
concepts are actualized in this project through OpenCL. This section contains
a short outline of how OpenCL programs work, a comparison of OpenCL versus
CUDA, and how OpenCL is implemented in Python through PyOpenCL. For more
info on Python please refer to section D on page 96. For installation please refer
to the official PyOpenCL installation guide[43].

6.2.1 Background

OpenCL stands for Open Computing Language and is a framework for parallel
programming on heterogeneous systems, like CPUs and GPUs. More exactly, it
is a specification managed by the Khronos Group[44], determining how hardware
manefacturers should design the interfacing with their hardware. OpenCL code is
basically a programming language based on the modern C dialect C99 [48], with
some restrictions and additions like special keywords and data types. OpenCL pro-
vides the ability to write Application Programming Interfaces (API) which handle
the devices (GPU or CPU) and execute kernels (functions) on them. OpenCL is the
first cross-platform specification to be open and royalty free, unlike its competitors
CUDA[45] and DirectCompute[46], which are restricted to nVidia and Windows
platforms respectively. These are all examples of GPGPU languages, short for
General-Purpose computing on Graphics Processing Units[47]. A big advantage
of GPGPU is that it unlocks the GPU and its parallel computing capabilities to
non-graphical applications.

6.2.2 OpenCL versus CUDA

There are mainly two reasons as to why OpenCL was chosen instead of CUDA.
First of all, OpenCL is compatible with many different platforms, which makes
this bachelor project more available to others. One of the computers used in this
project was in fact an AMD/ATI platform, which is obviously not compatible with
CUDA. Second of all, OpenCL is newer and not as established as CUDA, making
it a bit more interesting and fresh. This is also a downside since this might lead

6 PARALLELIZATION AND GPU PROGRAMMING 55

to lack of some functionalities, not as good support or patching, as well as worse
run-time and efficiency optimization. OpenCL will probably never be able to com-
pete with CUDAs performance. This is due to the fact that CUDA is tailored
for one specific environment, while OpenCL has to sacrifice a lot of optimization
when adapting to many different platforms. nVidia has a lot of interest in CUDA,
investing a lot of resources in developing and optimizing it. Should there exist
an interest in changing from OpenCL to CUDA, it is supposedly not that hard.
CUDA and OpenCL works pretty much the same way, and have similair syntaxes.
For people more familiar to CUDA, please refer to AMDs guide[49] for basic termi-
nology comparison. One important note for CUDA programmers is that OpenCL
usually is very good at assigning what block sizes to use. This means that the
user often only has to specify global size, then leave local size and block size to
OpenCL to figure out. As far as integration with Python goes, the difference is
trivial. CUDA and OpenCL are integrated with modules called PyCuda and Py-
OpenCL respectively. Both are conveniently managed by the same person, Anders
Klöckner[51]. Please refer to his guide CudaVsOpenCL[50] for a more in-depth
discussion about the difference in their respective implementation with Python.

6.2.3 OpenCL Programs

OpenCL programs are divided into two parts: one that is executed on the host
and the other on the device. The host application is in this case written in Python
and run on the CPU. The host application provides the necessary API to handle
the device execution and control the OpenCL environment through Contexts and
Command Queues etc. The device application is the main focus of this project.
It is where OpenCL strengths come into play, it is where the data and algorithm
parallelism occurs. Code is executed on the device through kernels (functions)
written in OpenCL. The device is primarily the GPU in this project. However,
through ATI Stream SDK[41], an AMD multi-core processor will be used as device
in OpenCL for reference and benchmarking purposes.

6.2.4 PyOpenCL

OpenCL is compatible with a variety of host programming languages. In Python,
the integration is done through a module, called PyOpenCL[34][36][35][22]. Py-
OpenCL basically wraps every OpenCL API construct into a Python class, in-
cluding garbage collection and conversion of errors into Python exceptions. What
makes PyOpenCL so good and sets it appart from other similair implementations
is[35]:

• Object cleanup tied to lifetime of objects. This idiom, often called RAII[52]
in C++, makes it much easier to write correct, leak- and crash-free code.

• Completeness. PyOpenCL puts the full power of OpenCLs API at your disposal,
if you wish.

56 6 PARALLELIZATION AND GPU PROGRAMMING

• Convenience. While PyOpenCLs primary focus is to make all of OpenCL acces-
sible, it tries hard to make your life less complicated as it does so–without taking
any shortcuts.

• Automatic Error Checking. All OpenCL errors are automatically translated
into Python exceptions.

• Speed. PyOpenCLs base layer is written in C++, so all the niceties above are
virtually free.

• Helpful, complete documentation[22] and a wiki[36].

• Liberal licensing (MIT).

6.3 OpenCL Programming in Python: A Brief Guide

This will be a short but to-the-point introduction to OpenCL implementation
in Python through PyOpenCL. Please note that PyOpenCL slightly differs
from pure OpenCL when it comes to syntax, but basically works the same
way. This guide will contain enough information for people to be able to
start experimenting and continue developing on their own. For more in-
depth guides, please refer to one of the many OpenCL tutorials available
online. For complete source codes, please refer to section E.2.3 on page 112.

6.3.1 Best Practices: Writing Optimized OpenCL Code

This section will list some key points for writing optimized OpenCL applica-
tions that leads to increased performance. For in-depth analasys, please refer
to nVidias best pratices[23] and AMDs OpenCL Programming guide[24].

Maximize Parallelization: This is probably the single most important
optimization. Find ways to parallelize algorithms and instructions as much
as possible.

Use fast memory: Avoid using global memory. Instead use local or
even private memory if possible. Remember to define memory only used for
reading as constant.

Reduce instructions: Avoid calculating the same set of instructions
several times, by calculating and storing the result for that instruction once,
then pointing to that adress space.

Minimize data transfer: Stick to few but large transfers between host
and device, rather than having many transfers.

Avoid division: Use multiplication of inversed quantities as this is much
faster for the compiler.

Use native functions: Native functions are special sets of functions,
that are greatly optimized for the device. Take for example cos(ω) versus
native_cos(ω), representing 200 versus 1 hardware instruction for small ω.

6 PARALLELIZATION AND GPU PROGRAMMING 57

For larger ω, the amount of hardware instructions for cos will increase even
further.

Avoid using pow: Try to write out powers explicitly, rather than us-
ing the function pow. This has been one of the biggest speed-up factors in
programs during this project.

Avoid double type: OpenCL currently has performance issues with
double emulation. Always make sure to manually type cast to float instead
of double, as this will save the compiler several execution cycles. Example:
Use 0.5f instead of 0.5

Division and Modulo: If possible, avoid integer division and modulo
operators as these are very costly. Instead, use bitwise operation. Example:
If n is a power of 2, i

n
is equivalent to (i >> log2 n), and (i%n) is equivalent

to (i&(n − 1)). >> and & are bitwise operators, corresponding to bitshift
right and logical AND respectively.

Time measurement: Use profiling for time measurements instead of
measuring with Python. This is shown later in this section.

The following recommendations apply for nVidia only[23]:
MAD: Enabling the device option -cl-mad-enabled lets the compiler

group add and multiply instructions into a single FMAD instruction when-
ever possible. This is recommended as it can lead to large performance gains.
Note however that the FMAD truncates the intermediate result of the mul-
tiplication.

Compiler Math Relaxation: Enabling the device option -cl-fast-

relaxed-math activates many aggressive compiler optimizations. That is,
very fast run-time with some sacrifice of precision.

6.3.2 A Simple OpenCL Application

Lets consider a simple GPU program that evaluates equation(6.4).

nbrOfPoints
∑

i=0

f(xi, yi) = e−
1.5·x2i+2.8·y2i

2 (6.4)

Please refer to the official documentation[22] for a complete list of avail-
able PyOpenCL commands and their specifications.

Listing 3: OpenCL Tutorial Application
1 # Filename : demo gaussian . py
2 # Info : Simple PyOpenCL demo to eva l ua t e a gauss ian func t i on .
3 # Author : Patr ic Holmvall , 2011−05−14, Chalmers , Gothenburg
4
5 import pyopencl as c l

58 6 PARALLELIZATION AND GPU PROGRAMMING

6 import pyopencl . array
7 import numpy as np
8
9 nbrOfThreads = 4∗448

10 nbrOfPoints = 100∗nbrOfThreads
11 g loba lS i zeA = nbrOfPoints
12 g loba lS i z eB = 1
13 l o ca lS i z eA = 1
14 l o c a l S i z eB = 1
15
16 ctx = c l . c r ea t e some contex t ()
17 queue p rope r t i e s=c l . command queue properties .PROFILING ENABLE
18 queue = c l .CommandQueue(ctx , p r op e r t i e s=queue p rope r t i e s)
19
20 x rand = np . random . rand (nbrOfPoints) . astype (np . f l o a t 3 2)
21 y rand = np . random . rand (nbrOfPoints) . astype (np . f l o a t 3 2)
22
23 x = c l . array . t o d ev i c e (ctx , queue , x rand) . astype (np . u int32)
24 y = c l . array . t o d ev i c e (ctx , queue , y rand) . astype (np . f l o a t 3 2)
25 gauss ian = c l . array . z e r o s (ctx , queue , (nbrOfPoints ,) , np . f l o a t 3 2)
26
27 KERNEL CODE = ”””
28 k e r n e l vo id sum(g l o b a l const f l o a t ∗x , g l o b a l const f l o a t ∗y ,
29 g l o b a l f l o a t ∗ gauss ian)
30 {
31 i n t g id = g e t g l o b a l i d (0) ;
32 gauss ian [g id] = na t i v e e xp (−(0.5 f)∗(%(A) s∗x [g id]∗ x [g id] +
33 %(B) s∗y [g id]∗ y [g id])) ;
34 }
35 ”””
36 KERNEL PARAMS = { ’A ’ : ’ 1 . 5 f ’ , ’B ’ : ’ 2 . 8 f ’ }
37
38 prg = c l . Program(ctx , KERNEL CODE % KERNEL PARAMS) . bu i ld ()
39
40 ke rne l = prg . sum(queue , (g loba lS izeA , g loba lS i z eB) , (l oca lS i zeA , l o c a l S i z eB) ,
41 x . data , y . data , gauss ian . data)
42 ke rne l . wait ()
43 runTime = 1e−9∗(k e rne l . p r o f i l e . end − ke rne l . p r o f i l e . s t a r t)
44
45 gaus s i anResu l t = np . sum(gauss ian . get ())
46
47 print (”Result : ”+s t r (gaus s i anResu l t))
48 print (”Kernel run time : %0.5 f s ” % runTime)

In this program, three libraries are used. The first is PyOpenCL, imported
with the alias cl. This makes it possible to write cl.someCommand instead of
pyopencl.someCommand. The second library is a class of PyOpenCL called
pyopencl.array, used for passing pyopencl arrays between the host and the
device. The last library is numpy[55], a scientific computational library for
Python.

Lines 16—18 in the code creates the context and command queue, and is
a fundamental step in making an OpenCL application. Using the definitions
from Khronos OpenCL specification[20][21]: An OpenCL context is created

with one or more devices. Contexts are used by the OpenCL runtime for

managing objects such as command-queues, memory, program and kernel

objects and for executing kernels on one or more devices specified in the

6 PARALLELIZATION AND GPU PROGRAMMING 59

context. If no argument is specified to cl.create_some_context, the first
available device will be used. This is usually every available GPU in some
arbitrary order, then the CPU. The command queue is an object that is
used to enqueue OpenCL commands to be executed by the device. The
queue_properties variable makes sure that command queues have profiling
enabled, making it possible to measure time on the device instead of in the
Python code. This is always recommended since Python will not be able
present a correct timing. For more information on this topic, please refer to
nVidia best practices[23].

Lines 23—25 deal with memory allocation. There are several ways of
allocating a memory buffer for data transferred to the device. Without too
much concern for details, it becomes a choice of preference. In this example,
a very condensed method is used. The command cl.array.to_device tells
the device to allocate memory equivalent to the size of the variable in its
argument. In this case, it is the variables x and y both being float32

vectors the size of numberOfPoints. cl.array.to_device returns a python
pointer object that is used as a kernel argument, linking to the vectors x and
y in the kernel code. The command cl.array.zeros works pretty much the
same way. It allocates the same amount of memory since the gaussian has
the same dimenson as x and y, but will initially be an array filled of zeros.
The pointer ojbect will later be used to fetch the result from the device.

Lines 27—35 contain the kernel code. It is the C99-based code executed
on the device. Note that it is wrapped in a python string. The variable
int gid = get_global_id(0) is a global unique identifier for threads. In
this example, it is used to make sure that threads access unique parts of
the arrays x and y before making operations on them. get_global_id(0)

will thus have the same dimension as x and y, in this case having an index
from 0 to (nbrOfPoints-1). There are two other things worthy of noting,
the first is writing powers explicitly as x[gid]*x[gid] instead of using the
pow function. This has been one of the biggest performance gains in various
programs during this project. The second performance gain is the usage
of native_exp instead of exp. The text __global in front of the kernel
arguments indicate that the variables will be stored in the global memory of
the graphics card. If an array is going to be used frequently, there will be
performance gain in using local memory instead with __local. Remember
though that the local memory is severely limited to only around 16 kB per
Streaming Multiprocessor on a nVidia GeForce 470 GTX. That means that
32 threads will have to share the 16 kB besides the small registers available
to each thread.

KERNEL_PARAMS on line 36 is a Python tuple used to paste constants into
the kernel code, saving the effort of having to transfer them to the device and

60 6 PARALLELIZATION AND GPU PROGRAMMING

allocate memory. Note that A and B are strings, making it possible to make
a float type cast in OpenCL by writing 1.5f instead of 1.5. This might
seem like a small difference, but such type casts could potentially increase
performance and avoid unwanted problems. This is especially true for code
that will be run a lot. Later in the project, code on the device will typically
be re-run somewhere between 105 and 1010 times. Thus, small changes will
have huge impact on overall performance.

Lines 38—43 contain the build and execution of the kernel. Notice how
the device is instructed to use globalSizeA×globalSizeB as global block
size and localSizeA×localSizeB as local block size. Since everything but
globalSizeA is 1, it is the same as leaving everything but globalSizeA

undefined. The purpose of this is however to illustrate how such arguments
would be passed. Notice the kernel.wait() command, instructing Python
to wait for the kernel to be finished executed before continuing. In this
portion of the code, it is used together with the kernel profiling to make sure
that the kernel execution time is properly measured.

Line 45 fetches the resulting vector of the gaussian, and sums every ele-
ment in the vector with np.sum. The reason as to why the device is return-
ing a vector is that it has no way of storing all the values of the gaussian
into the same memory space. That is without using memory barriers[27],
reduction[37][38] or folding[39].

6.4 Challenges with GPU Implementation

During the GPU implementation of the algorithms and theoretical models,
numerous challenges have arisen and blocked the path to success. Most
noteworthy are the harsch run-time and memory limitations. This section
cover how these challenges were overcome.

6.4.1 5 second Kernel Run-Time Limitation

Graphics Processing Units are raw computational devices. They are designed
to break down and compute vast amounts of data, often much larger than
those computed on the Central Processing Units. There is however one im-
portant fact that sets the GPU apart from the CPU in this aspect. The
data computed on the GPU is mainly intented for visualization of graphical
objects on the screen. As humans seem to be a very impatient species, there
must excist some kind of run-time limitations, preventing the graphics card
from calculating too long before outputting results. Run-time limitations
are also necessary to prevent damage on the hardware through overheating,
which could occur if the graphics card works at maximum performance for

6 PARALLELIZATION AND GPU PROGRAMMING 61

a long time. A common limitation on nVidia GPUs is 5 second run time
per kernel, which basically means that our kernel code needs to be executed
within 5 seconds. A similar limit exists on ATI based platforms. This poses
a significant problem for someone dealing with scientific computations, since
he or she might be used to do calculations for several hours or even days.
Luckily, there are several work-arounds that are more or less optimal:

• Split your kernel up into several smaller kernels. Program them to be
re-runnable. This is generally the most recommended solution.

• Install an additional GPU solely for non-graphical computations. Note:
do not connect to a screen!

• Buy an extremely expensive graphics card like the nvidia Tesla[54]

• Disable the X server in Linux or do a registry hack in Windows. Try to
avoid this as it disables an important safety mechanism for your GPU.

The first suggestion is a good practice that keeps your code tidy and user-
friendly. It is probably the most employed method on desktop computers. If
the kernel functions are used to compute serial data, as is the case of this
project, there need to be some way for the GPU to pick up where it left
off between different re-runs. This can be achieved by transfering the data
back and forth between host and device between runs, protecting it from
being dumped as unused data by the GPU. This is probably not very likely
if the computer only has one active user at a time, and can be very costly
performance-wise. A better option in that case is to store the data in the
global memory of the device, and pass a token between runs if necessary.
Working directly towards the global memory on the device might have its
performance disadvantages. Therefore, it might be a good idea to copy the
data to shared/local memory when a kernel is using it.

6.4.2 Memory Limitation and Random Numbers

A big issue with the 0.92 and 2011.1 version of PyOpenCL is the random
number generator, pyopencl.random. It is based on MD5 hashing [53] and is
pretty flawed when it comes to stability. On some platforms, there are huge
performance leaks causing extremely long execution times, up to tens of sec-
onds for single random numbers. As a side note, these are well known issues
and there are currently improvements being worked out. As this project
aims to examine path integrals leading to many variables and iterations, py-
opencl.random is simply not satisfactory. Being unable to create the random

62 6 PARALLELIZATION AND GPU PROGRAMMING

numbers with the built-in functions basically leads to two options. That is,
either creating the random numbers on the host and transferring them to the
device, or implementing a Pseudo Random Number Generator by hand in
the kernel code. The former method quickly provides high quality random
numbers since it typically utilizes Mersenne Twister[63] in numpys built in
random function. The downside is slow-downs during host to device transfer
and extremely high memory occupation. A way of generating them on the
device without using pyopencl.random is to implement some minimal PRNG
by hand in the kernel code. In this project, the PRNG xorshift was used,
more thoroughly described in section 5.1.2 on page 41. xorshift still requires
data in form of seeds to be transferred from host to device. The 32 bit int
seeds for xorshift typically needs to allocate 4·NT ·32 bit where the 4 comes
from the 4 variables xorshift uses in the algorithm and NT is the number
of threads. With 512 threads, the seeds allocate 4 kB and can be used to
generate any desired amount of variables on the device. Take for example
2·105 random numbers on each thread. That would be 1562MB allocated
memory if generated on the host and 4 kB if generated on the device with
xorshift. The quality of the xorshift random numbers may be worse, and the
xorshift algorithm would be required to run 2·105 times. The performance
and quality loss is however neglible. The amount of memory saved is a huge
improvement. The nVidia GTX 470 used in this project is a relatively new
graphics card. It has 1280MB global memory, but only 320MB maximum
allowed memory allocated. GTX 470 will not able to handle the storage of
the 2·105 random numbers in other words, if not using Image2D Variables [40]
that is. Image2D variables were not used in this project.

7 IMPLEMENTATION IN OPENCL 63

7 Implementation in OpenCL

Now it is time to present the complete source code for calculating the Feyn-
man path integrals on a GPU. The program will consist of a kernel7 code
(written in C) that contains the actual calculations that are to be performed
and runs on the GPU, and a host code (written in Python) that runs on the
CPU. The host code communicates with the GPU, allocates memory and
transfers data to and fro the graphics card. Additionally, another piece of
code is required to use the features provided by the host code. This code will
be referred to as the application code, and is customized to each quantum
mechanical system of particles and whatever calculations that are to be per-
formed. The results that are presented in this report are obtained by writing
an application program that make use of the kernel and host code presented
below. The kernel-, host- and example application code is discussed in detail
below. Corresponding source code is put in the appendix.

The idea of presenting a C-program in section 5.2 is that the kernel code
presented below is very similar and should thus be easy to follow, if one has
taken time to understand the C-program. Only small changes are needed to
convert the C-program to a functioning OpenCL kernel.

7.1 OpenCL Kernel Code

The OpenCL kernel code is presented in appendix E.2.1 and will be explained
here.

First, some general concepts will be explained. The host code utilize
placeholders as a means for getting user input to the kernel. For example,
when running the host code, all instances like %(variablename)d will be
replaced with relevant information. The trailing d indicates what data type
variablename should be converted to. The different datatypes are d for
integer, f for float and s for string. This concept is very similar to #define

used in the C-program, where the preprocessor manges the replacements.

Lines 1—47: The reader should be familiar with the functions defined in
this section, as they are explained in detail in section 5.2, when discussing the
C-program for calculating Feynman path integrals. One difference however
is the inline prefix, which is a hint to the compiler that copying and pasting
the code to wherever the functions are called could bring about a speedup.
At line 25, a placeholder for a string is inserted as a way for the user to
formulate his or her own C-functions in the application code to help write

7Not to be confused with the mathematical concept of the quantum mechanical prop-
agator/kernel K(b, a).

64 7 IMPLEMENTATION IN OPENCL

out the potential and operator (see the comments in the example application
code).

Line 50: The function header differs in the OpenCL kernel from the
C-program. The metropolis() function now has the __kernel prefix, indi-
cating that is is an OpenCL kernel and the arguments __global keyword to
specify where in the memory the input is stored. The arguments are created
as pyopencl.array objects in the host code (see below).

Lines 52—55: These lines are important and necessary changes from the
C-program. The command get_global_id() returns the id for the running
thread (thread ids range from 0 to nbrOfThreads−1). This is how different
threads are distinguished from one another. One example how this is used
is when passing the seeds for the Xorshift PRNG. The seeds are generated
by Numpy in the host code as a nbrOfThreads×4 array of random unsigned
integers. When this array is passed to the kernel, it is no longer indexed by
row and column, but rather by a single index that goes sequentially from
left to right and top to bottom in the array (like when reading a book).
One row in this array contains the four seeds for the thread with thread id
equal to the row number (given that first row has row number 0). Therefore,
seeds[4*gid] is the first seed for thread with id gid. The special number
4*gid is saved under the name seedsVectNbr. In a similar way, paths is a
long vector containing the spacial coordinates for all lattice points and parti-
cles for all the threads. It has a total of N×nbrOfParticles×nbrOfThreads

elements, where each chunk of N × nbrOfParticles = pathSize elements
belong to one individual thread. This can be viewed as the many path-fields
of the C-program stored one after another when this is run in many inde-
pendent instances (which is what happens in the OpenCL implementation).
The element paths[gid*pathSize] is the first spacial coordinate for the first
particle for thread with id gid. The special number pathSize*gid is saved
under the name pathsVectNbr.

Lines 147—148: Here, the pathSize spacial coordinates for the running
thread are copied from paths to a local field path for easier reference.

Lines 206—224: These lines are new and did not appear in the C-program.
They perform the time-saving trick to obtain a numerical representation of
the probability density as discussed in section 4.4. The array binCounts

stores the number of hits in each bin. The array is in global memory and the
part this thread uses thus starts at gid*nbrOfBins. The bins are arranged
symmetrically in a hypercube spanning from xmin to xmax. The hypercube
contains binsPerPart bins in each dimension and thus binsPerPartnbrOfParticles

bins in total. The array is split into binsPerPart parts where each part corre-
sponds to different positions for particle number nbrOfParticles. The parts
are then further split for different positions for particle number nbrOfParticles-

7 IMPLEMENTATION IN OPENCL 65

1 and so on until all particles positions have been considered and the size of
the parts are just one bin. The variable ok tells whether the current sample
will be in the hypercube and thus should be registered. The value of ok is
found by looping through all particles and checking whether they are inside
the bounds. ok is set to 0 if any particle is outside the bounds. If the value of
ok is 1 a hit should be registered. The index in binCounts to be incremented
is called binIndex. binIndex is calculated while looping to find ok by in-
crementing it inc × bin position for current particle for each particle. inc

is the distance in binCounts between different bin positions for the current
particle and it thus starts at 1 and is multiplied by binsPerPart in every
loop iteration.

Lines 236—237: Here, the path as it is after all the Metropolis steps have
been taken is saved back to paths to make the next kernel run able to pick
up where this kernel run ended.

7.2 Python Host Code

The Python host code is presented in appendix E.2.2 and will be explained
here.

First, some general concepts will be explained. The code contains three
methods: getOperatorMean(), _loadKernel() and _runKernel(). The
two methods with names starting with an underscore are not meant to be
called from an outside user, but are rather called by the getOperatorMean()-
method.

Line 55: getOperatorMean() is the one method that is provided to the
user and supervises the whole operation of building the program, running the
kernel and returning the results of the run. A description of the arguments
that need to be provided are given in lines 13—29. First, the kernel and im-
portant OpenCL objects are created by calling the _loadKernel()-function
at line 60. After that, the kernel can be run and therefore perform burn
in. This is done by running the kernel burnInRuns number of times without
taking care of the output at lines 65—67. Remember that each new kernel
run picks up where the last kernel left off, meaning that a long burn in can be
accomplished by running the kernel many times in sequence. Each execution
of nbrOfThreads kernels will be called a run. Each run produces a calculated
operator mean and standard deviation, as well as a numerical representation
of the probability density from the time saving trick. Lines 73—83 allocate
memory for storing these results after runs runs. On lines 86—90 the runs
are executed and the results are stored. On lines 105—106, the results from
the runs sets of nbrOfThreads kernel executions are merged into one re-
sulting value for the operator mean, it’s standard deviation and numerical

66 7 IMPLEMENTATION IN OPENCL

representation of probability density by calculating the appropriate means.
This is what getOperatorMean() returns.

Line 115: _loadKernel is a neat little function for creating the necessary
OpenCL objects such as command queue and context as well as filling the
place holders with data and building the program. Especially interesting are
the lines 118—120, that converts the user inputed potential and operator to
valid C-code. For example, the potential for two particles interacting with
a harmonic potential should be written by the user as ’0.5f*(x1-x2)*(x1-
x2)’ (see the example application code). This string should be replaced
with ’0.5f*(x[0]-x[N])*(x[0]-x[N])’. Such replacements are performed
at lines 118—120. Next, in lines 123—143, the placeholders in the kernel
are filled and the program is built. The kernel is identified as the metropo-

lis()-function. Lastly, at lines 146—161 memory for the kernel arguments
is allocated. On lines 164—165 the context, command queue, kernel object
and pyopenck.array-objects for the kernel arguments are returned.

Line 174: _runKernel is the method that actually runs the kernel and
returns the results from each kernel run. The kernel is executed at lines 188—
190 by calling kernel() with appropriate arguments. The queue-argument
is the command queue. (nbrOfThreads,) specifies that the global work size
should be one dimensional and of length nbrOfThreads (this specifies that
nbrOfThreads threads should be executed). The None lets the compiler group
the threads into local groups instead of the user. The remaining arguments
containing .data pass the arguments to the metropolis()-kernel. Line 192
prevent halts the execution of the host code until the GPU has finished it’s
instructions. In lines 197-201 the pyopencl.array-objects that were passed
to the kernel as arguments are now fetched from the graphics card to the
RAM with the .get()-method, sinc they are now filled with calculated op-
erator means and more. The mean acceptance rate for all the nbrOfThreads
threads is calculated at line and the bins counts from all individual threads
are summed into one resulting array of bin counts. Lines 203—207 return
the results from this kernel run of nbrOfThreads kernel executions.

7.3 Example of Python Application Code

As stated earlier, this part of the program will need to be customized for
different applications of the Feynman path integral. Some examples of what
this code can accomplish include examining how a perturbation parameter
affect the ground state energy of a quantum mechanical system, plotting
the probability density of a system or examining how different choices of
parameters such as N and tB − tA affect the calculated operator means. An
example of application code is shown in E.2.3 and will be explained here.

7 IMPLEMENTATION IN OPENCL 67

Lines 45—65: Here, some physical parameters are set, as well as the
desired number of threads and kernel runs. The variables are explained by
their comments on their right

Lines 117—135: Here, some example potentials and operators are formu-
lated. The syntax for using several particles should be clear. To recap: The
potential for the quantum mechanical system needs to be specified in order
to use path integral formalism. This is done by first entering the number
of particles in the system and then writing a valid C-expression where x1,
x2, . . . and so on are used as particle positions. After that, an operator that
depends on the position of the particles can be entered and the mean of this
operator will then be calculated. This operator can be chosen cleverly by use
of the virial theorem as an operator whose mean is the energy of the system.
In addition to this, a numerical representation of the probability density of
the system will be returned when calling getOperatorMean(). This can be
used for plotting or doing further calculations, if desired. If only the proba-
bility density is of interest, then one may set operator = ’0.0f’ for faster
execution. Lines 117—125 are good examples of how the userCode vari-
able is utilized in lines 78—108. The userCode variable is simply a string
that will be pasted into the OpenCL kernel and can thus contain additional
C-functions that can be used when specifying potential and operator.

Lines 140—143: Here, the call to getOperatorMean() is made and thus
the path integral calculations are started. The results are saved to the vari-
ables on the left hand side in lines 140—141. All the following lines analyze
the data in different ways.

Lines 146—223: First, the calculated operator mean and standard de-
viation is printed, as well as the mean acceptance rate for the Metropolis
algorithm and the time taken for the whole calculation. If the calculation
was done for one or two particles, then the probability density can be easily
represented visually, either by a one dimensional plot, or by isocurves in two
dimensions. In lines 161—234, these plots are created and saved to a file.

68 8 RESULTS

8 Results

8.1 Theoretical Results

A system of particles in a potential can through a change of coordinates be
transformed so that the kinetic energy of the system can be expressed in an
expression where all coordinates are treated the same way. This simplifies
future calculations. The system can be reduced by one degree of freedom if
the potential only depends on the relative locations of the particles, using
the so called Jacobi coordinates.
The propagator of a system can be evaluated using:

K(b, a) =

∫

ei
S[x(t)]

~ Dx(t) (8.1)

This can be evaluated numerically by discretising the integral.
The probability density function for finding the ground state system with
coordinates x can be found by evaluating

|ψ0(x)|2 = lim
βba→∞

∫ x′

x′
Dx(t)e−

SE [x(t)]

~

∫∞
−∞ dx′

∫ x′

x′
Dx(t)e−

SE [x(t)]

~

(8.2)

The expectation value of an operator A of the form

Â =

∫

|x〉A(x)〈x|dx (8.3)

on a system at temperature T = ~

KBβba
can be found by solving

〈Â〉 =
∫∞
−∞ dx′

∫ x′

x′
Dx(t)e−SE [x(t)]

~ A(x(t1))
∫∞
−∞ dx′

∫ x′

x′
Dx(t)e−SE [x(t)]

~

(8.4)

where the time evolution in euclidean time is βba. The ground state energy
can’t be directly found this way because the Hamilton operator can not be
written in said form. The expectation value of the Hamilton operator on the
ground state can be shown by the virial theorem to be the expectation value
of another operator which can be written in said form. This operator is given
by

Ô = V̂ +
1

2
x̂∇V̂ . (8.5)

The ground state energy is given when the temperature approaches 0, which
is the same as when βba approaches infinity.

8 RESULTS 69

8.2 Numerical Algorithms

8.3 Implementation Calculations

Here we will present a series of tests done with the implemented algorithm
given in section . The purpose of these test is to see how well our algorithm
performs for different systems and what parameters that give good results.
As as an operator we have in this paper only used the Hamiltonian with the
kinetic energy term rewritten in terms of the potential energy using the virial
theorem, see 2.10. This operator is written as

Ĥ = V̂ +
1

2
x̂ · ∇V̂ (8.6)

We want to once again emphasize that the following results are valid only for
distinguishable particles.

8.4 Harmonic oscillator

The quantum harmonic oscillator, e.g V (x) = mω2

2
x2, is a good potential to

start doing simulations of. Analytical solutions to energies and probability
densities exists which can be used to check how well our implementation can
reproduce already known results.

The ground state energy for a harmonic oscillator is 1
2
~ω. We will work

in units such that m = 1, ~ = 1 and ω = 1. This gives ground-state energy
1
2
for the harmonic oscillator.

8.4.1 Uncoupled Harmonic Oscillators

The ground state energies for uncoupled harmonic oscillator were calculated.
These can be seen in table 2. In the case with one particle the probability
distribution was also calculated with 200 bins, 9. Since the particles do not
interact with each other the ground state energy of the system is simply the
number of particles multiplied with the ground state energy for one harmonic
oscillator which in our units is 1

2
. For this calculation we used 128 nodes in a

path for every particle. 4 · 448 threads did 8 · 105 iterations of the algorithm.
For desired thermalization the algorithm ran 1.5 · 103 iterations. The results
are given in table 2.

70 8 RESULTS

Table 2: Numerical results for the energy in a system of non interacting
particles in a harmonic potential

Number of particles Mean Standard error Analytical

1 0.4990 0.00017 0.5

2 0.9987 0.00034 1.0

3 1.4972 0.00050 1.5

4 1.9959 0.00067 2.0

5 2.4946 0.00083 2.5

6 2.9922 0.00098 3.0

7 3.4918 0.00113 3.5

8 3.9933 0.00128 4.0

−3 −2 −1 0 1 2 3
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
q
u
a
re

d
 a

b
so

lu
te

 v
a
lu

e
 o

f
W

a
v
e
 F

u
n
ct

io
n

Standard Error: 0.000099

Energy: 0.49997

1D Harmonic Oscillator Wave Function

Calculated
Analytical

Figure 9: |ψ|2 for particle in a harmonic oscillator potential.

8 RESULTS 71

8.4.2 Perturbed single harmonic oscillator

To further analyse the capabilities of our program we gave it a perturbed
harmonic oscillator. The potential was of the form

V (x) =
x2

2
+ λx4 (8.7)

with λ determining the magnitude of the perturbation. The program looped
over lambda and calculated the energy for the system for every loop. The
results are given in figure 10. An analytical solution is derived in 3.17 to sec-
ond order in λ, this is used as reference. As can be seen for very small values
of λ the first order works well. The second order is accurate a while longer
but quite quickly both the first and second order approximation accuracies
become bad.

Figure 10: Plot of energy vs lambda for a perturbed harmonic oscillator

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 0.05 0.1 0.15 0.2 0.25 0.3

E
n
er
gy

λ

Perturbed HO. V (x) = x2/2 + λx4

Calculated, err. bars are two std. err.
First order perturbation

Second order perturbation

8.4.3 Coupled Harmonic Oscillators

Simulations of coupled harmonic oscillators were also done. This is a system
where every particle exerts a force on the other particles proportional to

72 8 RESULTS

Table 3: Numerical results for coupled harmonic oscillators.

Number of particles Mean Standard error Analytical

2 0.7053 0.00026 1/
√
2 ≈ 0.7071

3 1.7248 0.00041
√
3 ≈ 1.7321

4 2.9854 0.00055 3

5 4.4445 0.00067 2
√
5 ≈ 4.4721

6 6.0762 0.00079 5
√

3/2 ≈ 6.1237

7 7.8615 0.00089 3
√
7 ≈ 7.9372

8 9.8016 0.00100 7
√
2 ≈ 9.8995

the distance between them. Such a system would for three particles have a
potential energy

V =
(
(x1 − x2)

2 + (x1 − x3)
2 + (x2 − x3)

2
)
/2 (8.8)

The analytical energies were derived by the method of Jacobi coordinates,
see section 3.4. The calculations were done with 4 ·448 threads, 20 runs with
8 · 105 loopings and 1.5 · 106 burnin runs. The system was transformed to
Jacobi coordinates to remove the free-particle part. The results are given in
table 3.

8.5 Gaussian potential

Some measurements on a potential that used two gaussian terms to simulate
repulsive short-range and attractive mid-range nucleon-nucleon two-body po-
tentials were done. The model is taken from [33]. It have the form

V (x) =
V1

σ1
√
π
e−x2/σ2

1 +
V2

σ2
√
π
e−x2/σ2

2

We have as in [33] done calculations on two potentials, Vα with V1 = 12,
V2 = −12, σ1 = 0.2 and σ2 = 0.8. Vβ with V1 = 0, V2 = −2, σ2 = 0.8.
The first potential has thus both an attractive and a repulsive part while
the second potential is attractive. The calculated energies where for -10.2 Vα
and -1.78 for Vβ. Note that these results are not comparable to the results
in [33] because we consider distinguishable particles. The probability density
functions are shown in figures 11 and 12.

8 RESULTS 73

-1
-0.5

0
0.5

1-1
-0.5

0
0.5

1

y2

y1
-1 -0.5 0 0.5 1

y2

-1

-0.5

0

0.5

1

y 1

0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16

Figure 11: |ψ0|2 for Vα in Jacobi coordinates

We can see six peaks in the probability density. This is likely related to
the number of ways the order of three objects can be permuted. The particles
have lowest energy at specific distances from each other and they thus place
themselves at a line with equal distances between them.

8.6 Choice of parameters

To see how our parameters affected the computed result of the energy op-
erator we did measurements when where we varied the nodes in a path, N ,
and the time interval, tb, for a path. The results are shown in figure 13.
We can see that for times less than 3 the resulting energies are quite erratic.
It is likely that the particle is in a mix of the ground state together with
excited states. This causes many of our assumptions made when creating
the algorithm to fail and it can no longer be used. For time equal to 4 the
energy starts to go down at around N = 200. It is possible that the kinetic
energy term in the action is diverging and causing instabilities. For times

74 8 RESULTS

-1
-0.5

0
0.5

1-1
-0.5

0
0.5

1

y2

y1

-1 -0.5 0 0.5 1

y2

-1

-0.5

0

0.5

1

y 1
0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045
0.05

Figure 12: |ψ=|2 for Vβ in Jacobi coordinates

larger than 4 the energies seem to converge quite nicely. However, it is likely
that the energies for these times will do the same decay as for the

tb = 4

energies when N become large enough. Good parameters is therefore a com-
promise between fast convergence and stability.

9 DISCUSSION 75

0 50 100 150 200 250 300
N

0.0

0.2

0.4

0.6

0.8

1.0

1.2
E
n
e
rg
y

Ground state energy HO vs N for different tB

1.0
2.0
4.0
8.0
16.0
32.0
64.0
128.0
256.0

Figure 13: Energies for the one particle harmonic oscillator was computed
for different time intervals ,tb, and different number of nodes in a path, N .

9 Discussion

9.1 Theory

In our introductory courses in quantum mechanics it has been very hard
to relate to quantum mechanics. These courses only use the Schrödinger
approach which does not really have any obvious connections to classical
mechanics. We feel that it is easier to relate to the path-integral formalism
of quantum mechanics than the Schrödinger approach because it uses the
action from classical mechanics to describe quantum-mechanical systems.
However, in the mathematical aspect it is far more complicated than the
Schrödinger approach. Maybe it is because of this that most introductory
quantum mechanical courses use the simpler Schrödinger approach.

It was interesting to see how statistical physics emerged from our quan-
tum mechanical equations. This gave us information about observables at
temperatures above 0 K even though that was not what we set of to find in
the first place.

During this project we have understood that the path-integral formalism
demands a lot of calculations even for simple problems such as the one-
dimensional harmonic oscillator. However, we have seen that this method
is easily adapted to various problems and it does not demand a lot more

76 9 DISCUSSION

calculations for systems with more degrees of freedom.

Possible theoretical extension could be to consider identical particles (bosons
and fermions) and derive expression to calculate the energy and probability
distribution for the ground state. This is described in for example [3]. It
would also be interesting to calculate expectation values of operators on ex-
cited states. As said in the introduction an interesting application of our
program would be lattice QCD calculations, [4].

9.2 Numerical methods

In our results for the energy of the system we are usually a bit off from
analytically calculated values even by allowing room for quite many standard
errors. It is likely that our algorithm does not converge to the correct value
due to how we discretized the action. Improvements on this are needed for
better results.

One problem that frequently came up in the algorithm was the diver-
gence of the kinetic energy term in the energy estimator. The estimation
for the velocity in a path was a naive first order approximation and it is not
surprising this gave us inaccuracies. It would be interesting to study better
approximations of the energy. Work on this has already been done[32] and
implementing their result is likely to give better results. Another improve-
ment if you use their energy estimators is that convergence is faster and you
can reduce the number of nodes in a path in the calculation.

9.3 Implementation

None of the group members have had previous experiences with GPGPU
programming. As of such, the implementation with OpenCL has been a new
and exotic experience for everyone. Working with the GPU is not as simple
as learning a new programming language. It is rather a matter of learn-
ing a new programming paradigm, in this case parallelism. This challenges
the programmer to break free from much of the philosophy and previous
experience with CPU programming. This has imposed several restrictions
for the implementation, as the time span has been relatively short. These
restrictions are both result and method based.

First off all, the optimization in the implementation is less than optimal.
GPGPU programming is pretty advanced and requires a lot of programming
experience to master. More time spent on learning OpenCL programming
would lead to faster and more powerful applications, but probably not much
improvement in extent of the problems solved. This is rather a matter of

9 DISCUSSION 77

creating new numerical models. The result code is quite versatile in what
kind of models it can handle.

The main performance boost of GPU and OpenCL calculations comes
from parallelizing as big portion of the code and algorithm as possible. Par-
allelizing Markov Chain Monte Carlo calculations however is a tough chal-
lenge, since each path is a serial computation. Every change to the path is
based on all previous changes. There exist no efficient way to split a path into
different parts for several threads to handle. Instead, the parallelization has
to occur over other dimensions. In this case, the advantage of many threads
resulted in many ensembles of calculated paths, as each thread managed an
individual path. Since all the particles interact with each other, it is not
possible to parallelize over them.

One major drawback of parallelizing the algorithm by running many in-
dependent instances is the fact that burn-in has to be performed on each
individual instance. This means that the more threads that are used, the
greater amount of ”useless” computation has to be performed. Considering
the fact that a graphics card with 14 multiprocessors, each consisting of 32
Shader Processors for a total of 448 computing CUDA cores need much more
than 448 threads to perform optimally, this becomes an even greater setback.

An important aspect is to determine whether parallelizing Markov Chain
Monte Carlo problems with GPU is worth it or not. An estimation of this
was done by running the OpenCL code and comparing with the equivalent
C-code looped as many times as there were threads. Quick tests showed that
the OpenCL code out-performed the C-code by a factor of 10. These tests
were not rigorous enough though. Improvements might be a subject for an
extension. On the AMD platforms used, ATI Stream SDK was used to enable
the CPU as a device in OpenCL. This turned up with different results on
different platforms, one being roughly 5% faster on the CPU and the other
10 times as slow on the CPU. Both CPUs had 4 cores and were as new as
the GPUs, so the difference probably lies in clock speed and hyper-threading
capabilites. With hyper-threading enabled, the CPU will have boosted par-
allelization performance. A good benchmark would include an estimation of
floating point operations per second and memory bandwidth. The subject of
this benchmarks would preferably encompass a bunch of different ATI and
nVidia graphics cards, Windows and Linux operative systems running in 32-
bit and 64-bit mode. This in order to take into account effects of different
platforms.

78 REFERENCES

10 Acknowledgements

Christian Forssén - For his excellent wiki that helped us get a good start and
his (almost) endless patience answering our questions.
H̊akan Johansson - For a lot of help with general computer stuff.
Ulf Assarsson and Markus Billeter - For helping us get a better understanding
of GPU architecture.
The Fundamental Physics instiutions - For letting us use one of their room,
two computers with good graphics cards.
Andreas Klöckner and the PyOpenCL mailing list[64] - For a lot of in-depth
help with the GPU implementation.
And last but not least a big thanks to the elevator repair man who rescued
half of the authors from a stuck elevator at the evening of the deadline.

References

[1] Feynman, R. P. (1948) The Space-Time Approach to Non-Relativistic Quantum
Mechanics.Rev. Mod. Phys. vol. 20, pp. 367-387

[2] Feynman, R. P., Hibbs, A.R., Styer, D.F. (2005) Quantum Mechanics and Path
Integrals. Emended Edition. New York: Dover.

[3] Ceperley, D. M. (1995) Path integrals in the theory of condensed helium.Rev. Mod.
Phys. vol. 67, pp. 279-355

[4] Wilson, K. G. (1974) Confinement of quarks.Phys. Rev. D vol. 10, pp. 2445-2459

[5] Gattringer, C., Lang, C. B. (2009) Quantum Chromodynamics on the Lattice (Lec-
ture Notes in Physics, 788) :Springer

[6] Zinn-Justin, J. (2005) Path Integrals in Quantum Mechanics. New York: Oxford
University Press Inc.

[7] Sakurai, J.J. (1993) Modern Quantum Mechanics. Revised Edition. Boston: Addi-
son Wesley.

[8] Hjort-Jensen, M. (2010) Computational Physics. Oslo: University of Oslo.

[9] Rice, J. A. (2007) Mathematical Statistics and Data Analysis. Third edition. Pacific
Grove: Duxbury Press.

[10] Morningstar, C. (2007) The Monte Carlo method in quantum field theory. arXiv.
http://arxiv.org/abs/hep-lat/0702020v1 (2011/04/14)

[11] Berg, B.A. (2004)Markov Chain Monte Carlo Simulation and their Statistical Anal-
ysis. Singapore: World Scientific Publishing.

REFERENCES 79

[12] Cornille, P. (2003) Advanced Electromagnetism and Vacuum Physics. Vol. 21, Sin-
gapore: World Scientific Publishing.

[13] Rattazzi, R. (2009) The Path Integral approach to Quantum Mechanics - Lecture
Notes for Quantum Mechanics IV New Jersey: Rutgers University.

[14] Landau, R.H., Páez, M.J., Bordeianu, C.C. (2007) Computational Physics: Problem
Solving with Computers. 2nd rev. Weinheim: Wiley-VCH.

[15] Institutionen fö r Teknisk Fysik och Fundamental Fysik (2010) Kvantfysik del 2
Göteborg: Chalmers Tekniska Högskola

[16] Bobrowski, M. Ehrenfest’s Theorem and Quantum Virial Theorem. http://www.
caelestis.de/dateien/UEA05_2.pdf (2011/05/11).

[17] Marsaglia, George, 1995, The Marsaglia Random Number CDROM, with The
Diehard Battery of Tests of Randomness, produced at Florida State University.
Access available at www.stat.fsu.edu/pub/diehard.

[18] Marsaglia, George and Tsang, Wai Wan, 2002, Some difficult-to-pass tests of ran-
domness, Journal Statistical Software, Vol. 7, Issue 3.

[19] Marsaglia, July 2002, Xorshift RNGs, Journal Statistical Software, Vol. 7, Issue 3.

[20] Khronos Group. clCreateContext specification. http://www.khronos.org/

registry/cl/sdk/1.0/docs/man/xhtml/clCreateContext.html (2011/05/14).

[21] Khronos Group. OpenCL Specification 1.x. http://www.khronos.org/registry/
cl/specs/opencl-1.x-latest.pdf (2011/05/14).

[22] Andreas Klöckner. PyOpenCL Official Documentation. http://documen.tician.
de/pyopencl/ (2011/05/14).

[23] nVidia. nVidia OpenCL Best Practices Guide. http://www.nvidia.com/

content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_

BestPracticesGuide.pdf (2011/05/14).

[24] AMD/ATI. ATI Stream SDK OpenCL Programming Guide. http://developer.
amd.com/gpu_assets/ATI_Stream_SDK_OpenCL_Programming_Guide.pdf

(2011/05/14).

[25] AMD/ATI. ATI Radeon HD 5850 Specification. http://www.amd.com/

us/products/desktop/graphics/ati-radeon-hd-5000/hd-5850/Pages/

ati-radeon-hd-5850-overview.aspx#2 (2011/05/14).

[26] nVidia. nVidia GeForce GTX 470 Specification. http://www.nvidia.com/object/
product_geforce_gtx_470_us.html (2011/05/14).

[27] CMSoft. Advanced Aspects of the OpenCL C99 Language. http://www.cmsoft.
com.br/index.php?option=com_content&view=category&layout=blog&id=

92&Itemid=144 (2011/05/17).

80 REFERENCES

[28] Python.org. Python 3.0 Official Release Info. http://www.python.org/download/
releases/3.0/ (2011/05/14).

[29] Lutz, Mark (2009) Learning Python. Fourth Edition. Sebastopol: O’Reilly Media.

[30] CodeProject.com. image001.jpg. Part 2: OpenCL - Memory Spaces. http://www.
codeproject.com/KB/showcase/Memory-Spaces.aspx (2011/05/14).

[31] The Portland Group. v2n4a1i2.png. PGI CUDA-x86: CUDA Programming for
Multi-core CPUs . http://www.pgroup.com/lit/articles/insider/v2n4a1.htm
(2011/05/14).

[32] J. Grujic, A. Bogojevic, A. Balaz. (2006) Energy estimators and calculation of
energy expectation values in the path integral formalism. 360, 2, 217-223

[33] Jurgenson, E.D., Furnstahl, R.J. (2009) Similarity renormalization group evolution
of many-body forces in a one-dimensional model. Nuclear Physics A, 818, 152-173.

Further Reading

[34] Python.org, PyPI. PyOpenCL Package Index and Download. http://pypi.

python.org/pypi/pyopencl (2011/05/14).

[35] Andreas Klöckner. PyOpenCL Description. http://mathema.tician.de/

software/pyopencl (2011/05/14).

[36] Andreas Klöckner. PyOpenCL Official Wiki. http://wiki.tiker.net/PyOpenCL
(2011/05/14).

[37] Andreas Klöckner. Custom Reduction. http://documen.tician.de/pyopencl/

array.html#module-pyopencl.reduction (2011/05/14).

[38] http://git.tiker.net/pyopencl.git/blob/HEAD:/pyopencl/reduction.py

(2011/05/14).

[39] Wikipedia. Folding (higher-order function). https://secure.wikimedia.org/

wikipedia/en/wiki/Fold_%28higher-order_function%29 (2011/05/14).

[40] CMSoft. Using OpenCL Image2D Variables (Guide). http://www.khronos.org/
news/permalink/cmsoft-image2d-tutorial-utilizing-opencl (2011/05/18)

[41] AMD/ATI. ATI Stream Technology. http://www.amd.com/US/PRODUCTS/

TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.aspx

(2011/05/14).

[42] Christoph Gohlke. Unofficial Windows Binaries for Python Extension Packages.
http://www.lfd.uci.edu/~gohlke/pythonlibs/ (2011/05/14).

[43] Andreas Klöckner. PyOpenCL Installation Guide (Official). http://wiki.tiker.
net/PyOpenCL (2011/05/14).

REFERENCES 81

[44] Khronos Group. OpenCL Specification Website. http://www.khronos.org/

opencl/ (2011/05/14).

[45] nVidia. CUDA Zone. http://www.nvidia.com/object/cuda_home.html

(2011/05/15).

[46] Wikipedia. Microsoft DirectCompute. http://en.wikipedia.org/wiki/

DirectCompute (2011/05/15).

[47] Wikipedia. GPGPU. http://en.wikipedia.org/wiki/GPGPU (2011/05/15).

[48] Wikipedia. C99. http://en.wikipedia.org/wiki/C99 (2011/05/14).

[49] AMD/ATI. Porting CUDA Applications to OpenCL (Guide). http://developer.
amd.com/zones/OpenCLZone/programming/pages/portingcudatoopencl.aspx

(2011/05/14).

[50] Andreas Klöckner. CUDA vs OpenCL: Which should I use (Guide). http://wiki.
tiker.net/CudaVsOpenCL (2011/05/14).

[51] Andreas Klöckner. Personal Website. http://mathema.tician.de/ (2011/05/14).

[52] Wikipedia. Resource Acquisition Is Initialization. http://en.wikipedia.org/

wiki/RAII (2011/05/14).

[53] Wikipedia. MD5 Hashing. http://en.wikipedia.org/wiki/MD5 (2011/05/14).

[54] nVidia. High Performance Computing - Supercomputing with Tesla GPUs. http:
//www.nvidia.com/object/tesla_computing_solutions.html (2011/05/14).

[55] SciPy.org. NumPy Package Index. http://numpy.scipy.org/ (2011/05/14).

[56] Sourceforge. MatPlotLib Package Index. http://matplotlib.sourceforge.net/
(2011/05/14).

[57] SciPy.org. PyLab Package Index. http://www.scipy.org/PyLab (2011/05/14).

[58] SciPy.org. SciPy Package Index. http://www.scipy.org/ (2011/05/14).

[59] Boost.org. Boost C++ Libraries for Python. http://www.boost.org/doc/libs/
1_46_1/libs/python/doc/ (2011/05/14).

[60] Code.Google. PyMC - Markov Chain Monte Carlo for Python. http://code.

google.com/p/pymc/ (2011/05/14).

[61] PyGTK. PyGTK: GTK+ for Python. http://www.pygtk.org/ (2011/05/14).

[62] Python.org . SetupTools Package Index. http://pypi.python.org/pypi/

setuptools (2011/05/14).

[63] Wikipedia. Mersenne Twister. http://en.wikipedia.org/wiki/Mersenne_

twister (2011/05/18).

[64] PyOpenCL Mailing List. PyOpenCL - Development and Support List for Py-
OpenCL. http://lists.tiker.net/listinfo/pyopencl (2011/05/18).

82 A FORMULA

A Formula

This section contains basic quantum mechanics formula that are used in the
paper.

• The identity operator for a space spanned by the discrete orthonormal
basis {|i〉} can be expressed as

Î =
∑

i

|i〉〈i| . (A.1)

Generalized to a space spanned by the continuous orthonormal basis
{|ξ〉} the identity operator is given by

Î =

∫

dξ|ξ〉〈ξ| . (A.2)

• An arbitrary state can be expressed using the identity operator. Using
the discrete identity operator a state can be expressed as

|ψ〉 =
∑

i

|i〉〈i|ψ〉 =
∑

i

ψi|i〉 . (A.3)

With the continuous identity operator we get

|ψ〉 =
∫

dξ|ξ〉〈ξ|ψ〉 =
∫

dξψ(ξ)|ξ〉 . (A.4)

ψi = 〈i|ψ〉 and ψ(ξ) = 〈ξ|ψ〉 are the discrete and continuous wave
functions for a system.

• The inner product between orthonormal basis states can be written as

〈i|j〉 = δij (A.5)

for a discrete system, and written as

〈ξ′|ξ〉 = δ(ξ′ − ξ) (A.6)

for a continuous system.

B DERIVATION OF EXAMPLES 83

B Derivation of examples

B.1 Free-particle propagator

The Lagrangian for a free particle in one dimension is

L =
mẋ2

2
(B.1)

where x is the position of the particle. The action for a path x(t) from time
ta to time tb is thus

S[x(t)] =

∫ tb

ta

mẋ2

2
dt. (B.2)

The propagator from xa to xb for the particle is the path-integral of e
i
~
S[x(t)]

over all paths connecting xa to xb at the given times:

K(xb, tb, xa, ta) =

∫ xb

xa

eS[x(t)]Dx(t) (B.3)

The path integral is carried out as a limit. The time is discretized in t0, ..., tN
where ti+1 = ti + ǫ. The particles position at time ti is xi. The paths are
by definition of path integrals linear functions of time between the times ti.
This gives the speed between time ti and ti+1:

ẋ =
xi+1 − xi

ǫ
. (B.4)

The action for these discretized paths is then

S[x(t)] =
N−1∑

i=0

(xi+1 − xi)
2

2mǫ
. (B.5)

The integral over all paths is carried out by integrating over all xi, except x0
and xN which are given by xa and xb. The limit is taken as ǫ goes to 0, and
thus the number of integrals goes to infinity. This is the definition of path
integrals:

K = lim
ǫ→0

1

A

∫

...

∫

exp

(

im

2~ǫ

N−1∑

i=0

(xi+1 − xi)
2

)

dx1
A
...
dxN−1

A
(B.6)

A is an unknown normalization factor needed for the limit to exist. A depends
on N or alternatively on ǫ. The limit is obtained by finding an expression

84 B DERIVATION OF EXAMPLES

I(N) for N time slices and taking the limit as N approaches ∞. The expres-
sion for N time slices is found by a iterative process. The first integration
gives

I(N) =
1

A

∫

...

∫

exp

(

im

2~ǫ

N−1∑

i=2

(xi+1 − xi)
2

)

∫

exp

(
im

2~ǫ
((x2 − x1)

2 + (x1 − x0)
2)

)
dx1
A

dx2
A
...
dxN−1

A
(B.7)

=
1

A

∫

...

∫

exp

(

im

2~ǫ

N−1∑

i=2

(xi+1 − xi)
2

)

1 + i

A

√

π~ǫ

2m
exp

(
im

2 · 2~ǫ(x2 − x0)
2

)
dx2
A
...
dxN−1

A
(B.8)

=
1

A

1 + i

A

√

π~ǫ

2m

∫

...

∫

exp

(

im

2~ǫ

N−1∑

i=3

(xi+1 − xi)
2

)

∫

exp

(
im

2~ǫ

(
(x2 − x0)

2

2
+ (x3 − x2)

2

))
dx2
A

dx3
A
...
dxN−1

A
(B.9)

The integration of one integral gave a similar expression as the one we started
with, equation (B.7). It gave a factor

1 + i

A

√

π~ǫ

2m
, (B.10)

removed one term in the sum and changed a constant factor on one of the
terms in the exponent to be integrated. Integration of an integral like this,
but with an arbitrary factor ki in the exponent, gives:

∫

exp

(
im

2~ǫ

(
ki(xi − xi−1)

2 + (xi+1 − xi)
2
)
)

dxi
A

=
1 + i

A

√

2π~ǫ

2(ki + 1)m
exp

(
ki

ki + 1

im(xi+1 − xi−1)
2

2~ǫ

)

(B.11)

Integrating over first x1 and then x2...xN−1 using the result above is thus
posible because the integrand is always of the form above. The constants ki
are different for each integral. The first integral gives k1 = 1 and the result
above gives the next value after each integral ki+1 = ki/(ki+1). This can be
written as:

k−1
i+1 =

ki + 1

ki
= k−1

i + 1 (B.12)

B DERIVATION OF EXAMPLES 85

k−1
i will then go from 1 to N−1. The expression after all integrals have been

performed will then become:

I(N) =

(
N−1∏

k−1=1

1 + i

A

√

π~ǫ

(k + 1)m

)

exp

(
(N − 1)−1

(N − 1)−1 + 1

im(xN − x0)
2

2~ǫ

)

(B.13)
Recognizing that ǫ = tb−ta

N
gives:

I(N) = A−N

(√

2iπ~ǫ

m

)N−1(N−1∏

k−1=1

√

k−1

(1 + k−1)

)

exp

(
im(xN − x0)

2

2~(tb − ta)

)

(B.14)
The denominator in the product cancels with the numerator of the next factor
leaving:

I(N) = A−N

(√

2iπ~ǫ

m

)N−1√

1

1 + (N − 1)
exp

(
im(xN − x0)

2

2~(tb − ta)

)

(B.15)

The normalization factor A is for a particle in a potential [2]:

A =

√

2iπ~ǫ

m
(B.16)

Our particle is in the zero potential so equation (B.16) applies. This gives:

I(N) =

√
m

2iπ~(tb − ta)
exp

(
im(xb − xa)

2

2~(tb − ta)

)

(B.17)

This is independent of N so the limit is unessesary and the propagator for a
free particle is thus:

K(xb, tb, xa, ta) =

√
m

2iπ~(tb − ta)
exp

(
im(xb − xa)

2

2~(tb − ta)

)

(B.18)

B.2 The harmonic oscillator

The harmonic oscillator is often encountered in the description of natural
phenomena. Many quantum mechanical systems can be approximated as
harmonic oscillators, an example is a vibrating diatomic molecule, another
example is phonons in a crystal. We will here derive the propagator for the
system usig path integrals. We will also find the eigenstates and eigenvalues
of the system. A perturbated oscillator will also be studied. The reason for
these studies is to be able to verify our numerical results.

86 B DERIVATION OF EXAMPLES

B.2.1 Finding the propagator

The propagator for a harmonic oscillator from a to b is to be found. A
harmonic oscillator in one dimension have one degree of freedom, x. The
Lagrangian is

L(ẋ, x) =
m

2
ẋ2 − mω2

2
x2. (B.19)

The Lagrange equation of motion is

d

dt

(
∂L

∂ẋ

)

− ∂L

∂x
= 0. (B.20)

The classical path of the system is x̄(t) and it satisfies equation (B.20) and
thus

m¨̄x+mω2x̄ = 0. (B.21)

Solving this ordinary differential equation gives (the subtraction of ta is just
to simplify calculations later on)

x̄(t) = A cos (ω(t− ta)) + B sin (ω(t− ta)) . (B.22)

Initial and final time, ta, tb, and position, xa, xb, for the system, yields

A = xa (B.23)

B =
xb − xa cos(ω(tb − ta))

sin(ω(tb − ta))
. (B.24)

Any path, x(t), for the system from a to b can be written as

x(t) = x̄(t) + y(t) (B.25)

where y(t) is a path from 0 to 0 with the same time interval as x(t). Thus
the following is true

y(ta) = 0

y(tb) = 0. (B.26)

The action of the path x(t), S[x(t)] is defined by

S[x(t)] =

∫ tb

ta

L(ẋ(t), x(t))dt. (B.27)

B DERIVATION OF EXAMPLES 87

The substitution of equation (B.25) gives

S[x(t)] =

∫ tb

ta

L(˙̄x+ ẏ, x̄+ y)dt (B.28)

=
m

2

∫ tb

ta

(
˙̄x2 + ẏ2 + 2 ˙̄xẏ − ω2x2 − ω2y2 − 2ω2x̄y

)
dt

=

∫ tb

ta

(
L(˙̄x, x̄) + L(ẏ, y) +m ˙̄xẏ −mω2x̄y

)
dt

= S[x̄(t)] + S[y(t)] +

∫ tb

ta

(
m ˙̄xẏ −mω2x̄y

)
dt

=
[
partial integration

]

= S[x̄(t)] + S[y(t)] +
[
m ˙̄xy

]tb

ta
+

∫ tb

ta

my
(
−¨̄x− ω2x̄

)
dt (B.29)

The last two terms are each zero by equations (B.26) and (B.21) respectively.
This gives

S[x(t)] = S[x̄(t)] + S[y(t)]. (B.30)

A path integral of the action from a to b gives the kernel K(b, a)

K(b, a) =

∫ b

a

e
i
~
S[x(t)]Dx(t) (B.31)

This is, according to equation (B.30),

K(b, a) = e
i
~
S[x̄(t)]

∫ 0

0

e
i
~
S[y(t)]Dy(t). (B.32)

The action of the classical path S[x̄(t)] is given by

S[x̄(t)] =

∫ tb

ta

L(˙̄x(t), x̄(t))dt

=
m

2

∫ tb

ta

(˙̄x2 − ω2x̄2)dt

=
[
partial integration

]

=
m

2

[
˙̄xx̄
]tb

ta
− m

2

∫ tb

ta

(¨̄x+ ω2x̄)x̄dt. (B.33)

88 B DERIVATION OF EXAMPLES

The integral is zero by equation (B.21). Insertion of equations (B.22) and
(B.24) and defining T ≡ tb − ta gives

S[x̄(t)] =
mω

2
((−A sin (ωT) + B cos (ωT))xb −Bxa)

=
mω

2

(

(−xa sin (ωT) +
xb − xa cos(ωT)

sin(ωT)
cos (ωT))xb

− xb − xa cos(ωT)

sin(ωT)
xa

)

=
mω

2 sin(ωT)
(−xaxb sin2 (ωT) + x2b cos (ωT)

− xaxb cos
2(ωT)− xaxb + x2a cos(ωT))

=
mω

2 sin(ωT)
((x2a + x2b) cos (ωT)− 2xaxb). (B.34)

The path-integral I in equation (B.32) only depends on the time difference
T ≡ tb − ta between a and b.

I(T) =

∫ 0

0

e
i
~
S[y(t)]Dy(t) (B.35)

Since the path starts and stops at 0 we can consider the paths as 2T -periodic
functions which are even about 0. They can thus be expressed as sine-series

y(t) =
∞∑

n=1

an sin
n2πt

2T
=

∞∑

n=1

an sin
nπt

T
. (B.36)

The integral over all paths is defined as the limit of integrals over positions
at timeslices of the path. The integrals can instead be taken over the fourier
coefficients an. This is just a linear variable substituition in the integral,
requiring multiplication by the determinant J of the jacobian which by the
linearity is constant

J =

∣
∣
∣
∣

∂(x1...xN)

∂(a1...aN)

∣
∣
∣
∣

(B.37)

The path-integral becomes

I(T) = lim
N→∞

1

A

∫

...

∫

exp

(
i

~
S[y(t)]

)
dx1
A
...
dxN
A

= lim
N→∞

J
1

A

∫

...

∫

exp

(
i

~
S[y(t)]

)
da1
A
...
daN
A

. (B.38)

B DERIVATION OF EXAMPLES 89

The action for a path in the new variables is

S[y(t)] =

∫ T

0

m

2

(
ẏ2 − ω2y2

)
dt

=
m

2

∫ T

0

(
N∑

n=1

an
nπ

T
cos

nπt

T

)2

− ω2

(
N∑

n=1

an sin
nπt

T

)2

 dt

=
m

2

∫ T

0

(
N,N
∑

n=1,m=1

anam
nπ

T

mπ

T
cos

nπt

T
cos

mπt

T
−

ω2

N,N
∑

n=1,m=1

anam sin
nπt

T
sin

mπt

T

)

dt

=
m

2

(
N∑

n=1

a2n
n2π2

T 2

T

2
− ω2

∞∑

n=1

a2n
T

2

)

=
mT

4

N∑

n=1

a2n

(
n2π2

T 2
− ω2

)

. (B.39)

The integrals are put inside the sums and evaluated in the third step, all
integrals with m = n evaluates to 0. This gives

I(T) = lim
N→∞

J
1

A

∫

...

∫ N∏

n=1

exp

(
i

~
a2n

(
n2π2

T 2
− ω2

))
da1
A
...
daN
A

.(B.40)

Each factor in the product just depends on one variable so the integrals can
be done individually

I(T) = lim
N→∞

J
1

A

N∏

n=1

∫

exp

(
i

~
a2n

(
n2π2

T 2
− ω2

))
dan
A

= lim
N→∞

J
1

A

N∏

n=1

1

A

√

πi~
n2π2

T 2 − ω2
. (B.41)

Using the value of A for a particle in a potential, equation (2.15), gives

I(T) = lim
N→∞

J

√

Nm

2πi~T

N∏

n=1

√

Nm

2πi~T

√

πi~
n2π2

T 2 − ω2
. (B.42)

If all factors independent of ω are collected in CN the expression becomes

I(T) = lim
N→∞

CN

(
N∏

n=1

(

1− ω2T 2

n2π2

))− 1
2

. (B.43)

90 B DERIVATION OF EXAMPLES

The infinite product converges to sin(ωT)/ωT giving

I(T) = C

(
sin(ωT)

ωT

)− 1
2

(B.44)

where C = limN→∞CN . This, equations (B.32) and (B.34) gives the propa-
gator with the unknown (but independent of ω) constant C:

K(b, a) = exp

(
i

~

mω

2 sin(ωT)
((x2a + x2b) cos (ωT)− 2xaxb)

)

C

(
sin(ωT)

ωT

)− 1
2

(B.45)
We should get the free particle propagator when ω → 0 so it must be true
that

exp

(
im(xb − xa)

2

2~T

)

C =

√
m

2iπ~T
exp

(
im(xb − xa)

2

2~T

)

. (B.46)

This gives C

C =

√
m

2iπ~T
(B.47)

and thus the final expression for the propagator is

K(b, a) =

√
mω

2iπ~ sin(ωT)
exp

(
imω ((x2a + x2b) cos (ωT)− 2xaxb)

2~ sin(ωT)

)

.

(B.48)
This can be expressed in dimensionless as done in 3.2. Equation (B.48)
becomes

K(b, a) =
1

xc

√

1

2iπ sin(τ)
exp

(
i ((ξ2a + ξ2b) cos (τ)− 2ξaξb)

2 sin(τ)

)

. (B.49)

B.2.2 Finding the eigenstates

The propagator has eigenfunctions such that

∫

K(b, a)ψi(ξa)d(ξaxc) = exp (−iεiτ)ψi(ξb) (B.50)

where Ei = εiEc is the corresponding eigenenergy. These eigenfunctions are
the Hermite functions defined in equation (3.7). That this is true will now

B DERIVATION OF EXAMPLES 91

be shown. The first Hermite function g0(ξ) is an eigenfunction with energy
ε0 =

1
2

∫

K(b, a)g0(ξa)d(ξaxc)

=

∫
√

1

2iπ sin(τ)
exp

(
i ((ξ2a + ξ2b) cos (τ)− 2ξaξb)

2 sin(τ)

)

π−1/4 exp

(

−ξ
2
a

2

)

dξa

= π−3/4

√

1

2i sin(τ)
exp

(
iξ2b cos (τ)

2 sin(τ)

)∫

exp

(−2iξaξb + ξ2a (i cos (τ)− sin(τ))

2 sin(τ)

)

dξa

= exp

(
iξ2b cos (τ)

2 sin(τ)

)

C1

∫

exp
(
−C2ξa − ξ2aC3

)
dξa

= exp

(
iξ2b cos (τ)

2 sin(τ)

)

C1 exp

(
C2

2

4C3

)∫

exp

(

−C3

(

ξa +
C2

2C3

)2
)

dξa

= exp

(
iξ2b cos (τ)

2 sin(τ)

)

C1 exp

(
C2

2

4C3

)
1√
C3

∫

exp
(
−η2a

)
dηa

= π−1/4 exp

(

−1

2
iτ

)

exp

(−ξ2b
2

)

. (B.51)

The Hermite functions obey the following recurrence formula:

gn(ξ) = −(2n)−1/2 exp

(
ξ2

2

)
d

dξ

(

exp

(−ξ2
2

)

gn−1(ξ)

)

(B.52)

The proof is made by induction, assuming that Hermite function gn−1 is
an eigenfunction with energy εn−1 = n − 1

2
one can show that gn is an

eigenfunction with energy εn = n+ 1
2
:

∫

K(b, a)gn(ξa)d(ξaxc)

=

∫
√

1

2iπ sin(τ)
exp

(
i ((ξ2a + ξ2b) cos (τ)− 2ξaξb)

2 sin(τ)

)

(−1)(2n)−1/2 exp

(
ξ2a
2

)
d

dξa

(

exp

(−ξ2a
2

)

gn−1(ξa)

)

dξa (B.53)

92 B DERIVATION OF EXAMPLES

by using the recurrence formula of equation (B.52). Integration by parts
gives:

[√

1

2iπ sin(τ)
exp

(
i ((ξ2a + ξ2b) cos (τ)− 2ξaξb)

2 sin(τ)

)

(−1)(2n)−1/2 exp

(
ξ2a
2

)

exp

(−ξ2a
2

)

gn−1(ξa)

]∞

−∞

−
∫
√

1

2iπ sin(τ)

d

dξa

(

exp

(
i ((ξ2a + ξ2b) cos (τ)− 2ξaξb) + ξ2a sin(τ)

2 sin(τ)

)

(−1)(2n)−1/2
)
exp

(−ξ2a
2

)

gn−1(ξa)dξa

=

∫
√

1

2iπ sin(τ)

i exp(−iτ)ξa − iξb
sin(τ)

exp

(
i ((ξ2a + ξ2b) cos (τ)− 2ξaξb)

2 sin(τ)

)

(2n)−1/2gn−1(ξa)dξa (B.54)

Multiplying and dividing by exp
(

ξ2
b

2

)

gives:

= exp

(
ξ2b
2

)

exp

(−ξb2
2

)∫
√

1

2iπ sin(τ)

i exp(−iτ)ξa − iξb
sin(τ)

exp

(

i
(
(ξ2a + ξb

2) cos (τ)− 2ξaξb
)

2 sin(τ)

)

(2n)−1/2gn−1(ξa)dξa (B.55)

Integrating and differentiating gives:

= exp

(
ξ2b
2

)
d

dξb

∫ ξb

−∞
exp

(−ξ′b2
2

)∫
√

1

2iπ sin(τ)

i exp(−iτ)ξa − iξ′b
sin(τ)

exp

(

i
(
(ξ2a + ξ′b

2) cos (τ)− 2ξaξ
′
b

)

2 sin(τ)

)

(2n)−1/2gn−1(ξa)dξadξ
′
b (B.56)

B DERIVATION OF EXAMPLES 93

Evaluating the integral over ξ′b gives:

= −(2n)−1/2 exp

(
ξ2b
2

)
d

dξb

[

exp

(

−ξ
2
b

2

)∫
√

1

2iπ sin(τ)

i

sin(τ)

1

2
exp

(
1

2
i(ξ2a + ξ2b) cot(τ)− iξaξb csc(τ)

)

· (exp(−2iτ)− 1)

·gn−1(ξa)dξa

]

= −(2n)−1/2 exp(−iτ) exp
(
ξ2b
2

)
d

dξb

[

exp

(

−ξ
2
b

2

)∫
√

1

2iπ sin(τ)

exp

(
i((ξ2a + ξ2b) cos(τ)− 2ξaξb)

2 sin(τ)

)

gn−1(ξa)dξa

]

(B.57)

Using the kernel of equation (B.49) gives:

= −(2n)−1/2 exp(−iτ) exp
(
ξ2b
2

)
d

dξb

[

exp

(

−ξ
2
b

2

)

∫

K(b, a)gn−1(ξa)d(ξaxc)

]

(B.58)

Using the induction assumption gives:

= −(2n)−1/2 exp(−iτ) exp
(
ξ2b
2

)

·

· d

dξb

[

exp

(

−ξ
2
b

2

)

exp

(

−i
(

n− 1

2

)

τ

)

gn−1(ξb)

]

(B.59)

And finally, the recurrence formula in equation (B.52) for the hermite func-
tions gives:

= exp

(

−i
(

n+
1

2

)

τ

)

gn(ξb) (B.60)

By induction are thus all gn eigenfunctions with energies εn = n + 1
2
. The

Hermite functions form a complete basis for L2 and they are thus the only
eigenfunctions of the type in equation (B.50). The energies of the system are
thus En = ~ω

(
n+ 1

2

)

94 C PERTURBATION THEORY

C Perturbation theory

The perturbation theory is the study of how small disturbances effect a sys-
tem [15]. The eigenstates ψ0

n and energy eigenvalues E0
n of a Hamiltonian Ĥ0

are known. Now a small disturbance Ĥ1 is added to the Hamiltonian and a
new set of energy eigenvalues and eigenstates arises

(Ĥ0 + Ĥ1)ψn = Enψn. (C.1)

These can approximated by successive series of corrections

ψn = ψ(0)
n + ψ(1)

n + ψ(2)
n + . . . (C.2)

En = E(0)
n + E(1)

n + E(2)
n + . . . (C.3)

The zero-order energy term is the energy for the undisturbed system

E(0)
n = E0

n (C.4)

Introduce the notation |ψn〉 = |n〉. The first-order energy term for a harmonic
oscillator is

E(1)
n = 〈n(0)|Ĥ(1)|n(0)〉. (C.5)

The second-order energy term is

E(2)
n =

∑

m 6=n

|〈m(0)|Ĥ(1)|n(0)〉|2

E
(0)
n − E

(0)
m

. (C.6)

The last only holds if the energy eigenvalues are non-degenerated which they
are in the harmonic oscillator.

For the harmonic oscillator the first-order change in energy is given by

E(1)
n = 〈n(0)|λEcξ

4|n(0)〉 =
∫ ∞

−∞
gn(ξ)

2λEcξ
4dξ. (C.7)

For the ground state (n = 0) this is

E
(1)
0 = λEc

∫ ∞

−∞

1√
π
e−ξ2ξ4dξ =

3λEc

4
. (C.8)

The second order change in energy for the harmonic oscillator is given by

E(2)
n =

∑

m 6=n

|〈m(0)|λEcξ
4|n(0)〉|2

E
(0)
n − E

(0)
m

=
∑

m 6=n

|
∫∞
−∞ gn(ξ)gm(ξ)λEcξ

4dξ|2

E
(0)
n − E

(0)
m

(C.9)

C PERTURBATION THEORY 95

An infinite set of integrals is to be solved:

Im =

∫ ∞

−∞
g0(ξ)gm(ξ)ξ

4dξ (C.10)

The L2 function g0(ξ)ξ
4 can be expressed as a linear combination of the

Hermite functions because they form a complete set:

g0(ξ)ξ
4 = π−1/4 exp

(

−ξ
2

2

)

ξ4

= π−1/4 exp

(

−ξ
2

2

)

·
(

16−1(16ξ4 − 48ξ2 + 12) +
3

4
(4ξ2 − 2) +

3

4

)

=

√
6

2
g4(ξ) +

3√
2
g2(ξ) +

3

4
g0(ξ) (C.11)

The Hermite functions are orthonormal so the integral Im only give contri-
butions when m = 2, 4 and the sum (C.9) thus becomes:

E(2)
n =

(
9

2(1/2− 5/2)
+

6

4(9/2− 1/2)

)

λ2Ec = −21

8
λ2Ec (C.12)

The ground state energy for the undisturbed harmonic oscillator is

E
(0)
0 = 〈ψ0|H(0)|ψ0〉 =

Ec

2
√
π

∫ ∞

−∞
e−

ξ2

2

(

−∂
2e−

ξ2

2

∂ξ2

)

dξ =
Ec

2
(C.13)

The ground state energy for the disturbed harmonic oscillator to the second
order is

E0 = E
(0)
0 + E

(1)
0 + E

(2)
0 = Ec

(
1

2
+

3

4
λ− 21

8
λ2
)

(C.14)

96 D PYTHON

D Python

During this project, Python 2.6 was used as host API language. Python is
a programming language that is very easy to learn if you are accustomed to
C-like languages. Python provides both power and versatility, and can easily
simulate many other environments and languages, thanks to its wide variety
of modules.

D.1 Background

Python was developed in the late 1980s by Guido van Rossum. It is an in-
terpreted, general-purpose, high-level programming language[28]. That said,
it still runs like a compiled intermediate level language like C++ in many
aspects. This is especially true in Python 3.0 and later. Python supports
many programming paradigms like object-orientation, declarative functional
programming, imperative procedural programming, and with certain mod-
ules parallel programming. The main idea behind Python is that it uses a
clear and readable syntax, as well as being compatible and versatile. For
example, Python can be implemented within API’s like a scripting interface
for short ease-of-use executions, or used as a foundation and framework for
larger applications. Python is often compared with Perl, TCL, Ruby, Java
and Scheme in how it runs. Like Java, it uses a strong exception-based error
handling.

D.2 Modules

Another great aspect of Python is the modularity. First of all, it provides
extensive standard libraries. Add to this all the third-party modules, and it
will handle a very wide variety of tasks. It can easily execute extensions and
modules written in:

• C and C++ using Cython

• Java using Jython

• .NET languages using IronPython

Python can also simulate the behaviour of many popular languages, like for
example Matlab. Matlab is probably most famous for its fast calcula-
tions of vectors/martrices and the user-friendly plotting tools. The modules
Numpy[55], Matplotlib[56] and pylab[57] implement these functionalities in
Python in a fashion very similair to Matlab. Another handy module is
SciPy[58], which is a toolbox for mathematics, science and engineering. In
order to implement OpenCL in Python, a module called PyOpenCL is used.
The modules mainly used in this project were NumPy, PyOpenCL, PyLab and

D PYTHON 97

MatPlotLib. Other modules that might come in handy depending on the en-
vironment are Base[42] (Windows, unofficial), Boost.Python[59], PyMC[60],
PyGTK[61] and SetupTools[62].

D.3 Why Python 2.6

As of this date, Python 3.2 was released quite recently. Python 3.x[28] is a
new version of Python, incompatible with the 2.x releases in many aspects.
The fundamental data types and their handling have dramatically changed.
Most notably, Python 3.x supposedly[29] brings the run-time performance
closer to C in some relevant aspects. This was overlooked when choosing
which version to use, since versions newer than 2.6 currently lack much of the
3d-party support required in this project. This is especially true for modules
running in 64-bit mode, which is prioritized. Although native support is
missing, it is possible with some effort to implement the third party support
by hand. This was regarded as way to cumbersome, so eventually 2.6 was
chosen.

98 E SOURCE CODE

E Source code

E.1 C-code

Listing 4: C-code for calculating the ground state energy of a system of three
particles with harmonic potentials.

1 #include <s t d i o . h>
2 #include <math . h>
3 #define N 400
4 #define nbrOfPar t i c l e s 2
5 #define pathSize 200 //N∗ nbrOfPar t i c l e s
6 #define ep s i l o n 0 .1 f
7 #define e p s i l o n i n v 10 .0 f
8 #define alpha 1 .0 f
9

10 void x o r s h i f t (unsigned int ∗x , unsigned int ∗y , unsigned int ∗z , unsigned int ∗w)
11 {
12 //This performs the necessary XORs to ob ta in a new random unsigned i n t e g e r w.
13 unsigned int t ;
14 t = ∗x ˆ (∗x << 11) ;
15 ∗x = ∗y ; ∗y = ∗z ; ∗z = ∗w;
16 ∗w = (∗w ˆ (∗w >> 19) ˆ (t ˆ (t >> 8))) ;
17 }
18
19 f loat randFloat (unsigned int ∗x , unsigned int ∗y , unsigned int ∗z , unsigned int ∗

w)
20 {
21 x o r s h i f t (x , y , z , w) ;
22 //This re turns a random f l o a t i n g po in t number by d i v i d i n g w with UINT32 MAX (

hardcoded) .
23 return (∗w) ∗2.328306437080797 e−10;
24 }
25
26 f loat operator (f loat ∗x)
27 {
28 //This re turns the va lue o f the operator f o r a s p e c i f i e d po in t in time (index

in [0 , N−1]) .
29 return 3 .0 f ∗(x [0] ∗ x [0] + x [N]∗ x [N]) ;
30 }
31
32 f loat po t en t i a l (f loat ∗x)
33 {
34 //This re turns the va lue o f the p o t e n t i a l f o r a s p e c i f i e d po in t in time (

index in [0 , N−1]) .
35 return 1 .5 f ∗(x [0] ∗ x [0] + x [N]∗ x [N]) ;
36 }
37
38 f loat k i n e t i cD i f f (f loat l e f tX , f loat midX , f loat rightX , f loat newMidX)
39 {
40 //This re turns the change in k i n e t i c energy when changing a l a t t i c e po in t

from midX to newMidX .
41 f loat le ftChangeOld = midX − l e f tX ;
42 f loat rightChangeOld = midX − r ightX ;
43 f loat leftChangeNew = newMidX − l e f tX ;
44 f loat rightChangeNew = newMidX − r ightX ;
45 return 0 .5 f ∗(leftChangeNew∗ leftChangeNew + rightChangeNew∗ rightChangeNew −

le ftChangeOld ∗ le ftChangeOld − rightChangeOld∗ rightChangeOld) ∗ e p s i l o n i n v ∗
e p s i l o n i n v ;

46 }

E SOURCE CODE 99

47
48 //This i s the code t ha t performs nbrOfLoopins Metropo l i s s t e p s and i s c a l l e d from

main () .
49 void metropo l i s (f loat ∗path , f loat ∗opMean , int ∗ accepts , unsigned int ∗ seeds ,

unsigned int ∗nbrOfLoopings)
50 {
51 int modPathPoint = 0 ;
52 int modPoint ;
53 int r i gh t Index ;
54 int l e f t I n d e x ;
55 f loat d i f fE ;
56 f loat modx ;
57 f loat oldX ;
58 unsigned int l oopLimit = ∗nbrOfLoopings ;
59 unsigned int threeLoopRuns = loopLimit / pathSize ;
60
61 f loat part ia lOp = 0 ;
62 f loat opMeanBuffer = 0 ;
63
64 //This s e t s the seeds f o r the Xor sh i f t PRNG.
65 unsigned int x = seeds [0] ;
66 unsigned int y = seeds [1] ;
67 unsigned int z = seeds [2] ;
68 unsigned int w = seeds [3] ;
69
70 for (int i = 0 ; i < N; i++)
71 part ia lOp += operator (path + i) ;
72
73 opMean [0] = 0 ;
74 accept s [0] = 0 ;
75 /∗The f o l l ow i n g th ree loops are r e s p on s i b l e f o r c r ea t i n g Metropo l i s samples .

This i s done by loop ing trough a l l the l a t t i c e po in t s f o r a l l the
p a r t i c l e s .

76 The t h i r d loop loops through the l a t t i c e po in t s f o r a g iven p a r t i c l e .
77 The second loop loops through the d i f f e r e n t p a r t i c l e s .
78 The f i r s t loop runs the two inner loops many times to c rea t e more samples . ∗/
79 for (int i = 0 ; i < threeLoopRuns ; i++)
80 {
81 for (int p a r t i c l e = 0 ; p a r t i c l e < nbrOfPar t i c l e s ; p a r t i c l e++)
82 {
83 for (modPoint = 0 ; modPoint < N; modPoint++)
84 {
85 modPathPoint = modPoint + N∗ p a r t i c l e ;
86
87 //Arrange with the p e r i od i c boundary cond i t i ons .
88 r i gh t Index = modPathPoint + 1 ;
89 l e f t I n d e x = modPathPoint − 1 ;
90 i f (modPoint == 0)
91 {
92 l e f t I n d e x = p a r t i c l e ∗N + N − 1 ;
93 } else i f (modPoint == N − 1)
94 {
95 r i gh t Index = p a r t i c l e ∗N;
96 }
97
98 oldX = path [modPathPoint] ;
99 modx = oldX + alpha ∗ (2 . 0 f ∗ randFloat(&x , &y , &z , &w) − 1 .0 f) ;

100
101 // Ca l cu la t e the d i f f e r e n c e in energy (ac t ion) f o r the new path

compared to the old , s t o red in d i f fE .
102 d i f fE = k i n e t i cD i f f (path [l e f t I n d e x] , path [modPathPoint] , path [

r i gh t Index] , modx) ;

100 E SOURCE CODE

103 d i f fE −= po t en t i a l (path + modPoint) ;
104 path [modPathPoint] = modx ;
105 d i f fE += po t en t i a l (path + modPoint) ;
106 path [modPathPoint] = oldX ;
107
108 //Determine whether or not to accept the change in the path .
109 i f (exp(− ep s i l o n ∗ d i f fE) > randFloat(&x , &y , &z , &w)) {
110 part ia lOp −= operator (path+modPoint) ;
111 path [modPathPoint] = modx ;
112 part ia lOp += operator (path+modPoint) ;
113 accept s [0]++;
114 }
115
116 opMeanBuffer += part ia lOp ;
117 }
118 }
119 opMean [0] += opMeanBuffer ;
120 opMeanBuffer = 0 ;
121 }
122
123 opMean [0] += opMeanBuffer ;
124 opMean [0] /= (f loat) (threeLoopRuns∗ nbrOfPar t i c l e s ∗N∗N) ;
125
126 // Store the current s t a t e o f the Xor sh i f t PRNG for use in the next k e rne l run

.
127 seeds [0] = x ;
128 seeds [1] = y ;
129 seeds [2] = z ;
130 seeds [3] = w;
131 }
132
133 int main ()
134 {
135 // I n i t i a l i z e v a r i a b l e s
136 f loat path [pathS ize] ;
137 f loat opMean ;
138 int accept s ;
139 unsigned int s eeds [4] = {123456789 , 362436069 , 521288629 , 88675123} ;
140 unsigned int nbrOfLoopings ;
141 f loat sum = 0 ;
142 f loat squareSum = 0 ;
143 int runs = 10 ;
144 for (int i = 0 ; i < pathSize ; i++)
145 path [i] = 0 ;
146 nbrOfLoopings = 10000000;
147 //Run kerne l once f o r burn in
148 p r i n t f (”Doing burn in . . . \ n”) ;
149 met ropo l i s (path , &opMean , &accepts , seeds , &nbrOfLoopings) ;
150 //Run metropo l i s () runs t imes to produce runs va lue s f o r the energy , each

c a l l f o r metropo l i s () s t a r t s where the l a s t one ended (path and seeds are
saved) .

151 for (int i = 1 ; i <= runs ; i++)
152 {
153 p r i n t f (”Run %2d :\n” , i) ;
154 met ropo l i s (path , &opMean , &accepts , seeds , &nbrOfLoopings) ;
155 p r i n t f (”Mean o f operator : %f \n” , opMean) ;
156 p r i n t f (”Acceptance ra t e : %.2 f%%\n\n” , 100 .0 f ∗ ((f loat) accept s) / ((f loat)

((nbrOfLoopings/ pathSize) ∗ pathSize))) ;
157 sum += opMean ;
158 squareSum += opMean∗opMean ;
159 }
160 //Print r e s u l t s from runs c a l l s to metropo l i s () .

E SOURCE CODE 101

161 f loat mean = sum/((f loat) runs) ;
162 f loat stdDev = sq r t (squareSum /((f loat) runs) − mean∗mean) ;
163 f loat stdErr = stdDev/ sq r t (runs) ;
164 p r i n t f (”Mean : %f \n” , mean) ;
165 p r i n t f (”Standard e r r o r : %f \n” , stdErr) ;
166 p r i n t f (”65%% CI : [%f , %f]\n” , mean − stdErr , mean + stdErr) ;
167 p r i n t f (”95%% CI : [%f , %f]\n” , mean − 2∗ stdErr , mean + 2∗ stdErr) ;
168 return 0 ;
169 }

E.2 PyOpenCL code

E.2.1 OpenCL Kernel Code

Listing 5: The PyOpenCL kernel code.
1 //##
2 // ke rne l . c
3 //
4 // Imported by : . . / hos t . py
5 //
6 //Descr ip t ion : This i s the OpenCL kerne l and i s the code t ha t runs on the GPU.
7 // This conta ins the Monte Carlo c a l c u l a t i o n s t ha t are to be per−
8 // performed and some he l p e r methods f o r genera t ing random numbers
9 // numbers with the Xor sh i f t PRNG.

10 //
11 //Authors : Feynman Bachelors Group , Chalmers Un ive r s i t y o f Technology
12 //Date : 2011−05−17
13 // Licens ing : GPL
14 //##
15
16
17 //##
18 //# XORSHIFT #
19 //##
20 //Descr ip t ion : This performs the necessary XORs to ob ta in a new random
21 // unsigned i n t e g e r w.
22 i n l i n e void x o r s h i f t (unsigned int ∗x , unsigned int ∗y , unsigned int ∗z ,
23 unsigned int ∗w)
24 {
25
26 unsigned int t ;
27 t = ∗x ˆ (∗x << 11) ;
28 ∗x = ∗y ; ∗y = ∗z ; ∗z = ∗w;
29 ∗w = (∗w ˆ (∗w >> 19) ˆ (t ˆ (t >> 8))) ;
30 }
31
32
33 //##
34 //# randFloat #
35 //##
36 //Descr ip t ion : This re turns a random f l o a t i n g po in t number by d i v i d i n g w with
37 // UINT32 MAX (hardcoded) .
38 i n l i n e f loat randFloat (unsigned int ∗x , unsigned int ∗y , unsigned int ∗z ,
39 unsigned int ∗w)
40 {
41 x o r s h i f t (x , y , z , w) ;
42

102 E SOURCE CODE

43 return (∗w)∗2.328306437080797 e−10;
44 }
45
46
47 //##
48 //# randPathPoint #
49 //##
50 //Descr ip t ion : This re turns a uni formly d i s t r i b u t e d random unsigned i n t e g e r
51 // in the i n t e r v a l [0 , pa thS i ze − 1] .
52 i n l i n e unsigned int randPathPoint (unsigned int ∗x , unsigned int ∗y ,
53 unsigned int ∗z , unsigned int ∗w)
54 {
55 x o r s h i f t (x , y , z , w) ;
56 //
57 return (∗w)∗2.328306437080797 e−10∗%(pathSize)d ;
58 }
59
60
61 //##
62 //# userCode #
63 //##
64 //Descr ip t ion : This i s a p l a c eho l d e r f o r code t ha t the user can wr i t e to he lp
65 // s p e c i f y operator and p o t e n t i a l .
66 %(userCode) s ;
67
68
69 //##
70 //# OPERATOR #
71 //##
72 //Descr ip t ion : This re turns the va lue o f the operator f o r a s p e c i f i e d po in t
73 // in time (index in [0 , N−1]) .
74 i n l i n e f loat operator (f loat ∗x)
75 {
76 return %(operator) s ;
77 }
78
79
80 //##
81 //# POTENTIAL #
82 //##
83 //Descr ip t ion : This re turns the va lue o f the p o t e n t i a l f o r a s p e c i f i e d
84 // po in t in time (index in [0 , N−1]) .
85 i n l i n e f loat po t en t i a l (f loat ∗x)
86 {
87 return %(po t en t i a l) s ;
88 }
89
90
91 //##
92 //# k i n e t i cD i f f #
93 //##
94 //Descr ip t ion : This re turns the change in k i n e t i c energy when changing a
95 // l a t t i c e po in t from midX to newMidX .
96 i n l i n e f loat k i n e t i cD i f f (f loat l e f tX , f loat midX , f loat rightX , f loat newMidX)
97 {
98 //
99 f loat le ftChangeOld = midX − l e f tX ;

100 f loat rightChangeOld = midX − r ightX ;
101 f loat leftChangeNew = newMidX − l e f tX ;
102 f loat rightChangeNew = newMidX − r ightX ;
103 return 0 .5 f ∗(leftChangeNew∗ leftChangeNew + rightChangeNew∗ rightChangeNew −
104 leftChangeOld ∗ le ftChangeOld − rightChangeOld∗ rightChangeOld)∗

E SOURCE CODE 103

105 %(ep s i l o n i n v) f ∗%(ep s i l o n i n v) f ;
106 }
107
108
109 //##
110 //# KERNEL CODE #
111 //##
112 //Descr ip t ion : The f o l l ow i n g code i s the OpenCL kerne l . This i s the code t ha t i s
113 // c a l l e d from Python and take s a l l the input and d e l i v e r s output .
114 k e r n e l void metropo l i s (g l o b a l f loat ∗paths ,
115 g l o b a l f loat ∗opMeans ,
116 g l o b a l int ∗ accepts ,
117 g l o b a l unsigned int ∗ seeds ,
118 g l o b a l unsigned int ∗nbrOfLoopings ,
119 g l o b a l unsigned int ∗binCounts)
120 {
121 int g id = g e t g l o b a l i d (0) ;
122
123 int pathsVectNbr = gid∗%(pathSize)d ;
124 int seedsVectNbr = gid ∗4 ;
125 int modPathPoint = 0 ;
126 int modPoint ;
127 int r i gh t Index ;
128 int l e f t I n d e x ;
129 int binIndex ;
130 f loat d i f fE ;
131 f loat modx ;
132 f loat oldX ;
133 unsigned int l oopLimit = ∗nbrOfLoopings ;
134 unsigned int threeLoopRuns = loopLimit / %(pathSize)d ;
135
136 f loat path [%(pathSize)d] ;
137 f loat part ia lOp = 0 ;
138 f loat opMeanBuffer = 0 ;
139
140 //This s e t s the seeds f o r the Xor sh i f t PRNG.
141 unsigned int x = seeds [seedsVectNbr + 0] ;
142 unsigned int y = seeds [seedsVectNbr + 1] ;
143 unsigned int z = seeds [seedsVectNbr + 2] ;
144 unsigned int w = seeds [seedsVectNbr + 3] ;
145
146 //This imports the path corresponding to t h i s thread from the c o l l e c t i o n
147 // o f a l l paths s to red in the f i e l d paths .
148 for (int i = 0 ; i < %(pathSize)d ; i++)
149 path [i] = paths [i + pathsVectNbr] ;
150
151 for (int i = 0 ; i < %(N)d ; i++)
152 part ia lOp += operator (path + i) ;
153
154 opMeans [g id] = 0 ;
155 accept s [g id] = 0 ;
156
157
158 /∗
159 The f o l l ow i n g th ree loops are r e s p on s i b l e f o r c r ea t i n g Metropo l i s samples .
160 This i s done by loop ing trough a l l the l a t t i c e po in t s f o r a l l the p a r t i c l e s .
161
162 The t h i r d loop loops through the l a t t i c e po in t s f o r a g iven p a r t i c l e .
163 The second loop loops through the d i f f e r e n t p a r t i c l e s .
164 The f i r s t loop runs the two inner loops many times to c rea t e more samples .
165 ∗/
166 for (int i = 0 ; i < threeLoopRuns ; i++)

104 E SOURCE CODE

167 {
168 for (int p a r t i c l e = 0 ; p a r t i c l e < %(nbrOfPar t i c l e s)d ; p a r t i c l e++)
169 {
170 for (modPoint = 0 ; modPoint < %(N)d ; modPoint++)
171 {
172 modPathPoint = modPoint + %(N)d∗ p a r t i c l e ;
173
174 //Arrange with the p e r i od i c boundary cond i t i ons .
175 r i gh t Index = modPathPoint + 1 ;
176 l e f t I n d e x = modPathPoint − 1 ;
177 i f (modPoint == 0)
178 {
179 l e f t I n d e x = p a r t i c l e ∗%(N)d + %(N)d − 1 ;
180 } else i f (modPoint == %(N)d − 1)
181 {
182 r i gh t Index = p a r t i c l e ∗%(N)d ;
183 }
184
185 oldX = path [modPathPoint] ;
186 modx = oldX + %(alpha) f ∗ (2 . 0 f ∗ randFloat(&x , &y , &z , &w) − 1 .0 f) ;
187
188 // Ca l cu la t e the d i f f e r e n c e in energy (ac t ion) f o r the new path
189 //compared to the old , s t o red in d i f fE .
190 d i f fE = k i n e t i cD i f f (path [l e f t I n d e x] , path [modPathPoint] ,
191 path [r i gh t Index] , modx) ;
192 d i f fE −= po t en t i a l (path + modPoint) ;
193 path [modPathPoint] = modx ;
194 d i f fE += po t en t i a l (path + modPoint) ;
195 path [modPathPoint] = oldX ;
196
197 //Determine whether or not to accept the change in the path .
198 i f (nat ive exp(−%(ep s i l o n) f ∗ d i f fE) > randFloat(&x,&y,&z ,&w)) {
199 part ia lOp −= operator (path+modPoint) ;
200 path [modPathPoint] = modx ;
201 part ia lOp += operator (path+modPoint) ;
202 accept s [g id]++;
203 }
204
205 opMeanBuffer += part ia lOp ;
206
207 int ok = 1 ;
208 int i n c = 1 ;
209 binIndex = 0 ;
210 for (int p = 0 ; p < %(nbrOfPar t i c l e s)d ; p++)
211 {
212 i f (path [modPoint + %(N)d∗p] < %(xmin) f | |
213 path [modPoint + %(N)d∗p] >= %(xmax) f)
214 {
215 ok=0;
216 break ;
217 }
218 binIndex += (int) ((path [modPoint + %(N)d∗p] −
219 (%(xmin) f))∗%(invBinS ize) f)∗ i n c ;
220 inc ∗= %(binsPerPart)d ;
221 }
222 i f (ok)
223 {
224 binCounts [g id∗%(nbrOfBins)d+binIndex]++;
225 }
226 }
227 }
228 opMeans [g id] += opMeanBuffer ;

E SOURCE CODE 105

229 opMeanBuffer = 0 ;
230 }
231
232 opMeans [g id] += opMeanBuffer ;
233 opMeans [g id] /= (f loat) (threeLoopRuns∗%(nbrOfPar t i c l e s)d∗%(N)d∗%(N)d) ;
234
235 // Store the l a s t path back in the paths v a r i a b l e f o r use in the
236 // next k e rne l run .
237 for (int i = 0 ; i < %(pathSize)d ; i++)
238 paths [i + pathsVectNbr] = path [i] ;
239
240 // Store the current s t a t e o f the Xor sh i f t PRNG for use in the next
241 // ke rne l run .
242 seeds [seedsVectNbr + 0] = x ;
243 seeds [seedsVectNbr + 1] = y ;
244 seeds [seedsVectNbr + 2] = z ;
245 seeds [seedsVectNbr + 3] = w;
246 }

E.2.2 PyOpenCL Host Code

Listing 6: The PyOpenCL host code.
1 ##
2 # host . py
3 #
4 # Imported by : . . / a pp l i c a t i on . py
5 #
6 # Imports : GPUsrc/ ke rne l . c
7 #
8 # Descr ip t ion : Ca l l i n g t h i s method w i l l cause the GPU to c a l c u l a t e the mean of
9 # a given operator on a quantum mechanical system . Also , a

10 # numerical r ep r e s en ta t i on o f the p r o b a b i l i t y d ens i t y i s c a l c u l a t e d
11 # and returned .
12 #
13 # Arguments : userCode : C−code to he lp the user formula te the operator (s t r i n g)
14 # po t e n t i a l : Po t en t i a l (s t r i n g)
15 # operator : Operator (s t r i n g)
16 # N: Number o f l a t t i c e po in t s (i n t)
17 # beta : Time i n t e r v a l (f l o a t)
18 # alpha : Metropo l i s s t ep l eng t h (f l o a t)
19 # nbrOfThreads : Number o f threads t ha t run the ke rne l (i n t)
20 # nbrOfLoopings : Number o f met ropo l i s s t e p s in each thread (i n t)
21 # runs : Number o f t imes to run the ke rne l on each thread (i n t)
22 # burnIn : Number o f Metropo l i s s t e p s t ha t are taken wi thout sav ing
23 # r e s u l t s (i n t)
24 # burnInRuns : Number o f t imes to run the burn in process (i n t)
25 # xmin : Lower boundary f o r each degree o f freedom when c a l c u l a t i n g
26 # the p r o b a b i l i t y d ens i t y with the time sav ing t r i c k (f l o a t)
27 # xmax : Like xmin but an upper boundary (f l o a t)
28 # binsPerPart : Number o f b ins in to which the i n t e r v a l
29 # [xmin , xmax] i s d i v i d ed (i n t)
30 #
31 # Authors : Feynman Bachelors Group , Chalmers Un ive r s i t y o f Technology
32 # Date : 2011−05−17
33 # Licens ing : GPL
34 ##
35
36

106 E SOURCE CODE

37 ##
38 # LIBRARIES #
39 ##
40 import numpy as np
41 import pyopencl as c l
42 import pyopencl . array
43 import pyopencl . clrandom
44 import pyopencl . clmath
45 from time import time
46 import sys
47
48
49 ##
50 # getOperatorMean Function #
51 ##
52 # Descr ip t ion : This method take s p h y s i c a l l y r e l e v an t parameters to c a l c u l a t e
53 # the mean of a s p e c i f i e d quantum mechanical operator , as we l l as
54 # a numerical r ep r e s en ta t i on o f the p r o b a b i l i t y d ens i t y .
55 #
56 def getOperatorMean (userCode , po t en t i a l , N, beta , alpha , operator , nbrOfThreads ,
57 nbrOfLoopings , runs , burnIn , burnInRuns , nbrOfPart i c l e s ,
58 xmin , xmax , binsPerPart) :
59
60 #Fetch r e s u l t s from load ke rne l in to a l i s t
61 kernelEnvironment = loadKerne l (userCode , po t en t i a l , operator , N, beta ,
62 alpha , nbrOfThreads , nbrOfPart i c l e s ,
63 xmin , xmax , binsPerPart)
64
65 #Perform burn in (’ burnIn ’ Metropo l i s s teps , ’ burnInRuns ’ t imes)
66 for i in range (0 , burnInRuns) :
67 [burnEnergy , burnSTD , burnAcceptance , burnTime ,
68 dummy] = runKernel (kernelEnvironment , burnIn , xmax , xmin , binsPerPart)
69
70 #Resets the bin counts from the burn in execu t i ons
71 kernelEnvironment [8] . f i l l (0)
72
73 #Al l o ca t e space f o r the r e s u l t s from each s e t o f ’ nbrOfThreads ’ k e rne l runs .
74 energy = np . z e r o s (runs)
75 energySTD = np . z e r o s (runs)
76 acceptanceRate = np . z e r o s (runs)
77 runTime = np . z e r o s (runs)
78
79 #Create the mul t id imens iona l array f o r s t o r i n g the r e s u l t i n g number o f b in
80 #counts (dimension o f the array i s nbrOfPar t i c l e s) a f t e r ’ runs ’ execu t i ons .
81 binTouple = (binsPerPart ,)
82 for i in range (1 , nb rOfPar t i c l e s) :
83 binTouple += (binsPerPart ,)
84 binCounts = np . z e r o s (binTouple) . astype (np . f l o a t 3 2)
85
86 #Execute ’ nbrOfThreads ’ kerne l s , ’ runs ’ t imes and s t o r e the r e s u l t s .
87 for i in range (0 , runs) :
88 print ”Run ” + s t r ((i +1)) + ” o f ” + s t r (runs)
89 [energy [i] , energySTD [i] , acceptanceRate [i] , runTime [i] ,
90 binCounts] = runKernel (kernelEnvironment , nbrOfLoopings , xmin ,
91 xmax , binsPerPart)
92
93 pathSize = N∗ nbrOfPar t i c l e s
94
95 #’ nbrOfLoopings ’ i s t runcated i f not a f a c t o r o f ’ pa thS i ze ’
96 ef fNbrOfLoopings = f l o a t ((nbrOfLoopings // pathSize) ∗ pathSize)
97
98 #Create a normalized histogram from the bin counts .

E SOURCE CODE 107

99 totBinCount = nbrOfThreads∗nbrOfLoopings∗ runs
100 width = f l o a t (xmax−xmin) / f l o a t (binsPerPart)
101 binCountsNormed = binCounts . astype (np . f l o a t 3 2) /(width∗ ef fNbrOfLoopings)
102
103 #The ca l c u l a t e d operator mean , standard error , mean acceptance rate , t o t a l
104 #run time and numerical r ep r e s en ta t i on o f p r o b a b i l i t y d ens i t y i s re turned .
105 return [energy .mean () , energySTD .mean () /np . s q r t (runs) ,
106 acceptanceRate .mean () , runTime . sum() , binCountsNormed]
107
108
109 ##
110 # loadKerne l Function #
111 ##
112 # Descr ip t ion : Set up the ke rne l and prepare the GPU for the execu t ion o f the
113 # des i r ed number o f threads .
114 #
115 def l oadKerne l (userCode , po t en t i a l , operator , N, beta , alpha , nbrOfThreads ,
116 nbrOfPart i c l e s , xmin , xmax , binsPerPart) :
117
118 for i in range (1 , nb rOfPar t i c l e s + 1) :
119 po t e n t i a l = po t en t i a l . r ep l a c e (”x”+s t r (i) , ”x [”+s t r (N∗(i −1))+”] ”)
120 operator = operator . r ep l a c e (”x”+s t r (i) , ”x [”+s t r (N∗(i −1))+”] ”)
121
122 #Import the ke rne l code and f i l l the p l a c eho l d e r s with r e l e v an t data .
123 rep lacements = { ’N ’ : N, ’ e p s i l o n ’ : beta / f l o a t (N) ,
124 ’ e p s i l o n i n v ’ : f l o a t (N) /beta ,
125 ’ pathS ize ’ : (nb rOfPar t i c l e s ∗N) , ’ alpha ’ : alpha ,
126 ’ userCode ’ : userCode , ’ p o t e n t i a l ’ : po t en t i a l ,
127 ’ operator ’ : operator , ’ nb rOfPar t i c l e s ’ : nbrOfPart i c l e s ,
128 ’ xmin ’ : xmin , ’xmax ’ : xmax , ’ b insPerPart ’ : binsPerPart ,
129 ’ nbrOfBins ’ : b insPerPart ∗∗ nbrOfPart i c l e s ,
130 ’ invBinS ize ’ : f l o a t (binsPerPart) / f l o a t (xmax−xmin) }
131
132 #Import k e rne l code and pas te ’ rep lacements ’ in to i t
133 kerne lCode r = open (sys . path [0]+ ’ / s r c /GPUsrc/ ke rne l . c ’ , ’ r ’) . read ()
134 kernelCode = kerne lCode r%replacements
135
136 #Create the important OpenCL contex t and command queue
137 ctx = c l . c r ea t e some contex t ()
138 queue p rope r t i e s = c l . command queue properties .PROFILING ENABLE
139 queue = c l .CommandQueue(ctx , p r op e r t i e s=queue p rope r t i e s)
140
141 #Bui ld the program and i d e n t i f y metropo l i s as the ke rne l
142 prg = c l . Program(ctx , kernelCode) . bu i ld ()
143 ke rne l = prg . met ropo l i s
144 #pyopencl . array o b j e c t s are crea ted f o r s t o r i n g the c a l c u l a t e d operator
145 #means from each thread
146 operatorValues = c l . array . z e r o s (ctx , queue , (nbrOfThreads ,) , np . f l o a t 3 2)
147 #I n i t i a l paths are crea ted (the i n i t i a l path vec to r i s f i l l e d with zeros ,
148 #meaning no movement o f the p a r t i c l e s)
149 paths = c l . array . z e r o s (ctx , queue , (nbrOfThreads , N∗ nbrOfPar t i c l e s) ,
150 np . f l o a t 3 2)
151 #Buf fer f o r s t o r i n g number o f accepted va lue s and seeds f o r the xorshfitPRNG
152 accept s = c l . array . z e r o s (ctx , queue , (nbrOfThreads ,) , np . in t32)
153 seeds = c l . array . t o d ev i c e (ctx , queue , np . random . rand int (0 , high=10∗∗9 ,
154 s i z e=(nbrOfThreads , 4))) . astype (np . u int32)
155
156 #A bu f f e r f o r the mul t id imens iona l array f o r s t o r i n g the r e s u l t i n g number
157 #of bin counts
158 binTouple = (binsPerPart ,)
159 for i in range (1 , nb rOfPar t i c l e s) :
160 binTouple += (binsPerPart ,)

108 E SOURCE CODE

161 binCounts = c l . array . z e r o s (ctx , queue , (nbrOfThreads ,)+binTouple , np . u int32)
162
163 #Return the ke rne l ob j ec t , context , command queue and pyopencl . array o b j e c t s
164 return [kerne l , ctx , queue , paths , seeds , operatorValues , accepts ,
165 nbrOfThreads , binCounts]
166
167
168 ##
169 # runKernel Function #
170 ##
171 # Descr ip t ion : This method take s care o f running the ke rne l wi th g iven input
172 # and return the r e s u l t s from t h i s k e rne l run .
173 #
174 def runKernel (kernelEnvironment , nbrOfLoopings , xmin , xmax , binsPerPart) :
175 #Pick out kerne l , context , command queue and pyopencl . array o b j e c t s from
176 #passed l i s t kernelEnvironment
177 [kerne l , ctx , queue , paths , seeds , operatorValues , accepts ,
178 nbrOfThreads , binCounts] = kernelEnvironment
179 #Create pyopencl . array o b j e c t wi th one element to pass the nbrOfLoopings
180 #argument to the ke rne l
181 runDim = np . u int ([nbrOfLoopings])
182 nbrOfLoopingsOCL=c l . array . t o d ev i c e (kernelEnvironment [1] ,
183 kernelEnvironment [2] ,
184 runDim . astype (np . u int32))
185
186 #Run kerne l . The b u f f e r s f o r a l l pyopencl . array o b j e c t s are passed
187 #by the . data parameter .
188 k e rn e l ob j = ke rne l (queue , (nbrOfThreads ,) , None , paths . data ,
189 operatorValues . data , accept s . data , s eeds . data ,
190 nbrOfLoopingsOCL . data , binCounts . data)
191 #Wait u n t i l the threads have f i n i s h e d and then c a l c u l a t e t o t a l run time
192 k e rn e l ob j . wait ()
193 runTime = 1e−9∗(k e r n e l ob j . p r o f i l e . end − k e rn e l ob j . p r o f i l e . s t a r t)
194
195 #Fetch the operatorValues and acceptanceRate pyopencl . array o b j e c t s from
196 #the graph i c s card to the RAM.
197 operatorValuesPython = operatorValues . get ()
198 acceptanceRate = accept s . get () / f l o a t (nbrOfLoopings)
199
200 #Sum the bin counts from a l l i n d i v i d u a l threads .
201 binCountsResult = np . sum(binCounts . get () , ax i s=0) . astype (np . f l o a t 3 2)
202
203 return [operatorValuesPython .mean () ,
204 operatorValuesPython . std () /np . s q r t (l en (operatorValuesPython)) ,
205 acceptanceRate .mean () ,
206 runTime ,
207 binCountsResult]

E.2.3 Example of Application Code

Listing 7: An example of application code.
1 ##
2 # app l i c a t i on . py
3 #
4 # Imports : s rc / hos t . py
5 # src /GPUsrc/ ke rne l . c (i n d i r e c t l y through above f i l e)
6 #
7 # Descr ip t ion : Ca l cu l a t e s the ground s t a t e mean va lue o f a user−de f ined operator

E SOURCE CODE 109

8 # and p l o t s i f t h e re are 1 or 2 degrees o f freedom . This p a r t i c u l a r
9 # app l i c a t i on conta ins coup led Harmonic O s c i l l a t o r s as we l l as

10 # Jacobi−transformed systems fo r up to th ree p a r t i c l e s .
11 #
12 # Usage : Uncomment or add the p o t e n t i a l / operator o f i n t e r e s t to v a r i a b l e s
13 # ’ po t e n t i a l ’ and ’ operator ’ r e s p e c t i v e l y . Modify ’ userCode ’ i f
14 # necessary to contain C−f unc t i ons to c a l c u l a t e t he s e .
15 #
16 # Resu l t s : ∗ Ca l cu l a t e s mean of a user−de f ined operator
17 # ∗ Plo t s p r o b a b i l i t y d ens i t y (1 or 2 dimensions) with py lab
18 # ∗ Saves f i g u r e to . png− f i l e
19 # ∗ Saves p l o t data in to . dat− f i l e
20 #
21 # Note : Plancks cons tant and k are conven i en t l y s e t to 1 .
22 #
23 # Authors : Feynman Bachelors Group , Chalmers Un ive r s i t y o f Technology
24 # Date : 2011−05−17
25 # Licens ing : GPL
26 ##
27
28
29
30 ##
31 # LIBRARIES #
32 ##
33 import numpy as np
34 import pylab as p l
35 from datet ime import datet ime
36 import sys
37
38 # Set system path f o r importa t ion o f hos t . py and ke rne l . c
39 sys . path . append (sys . path [0]+ ’ / s r c / ’)
40 import host
41
42 ##
43 # VARIABLES AND KERNEL ARGUMENTS #
44 ##
45 nbrOfThreads = 4∗448 # Amount o f threads to use on the GPU
46
47 N = 1024 # Number o f l a t t i c e po in t s per p a r t i c l e
48 nbrOfPar t i c l e s = 2 # Amount o f p a r t i c l e s / degrees o f freedom
49 pathSize = nbrOfPar t i c l e s ∗N # Total amount o f time s t e p s f o r a l l p a r t i c l e s
50
51 burnIn = 1e5 # Number o f path changes be f o r e sav ing r e s u l t s
52 burnInRuns = 30 # Amount o f re−runs o f burnin
53 nbrOfLoopings = 1e5 # Number o f path changes , w i l l be t runcated i f
54 # not a f a c t o r o f pa thS i ze
55 runs = 60 # Amount o f re−runs f o r each ke rne l
56
57 # Var iab l e s a f f e c t i n g acceptance ra t e
58 beta = 300 # Size o f time i n t e r v a l
59 alpha = 1 .0 # Metropo l i s s t ep l eng t h
60
61 # Plot v a r i a b l e s
62 xmin = −1.5 # Plot min o f i n t e r v a l f o r each p a r t i c l e
63 xmax = 1 .5 # Plot max o f i n t e r v a l f o r each p a r t i c l e
64 binsPerPart = 30 # Number o f b ins / po in t s used f o r p l o t t i n g
65 b inS i z e = (xmax−xmin) / binsPerPart # Size o f each bin
66
67 ##
68 # OPERATOR and POTENTIAL #
69 ##

110 E SOURCE CODE

70 # userCode : Through t h i s va r i a b l e , i t w i l l be p o s s i b l e to de f i ne C−f unc t i ons
71 # used fo r c a l c u l a t i n g the operator and p o t e n t i a l . The v a r i a b l e s
72 # ’ po t e n t i a l ’ and ’ operator ’ might be used to de f i ne how the se
73 # func t i ons are going to be c a l l e d in order to ge t the f u l l
74 # operator / p o t e n t i a l .
75 #
76 # Note : For p l o t t i n g only , s e t operator to 0.0 f f o r f a s t e r run−time
77 #
78 userCode = ”””
79 f l o a t operatorFunct ion (f l o a t V, f l o a t sigma , f l o a t x , f l o a t y)
80 {
81 const f l o a t p i = 3.1415926535 f ;
82 const f l o a t s q r t 3 = 1.73205081 f ;
83 f l o a t A = 4.0 f ∗x∗x ;
84
85 f l o a t B = (x−s q r t 3 ∗y) ∗(x−s q r t 3 ∗y) ;
86 f l o a t C = (x+sq r t 3 ∗y) ∗(x+sq r t 3 ∗y) ;
87 f l o a t D = 2.0 f ∗ sigma∗ sigma ;
88 f l o a t D inv = 1.0 f /D;
89
90 re turn −V∗D inv /(n a t i v e s q r t (p i)∗ sigma) ∗ ((A−D)∗ na t i v e e xp (−A∗D inv) +
91 (B−D)∗ na t i v e e xp (−B∗D inv) +
92 (C−D)∗ na t i v e e xp (−C∗D inv)) ;
93 }
94
95 f l o a t po t en t i a lFunc t i on (f l o a t V, f l o a t sigma , f l o a t x , f l o a t y)
96 {
97 const f l o a t p i = 3.1415926535 f ;
98 const f l o a t s q r t 3 = 1.73205081 f ;
99 f l o a t A = 4.0 f ∗x∗x ;

100
101 f l o a t B = (x−s q r t 3 ∗y) ∗(x−s q r t 3 ∗y) ;
102 f l o a t C = (x+sq r t 3 ∗y) ∗(x+sq r t 3 ∗y) ;
103 f l o a t D inv = 0.5 f /(sigma∗ sigma) ;
104
105 re turn V/(n a t i v e s q r t (p i)∗ sigma) ∗ (na t i v e e xp (−A∗D inv) +
106 na t i v e e xp (−B∗D inv) +
107 na t i v e e xp (−C∗D inv)) ;
108 }
109 ”””
110
111 #
112 # Examples o f d i f f e r e n t p o t e n t i a l s
113 #
114 ################################
115 # V ALPHA #
116 ################################
117 po t e n t i a l = ’ potent i a lFunct i on (12 . 0 f , 0 . 2 f , x1 , x2) + potent i a lFunct i on (−12.0 f ,

0 . 8 f , x1 , x2) ’
118 operator = ’ operatorFunct ion (12 . 0 f , 0 . 2 f , x1 , x2) + operatorFunct ion (−12.0 f , 0 . 8 f

, x1 , x2) ’
119 ################################
120 # V BETA #
121 ################################
122 #po t e n t i a l = ’ po t en t i a lFunc t i on (−2.0 f , 0 .8 f , x1 , x2) ’
123 #operator = ’ operatorFunct ion (−2.0 f , 0 .8 f , x1 , x2) ’
124 ################################
125 # 1D HO #
126 ################################
127 #po t e n t i a l = ’0 .5 f ∗x1∗x1 ’
128 #operator = ’ x1∗x1 ’
129 ################################

E SOURCE CODE 111

130 # Coupled Harmonic O s c i l l a t o r s #
131 ################################
132 #po t e n t i a l = ’0 .5 f ∗((x1−x2) ∗(x1−x2)+(x2−x3) ∗(x2−x3)+(x3−x1) ∗(x3−x1)) ’
133 #operator = ’ ((x1−x2) ∗(x1−x2)+(x2−x3) ∗(x2−x3)+(x3−x1) ∗(x3−x1)) ’
134
135 ##
136 # HOST CODE EXECUTION #
137 ##
138 [operator , standardError , acceptanceRate , runTime ,
139 binCount] = host . getOperatorMean (userCode , po t en t i a l ,N, beta , alpha , operator ,
140 nbrOfThreads , nbrOfLoopings , runs , burnIn ,
141 burnInRuns , nbrOfPart i c l e s ,
142 xmin , xmax , binsPerPart)
143
144 # Print r e s u l t s
145 print (”Kernel Run Time : %0.4 f s ” % runTime)
146 print (”Mean Operator : ”+s t r (operator))
147 print (”Operator Standard Error : ”+s t r (standardError))
148 print (”Acceptance Rate : %0.1 f%%” % (acceptanceRate ∗100 .0))
149
150
151 # Output− f i l e parameters
152 t = datet ime . now()
153 timestamp = t . s t r f t ime (”%Y−%m−%d %H−%M−%S”)
154 f i l ename = ”Wavefunction ” + ”−” + timestamp
155 f da ta = open (f i l ename+” . dat ” , ’w ’)
156
157 ##
158 # PLOT for 1 p a r t i c l e / degree o f freedom #
159 ##
160 i f nbrOfPar t i c l e s == 1 :
161 # x i n t e r v a l f o r p lo t , +0.5∗ b inS i z e to have each va lue in the middle o f b ins
162 x i v a l = np . l i n s p a c e (xmin , xmax , binsPerPart) +0.5∗ b inS i z e
163
164 # Calcu la t e and p l o t a n a l y t i c a l p r o b a b i l i t y d ens i t y
165 p s i a = np . exp(−(x i v a l ∗∗2)) /(np . s q r t (np . p i))
166 p l . p l o t (x i va l , p s i a , ’ g− ’ , l a b e l=’ a n a l y t i c a l ’)
167
168 # Plot c a l c u l a t e d p r o b a b i l i t y d ens i t y with e r rorbar s (standard error)
169 p l . e r r o rba r (x i va l , binCount , e c o l o r=’ r ’ , fmt=’ r .− ’ , y e r r=binSTD .mean(ax i s=0) ,
170 l a b e l=’ Calcu lated ’)
171
172 # Plot in format ion
173 p l . t i t l e (’ P robab i l i t y dens i ty p l o t ’)
174 p l . x l ab e l (’ x ’)
175 p l . y l ab e l (’ | p s i 0 |ˆ2 ’)
176 p l . l egend ()
177
178 #Save p l o t data to f i l e
179 f da ta . wr i t e (”#x” + ”\ t ” + ” | p s i 0 |ˆ2 ” + ”\n”)
180 for i in range (0 , b insPerPart) :
181 f da ta . wr i t e (s t r (x i v a l [i]) + ”\ t ” + s t r (binCount [i]) + ”\n”)
182 f da ta . c l o s e ()
183
184 # Save f i g u r e
185 p l . s a v e f i g (f i l ename+” . png ”)
186
187 # Show p l o t
188 p l . show ()
189
190 ##
191 # PLOT for 2 p a r t i c l e s / degrees o f freedom #

112 E SOURCE CODE

192 ##
193 e l i f nbrOfPar t i c l e s == 2 :
194 # x i n t e r v a l f o r p lo t , +0.5∗ b inS i z e to have each va lue in the middle o f b ins
195 x i v a l = np . l i n s p a c e (xmin , xmax , binsPerPart) +0.5∗ b inS i z e
196
197 # F i l l e d Contour Plo t
198 p l . contour f (x i va l , x i va l , binCount , 60 , cmap = None)
199
200 # Plot in format ion
201 p l . x l ab e l (’ x1 ’)
202 p l . y l ab e l (’ x2 ’)
203 p l . t i t l e (’ Contour p l o t f o r 2 dimensions / degree s o f freedom ’)
204 p l . f i g u r e ()
205
206 # Contour Plo t
207 p l . contour (x i va l , x i va l , binCount , 60 , cmap = pl . cm. j e t)
208
209 #Save p l o t data to f i l e
210 f da ta . wr i t e (”#x” + ”\ t ” + ”y” + ”\ t ” + ” | p s i |ˆ2 ” + ”\n”)
211 for x in range (0 , b insPerPart) :
212 f da ta . wr i t e (”\n”)
213 for y in range (0 , b insPerPart) :
214 f da ta . wr i t e (s t r (x i v a l [x]) + ”\ t ” + s t r (x i v a l [y]) + ”\ t ”
215 + s t r (binCount [x , y]) + ”\n”)
216 f da ta . c l o s e ()
217
218 # Save f i g u r e
219 p l . s a v e f i g (f i l ename+” . png ”)
220
221 # Show p l o t
222 p l . show ()

E.3 Device Dump Properties

This script outputs some properties for all detectable devices.

Listing 8: Device Dump Property Application
1 # Filename : dump propert ies . py
2 # Info : Used to f e t c h dev i ce in f o f o r a l l a v a i l a b l e d ev i c e s
3 # Author : Example in PyOpenCL module
4
5 import pyopencl as c l
6
7 def p r i n t i n f o (obj , i n f o c l s) :
8 for info name in so r t ed (d i r (i n f o c l s)) :
9 i f not info name . s t a r t sw i t h (” ”) and info name != ” t o s t r i n g ” :

10 i n f o = ge t a t t r (i n f o c l s , info name)
11 try :
12 i n f o v a l u e = obj . g e t i n f o (i n f o)
13 except :
14 i n f o v a l u e = ”<e r ro r>”
15
16 print ”%s : %s ” % (info name , i n f o v a l u e)
17
18 for plat form in c l . g e t p l a t f o rms () :
19 print 75∗ ”=”
20 print plat form
21 print 75∗ ”=”

E SOURCE CODE 113

22 p r i n t i n f o (platform , c l . p l a t f o rm in f o)
23
24 for dev i c e in plat form . g e t d e v i c e s () :
25 print 75∗ ”−”
26 print dev i c e
27 print 75∗ ”−”
28 p r i n t i n f o (device , c l . d e v i c e i n f o)

114 E SOURCE CODE

E.4 Device Benchmark Properties

This is a script that outputs device info and performs a simple benchmark
between Python code run on the CPU, and an equivalent code run in OpenCL
on all OpenCL-usable devices. The benchmark is a simple vector operation,
written by Roger Pau Monn’e and included with PyOpenCL as an example.

Listing 9: Benchmarking Application
1 # Filename : benchmark−a l l . py
2 # Info : Perform a simple benchmark on a l l a v a i l a b l e d ev i c e s
3 # Author : Roger Pau Monn ’ e , a v a i l a b l e in PyOpenCL module
4
5 import pyopencl as c l
6 import numpy
7 import numpy . l i n a l g as l a
8 import datet ime
9 from time import time

10
11 a = numpy . random . rand (1000) . astype (numpy . f l o a t 3 2)
12 b = numpy . random . rand (1000) . astype (numpy . f l o a t 3 2)
13 c r e s u l t = numpy . empty l ike (a)
14
15 # Speed in normal CPU usage
16 time1 = time ()
17 for i in range (1000) :
18 for j in range (1000) :
19 c r e s u l t [i] = a [i] + b [i]
20 c r e s u l t [i] = c r e s u l t [i] ∗ (a [i] + b [i])
21 c r e s u l t [i] = c r e s u l t [i] ∗ (a [i] / 2 . 0)
22 time2 = time ()
23 print ”Execution time o f t e s t without OpenCL : ” , time2 − time1 , ”s ”
24
25
26 for plat form in c l . g e t p l a t f o rms () :
27 for dev i c e in plat form . g e t d e v i c e s () :
28 print ”===========================”
29 print ”Platform name : ” , p lat form . name
30 print ”Platform p r o f i l e : ” , p lat form . p r o f i l e
31 print ”Platform vendor : ” , p lat form . vendor
32 print ”Platform ve r s i on : ” , p lat form . v e r s i on
33 print ”−−−−−−−−−−−−−−−−−−−−−−−−−−−”
34 print ”Device name : ” , dev i c e . name
35 print ”Device type : ” , c l . d ev i c e type . t o s t r i n g (dev i c e . type)
36 print ”Device memory : ” , dev i c e . g loba l mem size //1024//1024 , ’MB’
37 print ”Device max c l o ck speed : ” , dev i c e . max clock frequency , ’MHz ’
38 print ”Device compute un i t s : ” , dev i c e . max compute units
39
40 # Simnple speed t e s t
41 ctx = c l . Context ([dev i c e])
42 queue = c l .CommandQueue(ctx ,
43 p r op e r t i e s=c l . command queue properties .PROFILING ENABLE)
44
45 mf = c l . mem flags
46 a buf = c l . Bu f f e r (ctx , mf .READONLY | mf .COPY HOST PTR, hostbuf=a)
47 b buf = c l . Bu f f e r (ctx , mf .READONLY | mf .COPY HOST PTR, hostbuf=b)
48 de s t bu f = c l . Bu f f e r (ctx , mf .WRITE ONLY, b . nbytes)
49
50 prg = c l . Program(ctx , ”””
51 k e r n e l vo id sum(g l o b a l const f l o a t ∗a ,

E SOURCE CODE 115

52 g l o b a l const f l o a t ∗b , g l o b a l f l o a t ∗c)
53 {
54 i n t loop ;
55 i n t g id = g e t g l o b a l i d (0) ;
56 f o r (loop=0; loop <1000; loop++)
57 {
58 c [g id] = a [g id] + b [g id] ;
59 c [g id] = c [g id] ∗ (a [g id] + b [g id]) ;
60 c [g id] = c [g id] ∗ (a [g id] / 2 .0) ;
61 }
62 }
63 ”””) . bu i ld ()
64
65 exec ev t = prg . sum(queue , a . shape , None , a buf , b buf , d e s t bu f)
66 exec ev t . wait ()
67 e lapsed = 1e−9∗(exec ev t . p r o f i l e . end − exec ev t . p r o f i l e . s t a r t)
68
69 print ”Execution time o f t e s t : %g s ” % e lapsed
70
71 c = numpy . empty l ike (a)
72 c l . enqueue r ead bu f f e r (queue , des t buf , c) . wait ()
73 e r r o r = 0
74 for i in range (1000) :
75 i f c [i] != c r e s u l t [i] :
76 e r r o r = 1
77 i f e r r o r :
78 print ”Resu l t s doesn ’ t match ! ! ”
79 else :
80 print ”Resu l t s OK”

