

Getting Started with Apache
Spark

Inception to Production
James A. Scott

Getting Started with Apache Spark
by James A. Scott
Copyright © 2015 James A. Scott and MapR Technologies, Inc. All rights re-
served.
Printed in the United States of America
Published by MapR Technologies, Inc., 350 Holger Way, San Jose, CA 95134
September 2015: First Edition
Revision History for the First Edition:
2015-09-01: First release
Apache, Apache Spark, Apache Hadoop, Spark and Hadoop are trademarks of
The Apache Software Foundation. Used with permission. No endorsement by
The Apache Software Foundation is implied by the use of these marks.
While every precaution has been taken in the preparation of this book, the pub-
lished and authors assume no responsibility for errors or omissions, or for dam-
ages resulting from the use of the information contained herein.

Table of Contents

CHAPTER 1: What is Apache Spark 7

What is Spark? 7

Who Uses Spark? 9

What is Spark Used For? 9

CHAPTER 2: How to Install Apache Spark 11

A Very Simple Spark Installation 11

Testing Spark 12

CHAPTER 3: Apache Spark Architectural Overview 15

Development Language Support 15

Deployment Options 16

Storage Options 16

The Spark Stack 17

Resilient Distributed Datasets (RDDs) 18

API Overview 19

The Power of Data Pipelines 20

CHAPTER 4: Benefits of Hadoop and Spark 21

Hadoop vs. Spark - An Answer to the Wrong Question 21

What Hadoop Gives Spark 22

What Spark Gives Hadoop 23

CHAPTER 5: Solving Business Problems with Spark 25

iii

Processing Tabular Data with Spark SQL 25

Sample Dataset 26

Loading Data into Spark DataFrames 26

Exploring and Querying the eBay Auction Data 28

Summary 29

Computing User Profiles with Spark 29

Delivering Music 29

Looking at the Data 30

Customer Analysis 32

The Results 34

CHAPTER 6: Spark Streaming Framework and Processing Models 35

The Details of Spark Streaming 35

The Spark Driver 38

Processing Models 38

Picking a Processing Model 39

Spark Streaming vs. Others 40

Performance Comparisons 41

Current Limitations 41

CHAPTER 7: Putting Spark into Production 43

Breaking it Down 43

Spark and Fighter Jets 43

Learning to Fly 43

Assessment 44

Planning for the Coexistence of Spark and Hadoop 44

Advice and Considerations 46

CHAPTER 8: Spark In-Depth Use Cases 49

Building a Recommendation Engine with Spark 49

Table of Contents

iv

Collaborative Filtering with Spark 50

Typical Machine Learning Workflow 51

The Sample Set 52

Loading Data into Spark DataFrames 52

Explore and Query with Spark DataFrames 54

Using ALS with the Movie Ratings Data 56

Making Predictions 57

Evaluating the Model 58

Machine Learning Library (MLlib) with Spark 63

Dissecting a Classic by the Numbers 64

Building the Classifier 65

The Verdict 71

Getting Started with Apache Spark Conclusion 71

CHAPTER 9: Apache Spark Developer Cheat Sheet 73

Transformations (return new RDDs – Lazy) 73

Actions (return values – NOT Lazy) 76

Persistence Methods 78

Additional Transformation and Actions 79

Extended RDDs w/ Custom Transformations and Actions 80

Streaming Transformations 81

RDD Persistence 82

Shared Data 83

MLlib Reference 84

Other References 84

Table of Contents

v

What is Apache Spark

A new name has entered many of the conversations around big data recently.
Some see the popular newcomer Apache Spark™ as a more accessible and
more powerful replacement for Hadoop, big data’s original technology of
choice. Others recognize Spark as a powerful complement to Hadoop and other
more established technologies, with its own set of strengths, quirks and limita-
tions.

Spark, like other big data tools, is powerful, capable, and well-suited to
tackling a range of data challenges. Spark, like other big data technologies,
is not necessarily the best choice for every data processing task.

In this report, we introduce Spark and explore some of the areas in which its
particular set of capabilities show the most promise. We discuss the relation-
ship to Hadoop and other key technologies, and provide some helpful pointers
so that you can hit the ground running and confidently try Spark for yourself.

What is Spark?

Spark began life in 2009 as a project within the AMPLab at the University of Cali-
fornia, Berkeley. More specifically, it was born out of the necessity to prove out
the concept of Mesos, which was also created in the AMPLab. Spark was first
discussed in the Mesos white paper titled Mesos: A Platform for Fine-Grained Re-
source Sharing in the Data Center, written most notably by Benjamin Hindman
and Matei Zaharia.

From the beginning, Spark was optimized to run in memory, helping process
data far more quickly than alternative approaches like Hadoop’s MapReduce,
which tends to write data to and from computer hard drives between each
stage of processing. Its proponents claim that Spark running in memory can be
100 times faster than Hadoop MapReduce, but also 10 times faster when pro-
cessing disk-based data in a similar way to Hadoop MapReduce itself. This com-
parison is not entirely fair, not least because raw speed tends to be more impor-

7

1

tant to Spark’s typical use cases than it is to batch processing, at which
MapReduce-like solutions still excel.

Spark became an incubated project of the Apache Software Foundation in
2013, and early in 2014, Apache Spark was promoted to become one of the
Foundation’s top-level projects. Spark is currently one of the most active
projects managed by the Foundation, and the community that has grown up
around the project includes both prolific individual contributors and well-
funded corporate backers such as Databricks, IBM and China’s Huawei.

Spark is a general-purpose data processing engine, suitable for use in a wide
range of circumstances. Interactive queries across large data sets, processing of
streaming data from sensors or financial systems, and machine learning tasks
tend to be most frequently associated with Spark. Developers can also use it to
support other data processing tasks, benefiting from Spark’s extensive set of
developer libraries and APIs, and its comprehensive support for languages such
as Java, Python, R and Scala. Spark is often used alongside Hadoop’s data stor-
age module, HDFS, but can also integrate equally well with other popular data
storage subsystems such as HBase, Cassandra, MapR-DB, MongoDB and Ama-
zon’s S3.

There are many reasons to choose Spark, but three are key:

• Simplicity: Spark’s capabilities are accessible via a set of rich APIs, all de-
signed specifically for interacting quickly and easily with data at scale.
These APIs are well documented, and structured in a way that makes it
straightforward for data scientists and application developers to quickly
put Spark to work;

• Speed: Spark is designed for speed, operating both in memory and on
disk. In 2014, Spark was used to win the Daytona Gray Sort benchmark-
ing challenge, processing 100 terabytes of data stored on solid-state
drives in just 23 minutes. The previous winner used Hadoop and a differ-
ent cluster configuration, but it took 72 minutes. This win was the result
of processing a static data set. Spark’s performance can be even greater
when supporting interactive queries of data stored in memory, with
claims that Spark can be 100 times faster than Hadoop’s MapReduce in
these situations;

• Support: Spark supports a range of programming languages, including
Java, Python, R, and Scala. Although often closely associated with Ha-
doop’s underlying storage system, HDFS, Spark includes native support
for tight integration with a number of leading storage solutions in the Ha-
doop ecosystem and beyond. Additionally, the Apache Spark community
is large, active, and international. A growing set of commercial providers

CHAPTER 1: What is Apache Spark

8

https://spark.apache.org/news/spark-wins-daytona-gray-sort-100tb-benchmark.html
https://spark.apache.org/news/spark-wins-daytona-gray-sort-100tb-benchmark.html

including Databricks, IBM, and all of the main Hadoop vendors deliver
comprehensive support for Spark-based solutions.

Who Uses Spark?

A wide range of technology vendors have been quick to support Spark, recog-
nizing the opportunity to extend their existing big data products into areas such
as interactive querying and machine learning, where Spark delivers real value.
Well-known companies such as IBM and Huawei have invested significant sums
in the technology, and a growing number of startups are building businesses
that depend in whole or in part upon Spark. In 2013, for example, the Berkeley
team responsible for creating Spark founded Databricks, which provides a hos-
ted end-to-end data platform powered by Spark.

The company is well-funded, having received $47 million across two rounds
of investment in 2013 and 2014, and Databricks employees continue to play a
prominent role in improving and extending the open source code of the Apache
Spark project.

The major Hadoop vendors, including MapR, Cloudera and Hortonworks,
have all moved to support Spark alongside their existing products, and each is
working to add value for their customers.

Elsewhere, IBM, Huawei and others have all made significant investments in
Apache Spark, integrating it into their own products and contributing enhance-
ments and extensions back to the Apache project.

Web-based companies like Chinese search engine Baidu, e-commerce opera-
tion Alibaba Taobao, and social networking company Tencent all run Spark-
based operations at scale, with Tencent’s 800 million active users reportedly
generating over 700 TB of data per day for processing on a cluster of more than
8,000 compute nodes.

In addition to those web-based giants, pharmaceutical company Novartis
depends upon Spark to reduce the time required to get modeling data into the
hands of researchers, while ensuring that ethical and contractual safeguards
are maintained.

What is Spark Used For?

Spark is a general-purpose data processing engine, an API-powered toolkit
which data scientists and application developers incorporate into their applica-
tions to rapidly query, analyze and transform data at scale. Spark’s flexibility
makes it well-suited to tackling a range of use cases, and it is capable of han-
dling several petabytes of data at a time, distributed across a cluster of thou-
sands of cooperating physical or virtual servers. Typical use cases include:

Who Uses Spark?

9

• Stream processing: From log files to sensor data, application developers
increasingly have to cope with “streams” of data. This data arrives in a
steady stream, often from multiple sources simultaneously. While it is cer-
tainly feasible to allow these data streams to be stored on disk and ana-
lyzed retrospectively, it can sometimes be sensible or important to pro-
cess and act upon the data as it arrives. Streams of data related to finan-
cial transactions, for example, can be processed in real time to identify--
and refuse--potentially fraudulent transactions.

• Machine learning: As data volumes grow, machine learning approaches
become more feasible and increasingly accurate. Software can be trained
to identify and act upon triggers within well-understood data sets before
applying the same solutions to new and unknown data. Spark’s ability to
store data in memory and rapidly run repeated queries makes it well-
suited to training machine learning algorithms. Running broadly similar
queries again and again, at scale, significantly reduces the time required
to iterate through a set of possible solutions in order to find the most effi-
cient algorithms.

• Interactive analytics: Rather than running pre-defined queries to create
static dashboards of sales or production line productivity or stock prices,
business analysts and data scientists increasingly want to explore their
data by asking a question, viewing the result, and then either altering the
initial question slightly or drilling deeper into results. This interactive
query process requires systems such as Spark that are able to respond
and adapt quickly.

• Data integration: Data produced by different systems across a business
is rarely clean or consistent enough to simply and easily be combined for
reporting or analysis. Extract, transform, and load (ETL) processes are
often used to pull data from different systems, clean and standardize it,
and then load it into a separate system for analysis. Spark (and Hadoop)
are increasingly being used to reduce the cost and time required for this
ETL process.

CHAPTER 1: What is Apache Spark

10

How to Install Apache Spark

Although cluster-based installations of Spark can become large and relatively
complex by integrating with Mesos, Hadoop, Cassandra, or other systems, it is
straightforward to download Spark and configure it in standalone mode on a
laptop or server for learning and exploration. This low barrier to entry makes it
relatively easy for individual developers and data scientists to get started with
Spark, and for businesses to launch pilot projects that do not require complex
re-tooling or interference with production systems.

Apache Spark is open source software, and can be freely downloaded from
the Apache Software Foundation. Spark requires at least version 6 of Java, and
at least version 3.0.4 of Maven. Other dependencies, such as Scala and Zinc, are
automatically installed and configured as part of the installation process.

Build options, including optional links to data storage systems such as Ha-
doop’s HDFS or Hive, are discussed in more detail in Spark’s online documenta-
tion.

A Quick Start guide, optimized for developers familiar with either Python or
Scala, is an accessible introduction to working with Spark.

One of the simplest ways to get up and running with Spark is to use the
MapR Sandbox which includes Spark. MapR provides a tutorial linked to their
simplified deployment of Hadoop.

A Very Simple Spark Installation

Follow these simple steps to download Java, Spark, and Hadoop and get them
running on a laptop (in this case, one running Mac OS X). If you do not currently
have the Java JDK (version 7 or higher) installed, download it and follow the
steps to install it for your operating system.

Visit the Spark downloads page, select a pre-built package, and download
Spark. Double-click the archive file to expand its contents ready for use.

11

2

https://spark.apache.org/downloads.html
http://spark.apache.org/docs/latest/building-spark.html
https://spark.apache.org/docs/1.4.1/quick-start.html
https://www.mapr.com/products/mapr-sandbox-hadoop
https://www.mapr.com/products/mapr-sandbox-hadoop/tutorials/spark-tutorial
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://spark.apache.org/downloads.html

FIGURE 2-1
Apache Spark download page, with a pre-built package

Testing Spark

Open a text console, and navigate to the newly created directory. Start Spark’s
interactive shell:

./bin/spark-shell

A series of messages will scroll past as Spark and Hadoop are configured.
Once the scrolling stops, you will see a simple prompt.

CHAPTER 2: How to Install Apache Spark

12

FIGURE 2-2
Terminal window after Spark starts running

At this prompt, let’s create some data; a simple sequence of numbers from 1
to 50,000.

val data = 1 to 50000

Now, let’s place these 50,000 numbers into a Resilient Distributed Dataset
(RDD) which we’ll call sparkSample. It is this RDD upon which Spark can per-
form analysis.

val sparkSample = sc.parallelize(data)

Now we can filter the data in the RDD to find any values of less than 10.

sparkSample.filter(_ < 10).collect()

Testing Spark

13

FIGURE 2-3
Values less than 10, from a set of 50,000 numbers

Spark should report the result, with an array containing any values less than
10. Richer and more complex examples are available in resources mentioned
elsewhere in this guide.

Spark has a very low entry barrier to get started, which eases the burden of
learning a new toolset. Barrier to entry should always be a consideration for
any new technology a company evaluates for enterprise use.

CHAPTER 2: How to Install Apache Spark

14

Apache Spark Architectural
Overview

Spark is a top-level project of the Apache Software Foundation, designed to be
used with a range of programming languages and on a variety of architectures.
Spark’s speed, simplicity, and broad support for existing development environ-
ments and storage systems make it increasingly popular with a wide range of
developers, and relatively accessible to those learning to work with it for the
first time. The project supporting Spark’s ongoing development is one of
Apache’s largest and most vibrant, with over 500 contributors from more than
200 organizations responsible for code in the current software release.

Development Language Support

Comprehensive support for the development languages with which developers
are already familiar is important so that Spark can be learned relatively easily,
and incorporated into existing applications as straightforwardly as possible.
Programming languages supported by Spark include:

• Java

• Python

• Scala

• SQL

• R

Languages like Python are often regarded as poorly performing languages,
especially in relation to alternatives such as Java. Although this concern is justi-
fied in some development environments, it is less significant in the distributed
cluster model in which Spark will typically be deployed. Any slight loss of per-
formance introduced by the use of Python can be compensated for elsewhere
in the design and operation of the cluster. Familiarity with your chosen lan-

15

3

https://spark.apache.org/docs/latest/api/java/index.html
https://spark.apache.org/docs/latest/api/python/index.html
https://spark.apache.org/docs/latest/api/scala/index.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/api/R/index.html

guage is likely to be far more important than the raw speed of code prepared in
that language.

Extensive examples and tutorials exist for Spark in a number of places, in-
cluding the Apache Spark project website itself. These tutorials normally in-
clude code snippets in Java, Python and Scala.

The Structured Query Language, SQL, is widely used in relational databases,
and simple SQL queries are normally well-understood by developers, data sci-
entists and others who are familiar with asking questions of any data storage
system. The Apache Spark module--Spark SQL--offers native support for SQL
and simplifies the process of querying data stored in Spark’s own Resilient Dis-
tributed Dataset model, alongside data from external sources such as relational
databases and data warehouses.

Support for the data science package, R, is more recent. The SparkR package
first appeared in release 1.4 of Apache Spark (in June 2015), but given the popu-
larity of R among data scientists and statisticians, it is likely to prove an impor-
tant addition to Spark’s set of supported languages.

Deployment Options

As noted in the previous chapter, Spark is easy to download and install on a lap-
top or virtual machine. Spark was built to be able to run in a couple different
ways: standalone, or part of a cluster.

But for production workloads that are operating at scale, a single laptop or
virtual machine is not likely to be sufficient. In these circumstances, Spark will
normally run on an existing big data cluster. These clusters are often also used
for Hadoop jobs, and Hadoop’s YARN resource manager will generally be used
to manage that Hadoop cluster (including Spark). Running Spark on YARN,
from the Apache Spark project, provides more configuration details.

For those who prefer alternative resource managers, Spark can also run just
as easily on clusters controlled by Apache Mesos. Running Spark on Mesos,
from the Apache Spark project, provides more configuration details.

A series of scripts bundled with current releases of Spark simplify the pro-
cess of launching Spark on Amazon Web Services’ Elastic Compute Cloud (EC2).
Running Spark on EC2, from the Apache Spark project, provides more configu-
ration details.

Storage Options

Although often linked with the Hadoop Distributed File System (HDFS), Spark
can integrate with a range of commercial or open source third-party data stor-
age systems, including:

CHAPTER 3: Apache Spark Architectural Overview

16

https://spark.apache.org/examples.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/ec2-scripts.html

• MapR (file system and database)

• Google Cloud

• Amazon S3

• Apache Cassandra

• Apache Hadoop (HDFS)

• Apache HBase

• Apache Hive

• Berkeley’s Tachyon project

Developers are most likely to choose the data storage system they are al-
ready using elsewhere in their workflow.

The Spark Stack

FIGURE 3-1
Spark Stack Diagram

The Spark project stack currently is comprised of Spark Core and four libra-
ries that are optimized to address the requirements of four different use cases.
Individual applications will typically require Spark Core and at least one of
these libraries. Spark’s flexibility and power become most apparent in applica-
tions that require the combination of two or more of these libraries on top of
Spark Core.

• Spark Core: This is the heart of Spark, and is responsible for manage-
ment functions such as task scheduling. Spark Core implements and de-

The Spark Stack

17

pends upon a programming abstraction known as Resilient Distributed
Datasets (RDDs), which are discussed in more detail below.

• Spark SQL: This is Spark’s module for working with structured data, and
it is designed to support workloads that combine familiar SQL database
queries with more complicated, algorithm-based analytics. Spark SQL
supports the open source Hive project, and its SQL-like HiveQL query syn-
tax. Spark SQL also supports JDBC and ODBC connections, enabling a de-
gree of integration with existing databases, data warehouses and busi-
ness intelligence tools. JDBC connectors can also be used to integrate
with Apache Drill, opening up access to an even broader range of data
sources.

• Spark Streaming: This module supports scalable and fault-tolerant pro-
cessing of streaming data, and can integrate with established sources of
data streams like Flume (optimized for data logs) and Kafka (optimized
for distributed messaging). Spark Streaming’s design, and its use of
Spark’s RDD abstraction, are meant to ensure that applications written
for streaming data can be repurposed to analyze batches of historical da-
ta with little modification.

• MLlib: This is Spark’s scalable machine learning library, which imple-
ments a set of commonly used machine learning and statistical algo-
rithms. These include correlations and hypothesis testing, classification
and regression, clustering, and principal component analysis.

• GraphX: This module began life as a separate UC Berkeley research
project, which was eventually donated to the Apache Spark project.
GraphX supports analysis of and computation over graphs of data, and
supports a version of graph processing’s Pregel API. GraphX includes a
number of widely understood graph algorithms, including PageRank.

• Spark R: This module was added to the 1.4.x release of Apache Spark,
providing data scientists and statisticians using R with a lightweight
mechanism for calling upon Spark’s capabilities.

Resilient Distributed Datasets (RDDs)

The Resilient Distributed Dataset is a concept at the heart of Spark. It is de-
signed to support in-memory data storage, distributed across a cluster in a
manner that is demonstrably both fault-tolerant and efficient. Fault-tolerance is
achieved, in part, by tracking the lineage of transformations applied to coarse-
grained sets of data. Efficiency is achieved through parallelization of processing

CHAPTER 3: Apache Spark Architectural Overview

18

across multiple nodes in the cluster, and minimization of data replication be-
tween those nodes. Once data is loaded into an RDD, two basic types of opera-
tion can be carried out:

• Transformations, which create a new RDD by changing the original
through processes such as mapping, filtering, and more;

• Actions, such as counts, which measure but do not change the original
data.

The original RDD remains unchanged throughout. The chain of transforma-
tions from RDD1 to RDDn are logged, and can be repeated in the event of data
loss or the failure of a cluster node.

Transformations are said to be lazily evaluated, meaning that they are not
executed until a subsequent action has a need for the result. This will normally
improve performance, as it can avoid the need to process data unnecessarily. It
can also, in certain circumstances, introduce processing bottlenecks that cause
applications to stall while waiting for a processing action to conclude.

Where possible, these RDDs remain in memory, greatly increasing the perfor-
mance of the cluster, particularly in use cases with a requirement for iterative
queries or processes.

API Overview

Spark’s capabilities can all be accessed and controlled using a rich API. This
supports Spark’s four principal development environments: (Scala, Java,
Python, R), and extensive documentation is provided regarding the API’s in-
stantiation in each of these languages. The Spark Programming Guide pro-
vides further detail, with comprehensive code snippets in Scala, Java and
Python. The Spark API was optimized for manipulating data, with a design that
reduced common data science tasks from hundreds or thousands of lines of
code to only a few.

An additional DataFrames API was added to Spark in 2015. DataFrames of-
fer:

• Ability to scale from kilobytes of data on a single laptop to petabytes on a
large cluster

• Support for a wide array of data formats and storage systems

• State-of-the-art optimization and code generation through the Spark SQL
Catalyst optimizer

• Seamless integration with all big data tooling and infrastructure via Spark

• APIs for Python, Java, Scala, and R

API Overview

19

https://spark.apache.org/docs/latest/api/scala/index.html
https://spark.apache.org/docs/latest/api/java/index.html
https://spark.apache.org/docs/latest/api/python/index.html
https://spark.apache.org/docs/latest/api/R/index.html
http://spark.apache.org/docs/latest/programming-guide.html
https://databricks.com/blog/2015/02/17/introducing-dataframes-in-spark-for-large-scale-data-science.html
https://databricks.com/blog/2015/02/17/introducing-dataframes-in-spark-for-large-scale-data-science.html

For those familiar with a DataFrames API in other languages like R or pandas
in Python, this API will make them feel right at home. For those not familiar
with the API, but already familiar with Spark, this extended API will ease appli-
cation development, while helping to improve performance via the optimiza-
tions and code generation.

The Power of Data Pipelines

Much of Spark’s power lies in its ability to combine very different techniques
and processes together into a single, coherent, whole. Outside Spark, the dis-
crete tasks of selecting data, transforming that data in various ways, and ana-
lyzing the transformed results might easily require a series of separate process-
ing frameworks such as Apache Oozie. Spark, on the other hand, offers the abil-
ity to combine these together, crossing boundaries between batch, streaming
and interactive workflows in ways that make the user more productive.

Spark jobs perform multiple operations consecutively, in memory and only
spilling to disk when required by memory limitations. Spark simplifies the man-
agement of these disparate processes, offering an integrated whole--a data
pipeline that is easier to configure, easier to run, and easier to maintain. In use
cases such as ETL, these pipelines can become extremely rich and complex,
combining large numbers of inputs and a wide range of processing steps into a
unified whole that consistently delivers the desired result.

CHAPTER 3: Apache Spark Architectural Overview

20

Benefits of Hadoop and Spark

Spark is a general-purpose data processing engine, suitable for use in a wide
range of circumstances. In its current form, however, Spark is not designed to
deal with the data management and cluster administration tasks associated
with running data processing and analysis workloads at scale.

Rather than investing effort in building these capabilities into Spark, the
project currently leverages the strengths of other open source projects, relying
upon them for everything from cluster management and data persistence to
disaster recovery and compliance.

Projects like Apache Mesos offer a powerful and growing set of capabilities
around distributed cluster management. However, most Spark deployments to-
day still tend to use Apache Hadoop and its associated projects to fulfill these
requirements.

Hadoop vs. Spark - An Answer to the Wrong
Question

Spark is not, despite the hype, a replacement for Hadoop. Nor is MapReduce
dead.

Spark can run on top of Hadoop, benefiting from Hadoop’s cluster manager
(YARN) and underlying storage (HDFS, HBase, etc.). Spark can also run com-
pletely separately from Hadoop, integrating with alternative cluster managers
like Mesos and alternative storage platforms like Cassandra and Amazon S3.

Much of the confusion around Spark’s relationship to Hadoop dates back to
the early years of Spark’s development. At that time, Hadoop relied upon Map-
Reduce for the bulk of its data processing. Hadoop MapReduce also managed
scheduling and task allocation processes within the cluster; even workloads
that were not best suited to batch processing were passed through Hadoop’s
MapReduce engine, adding complexity and reducing performance.

MapReduce is really a programming model. In Hadoop MapReduce, multiple
MapReduce jobs would be strung together to create a data pipeline. In between

21

4

every stage of that pipeline, the MapReduce code would read data from the
disk, and when completed, would write the data back to the disk. This process
was inefficient because it had to read all the data from disk at the beginning of
each stage of the process. This is where Spark comes in to play. Taking the same
MapReduce programming model, Spark was able to get an immediate 10x in-
crease in performance, because it didn’t have to store the data back to the disk,
and all activities stayed in memory. Spark offers a far faster way to process data
than passing it through unnecessary Hadoop MapReduce processes.

Hadoop has since moved on with the development of the YARN cluster man-
ager, thus freeing the project from its early dependence upon Hadoop MapRe-
duce. Hadoop MapReduce is still available within Hadoop for running static
batch processes for which MapReduce is appropriate. Other data processing
tasks can be assigned to different processing engines (including Spark), with
YARN handling the management and allocation of cluster resources.

Spark is a viable alternative to Hadoop MapReduce in a range of circumstan-
ces. Spark is not a replacement for Hadoop, but is instead a great companion to
a modern Hadoop cluster deployment.

What Hadoop Gives Spark

Apache Spark is often deployed in conjunction with a Hadoop cluster, and
Spark is able to benefit from a number of capabilities as a result. On its own,
Spark is a powerful tool for processing large volumes of data. But, on its own,
Spark is not yet well-suited to production workloads in the enterprise. Integra-
tion with Hadoop gives Spark many of the capabilities that broad adoption and
use in production environments will require, including:

• YARN resource manager, which takes responsibility for scheduling tasks
across available nodes in the cluster;

• Distributed File System, which stores data when the cluster runs out of
free memory, and which persistently stores historical data when Spark is
not running;

• Disaster Recovery capabilities, inherent to Hadoop, which enable recov-
ery of data when individual nodes fail. These capabilities include basic
(but reliable) data mirroring across the cluster and richer snapshot and
mirroring capabilities such as those offered by the MapR Data Platform;

• Data Security, which becomes increasingly important as Spark tackles
production workloads in regulated industries such as healthcare and fi-
nancial services. Projects like Apache Knox and Apache Ranger offer data
security capabilities that augment Hadoop. Each of the big three vendors

CHAPTER 4: Benefits of Hadoop and Spark

22

have alternative approaches for security implementations that comple-
ment Spark. Hadoop’s core code, too, is increasingly recognizing the need
to expose advanced security capabilities that Spark is able to exploit;

• A distributed data platform, benefiting from all of the preceding points,
meaning that Spark jobs can be deployed on available resources any-
where in a distributed cluster, without the need to manually allocate and
track those individual jobs.

What Spark Gives Hadoop

Hadoop has come a long way since its early versions which were essentially
concerned with facilitating the batch processing of MapReduce jobs on large
volumes of data stored in HDFS. Particularly since the introduction of the YARN
resource manager, Hadoop is now better able to manage a wide range of data
processing tasks, from batch processing to streaming data and graph analysis.

Spark is able to contribute, via YARN, to Hadoop-based jobs. In particular,
Spark’s machine learning module delivers capabilities not easily exploited in
Hadoop without the use of Spark. Spark’s original design goal, to enable rapid
in-memory processing of sizeable data volumes, also remains an important
contribution to the capabilities of a Hadoop cluster.

In certain circumstances, Spark’s SQL capabilities, streaming capabilities
(otherwise available to Hadoop through Storm, for example), and graph pro-
cessing capabilities (otherwise available to Hadoop through Neo4J or Giraph)
may also prove to be of value in enterprise use cases.

What Spark Gives Hadoop

23

Solving Business Problems
with Spark

Now that you have learned how to get Spark up and running, it’s time to put
some of this practical knowledge to use. The use cases and code examples de-
scribed in this chapter are reasonably short and to the point. They are intended
to provide enough context on the problem being described so they can be
leveraged for solving many more problems.

If these use cases are not complicated enough for your liking, don’t fret, as
there are more in-depth use cases provided at the end of the book. Those use
cases are much more involved, and get into more details and capabilities of
Spark.

The first use case walks through loading and querying tabular data. This ex-
ample is a foundational construct of loading data in Spark. This will enable you
to understand how Spark gets data from disk, as well as how to inspect the data
and run queries of varying complexity.

The second use case here is about building user profiles from a music
streaming service. User profiles are used across almost all industries. The con-
cept of a customer 360 is based on a user profile. The premise behind a user
profile is to build a dossier about a user. Whether or not the user is a known
person or just a number in a database is usually a minor detail, but one that
would fall into areas of privacy concern. User profiles are also at the heart of all
major digital advertising campaigns. One of the most common Internet-based
scenarios for leveraging user profiles is to understand how long a user stays on
a particular website. All-in-all, building user profiles with Spark is child’s play.

Processing Tabular Data with Spark SQL

The examples here will help you get started using Apache Spark DataFrames
with Scala. The new Spark DataFrames API is designed to make big data pro-
cessing on tabular data easier. A Spark DataFrame is a distributed collection of
data organized into named columns that provides operations to filter, group, or

25

5

compute aggregates, and can be used with Spark SQL. DataFrames can be con-
structed from structured data files, existing RDDs, or external databases.

Sample Dataset

The dataset to be used is from eBay online auctions. The eBay online auction
dataset contains the following fields:

• auctionid - unique identifier of an auction

• bid - the proxy bid placed by a bidder

• bidtime - the time (in days) that the bid was placed, from the start of the
auction

• bidder - eBay username of the bidder

• bidderrate - eBay feedback rating of the bidder

• openbid - the opening bid set by the seller

• price - the closing price that the item sold for (equivalent to the second
highest bid + an increment)

The table below shows the fields with some sample data:

auctionid bid bidtime bidder
bid-
der-
rate

open-
bid price item

day-
sto-
live

8213034705 95 2.927373 jake7870 0 95 117.5 xbox 3

Using Spark DataFrames, we will explore the eBay data with questions like:

• How many auctions were held?

• How many bids were made per item?

• What’s the minimum, maximum, and average number of bids per item?

• Show the bids with price > 100

Loading Data into Spark DataFrames

First, we will import some packages and instantiate a sqlContext, which is the
entry point for working with structured data (rows and columns) in Spark and
allows the creation of DataFrame objects.

CHAPTER 5: Solving Business Problems with Spark

26

// SQLContext entry point for working with structured data
val sqlContext = new org.apache.spark.sql.SQLContext(sc)

// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.implicits._

// Import Spark SQL data types and Row.
import org.apache.spark.sql._

Start by loading the data from the ebay.csv file into a Resilient Distributed
Dataset (RDD). RDDs have transformations and actions; the first() action re-
turns the first element in the RDD:

// load the data into a new RDD
val ebayText = sc.textFile("ebay.csv")

// Return the first element in this RDD
ebayText.first()

Use a Scala case class to define the Auction schema corresponding to the
ebay.csv file. Then a map() transformation is applied to each element of ebay-
Text to create the ebay RDD of Auction objects.

//define the schema using a case class
case class Auction(auctionid: String, bid: Float, bidtime: Float,
 bidder: String, bidderrate: Integer, openbid: Float, price:
Float,
 item: String, daystolive: Integer)

// create an RDD of Auction objects
val ebay = ebayText.map(_.split(",")).map(p => Auction(p(0),
 p(1).toFloat,p(2).toFloat,p(3),p(4).toInt,p(5).toFloat,
 p(6).toFloat,p(7),p(8).toInt))

Calling first() action on the ebay RDD returns the first element in the RDD:

// Return the first element in this RDD
ebay.first()

// Return the number of elements in the RDD
ebay.count()

A DataFrame is a distributed collection of data organized into named col-
umns. Spark SQL supports automatically converting an RDD containing case
classes to a DataFrame with the method toDF():

// change ebay RDD of Auction objects to a DataFrame
val auction = ebay.toDF()

Processing Tabular Data with Spark SQL

27

Exploring and Querying the eBay Auction Data

DataFrames provide a domain-specific language for structured data manipula-
tion in Scala, Java, and Python; below are some examples with the auction Da-
taFrame. The show() action displays the top 20 rows in a tabular form:

// Display the top 20 rows of DataFrame
auction.show()

DataFrame printSchema() displays the schema in a tree format:

// Return the schema of this DataFrame
auction.printSchema()

After a DataFrame is instantiated it can be queried. Here are some example
using the Scala DataFrame API:

// How many auctions were held?
auction.select("auctionid").distinct.count

// How many bids per item?
auction.groupBy("auctionid", "item").count.show

// What's the min number of bids per item?
// what's the average? what's the max?
auction.groupBy("item", "auctionid").count
 .agg(min("count"), avg("count"),max("count")).show

// Get the auctions with closing price > 100
val highprice= auction.filter("price > 100")

// display dataframe in a tabular format
highprice.show()

A DataFrame can also be registered as a temporary table using a given
name, which can then have SQL statements run against it using the methods
provided by sqlContext. Here are some example queries using sqlContext:

CHAPTER 5: Solving Business Problems with Spark

28

// register the DataFrame as a temp table
auction.registerTempTable("auction")

// How many bids per auction?
val results = sqlContext.sql(
 "SELECT auctionid, item, count(bid) FROM auction
 GROUP BY auctionid, item"
)

// display dataframe in a tabular format
results.show()

val results = sqlContext.sql(
 "SELECT auctionid, MAX(price) FROM auction
 GROUP BY item,auctionid"
)
results.show()

Summary

You have now learned how to load data into Spark DataFrames, and explore
tabular data with Spark SQL. These code examples can be reused as the foun-
dation to solve any type of business problem.

Computing User Profiles with Spark

This use case will bring together the core concepts of Spark and use a large da-
taset to build a simple real-time dashboard that provides insight into customer
behaviors.

Spark is an enabling technology in a wide variety of use cases across many
industries. Spark is a great candidate anytime results are needed fast and much
of the computations can be done in memory. The language used here will be
Python, because it does a nice job of reducing the amount of boilerplate code
required to illustrate these examples.

Delivering Music

Music streaming is a rather pervasive technology which generates massive
quantities of data. This type of service is much like people would use every day
on a desktop or mobile device, whether as a subscriber or a free listener (per-
haps even similar to a Pandora). This will be the foundation of the use case to
be explored. Data from such a streaming service will be analyzed.

Computing User Profiles with Spark

29

The basic layout consists of customers whom are logging into this service
and listening to music tracks, and they have a variety of parameters:

• Demographic information (gender, location, etc.)

• Free / paid subscriber

• Listening history; tracks selected, when, and geolocation when they were
selected

Python, PySpark and MLlib will be used to compute some basic statistics for
a dashboard, enabling a high-level view of customer behaviors as well as a con-
stantly updated view of the latest information.

Looking at the Data

This service has users whom are continuously connecting to the service and lis-
tening to tracks. Customers listening to music from this streaming service gen-
erate events, and over time they represent the highest level of detail about cus-
tomers’ behaviors.

The data will be loaded directly from a CSV file. There are a couple of steps
to perform before it can be analyzed. The data will need to be transformed and
loaded into a PairRDD. This is because the data consists of arrays of (key, value)
tuples.

The customer events-individual tracks dataset (tracks.csv) consists of a col-
lection of events, one per line, where each event is a client listening to a track.
This size is approximately 1M lines and contains simulated listener events over
several months. Because this represents things that are happening at a very
low level, this data has the potential to grow very large.

CHAPTER 5: Solving Business Problems with Spark

30

Field
Name Event ID Custom-

er ID Track ID Datetime Mobile Listening
Zip

Type Integer Integer Integer String Inte-
ger Integer

Example 9999767 2597 788 2014-12-01
09:54:09 0 11003

The event, customer and track IDs show that a customer listened to a specif-
ic track. The other fields show associated information, like whether the custom-
er was listening on a mobile device, and a geolocation. This will serve as the
input into the first Spark job.

The customer information dataset (cust.csv) consists of all statically known
details about a user.

Field
Name

Cus-
tom-
er
ID

Name Gen-
der

Ad-
dress Zip Sign Date Sta-

tus
Lev-
el

Cam-
paign

Linked
with
apps?

Type
In-
te-
ger

String Inte-
ger String Inte-

ger String
In-
te-
ger

In-
te-
ger

Inte-
ger

Inte-
ger

Ex-
am-
ple

10
Joshua
Threadg-
ill

0

10084
Easy
Gate
Bend

66216 01/13/2013 0 1 1 1

The fields are defined as follows:

• Customer ID: a unique identifier for that customer

• Name, gender, address, zip: the customer’s associated information

• Sign date: the date of addition to the service

• Status: indicates whether or not the account is active (0 = closed, 1 = ac-
tive)

• Level: indicates what level of service -0, 1, 2 for Free, Silver and Gold, re-
spectively

• Campaign: indicates the campaign under which the user joined, defined
as the following (fictional) campaigns driven by our (also fictional) mar-
keting team:

◦ NONE no campaign

Computing User Profiles with Spark

31

◦ 30DAYFREE a ’30 days free’ trial offer

◦ SUPERBOWL a Super Bowl-related program

◦ RETAILSTORE an offer originating in brick-and-mortar retail stores

◦ WEBOFFER an offer for web-originated customers

Other datasets that would be available, but will not be used for this use
case, would include:

• Advertisement click history

• Track details like title, album and artist

Customer Analysis

All the right information is in place and a lot of micro-level detail is available
that describes what customers listen to and when. The quickest way to get this
data to a dashboard is by leveraging Spark to create summary information for
each customer as well as basic statistics about the entire user base. After the
results are generated, they can be persisted to a file which can be easily used
for visualization with BI tools such as Tableau, or other dashboarding frame-
works like C3.js or D3.js.

Step one in getting started is to initialize a Spark context. Additional param-
eters could be passed to the SparkConf method to further configure the job,
such as setting the master and the directory where the job executes.

from pyspark import SparkContext, SparkConf
from pyspark.mllib.stat import Statistics
import csv

conf = SparkConf().setAppName('ListenerSummarizer')
sc = SparkContext(conf=conf)

The next step will be to read the CSV records with the individual track
events, and make a PairRDD out of all of the rows. To convert each line of data
into an array, the map() function will be used, and then reduceByKey() is called
to consolidate all of the arrays.

trackfile = sc.textFile('/tmp/data/tracks.csv')

def make_tracks_kv(str):
 l = str.split(",")
 return [l[1], [[int(l[2]), l[3], int(l[4]), l[5]]]]

 # make a k,v RDD out of the input data
 tbycust = trackfile.map(lambda line: make_tracks_kv(line))
 .reduceByKey(lambda a, b: a + b)

CHAPTER 5: Solving Business Problems with Spark

32

The individual track events are now stored in a PairRDD, with the customer
ID as the key. A summary profile can now be computed for each user, which will
include:

• Average number of tracks during each period of the day (time ranges are
arbitrarily defined in the code)

• Total unique tracks, i.e., the set of unique track IDs

• Total mobile tracks, i.e., tracks played when the mobile flag was set

By passing a function to mapValues, a high-level profile can be computed
from the components. The summary data is now readily available to compute
basic statistics that can be used for display, using the colStats function from
pyspark.mllib.stat.

def compute_stats_byuser(tracks):
 mcount = morn = aft = eve = night = 0
 tracklist = []
 for t in tracks:
 trackid, dtime, mobile, zip = t
 if trackid not in tracklist:
 tracklist.append(trackid)
 d, t = dtime.split(" ")
 hourofday = int(t.split(":")[0])
 mcount += mobile
 if (hourofday < 5):
 night += 1
 elif (hourofday < 12):
 morn += 1
 elif (hourofday < 17):
 aft += 1
 elif (hourofday < 22):
 eve += 1
 else:
 night += 1
 return [len(tracklist), morn, aft, eve, night, mcount]

compute profile for each user
custdata = tbycust.mapValues(lambda a: compute_stats_byuser(a))

compute aggregate stats for entire track history
aggdata = Statistics.colStats(custdata.map(lambda x: x[1]))

The last line provides meaningful statistics like the mean and variance for
each of the fields in the per-user RDDs that were created in custdata.

Calling collect() on this RDD will persist the results back to a file. The results
could be stored in a database such as MapR-DB, HBase or an RDBMS (using a

Computing User Profiles with Spark

33

Python package like happybase or dbset). For the sake of simplicity for this ex-
ample, using CSV is the optimal choice. There are two files to output:

• live_table.csv containing the latest calculations

• agg_table.csv containing the aggregated data about all customers com-
puted with Statistics.colStats

for k, v in custdata.collect():
 unique, morn, aft, eve, night, mobile = v
 tot = morn + aft + eve + night

 # persist the data, in this case write to a file
with open('live_table.csv', 'wb') as csvfile:
 fwriter = csv.writer(csvfile, delimiter=' ',
 quotechar='|', quoting=csv.QUOTE_MINIMAL)
 fwriter.writerow(unique, morn, aft, eve, night, mobile)

 # do the same with the summary data
with open('agg_table.csv', 'wb') as csvfile:
 fwriter = csv.writer(csvfile, delimiter=' ',
 quotechar='|', quoting=csv.QUOTE_MINIMAL)
 fwriter.writerow(aggdata.mean()[0], aggdata.mean()[1],
 aggdata.mean()[2], aggdata.mean()[3], aggdata.mean()
[4],
 aggdata.mean()[5])

After the job completes, a summary is displayed of what was written to the
CSV table and the averages for all users.

The Results

With just a few lines of code in Spark, a high-level customer behavior view was
created, all computed using a dataset with millions of rows that stays current
with the latest information. Nearly any toolset that can utilize a CSV file can
now leverage this dataset for visualization.

This use case showcases how easy it is to work with Spark. Spark is a frame-
work for ensuring that new capabilities can be delivered well into the future, as
data volumes grow and become more complex.

CHAPTER 5: Solving Business Problems with Spark

34

Spark Streaming Framework
and Processing Models

Although now considered a key element of Spark, streaming capabilities were
only introduced to the project with its 0.7 release (February 2013), emerging
from the alpha testing phase with the 0.9 release (February 2014). Rather than
being integral to the design of Spark, stream processing is a capability that has
been added alongside Spark Core and its original design goal of rapid in-
memory data processing.

Other stream processing solutions exist, including projects like Apache
Storm and Apache Flink. In each of these, stream processing is a key design
goal, offering some advantages to developers whose sole requirement is the
processing of data streams. These solutions, for example, typically process the
data stream event-by-event, while Spark adopts a system of chopping the
stream into chunks (or micro-batches) to maintain compatibility and interoper-
ability with Spark Core and Spark’s other modules.

The Details of Spark Streaming

Spark’s real and sustained advantage over these alternatives is this tight inte-
gration between its stream and batch processing capabilities. Running in a pro-
duction environment, Spark Streaming will normally rely upon capabilities
from external projects like ZooKeeper and HDFS to deliver resilient scalability.
In real-world application scenarios, where observation of historical trends often
augments stream-based analysis of current events, this capability is of great
value in streamlining the development process. For workloads in which
streamed data must be combined with data from other sources, Spark remains
a strong and credible option.

35

6

FIGURE 6-1
Data from a variety of sources to various storage systems

A streaming framework is only as good as its data sources. A strong messag-
ing platform is the best way to ensure solid performance for any streaming sys-
tem.

Spark Streaming supports the ingest of data from a wide range of data sour-
ces, including live streams from Apache Kafka, Apache Flume, Amazon Kinesis,
Twitter, or sensors and other devices connected via TCP sockets. Data can also
be streamed out of storage services such as HDFS and AWS S3. Data is pro-
cessed by Spark Streaming, using a range of algorithms and high-level data pro-
cessing functions like map, reduce, join and window. Processed data can then
be passed to a range of external file systems, or used to populate live dash-
boards.

FIGURE 6-2
Incoming streams of data divided into batches

Logically, Spark Streaming represents a continuous stream of input data as a
discretized stream, or DStream. Internally, Spark actually stores and processes
this DStream as a sequence of RDDs. Each of these RDDs is a snapshot of all da-
ta ingested during a specified time period, which allows Spark’s existing batch
processing capabilities to operate on the data.

CHAPTER 6: Spark Streaming Framework and Processing Models

36

FIGURE 6-3
Input data stream divided into discrete chunks of data

The data processing capabilities in Spark Core and Spark’s other modules
are applied to each of the RDDs in a DStream in exactly the same manner as
they would be applied to any other RDD: Spark modules other than Spark
Streaming have no awareness that they are processing a data stream, and no
need to know.

A basic RDD operation, flatMap, can be used to extract individual words from
lines of text in an input source. When that input source is a data stream, flatMap
simply works as it normally would, as shown below.

FIGURE 6-4
Extracting words from an InputStream comprising lines of text

The Details of Spark Streaming

37

The Spark Driver

FIGURE 6-5
Components of a Spark cluster

Activities within a Spark cluster are orchestrated by a driver program using
the SparkContext. In the case of stream-based applications, the StreamingCon-
text is used. This exploits the cluster management capabilities of an external
tool like Mesos or Hadoop’s YARN to allocate resources to the Executor process-
es that actually work with data.

In a distributed and generally fault-tolerant cluster architecture, the driver is
a potential point of failure, and a heavy load on cluster resources.

Particularly in the case of stream-based applications, there is an expectation
and requirement that the cluster will be available and performing at all times.
Potential failures in the Spark driver must therefore be mitigated, wherever
possible. Spark Streaming introduced the practice of checkpointing to ensure
that data and metadata associated with RDDs containing parts of a stream are
routinely replicated to some form of fault-tolerant storage. This makes it feasi-
ble to recover data and restart processing in the event of a driver failure.

Processing Models

Spark Streaming itself supports commonly understood semantics for the pro-
cessing of items in a data stream. These semantics ensure that the system is
delivering dependable results, even in the event of individual node failures.

CHAPTER 6: Spark Streaming Framework and Processing Models

38

Items in the stream are understood to be processed in one of the following
ways:

• At most once: Each item will either be processed once or not at all;

• At least once: Each item will be processed one or more times, increasing
the likelihood that data will not be lost but also introducing the possibili-
ty that items may be duplicated;

• Exactly once: Each item will be processed exactly once.

Different input sources to Spark Streaming will offer different guarantees for
the manner in which data will be processed. With version 1.3 of Spark, a new
API enables exactly once ingest of data from Apache Kafka, improving data
quality throughout the workflow. This is discussed in more detail in the Inte-
gration Guide.

Picking a Processing Model

From a stream processing standpoint, at most once is the easiest to build. This
is due to the nature that the stream is “ok” with knowing that some data could
be lost. Most people would think there would never be a use case which would
tolerate at most once.

Consider a use case of a media streaming service. Lets say a customer of a
movie streaming service is watching a movie and the movie player emits check-
points every few seconds back to the media streaming service, detailing the
current point in the movie. This checkpoint would be used in case the movie
player crashes and the user needs to start where he/she left off. With at most
once processing, if the checkpoint is missed, the worst case is that the user may
have to rewatch a few additional seconds of the movie from the most recent
checkpoint that was created. This would have a very minimal impact on a user
of the system. The message might look something like:

{
 "checkpoint": {
 "user": "xyz123",
 "movie": "The Avengers",
 "time": "1:23:50"
 }
}

At least once will guarantee that none of those checkpoints will be lost. The
same case with at least once processing would change in that the same check-
point could potentially be replayed multiple times. If the stream processor han-
dling a checkpoint saved the checkpoint, then crashed before it could be ac-

Processing Models

39

http://spark.apache.org/docs/latest/streaming-kafka-integration.html
http://spark.apache.org/docs/latest/streaming-kafka-integration.html

knowledged, the checkpoint would be replayed when the server comes back
online.

This brings up an important note about replaying the same request multiple
times. At least once guarantees every request will be processed one or more
times, so there should be special considerations for creating code functions
that are idempotent. This means that an action can be repeated multiple times
and never produce a different result.

x = 4 // This is idempotent
x++ // This is NOT idempotent

If at least once was the requirement for this media streaming example, we
could add a field to the checkpoint to enable a different way of acting upon the
checkpoint:

"usersTime": "20150519T13:15:14"

With that extra piece of information, the function that persists the check-
point could check to see if usersTime is less than the latest checkpoint. This
would prevent overwriting a newer value and would cause the code function to
be idempotent.

Within the world of streaming, it is important to understand these concepts
and when they should matter for a streaming implementation.

Exactly once is the most costly model to implement. It requires special write-
ahead logs to be implemented to ensure that no datum is lost and that it was
acted upon exactly one-time, no-more, no-less. This model has a drastic impact
on throughput and performance in a computing system because of the guaran-
tees that it makes. Exactly once sounds nice and even makes people feel all
warm and fuzzy because everyone understands what the end result will be. The
trade-offs must be weighed before going down this route. If code functions can
be made to be idempotent, then there is NO VALUE in exactly once processing.
Generally, implementing at least once with idempotent functions should be the
goal of any stream processing system. Functions which cannot be made to be
idempotent and still require such a guarantee have little choice but to imple-
ment exactly once processing.

Spark Streaming vs. Others

Spark streaming operates on the concept of micro-batches. This means that
Spark Streaming should not be considered a real-time stream processing en-
gine. This is perhaps the single biggest difference between Spark Streaming
and other platforms such as Apache Storm or Apache Flink.

CHAPTER 6: Spark Streaming Framework and Processing Models

40

A micro-batch consists of a series of events batched together over a period
of time. The batch interval generally ranges from as little as 500ms to about
5,000ms (can be higher). While the batch interval is completely customizable, it
is important to note that it is set upon the creation of the StreamingContext. To
change this setting would require a restart of the streaming application due to
it being a statically configured value.

The shorter the time frame (500ms), the closer to real time, and also the
more overhead the system will endure. This is due to the need of creating more
RDDs for each and every micro-batch. The inverse is also true; the longer the
time frame, the further from real time and the less overhead that will occur for
processing each micro-batch.

An argument often made with the concept of a micro-batch in the context of
streaming applications is that it lacks the time-series data from each discrete
event. This can make it more difficult to know if events arrived out of order. This
may or may not be relevant to a business use case.

An application built upon Spark Streaming cannot react to every event as
they occur. This is not necessarily a bad thing, but it is instead very important to
make sure that everyone, everywhere understands the limitations and capabili-
ties of Spark Streaming.

Performance Comparisons

Spark Streaming is fast, but to make comparisons between Spark Streaming
and other stream processing engines, such as Apache Storm, is a difficult task.
The comparisons tend not to be apples-to-apples. Most benchmarks compari-
sons should be taken very lightly. Because Spark Streaming is micro-batch
based, it is going to tend to appear faster than nearly every system that is not
micro-batch based, but this trade-off comes at the cost of latency to process
the events in a stream. The closer to real-time that an event is processed, the
more overhead that occurs in Spark Streaming.

Current Limitations

Two of the biggest complaints about running Spark Streaming in production
are back pressure and out-of-order data.

Back pressure occurs when the volume of events coming across a stream is
more than the stream processing engine can handle. There are changes that
will show up in version 1.5 of Spark to enable more dynamic ingestion rate ca-
pabilities to make back pressure be less of an issue.

Current Limitations

41

More work is being performed to enable user-defined time extraction func-
tions. This will enable developers to check event time against events already
processed. Work in this area is expected in a future release of Spark.

CHAPTER 6: Spark Streaming Framework and Processing Models

42

Putting Spark into Production

“Spark is like a fighter jet that you have to build yourself. Once you have it built
though, you have a fighter jet. Pretty awesome. Now you have to learn to fly it.”

This analogy came from a conversation I had with someone at Strata Lon-
don in 2015. Let’s break down this quote to see the value it serves in discussing
Spark, and explain why this analogy may or may not be accurate.

Breaking it Down

Spark and Fighter Jets

Fighter jets are a phenomenal feat of engineering, but how is this relevant to
Spark? Well, building scalable applications can be difficult. Putting them into
production is even more difficult. Spark scales out of the box nearly as simply
as it is to install. A lot of work has gone into the thoughts and concepts of Spark
as a scalable platform.

Spark is powerful, not only in the terms of scalability, but in ease of building
applications. Spark has an API that is available in multiple languages and al-
lows nearly any business application to be built on top of it.

However, just because Spark can scale easily doesn’t mean everything writ-
ten to run in Spark can scale as easily.

Learning to Fly

While the API is similar or nearly identical between languages, this doesn’t
solve the problem of understanding the programming language of choice.
While a novice programmer may be able to write Java code with minimal effort,
it doesn’t mean they understand the proper constructs in the language to opti-
mize for a use case.

Let’s consider analytics in Python on Spark. While a user may understand
Python analytics, they may have no experience with concepts like predicate

43

7

movement, column pruning or filter scans. These features could have signifi-
cant impact when running queries at scale. Here are a few other topic areas
where people may overestimate how Spark works by drawing on experiences
with other technologies:

• Spark supports MapReduce, but people with a lot of experience with Ha-
doop MapReduce might try to transfer over ideas that don’t necessarily
translate over to Spark, such as functional programming constructs, type
safety, or lazy evaluation;

• Someone with database administration experience with any popular
RDBMS system may not be thinking of partitioning and serialization in
the same terms that would be useful in Spark;

Another thing that could cause problems would be trying to run multiple use
cases on a single Spark cluster. Java Virtual Machine configuration settings for a
Spark cluster could be optimized for a single use case. Deploying an alternate
use case on the same Spark cluster may not be optimized with the same set-
tings. However, with technologies like Mesos and YARN, this shouldn’t be a real
problem. Multiple Spark clusters can be deployed to cover specific use cases. It
could even be beneficial to create an ETL cluster and perhaps a cluster dedica-
ted to streaming applications, all while running on the the same underlying
hardware.

While these examples are not intended to be exhaustive, they hopefully clar-
ify the concept that any given language or platform still needs to be well under-
stood in order to get the most from it. Thus, really learning to fly.

Assessment

This analogy is pretty good, and hopefully it doesn’t scare anyone away from
using Spark. The fact is that building, deploying and managing distributed sys-
tems are complicated. Even though Spark tries to simplify as much as possible
with good default configuration settings, it is no exception to the level of com-
plication that distributed systems bring.

Planning for the Coexistence of Spark and Hadoop

As discussed earlier, Spark can run on its own. It is more commonly deployed as
part of a cluster, managed by Mesos or the YARN resource manager within Ha-
doop.

Spark should always run as close to the cluster’s storage nodes as possible.
Much like configuring Hadoop, network I/O is likely to be the biggest bottleneck

CHAPTER 7: Putting Spark into Production

44

in a deployment. Deploying with 10Gb+ networking hardware will minimize la-
tency and yield the best results. Never allocate more than 75% of available RAM
to Spark. The operating system needs to use it as well, and going higher could
cause paging. If a use case is so severely limited by 75% of available RAM, it
might be time to add more servers to the cluster.

Planning for the Coexistence of Spark and Hadoop

45

Advice and Considerations

Nearly any business out there can benefit from utilizing Spark to solve prob-
lems. Thinking through taking Spark into production is usually the tough part.
Some others in the industry have been kind enough to share some ideas on
how to successfully take Spark into production to solve business problems.
With any luck, the information provided here will help you be more successful
on your own journey to success.

Advice from our friends: Pepperdata

Reliability and Performance through Monitoring

As more organizations begin to deploy Spark in their production clusters, the need
for fine-grained monitoring tools becomes paramount. Having the ability to view
Spark resource consumption, and monitor how Spark applications are interacting
with other workloads on your cluster, can help you save time and money by:

• troubleshooting misbehaving applications;

• monitoring and improving performance;

• viewing trend analysis over time

When deploying Spark in production, here are some crucial considerations to keep
in mind:

Monitoring the Right Metrics?

How granular is your visibility into Spark’s activity on your cluster? Can you view all
the relevant variables you need to? These are important questions, especially for
troubleshooting errant applications or behavior.

With an out-of-the-box installation, Spark’s Application Web UI can display basic,
per-executor information about memory, CPU, and storage. By accessing the web
instance on port 4040 (default), you can see statistics about specific jobs, like their
duration, number of tasks, and whether they’ve completed.

But this default monitoring capability isn’t necessarily adequate. Take a basic sce-
nario: suppose a Spark application is reading heavily from disk, and you want to un-
derstand how it’s interacting with the file subsystem because the application is
missing critical deadlines. Can you easily view detailed information about file I/O
(both local file system and HDFS)? No, not with the default Spark Web UI. But this
granular visibility would be necessary to see how many files are being opened con-

CHAPTER 7: Putting Spark into Production

46

currently, and whether a specific disk is hot-spotting and slowing down overall
performance. With the right monitoring tool, discovering that the application at-
tempted to write heavily to disk at the same time as a MapReduce job could take
seconds instead of minutes or hours using basic Linux tools like Top or Iostat.

These variables are important, and without them you may be flying blind. Having
deep visibility helps you quickly troubleshoot and respond in-flight to performance
issues. Invest time in researching an add-on monitoring tool for Spark that meets
your organization’s needs.

Is Your Monitoring Tool Intuitive?

It’s great to have lots of data and metrics available to digest, but can you navigate
that data quickly? Can you find what you need, and once you do, can you make sense
of it? How quantitative information is displayed makes a difference. Your monitor-
ing tool should allow you to easily navigate across different time periods, as well as
to zoom in on a few seconds’ worth of data. You should have the option to plot the
data in various ways—line charts, by percentile, or in a stacked format, for exam-
ple. Note whether you can filter the data easily by user, job, host, or queue. In short,
can you use your monitoring tool intuitively, complementing your mental line of
questioning? Or do you have to work around the limitations of what the tool
presents?

If you have all the data, but can’t sort it easily to spot trends or quickly filter it to
drill down into a particular issue, then your data isn’t helping you. You won’t be
able to effectively monitor cluster performance or take advantage of the data you do
have. So make sure your tool is useful, in all senses of the word.

Can You See Global Impact?

Even if you are able to see the right metrics via an intuitive dashboard or user inter-
face, being limited in vantage point to a single Spark job or to a single node view is
not helpful. Whatever monitoring tool you choose should allow you to see not just
one Spark job, but all of them—and not just all your Spark jobs, but everything else
happening on your cluster, too. How is Spark impacting your HBase jobs or your
other MapReduce workloads?

Spark is only one piece in your environment, so you need to know how it integrates
with other aspects of your Hadoop ecosystem. This is a no-brainer from a trouble-
shooting perspective, but it’s also a good practice for general trend analysis. Per-
haps certain workloads cause greater impact to Spark performance than others, or
vice versa. If you anticipate an increase in Spark usage across your organization,
you’ll have to plan differently than if you hadn’t noticed that fact.

In summary, the reliability and performance of your Spark deployment depends on
what’s happening on your cluster, including both the execution of individual Spark
jobs and how Spark is interacting (and impacting) your broader Hadoop environ-
ment. To understand what Spark’s doing, you’ll need a monitoring tool that can

Advice and Considerations

47

provide deep, granular visibility as well as a wider, macro view of your entire sys-
tem. These sorts of tools are few and far between, so choose wisely.

CHAPTER 7: Putting Spark into Production

48

Spark In-Depth Use Cases

In a similar way to Chapter 5, we will be looking into new and exciting ways to
use Spark to solve real business problems. Instead of touching on simpler ex-
amples, it is time to get into the details. These are complicated problems that
are not easily solved without today’s current big data technologies. It’s a good
thing Spark is such a capable tool set.

The first use case will show you how to build a recommendation engine.
While the use case focuses on movies, recommendation engines are used all
across the Internet, from applying customized labels to email, to providing a
great book suggestion, to building a customized advertising engine against
custom-built user profiles. Since movies are fun to watch and to talk about and
are ingrained into pop culture, it only makes sense to talk about building a
movie recommendation engine with Spark.

The second use case is an introduction to unsupervised anomaly detection.
We will explore data for outliers with Spark. Two unsupervised approaches for
detecting anomalies will be demonstrated; clustering and unsupervised ran-
dom forests. The examples will use the KDD’99 dataset, commonly used for net-
work intrusion illustrations.

The final and perhaps most intellectually stimulating use case attempts to
answer a half-a-century old question, did Harper Lee write To Kill a Mocking-
bird? For many years, conspiracy buffs supported the urban legend that Truman
Capote, Lee’s close friend with considerably more literary creds, might have
ghost-authored the novel. The author’s reticence on that subject (as well as
every other subject) fueled the rumors and it became another urban legend.
This in-depth analysis digs into this question and uses Spark in an attempt to
answer this question once and for all.

Building a Recommendation Engine with Spark

Recommendation systems help narrow your choices to those that best meet
your particular needs, and they are among the most popular applications of big

49

8

data processing. This use case uses machine learning to perform parallel and
iterative processing in Spark and covers:

• Collaborative filtering for recommendations with Spark

• Loading and exploring the sample data set with Spark

• Using Spark MLlib’s Alternating Least Squares algorithm to make movie
recommendations

• Testing the results of the recommendations

Collaborative Filtering with Spark

Collaborative filtering algorithms recommend items (this is the filtering part)
based on preference information from many users (this is the collaborative
part). The collaborative filtering approach is based on similarity; the basic idea
is people who liked similar items in the past will like similar items in the future.
In the example below, Ted likes movies A, B, and C. Carol likes movies B and C.
Bob likes movie B. To recommend a movie to Bob, we calculate that users who
liked B also liked C, so C is a possible recommendation for Bob. Of course, this is
a tiny example. In real situations, we would have much more data to work with.

FIGURE 8-1
Users Item Rating Matrix

Spark MLlib implements a collaborative filtering algorithm called Alternat-
ing Least Squares (ALS).

ALS approximates the sparse user item rating matrix of dimension K as the
product of two dense matrices--User and Item factor matrices of size U×K and
I×K (see picture below). The factor matrices are also called latent feature mod-
els. The factor matrices represent hidden features which the algorithm tries to

CHAPTER 8: Spark In-Depth Use Cases

50

https://spark.apache.org/docs/latest/mllib-collaborative-filtering.html
https://spark.apache.org/docs/latest/mllib-collaborative-filtering.html

discover. One matrix tries to describe the latent or hidden features of each user,
and one tries to describe latent properties of each movie.

FIGURE 8-2
Calculation of a recommendation

ALS is an iterative algorithm. In each iteration, the algorithm alternatively fix-
es one factor matrix and solves for the other, and this process continues until it
converges. This alternation between which matrix to optimize is where the “al-
ternating” in the name comes from.

Typical Machine Learning Workflow

A typical machine learning workflow is shown below.

FIGURE 8-3
Maching Learning Workflow

This code will perform the following steps:

Building a Recommendation Engine with Spark

51

1. Load the sample data.

2. Parse the data into the input format for the ALS algorithm.

3. Split the data into two parts: one for building the model and one for test-
ing the model.

4. Run the ALS algorithm to build/train a user product matrix model.

5. Make predictions with the training data and observe the results.

6. Test the model with the test data.

The Sample Set

The table below shows the Rating data fields with some sample data:

user id movie id rating

1 1193 4

The table below shows the Movie data fields with some sample data:

movie id title genre

1 Toy Story animation

First, let’s explore the data using Spark DataFrames with questions like:

• Count the max, min ratings along with the number of users who have rat-
ed a movie.

• Display the title for movies with ratings > 4

Loading Data into Spark DataFrames

First, we will import some packages and instantiate a sqlContext, which is the
entry point for working with structured data (rows and columns) in Spark and
allows for the creation of DataFrame objects.

CHAPTER 8: Spark In-Depth Use Cases

52

// SQLContext entry point for working with structured data
val sqlContext = new org.apache.spark.sql.SQLContext(sc)

// This is used to implicitly convert an RDD to a DataFrame.
import sqlContext.implicits._
// Import Spark SQL data types
import org.apache.spark.sql._
// Import mllib recommendation data types
import org.apache.spark.mllib.recommendation.{ALS,
 MatrixFactorizationModel, Rating}

Below we use Scala case classes to define the Movie and User schemas cor-
responding to the movies.dat and users.dat files.

// input format MovieID::Title::Genres
case class Movie(movieId: Int, title: String, genres: Seq[String])

// input format is UserID::Gender::Age::Occupation::Zip-code
case class User(userId: Int, gender: String, age: Int,
 occupation: Int, zip: String)

The functions below parse a line from the movie.dat, user.dat, and rating.dat
files into the corresponding Movie and User classes.

// function to parse input into Movie class
def parseMovie(str: String): Movie = {
 val fields = str.split("::")
 assert(fields.size == 3)
 Movie(fields(0).toInt, fields(1))
 }

// function to parse input into User class
def parseUser(str: String): User = {
 val fields = str.split("::")
 assert(fields.size == 5)
 User(fields(0).toInt, fields(1).toString, fields(2).toInt,
 fields(3).toInt, fields(4).toString)
 }

Below we load the data from the ratings.dat file into a Resilient Distributed
Dataset (RDD). RDDs can have transformations and actions.

 // load the data into a RDD
val ratingText = sc.textFile("/user/user01/moviemed/ratings.dat")

// Return the first element in this RDD
ratingText.first()

Loading Data into Spark DataFrames

53

The first() action returns the first element in the RDD, which is the String
“1::1193::5::978300760”.

We use the org.apache.spark.mllib.recommendation.Rating class for parsing
the ratings.dat file. Later we will use the Rating class as input for the ALS run
method.

Then we use the map transformation on ratingText, which will apply the
parseRating function to each element in ratingText and return a new RDD of
Rating objects. We cache the ratings data, since we will use this data to build
the matrix model. Then we get the counts for the number of ratings, movies and
users.

// function to parse input UserID::MovieID::Rating
// Into org.apache.spark.mllib.recommendation.Rating class
def parseRating(str: String): Rating= {
 val fields = str.split("::")
 Rating(fields(0).toInt, fields(1).toInt, fields(2).toDouble)
}

// create an RDD of Ratings objects
val ratingsRDD = ratingText.map(parseRating).cache()

// count number of total ratings
val numRatings = ratingsRDD.count()

// count number of movies rated
val numMovies = ratingsRDD.map(_.product).distinct().count()

// count number of users who rated a movie
val numUsers = ratingsRDD.map(_.user).distinct().count()

Explore and Query with Spark DataFrames

Spark SQL provides a programming abstraction called DataFrames. A Data-
Frame is a distributed collection of data organized into named columns. Spark
supports automatically converting an RDD containing case classes to a Data-
Frame with the method toDF, and the case class defines the schema of the
table.

Below we load the data from the users and movies data files into an RDD,
use the map() transformation with the parse functions, and then call toDF()
which returns a DataFrame for the RDD. Then we register the DataFrames as
temp tables so that we can use the tables in SQL statements.

CHAPTER 8: Spark In-Depth Use Cases

54

// load the data into DataFrames
val usersDF = sc.textFile("/user/user01/moviemed/users.dat")
 .map(parseUser).toDF()
val moviesDF = sc.textFile("/user/user01/moviemed/movies.dat")
 .map(parseMovie).toDF()

// create a DataFrame from the ratingsRDD
val ratingsDF = ratingsRDD.toDF()

// register the DataFrames as a temp table
ratingsDF.registerTempTable("ratings")
moviesDF.registerTempTable("movies")
usersDF.registerTempTable("users")

DataFrame printSchema() prints the schema to the console in a tree format.

usersDF.printSchema()

moviesDF.printSchema()

ratingsDF.printSchema()

Here are some example queries using Spark SQL with DataFrames on the
Movie Lens data. The first query gets the maximum and minimum ratings along
with the count of users who have rated a movie.

// Get the max, min ratings along with the count of users who have
// rated a movie.
val results = sqlContext.sql(
 "select movies.title, movierates.maxr, movierates.minr, movie-
rates.cntu
 from(SELECT ratings.product, max(ratings.rating) as maxr,
 min(ratings.rating) as minr,count(distinct user) as cntu
 FROM ratings group by ratings.product) movierates
 join movies on movierates.product=movies.movieId
 order by movierates.cntu desc")

// DataFrame show() displays the top 20 rows in tabular form
results.show()

The query below finds the users who rated the most movies, then finds
which movies the most active user rated higher than 4. We will get recommen-
dations for this user later.

Loading Data into Spark DataFrames

55

// Show the top 10 most-active users and how many times they rated
// a movie
val mostActiveUsersSchemaRDD = sqlContext.sql(
 "SELECT ratings.user, count(*) as ct from ratings group by
 ratings.user order by ct desc limit 10")

println(mostActiveUsersSchemaRDD.collect().mkString("\n"))

// Find the movies that user 4169 rated higher than 4
val results = sqlContext.sql("SELECT ratings.user, ratings.prod-
uct,
 ratings.rating, movies.title FROM ratings JOIN movies
 ON movies.movieId=ratings.product
 where ratings.user=4169 and ratings.rating > 4")

results.show

Using ALS with the Movie Ratings Data

Now we will use the MLlib ALS algorithm to learn the latent factors that can be
used to predict missing entries in the user-item association matrix. First we sep-
arate the ratings data into training data (80%) and test data (20%). We will get
recommendations for the training data, and then we will evaluate the predic-
tions with the test data. This process of taking a subset of the data to build the
model and then verifying the model with the remaining data is known as cross
validation; the goal is to estimate how accurately a predictive model will per-
form in practice. To improve the model, this process is often done multiple
times with different subsets; we will only do it once.

FIGURE 8-4
Training Loop

CHAPTER 8: Spark In-Depth Use Cases

56

We run ALS on the input trainingRDD of Rating(user, product, rating) objects
with the rank and Iterations parameters:

• rank is the number of latent factors in the model.

• iterations is the number of iterations to run.

The ALS run(trainingRDD) method will build and return a MatrixFactoriza-
tionModel, which can be used to make product predictions for users.

// Randomly split ratings RDD into training
// data RDD (80%) and test data RDD (20%)
val splits = ratingsRDD.randomSplit(Array(0.8, 0.2), 0L)

val trainingRatingsRDD = splits(0).cache()
val testRatingsRDD = splits(1).cache()

val numTraining = trainingRatingsRDD.count()
val numTest = testRatingsRDD.count()
println(s"Training: $numTraining, test: $numTest.")

// build a ALS user product matrix model with rank=20, itera-
tions=10
val model = (new ALS().setRank(20).setIterations(10)
 .run(trainingRatingsRDD))

Making Predictions

Now we can use the MatrixFactorizationModel to make predictions. First, we
will get movie predictions for the most active user, 4169, with the recommend-
Products() method, which takes as input the userid and the number of products
to recommend. Then we print out the recommended movie titles.

// Get the top 4 movie predictions for user 4169
val topRecsForUser = model.recommendProducts(4169, 5)

// get movie titles to show with recommendations
val movieTitles=moviesDF.map(array => (array(0), array(1)))
 .collectAsMap()

// print out top recommendations for user 4169 with titles
topRecsForUser.map(rating => (movieTitles(
 rating.product), rating.rating)).foreach(println)

Loading Data into Spark DataFrames

57

Evaluating the Model

Next, we will compare predictions from the model with actual ratings in the tes-
tRatingsRDD. First we get the user product pairs from the testRatingsRDD to
pass to the MatrixFactorizationModel predict(user: Int, product: Int) method,
which will return predictions as Rating(user, product, rating) objects.

// get user product pair from testRatings
val testUserProductRDD = testRatingsRDD.map {
 case Rating(user, product, rating) => (user, product)
}

// get predicted ratings to compare to test ratings
val predictionsForTestRDD = model.predict(testUserProductRDD)

predictionsForTestRDD.take(10).mkString("\n")

Now we will compare the test predictions to the actual test ratings. First we
put the predictions and the test RDDs in this key, value pair format for joining:
((user, product), rating). Then we print out the (user, product), (test rating, pre-
dicted rating) for comparison.

// prepare predictions for comparison
val predictionsKeyedByUserProductRDD = predictionsForTestRDD.map{
 case Rating(user, product, rating) => ((user, product), rating)
}

// prepare test for comparison
val testKeyedByUserProductRDD = testRatingsRDD.map{
 case Rating(user, product, rating) => ((user, product), rating)
}

//Join the test with predictions
val testAndPredictionsJoinedRDD = testKeyedByUserProductRDD
 .join(predictionsKeyedByUserProductRDD)

// print the (user, product),(test rating, predicted rating)
testAndPredictionsJoinedRDD.take(3).mkString("\n")

The example below finds false positives by finding predicted ratings which
were >= 4 when the actual test rating was <= 1. There were 557 false positives
out of 199,507 test ratings.

CHAPTER 8: Spark In-Depth Use Cases

58

val falsePositives = (testAndPredictionsJoinedRDD
 .filter{case ((user, product), (ratingT, ratingP)) =>
 (ratingT <= 1 && ratingP >=4)})
falsePositives.take(2)

falsePositives.count

Next we evaluate the model using Mean Absolute Error (MAE). MAE is the ab-
solute differences between the predicted and actual targets.

// Evaluate the model using Mean Absolute Error (MAE) between test
// and predictions
val meanAbsoluteError = testAndPredictionsJoinedRDD.map {
 case ((user, product), (testRating, predRating)) =>
 val err = (testRating - predRating)
 Math.abs(err)
}.mean()

Use case provided by: Dan Mallinger, Director of Data Science at Think Big, a Tera-
data company

Unsupervised Anomaly Detection with Spark

The term anomalous data refers to data that are different from what are expected or
normally occur. Detecting anomalies is important in most industries. For example,
in network security, anomalous packets or requests can be flagged as errors or po-
tential attacks. In customer security, anomalous online behavior can be used to
identify fraud. And in manufacturing and the Internet of Things, anomaly detection
is useful for identifying machine failures.

Anomaly detection flags “bad” data—whether that refers to data quality, malicious
action, or simply user error. And because bad data are typically—and hopefully—
rare, modeling bad data can be difficult when data are sampled. But the act of sam-
pling eliminates too many or all of the anomalies needed to build a detection en-
gine. Instead, you want large data sets—with all their data quality issues—on an
analytics platform that can efficiently run detection algorithms. Apache Spark, as a
parallelized big data tool, is a perfect match for the task of anomaly detection.

By framing anomalies as “bad data,” it becomes clear that the patterns of what we
call “bad data” change over time. It’s an arms race: the act of fixing an error will
likely result in new errors and stopping one type of attack may lead malicious actors
to devise new attacks. Because of an ever-changing environment, detection should
not be fixated on one anomalous pattern. What is required then is an unsupervised
approach (i.e., one that does not require training data with records flagged as
anomalous or not).

Loading Data into Spark DataFrames

59

Getting Started

Using the KDD’99 data set, we will filter out a number of columns for two reasons:
ease of example and removal of labeled data, as this use case only demonstrates un-
supervised approaches.

import numpy as np
INPUT = "hdfs://localhost/data/kdd"

def parse_line(line):
 bits = line.split(",")
 return np.array([float(e) for e in bits[4:12]])

df = sc.textFile(INPUT).map(parse_line)

Identifying Univariate Outliers

To begin, we want to get summary statistics for columns in our data. The stats()
function provides these summaries. We can then use the results to get all records
where the first column lies more than two standard deviations from the mean:

stats = df.map(lambda e: e[0]).stats()
mean, stdev = stats.mean(), stats.stdev()
outliers = df.filter(lambda e: not (mean - 2 * stdev > e[0] >
mean + 2 * stdev))
outliers.collect()

Unfortunately, this approach has two limitations. First, it requires knowledge of the
parameter distribution: in this case, it assumes data follow a roughly normal distri-
bution. Second, in this example we can only determine outliers by looking at indi-
vidual variables, but anomalous data is often defined by the relationship between
variables. For example, going to the money transfer page of a bank is normal, but
doing so without first visiting an account page can signal a fraudulent agent. Thus,
we should move ahead with a multivariate approach instead.

Detection with Clustering

Clustering refers to an unsupervised approach whereby data points close to one an-
other are grouped together. A common approach called k-means will produce k
clusters where the distance between points is calculated using Euclidean distance.
This approach can be quickly run in Spark via MLlib:

from pyspark.mllib.clustering import KMeans
clusters = KMeans.train(df, 5, maxIterations=10,
 runs=1, initializationMode="random")

There are now five clusters created. We can see the size of each cluster by labeling
each point and counting. However, note that determining the optimal number of

CHAPTER 8: Spark In-Depth Use Cases

60

clusters requires iteratively building a model, omitted here because we move to an
alternative approach in the next section.

cluster_sizes = df.map(lambda e: clusters.predict(e)).countByVal-
ue()

K-means is sensitive to outliers. This means that anomalous data often ends up in

clusters alone. Looking at the cluster_sizes dictionary, we find clusters 0 and 2 have 1
and 23 data points each, suggesting they are anomalous. But we cannot be certain
without further inspection.

However, because we have a small number of clusters (and probably too few), we
may find anomalous data within non-anomalous clusters. A first inspection should
look at the distribution of distances of data points from cluster centers:

def get_distance(clusters):
 def get_distance_map(record):
 cluster = clusters.predict(record)
 centroid = clusters.centers[cluster]
 dist = np.linalg.norm(record - centroid)
 return (dist, record)
 return get_distance_map

data_distance = df.map(get_distance(clusters))
hist = data_distance.keys().histogram(10)

Looking at the histogram (represented as a Python list) shows that occurrences of
values decline as the distance grows, with the exception of a spike in the last buck-
et. Those data points are a good starting place to seek anomalies.

K-means clustering is a powerful tool. However, it does have a number of challeng-
es. First, selecting the appropriate value for k can be difficult. Second, K-means is
sensitive to the scale of variables (see Exercise 2). Last, there are no thresholds or
scores that can be readily used to evaluate new data as anomalous. Because of these
limitations, let us move on to an alternative approach.

Exercise 1: Run these calculations and explore the data points. Can you explain the
bump at the end of the histogram?

Exercise 2: K-means is sensitive to the scale of variables. This means variables with
larger variance will overtake your calculations. Try standardizing variables by sub-
tracting the mean and dividing by the standard deviation for each. How does this
change your results?

Detection with Unsupervised Random Forests

Random forests are a powerful prediction method that uses collections of trees with
a random parameter holdout to build models that often outperform individual deci-
sion trees. However, the random forest is normally a supervised approach, requir-
ing labeled data.

Loading Data into Spark DataFrames

61

In this section, we introduce a method for turning a supervised model into an unsu-
pervised model for anomaly detection. Unsupervised random forests have a number
of advantages over k-means for simple detection. First, they are less sensitive to
variable scale. Second, they can fit to “normal” behavior and thus can provide a
probability of a data point being anomalous.

To create an unsupervised model from a supervised one, we create a new dataset of
“dummy” data. We create dummy data by sampling from within columns of the
original data and joining those columns. This creates a dataset whose column values
are non-anomalous, but whose relationships between columns are. The unisample
function provides an example:

def unisample(df, fraction=1.0):
 columns = df.first()
 new_df = None
 for i in range(0, len(columns)):
 column = df.sample(withReplacement=True, fraction=fraction) \
 .map(lambda row: row[i]) \
 .zipWithIndex() \
 .map(lambda e: (e[1], [e[0]]))
 if new_df is None:
 new_df = column
 else:
 new_df = new_df.join(column)
 new_df = new_df.map(lambda e: (e[0], e[1][0] + e[1][1]))
 return new_df.map(lambda e: e[1])

Next we label the dummy data 0 (for “not real”) and original data 1 (for “real”). The

supervised2unsupervised function shows how to create such a dataset. It also takes a
supervised model and returns an unsupervised model, which we will do next:

def supervised2unsupervised(model):
 def run(df, *args, **kwargs):
 unisampled_df = unisample(df)
 unisampled_df = unisample(df)
 labeled_data = df.map(lambda e: LabeledPoint(1, e)) \
 .union(unisampled_df.map(lambda e: LabeledPoint(0,
e)))
 return model(labeled_data, *args, **kwargs)
 return run

Now we can create and fit an unsupervised random forest using the RandomForest
function provided by MLlib:

CHAPTER 8: Spark In-Depth Use Cases

62

from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.tree import RandomForest

unsupervised_forest = supervised2unsupervised(RandomForest.train-
Classifier)
rf_model = unsupervised_forest(df, numClasses=2, categoricalFea-
turesInfo={},
 numTrees=10, featureSubsetStrategy="auto",
 impurity='gini', maxDepth=15, maxBins=50)

We have now created a new model (rf_model) that is trained to recognize “normal”
data, giving us a robust anomaly detection tool without requiring labeled data. And

anytime we run rf_model.predict, we can get a probability of a data point being
anomalous!

Exercise 3: The forest in this example has suboptimal parameters (e.g., only have 10
trees). Reconfigure the forest to improve the overall prediction accuracy of non-
anomalous data.

Exercise 4: This approach is sensitive to the dummy data generated. Either by “uni-
sampling” with subsets or other approaches, try and bootstrap many forests. Create

a single predict function that returns the mean and standard deviation across this
collection of models. Use this to generate confidence intervals over your predic-
tions.

Machine Learning Library (MLlib) with Spark

Did Harper Lee write To Kill a Mockingbird? The recent ‘discovery’ and subse-
quent publication of Harper Lee’s earlier novel Go Set a Watchmen has gener-
ated renewed scrutiny of the chain of events. Is the newly published book a dis-
carded rough draft that was to become the universally beloved classic, or was it
a truly forgotten separate work that deserves to be cast in the literary limelight
for analysis? A concise summary of the publishing controversy was written in an
op-ed column by the New York Times.

The new book offers curious readers an opportunity to analyze the two
works together with machine learning tools that are ideal for classifying text
among a corpus of documents. Apache Spark has a mature set of libraries for
text-based analysis that can be leveraged with very few lines of code.

The publisher of Go Set a Watchman is unlikely to make available their best
seller even for lofty academic purposes. Luckily, the Wall Street Journal printed
the first chapter on July 10, 2015 for anyone to analyze. In this use case, fea-
tures will be extracted from the first chapter of each book, and then a model

Machine Learning Library (MLlib) with Spark

63

http://www.nytimes.com/2015/07/25/opinion/joe-nocera-the-watchman-fraud.html
http://www.wsj.com/articles/harper-lees-go-set-a-watchman-read-the-first-chapter-1436500861

will be built to show the difference between them. Comparing passages from
each may provide clues as to the authorship.

Dissecting a Classic by the Numbers

The theory behind document classification is that text from the same source
will contain similar combinations of words with comparable frequency. Any
conclusions based from this type of analysis are only as strong as that assump-
tion.

To build a model to classify documents, text must be translated into num-
bers. This involves standardizing the text, converting to numbers (via hashing),
and then adjusting the word importance based on its relative frequency.

Text standardization was done with Apache Lucene. An example below
shows how to perform this with the Spark shell:

./bin/spark-shell --packages \
 "org.apache.lucene:lucene-analyzers-common:5.1.0"
val line="Flick. A tiny, almost invisible movement, " +
 "and the house was still."
val tokens=Stemmer.tokenize(line)
tokens: Seq[String] = ArrayBuffer(flick, tini, almost,
invis, movement, hous, still)

The Stemmer object that invokes the Lucene analyzer comes from an article
on classifying documents using Naive Bayes on Apache Spark / MLlib. No-
tice how the line describing the tranquility of the Radley house is affected. The
punctuation and capitalization is removed, and words like “house” are stem-
med, so tokens with the same root (“housing”, “housed”, etc.) will be consid-
ered equal. Next, we translate those tokens into numbers and count how often
they appear in each line. Spark’s HashingTF library performs both operations si-
multaneously.

import org.apache.spark.mllib.feature.HashingTF
val tf = new HashingTF(10)

val hashed = tf.transform(tokens)

A “hash” is a one-way translation from text to an integer (i.e. once it’s trans-
lated, there’s no way to go back). Initializing the hash with HashingTF(10) noti-
fies Spark that we want every string mapped to the integers 0-9. The transform
method performs the hash on each word, and then provides the frequency
count for each. This is an impractical illustration, and would result in a huge
number of “collisions” (different strings assigned the same number).

The default size of the resulting vector of token frequencies is 1,000,000. The
size and number of collisions are inversely related. But a large hash also re-

CHAPTER 8: Spark In-Depth Use Cases

64

https://chimpler.wordpress.com/2014/06/11/classifiying-documents-using-naive-bayes-on-apache-spark-mllib/

quires more memory. If your corpus contains millions of documents, this is an
important factor to consider. For this analysis, a hash size of 10,000 was used.

The last step in the text preparation process is to account for the rareness of
words--we want to reward uncommon words such as “chifferobe” with more
importance than frequent words such as “house” or “brother”. This is referred
to as TF-IDF transformation and is available as an (almost) one-liner in Spark.

import org.apache.spark.mllib.feature.IDF
val idfModel = new IDF(minDocFreq = 3).fit(trainDocs)
val idfs = idfModel.transform(hashed)

The “fit” method of the IDF library examines the entire corpus to tabulate
the document count for each word. On the second pass, Spark creates the TF-
IDF for each non-zero element (tokeni) as the following:

FIGURE 8-5
The “fit” method equation

A corpus of many documents is needed to create an IDF dictionary, so in the
example above, excerpts from both novels were fed into the fit method. The
transform method was then used to convert individual passages to TF-IDF vec-
tors.

Having been transformed into TF-IDF vectors, passages from both books are
now ready to be classified.

Building the Classifier

The secret to getting value from business problems is not the classification; it is
primarily about ranking objects based on the confidence of our decision and
then leveraging the value of a good decision minus the cost of a misidentifica-
tion. Spark has several machine learning algorithms that are appropriate for
this task.

During examination of the text, it was noted that a few modifications should
be made to the novels to make the comparison more “fair.” To Kill a Mockingbird
was written in the first person and includes many pronouns that would be give-
aways (e.g., “I”, “our”, “my”, “we”, etc.). These were removed from both books.

Machine Learning Library (MLlib) with Spark

65

Due to the inevitability of variable sentence length in novels, passages were cre-
ated as a series of ten consecutive words.

The parsed passages were combined, split into training and testing sets, and
then transformed with the idfModel built on the training data using the code
below:

val data = mockData.union(watchData)
val splits = data.randomSplit(Array(0.7, 0.3))
val trainDocs = splits(0).map{ x=>x.features}
val idfModel = new IDF(minDocFreq = 3).fit(trainDocs)
val train = splits(0).map{
 point=>LabeledPoint(point.label,idfModel.transform(point.fea-
tures))
}
val test = splits(1).map{
 point=>LabeledPoint(point.label,idfModel.transform(point.fea-
tures))
}
train.cache()

Using randomly split data files for training and testing a model is standard
procedure for insuring performance is not a result of over-training (i.e., memo-
rizing the specific examples instead of abstracting the true patterns). It is criti-
cal that the idfModel is built only on the training data. Failure to do so may re-
sult in overstating your performance on the test data.

The data are prepared for machine learning algorithms in Spark. Naive
Bayes is a reasonable first choice for document classification. The code below
shows the training and evaluation of a Naive Bayes model on the passages.

import org.apache.spark.mllib.classification.{NaiveBayes,
 NaiveBayesModel}
val nbmodel = NaiveBayes.train(train, lambda = 1.0)
val bayesTrain = train.map(p => (nbmodel.predict(p.features),
p.label))
val bayesTest = test.map(p => (nbmodel.predict(p.features), p.la-
bel))
println("Mean Naive Bayes performance")
(bayesTrain.filter(x => x._1 == x._2).count() /
 bayesTrain.count().toDouble,
 bayesTest.filter(x => x._1 == x._2).count() /
 bayesTest.count().toDouble)

Applying the Naive Bayes algorithm in Spark gives a classification from
which accuracy and a confusion matrix can be derived. The method makes the
correct classification on 90.5% of the train records and 70.7% of the test records
(performance on the training is almost always better than the test). The confu-
sion matrix on the test data appears below:

CHAPTER 8: Spark In-Depth Use Cases

66

FIGURE 8-6
Naive Bayes Confusion Matrix on test data

The diagonal elements of the confusion matrix represent correct classifica-
tions and the off-diagonal counts are classification errors. It is informative to
look at a confusion matrix (especially when there are more than two classes).
The better the classification rate on the test set, the more separable the popula-
tions. However, when data scientists are looking to apply classification to a
business problem, they prefer to examine how well the algorithm rank-orders
the results.

Currently, Spark does not support a user-supplied threshold for Naive Bayes.
Only the best classification rate in the training data is reported. But in real busi-
ness problems, there is an overhead associated with a misclassification so that
the “best” rate may not be the optimal rate. It is of keen interest to the business
to find the point at which maximum value of correct classifications is realized
when accounting for incorrect answers. To do this via Spark, we need to use
methods that allow for analysis of the threshold.

Given the number of features (a TF-IDF vector of size 10,000) and the nature
of the data, Spark’s tree-based ensemble methods are appropriate. Both Ran-
dom Forest and Gradient Boosted Trees are available.

Machine Learning Library (MLlib) with Spark

67

import org.apache.spark.mllib.tree.RandomForest
import org.apache.spark.mllib.tree.model.RandomForestModel
import org.apache.spark.mllib.tree.GradientBoostedTrees
import org.apache.spark.mllib.tree.configuration.BoostingStrategy
import org.apache.spark.mllib.tree.model.GradientBoostedTreesModel

// RANDOM FOREST REGRESSION
val categoricalFeaturesInfo = Map[Int, Int]()
val numClasses = 2
val featureSubsetStrategy = "auto"
val impurity = "variance"
val maxDepth = 10
val maxBins = 32
val numTrees = 50
val modelRF = RandomForest.trainRegressor(train,
 categoricalFeaturesInfo, numTrees, featureSubsetStrategy,
 impurity, maxDepth, maxBins)

// GRADIENT BOOSTED TREES REGRESSION
val boostingStrategy = BoostingStrategy.defaultParams("Regres-
sion")
boostingStrategy.numIterations = 50
boostingStrategy.treeStrategy.maxDepth = 5
boostingStrategy.treeStrategy.categoricalFeaturesInfo = Map[Int,
Int]()
val modelGB = GradientBoostedTrees.train(train, boostingStrategy)

The regression model options (estimating vs. classifying) will produce con-
tinuous outputs that can be used to find the right threshold. Both of these
methods can be configured with tree depth and number of trees. Read the
Spark documentation for details, but the general rules of thumb are the follow-
ing:

• Random Forest: trees are built in parallel and overtraining decreases with
more trees, so setting this number to be large is a great way to leverage a
Hadoop environment. The max depth should be larger than GBT.

• Gradient Boosted Trees: the number of trees is directly related to over-
training, and the trees are not built in parallel. This method can produce
some extremely high classification rates on the training data, but set the
max depth of trees to be smaller than random forest.

The table below shows the commands to calculate the ROC (Receiver Oper-
ating Characteristic) for the Random Forest model--the ROC will tell the real
story on the model performance.

CHAPTER 8: Spark In-Depth Use Cases

68

//// Random forest model metrics on training data
val trainScores = train.map { point =>
 val prediction = modelRF.predict(point.features)
 (prediction, point.label)

//// Random forest model metrics on training data
val trainScores = train.map { point =>
 val prediction = modelRF.predict(point.features)
 (prediction, point.label)
}
val metricsTrain = new BinaryClassificationMetrics(trainScores,
100)
val trainroc= metricsTrain.roc()
trainroc.saveAsTextFile("/ROC/rftrain")
metricsTrain.areaUnderROC()

These are the training results.

//// Random forest model metrics on test data
val testScores = test.map { point =>
 val prediction = modelRF.predict(point.features)
 (prediction, point.label)
}
val metricsTest = new BinaryClassificationMetrics(testScores,100)
val testroc= metricsTest.roc()
testroc.saveAsTextFile("/ROC/rftest")
metricsTest.areaUnderROC()

To calculate an ROC, the following steps are performed:

1. Results are binned according to score (highest to lowest).

2. In each bin, the number of each class is tabulated (Mockingbird vs.
Watchman passages).

3. Starting with the highest bin, generate a data point containing the cumu-
lative percent of the total Mockingbird and Watchman passages that have
occurred.

4. Graphing those points for the Random Forest and Gradient Boosted Trees
yields the following curves:

Machine Learning Library (MLlib) with Spark

69

FIGURE 8-7
ROC for test data by algorithm

The diagonal “baseline” is the performance one could expect from random
guessing (i.e., selecting 50% of the passages, you would expect to find half of
each book’s examples). Any performance better than that is considered the
“lift” delivered by the model. It should be intuitive from examining the graph
that steeper, higher curves provide greater lift. The table below quantifies the
area under the ROC, which is a standard metric used by data scientists to evalu-
ate the performance of many models simultaneously.

FIGURE 8-8
Area under the ROC by algorithm

The Gradient Boosted Tree model achieved an essentially perfect 1.0 area
under the curve. This implies that the model scored all Mockingbird passages
higher than all Watchman passages. However, the Random Forest model has

CHAPTER 8: Spark In-Depth Use Cases

70

higher performance on the test set (0.884 vs 0.867), so it is assumed to general-
ize better.

In the setting of a business problem, the underlying data of the ROC is used
to estimate how many items of interest can be identified when the real cost of
an error is considered. Focusing on the highest scoring items from the model
and working down the list is where real value comes from.

The results cannot be interpreted as conclusive, but there is significant lift
displayed on these curves, and that doesn’t look good for Harper Lee.

The Verdict

There are plenty of great tools to build classification models. Apache Spark pro-
vides an excellent framework for building solutions to business problems that
can extract value from massive, distributed datasets.

Machine learning algorithms cannot answer the great mysteries of life. But
they do provide evidence for humans to consider when interpreting results, as-
suming the right question is asked in the first place.

Readers are encouraged to check out these books themselves and reach
their own conclusions. If the controversy surrounding the publication of Harper
Lee’s books causes more people to read them, that’s probably a good thing.

All of the data and code to train the models and make your own conclusions
using Apache Spark are located in github.

Getting Started with Apache Spark Conclusion

We have covered a lot of ground in this book. This is by no means everything to
be experienced with Spark. Spark is constantly growing and adding new great
functionality to make programming with it easier. Projects integrating with
Spark seem to pop up almost daily. The Apache Mahout project has done some
integration to bring more machine learning libraries to Spark. Projects Jupyter
and Apache Zeppelin bring Spark to web notebooks.

This book will continue to evolve as things change or important new content
is created within Spark. Bookmark things that you feel are important to you. If
you didn’t work through all the examples, come back and reference them later
when you are ready.

There is also an Apache Spark Cheat Sheet available in HTML. This cheat
sheet covers the most commonly referenced functionality, including links to the
latest API documentation for each method covered. Hopefully this will help you
become the Spark expert you want to become in no time at all.

Finally, if you haven’t already, I suggest heading over and trying out the
MapR Sandbox. It is a simple way to get running with Spark. The MapR Sand-

Getting Started with Apache Spark Conclusion

71

https://github.com/joebluems/Mockingbird
http://mahout.apache.org/
https://jupyter.org/
http://zeppelin-project.org/
https://www.mapr.com/products/mapr-sandbox-hadoop/

box provides tutorials, demo applications, and browser-based user interfaces
to let you get started quickly with Spark and Hadoop.

Good luck to you in your journey with Apache Spark.

CHAPTER 8: Spark In-Depth Use Cases

72

Apache Spark Developer Cheat
Sheet

Transformations (return new RDDs – Lazy)

Where Function DStream
API Description

RDD map(function) Yes
Return a new distributed dataset
formed by passing each element
of the source through a function.

RDD filter(function) Yes
Return a new dataset formed by
selecting those elements of the
source on which function returns
true.

Order-
edRDD
Functions

filterByR-
ange(lower, up-
per)

No
Returns an RDD containing only
the elements in the the inclusive
range lower to upper.

RDD flatMap(function) Yes

Similar to map, but each input
item can be mapped to 0 or more
output items (so function should
return a Seq rather than a single
item).

RDD mapParti-
tions(function) Yes Similar to map, but runs separate-

ly on each partition of the RDD.

RDD mapPartitionsWi-
thIndex(function) No

Similar to mapPartitions, but also
provides function with an integer
value representing the index of
the partition.

RDD
sample(withRe-
placement, frac-
tion, seed)

No

Sample a fraction of the data, with
or without replacement, using a
given random number generator
seed.

73

9

https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#map%28scala.Function1, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#map%28scala.Function1, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#filter%28scala.Function1%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#filter%28scala.Function1%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/OrderedRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/OrderedRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/OrderedRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/OrderedRDDFunctions.html#filterByRange%28K, K%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/OrderedRDDFunctions.html#filterByRange%28K, K%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/OrderedRDDFunctions.html#filterByRange%28K, K%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#flatMap%28scala.Function1, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#flatMap%28scala.Function1, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#mapPartitions%28scala.Function1, boolean, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#mapPartitions%28scala.Function1, boolean, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#mapPartitions%28scala.Function1, boolean, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#mapPartitionsWithIndex%28scala.Function2, boolean, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#mapPartitionsWithIndex%28scala.Function2, boolean, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#sample%28boolean, double, long%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#sample%28boolean, double, long%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#sample%28boolean, double, long%29

Where Function DStream
API Description

RDD union(otherData-
set) Yes

Return a new dataset that con-
tains the union of the elements in
the datasets.

RDD intersection(oth-
erDataset) No

Return a new RDD that contains
the intersection of elements in the
datasets.

RDD distinct([num-
Tasks]) No

Return a new dataset that con-
tains the distinct elements of the
source dataset.

PairRDD
Functions

groupBy-
Key([numTasks]) Yes

Returns a dataset of (K, Itera-
ble<V>) pairs. Use reduceByKey or
aggregateByKey to perform an ag-
gregation (such as a sum or aver-
age).

PairRDD
Functions

reduceBy-
Key(function,
[numTasks])

Yes
Returns a dataset of (K, V) pairs
where the values for each key are
aggregated using the given reduce
function.

PairRDD
Functions

aggregateBy-
Key(zeroValue)
(seqOp, combOp,
[numTasks])

No

Returns a dataset of (K, U) pairs
where the values for each key are
aggregated using the given com-
bine functions and a neutral
“zero” value. Allows an aggrega-
ted value type that is different
than the input value type.

Order-
edRDD
Functions

sortByKey([as-
cending], [num-
Tasks])

No

Returns a dataset of (K, V) pairs
sorted by keys in ascending or de-
scending order, as specified in the
boolean ascending argument.

PairRDD
Functions

join(otherData-
set, [numTasks]) Yes

When called on datasets of type
(K, V) and (K, W), returns a dataset
of (K, (V, W)) pairs with all pairs of
elements for each key. Outer joins
are supported through leftOuter-
Join, rightOuterJoin, and fullOu-
terJoin.

PairRDD
Functions

cogroup(otherDa-
taset, [num-
Tasks])

Yes
When called on datasets of type
(K, V) and (K, W), returns a dataset
of (K, (Iterable<V>, Iterable<W>))
tuples.

RDD cartesian(other-
Dataset) No

When called on datasets of types T
and U, returns a dataset of (T, U)
pairs (all pairs of elements).

CHAPTER 9: Apache Spark Developer Cheat Sheet

74

https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#union%28org.apache.spark.rdd.RDD%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#union%28org.apache.spark.rdd.RDD%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#union%28org.apache.spark.streaming.dstream.DStream%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#intersection%28org.apache.spark.rdd.RDD%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#intersection%28org.apache.spark.rdd.RDD%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#distinct%28%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#distinct%28%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html#groupByKey%28%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html#groupByKey%28%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html#groupByKey%28%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html#reduceByKey%28scala.Function2%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html#reduceByKey%28scala.Function2%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html#reduceByKey%28scala.Function2%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html#reduceByKey%28scala.Function2%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html#aggregateByKey%28U, scala.Function2, scala.Function2, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html#aggregateByKey%28U, scala.Function2, scala.Function2, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html#aggregateByKey%28U, scala.Function2, scala.Function2, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html#aggregateByKey%28U, scala.Function2, scala.Function2, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/OrderedRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/OrderedRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/OrderedRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/OrderedRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/OrderedRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/OrderedRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html#join%28org.apache.spark.rdd.RDD%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html#join%28org.apache.spark.rdd.RDD%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html#join%28org.apache.spark.streaming.dstream.DStream, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html#cogroup%28org.apache.spark.rdd.RDD%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html#cogroup%28org.apache.spark.rdd.RDD%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html#cogroup%28org.apache.spark.rdd.RDD%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html#cogroup%28org.apache.spark.streaming.dstream.DStream, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#cartesian%28org.apache.spark.rdd.RDD, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#cartesian%28org.apache.spark.rdd.RDD, scala.reflect.ClassTag%29

Where Function DStream
API Description

RDD pipe(command,
[envVars]) No

Pipe each partition of the RDD
through a shell command, e.g. a
Perl or bash script.

RDD coalesce(numPar-
titions) No

Decrease the number of partitions
in the RDD to numPartitions. Use-
ful for running operations more ef-
ficiently after filtering down a
large dataset.

RDD repartition(num-
Partitions) Yes

Reshuffle the data in the RDD ran-
domly to create either more or
fewer partitions and balance it
across them. This always shuffles
all data over the network.

Order-
edRDD
Functions

repartitionAnd-
SortWithinParti-
tions(partitioner)

No

Repartition the RDD according to
the given partitioner and, within
each resulting partition, sort re-
cords by their keys. More efficient
than calling repartition and then
sorting.

Transformations (return new RDDs – Lazy)

75

https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#pipe%28scala.collection.Seq, scala.collection.Map, scala.Function1, scala.Function2, boolean%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#pipe%28scala.collection.Seq, scala.collection.Map, scala.Function1, scala.Function2, boolean%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#coalesce%28int, boolean, scala.math.Ordering%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#coalesce%28int, boolean, scala.math.Ordering%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#repartition%28int, scala.math.Ordering%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#repartition%28int, scala.math.Ordering%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#repartition%28int%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/OrderedRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/OrderedRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/OrderedRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/OrderedRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/OrderedRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/OrderedRDDFunctions.html

Actions (return values – NOT Lazy)

Where Function DStream
API Description

RDD reduce(func-
tion) Yes

Aggregate the elements of the data-
set using a function (which takes two
arguments and returns one).

RDD collect() No

Return all the elements of the data-
set as an array at the driver program.
Best used on sufficiently small sub-
sets of data.

RDD count() Yes Return the number of elements in
the dataset.

RDD countByVal-
ue() Yes

Return the count of each unique val-
ue in this RDD as a local map of (val-
ue, count) pairs.

RDD first() No Return the first element of the data-
set (similar to take(1)).

RDD take(n) No Return an array with the first n ele-
ments of the dataset.

RDD
takeSam-
ple(withRe-
placement,
num, [seed])

No Return an array with a random sam-
ple of num elements of the dataset.

RDD
takeOr-
dered(n, [or-
dering])

No
Return the first n elements of the
RDD using either their natural order
or a custom comparator.

RDD saveAsText-
File(path) Yes

Write the elements of the dataset as
a text. Spark will call toString on
each element to convert it to a line
of text in the file.

Sequen-
ceFi-
leRDD
Functions

saveAsSequen-
ceFile(path)
(Java and Sca-
la)

No

Write the elements of the dataset as
a Hadoop SequenceFile in a given
path. For RDDs of key-value pairs
that use Hadoop’s Writable interface.

RDD
saveAsObject-
File(path)
(Java and Sca-
la)

Yes
Write the elements of the dataset in
a simple format using Java serializa-
tion, which can then be loaded using
SparkContext.objectFile().

CHAPTER 9: Apache Spark Developer Cheat Sheet

76

https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#reduce%28scala.Function2%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#reduce%28scala.Function2%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#reduce%28scala.Function2%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#collect%28%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#count%28%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#count%28%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#countByValue%28scala.math.Ordering%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#countByValue%28scala.math.Ordering%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#countByValue%28int, scala.math.Ordering%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#first%28%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#take%28int%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#takeSample%28boolean, int, long%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#takeSample%28boolean, int, long%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#takeSample%28boolean, int, long%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#takeSample%28boolean, int, long%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#takeOrdered%28int, scala.math.Ordering%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#takeOrdered%28int, scala.math.Ordering%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#takeOrdered%28int, scala.math.Ordering%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#saveAsTextFile%28java.lang.String%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#saveAsTextFile%28java.lang.String%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#saveAsTextFiles%28java.lang.String, java.lang.String%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/SequenceFileRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/SequenceFileRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/SequenceFileRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/SequenceFileRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#saveAsObjectFile%28java.lang.String%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#saveAsObjectFile%28java.lang.String%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#saveAsObjectFile%28java.lang.String%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#saveAsObjectFile%28java.lang.String%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#saveAsObjectFiles%28java.lang.String, java.lang.String%29

Where Function DStream
API Description

PairRDD
Functions countByKey() No

Only available on RDDs of type (K, V).
Returns a hashmap of (K, Int) pairs
with the count of each key.

RDD foreach(func-
tion) Yes

Run a function on each element of
the dataset. This is usually done for
side effects such as updating an Ac-
cumulator.

Actions (return values – NOT Lazy)

77

https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html#countByKey%28%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#foreach%28scala.Function1%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#foreach%28scala.Function1%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#foreachRDD%28scala.Function1%29

Persistence Methods

Where Function DStream
API Description

RDD cache() Yes
Don’t be afraid to call cache on RDDs to
avoid unnecessary recomputation.
NOTE: This is the same as persist(MEMO-
RY_ONLY).

RDD persist([Stor-
age Level]) Yes Persist this RDD with the default storage

level.

RDD unpersist() No Mark the RDD as non-persistent, and re-
move its blocks from memory and disk.

RDD checkpoint() Yes
Save to a file inside the checkpoint direc-
tory and all references to its parent RDDs
will be removed.

CHAPTER 9: Apache Spark Developer Cheat Sheet

78

https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
http://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#cache%28%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#cache%28%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
http://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#persist%28%29
http://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#persist%28%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#persist%28%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#unpersist%28boolean%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
http://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html#checkpoint%28%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#checkpoint%28org.apache.spark.streaming.Duration%29

Additional Transformation and Actions

Where Function Description

SparkCon-
text

doubleRDDToDou-
bleRDDFunctions

Extra functions available on RDDs of
Doubles

SparkCon-
text

numericRDDToDou-
bleRDDFunctions

Extra functions available on RDDs of
Doubles

SparkCon-
text

rddToPairRDDFunc-
tions

Extra functions available on RDDs of
(key, value) pairs

SparkCon-
text hadoopFile() Get an RDD for a Hadoop file with an ar-

bitrary InputFormat

SparkCon-
text hadoopRDD() Get an RDD for a Hadoop file with an ar-

bitrary InputFormat

SparkCon-
text makeRDD() Distribute a local Scala collection to

form an RDD

SparkCon-
text parallelize() Distribute a local Scala collection to

form an RDD

SparkCon-
text textFile() Read a text file from a file system URI

SparkCon-
text wholeTextFiles() Read a directory of text files from a file

system URI

Additional Transformation and Actions

79

https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/DoubleRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/DoubleRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/DoubleRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/DoubleRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/PairRDDFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html#hadoopFile%28java.lang.String, java.lang.Class, java.lang.Class, java.lang.Class, int%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html#hadoopRDD%28org.apache.hadoop.mapred.JobConf, java.lang.Class, java.lang.Class, java.lang.Class, int%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html#makeRDD%28scala.collection.Seq, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html#parallelize%28scala.collection.Seq, int, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html#textFile%28java.lang.String, int%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html#wholeTextFiles%28java.lang.String, int%29

Extended RDDs w/ Custom Transformations and
Actions

RDD Name Description

CoGrou-
pedRDD

A RDD that cogroups its parents. For each key k in parent RDDs,
the resulting RDD contains a tuple with the list of values for that
key.

EdgeRDD
Storing the edges in columnar format on each partition for perfor-
mance. It may additionally store the vertex attributes associated
with each edge.

JdbcRDD An RDD that executes an SQL query on a JDBC connection and
reads results. For usage example, see test case JdbcRDDSuite.

ShufelrdRDD The resulting RDD from a shuffle.

VertexRDD Ensures that there is only one entry for each vertex and by pre-
indexing the entries for fast, efficient joins.

CHAPTER 9: Apache Spark Developer Cheat Sheet

80

https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/CoGroupedRDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/CoGroupedRDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/graphx/EdgeRDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/JdbcRDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/ShuffledRDD.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/graphx/VertexRDD.html

Streaming Transformations

Where Function Description

DStream window(window-
Length, slideInterval)

Return a new DStream which is compu-
ted based on windowed batches of the
source DStream.

DStream
countByWindow(win-
dowLength, slideIn-
terval)

Return a sliding window count of ele-
ments in the stream.

DStream
reduceByWind-
ow(function, window-
Length, slideInterval)

Return a new single-element stream, cre-
ated by aggregating elements in the
stream over a sliding interval using func-
tion.

PairD-
Stream
Functions

reduceByKeyAnd-
Window(function,
windowLength, sli-
deInterval, [num-
Tasks])

Returns a new DStream of (K, V) pairs
where the values for each key are aggre-
gated using the given reduce function
over batches in a sliding window.

PairD-
Stream
Functions

reduceByKeyAnd-
Window(function, in-
vFunc, window-
Length, slideInterval,
[numTasks])

A more efficient version of the above re-
duceByKeyAndWindow(). Only applicable
to those reduce functions which have a
corresponding “inverse reduce” function.
Checkpointing must be enabled for using
this operation.

DStream
countByValueAnd-
Window(window-
Length, slideInterval,
[numTasks])

Returns a new DStream of (K, Long) pairs
where the value of each key is its fre-
quency within a sliding window.

DStream transform(function)
The transform operation (along with its
variations like transformWith) allows ar-
bitrary RDD-to-RDD functions to be ap-
plied on a Dstream.

PairD-
Stream
Functions

updateStateBy-
Key(function)

The updateStateByKey operation allows
you to maintain arbitrary state while con-
tinuously updating it with new informa-
tion.

Streaming Transformations

81

https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#window%28org.apache.spark.streaming.Duration%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#window%28org.apache.spark.streaming.Duration%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#countByWindow%28org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#countByWindow%28org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#countByWindow%28org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#reduceByWindow%28scala.Function2, org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#reduceByWindow%28scala.Function2, org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#reduceByWindow%28scala.Function2, org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html#reduceByKeyAndWindow%28scala.Function2, org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration, int%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html#reduceByKeyAndWindow%28scala.Function2, org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration, int%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html#reduceByKeyAndWindow%28scala.Function2, org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration, int%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html#reduceByKeyAndWindow%28scala.Function2, org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration, int%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html#reduceByKeyAndWindow%28scala.Function2, org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration, int%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html#reduceByKeyAndWindow%28scala.Function2, scala.Function2, org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration, int, scala.Function1%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html#reduceByKeyAndWindow%28scala.Function2, scala.Function2, org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration, int, scala.Function1%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html#reduceByKeyAndWindow%28scala.Function2, scala.Function2, org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration, int, scala.Function1%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html#reduceByKeyAndWindow%28scala.Function2, scala.Function2, org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration, int, scala.Function1%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html#reduceByKeyAndWindow%28scala.Function2, scala.Function2, org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration, int, scala.Function1%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#countByValueAndWindow%28org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration, int, scala.math.Ordering%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#countByValueAndWindow%28org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration, int, scala.math.Ordering%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#countByValueAndWindow%28org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration, int, scala.math.Ordering%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#countByValueAndWindow%28org.apache.spark.streaming.Duration, org.apache.spark.streaming.Duration, int, scala.math.Ordering%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/DStream.html#transform%28scala.Function1, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html#updateStateByKey%28scala.Function2, scala.reflect.ClassTag%29
https://spark.apache.org/docs/latest/api/java/org/apache/spark/streaming/dstream/PairDStreamFunctions.html#updateStateByKey%28scala.Function2, scala.reflect.ClassTag%29

RDD Persistence

Storage Level Meaning

MEMORY_ONLY (default
level)

Store RDD as deserialized Java objects. If the RDD
does not fit in memory, some partitions will not be
cached and will be recomputed on the fly when
needed.

MEMORY_AND_DISK
Store RDD as deserialized Java objects. If the RDD
does not fit in memory, store the partitions that
don’t fit on disk, and load them when they’re need-
ed.

MEMORY_ONLY_SER
Store RDD as serialized Java objects. Generally
more space-efficient than deserialized objects, but
more CPU-intensive to read.

MEMORY_AND_DISK_SER
Similar to MEMORY_ONLY_SER, but spill partitions
that don’t fit in memory to disk instead of recom-
puting them on the fly each time they’re needed.

DISK_ONLY Store the RDD partitions only on disk.

MEMORY_ONLY_2, MEMO-
RY_AND_DISK_2, etc...

Same as the levels above, but replicate each parti-
tion on two cluster nodes.

CHAPTER 9: Apache Spark Developer Cheat Sheet

82

https://spark.apache.org/docs/latest/api/java/index.html?org/apache/spark/storage/StorageLevel.html
https://spark.apache.org/docs/latest/api/java/index.html?org/apache/spark/storage/StorageLevel.html
https://spark.apache.org/docs/latest/api/java/index.html?org/apache/spark/storage/StorageLevel.html
https://spark.apache.org/docs/latest/api/java/index.html?org/apache/spark/storage/StorageLevel.html
https://spark.apache.org/docs/latest/api/java/index.html?org/apache/spark/storage/StorageLevel.html
https://spark.apache.org/docs/latest/api/java/index.html?org/apache/spark/storage/StorageLevel.html
https://spark.apache.org/docs/latest/api/java/index.html?org/apache/spark/storage/StorageLevel.html
https://spark.apache.org/docs/latest/api/java/index.html?org/apache/spark/storage/StorageLevel.html

Shared Data

Broadcast Variables Broadcast variables allow the programmer to keep a read-
only variable cached on each machine rather than shipping a copy of it with
tasks.

Language Create, Evaluate

Scala val broadcastVar = sc.broadcast(Array(1, 2, 3))

broadcastVar.value

Java Broadcast<int[]> broadcastVar = sc.broadcast(new int[] {1, 2, 3});

broadcastVar.value();

Python broadcastVar = sc.broadcast([1, 2, 3])

broadcastVar.value

Accumulators Accumulators are variables that are only “added” to through
an associative operation and can therefore be efficiently supported in parallel.

Language Create, Add, Evaluate

Scala val accum = sc.accumulator(0, My Accumulator)

sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum += x)

accum.value

Java Accumulator<Integer> accum = sc.accumulator(0);

sc.parallelize(Arrays.asList(1, 2, 3, 4)).foreach(x -> accum.add(x))

accum.value();

Python accum = sc.accumulator(0)

Shared Data

83

http://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html#broadcast%28T, scala.reflect.ClassTag%29
http://spark.apache.org/docs/latest/api/java/org/apache/spark/SparkContext.html#accumulator%28T, org.apache.spark.AccumulatorParam%29

MLlib Reference

Topic Description

Data types Vectors, points, matrices.

Basic Statistics Summary, correlations, sampling, testing and random
data.

Classification and re-
gression Includes SVMs, decision trees, naïve Bayes, etc...

Collaborative filtering Commonly used for recommender systems.

Clustering Clustering is an unsupervised learning approach.

Dimensionality reduc-
tion

Dimensionality reduction is the process of reducing the
number of variables under consideration.

Feature extraction
and transformation

Used in selecting a subset of relevant features (vari-
ables, predictors) for use in model construction.

Frequent pattern min-
ing

Mining is usually among the first steps to analyze a
large-scale dataset.

Optimization Different optimization methods can have different con-
vergence guarantees.

PMML model export MLlib supports model export to Predictive Model Mark-
up Language.

Other References

• Launching Jobs

• SQL and DataFrames Programming Guide

• GraphX Programming Guide

• SparkR Programming Guide

CHAPTER 9: Apache Spark Developer Cheat Sheet

84

http://spark.apache.org/docs/latest/mllib-data-types.html
http://spark.apache.org/docs/latest/mllib-statistics.html
http://spark.apache.org/docs/latest/mllib-classification-regression.html
http://spark.apache.org/docs/latest/mllib-classification-regression.html
http://spark.apache.org/docs/latest/mllib-collaborative-filtering.html
http://spark.apache.org/docs/latest/mllib-clustering.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-dimensionality-reduction.html
http://spark.apache.org/docs/latest/mllib-feature-extraction.html
http://spark.apache.org/docs/latest/mllib-feature-extraction.html
http://spark.apache.org/docs/latest/mllib-frequent-pattern-mining.html
http://spark.apache.org/docs/latest/mllib-frequent-pattern-mining.html
http://spark.apache.org/docs/latest/mllib-optimization.html
https://spark.apache.org/docs/latest/api/java/org/apache/spark/rdd/RDD.html
https://spark.apache.org/docs/latest/submitting-applications.html
http://spark.apache.org/docs/latest/sql-programming-guide.html
http://spark.apache.org/docs/latest/graphx-programming-guide.html
http://spark.apache.org/docs/latest/sparkr.html

About the Author
James A. Scott (prefers to go by Jim) is Director, Enter-

prise Strategy & Architecture at MapR Technologies

and is very active in the Hadoop community. Jim hel-

ped build the Hadoop community in Chicago as

cofounder of the Chicago Hadoop Users Group. He has

implemented Hadoop at three different companies,

supporting a variety of enterprise use cases from man-

aging Points of Interest for mapping applications, to

Online Transactional Processing in advertising, as well

as full data center monitoring and general data pro-

cessing. Jim also was the SVP of Information Technolo-

gy and Operations at SPINS, the leading provider of re-

tail consumer insights, analytics reporting and con-

sulting services for the Natural and Organic Products

industry. Additionally, Jim served as Lead Engineer/Architect for Conversant (formerly Dotomi),

one of the world’s largest and most diversified digital marketing companies, and also held soft-

ware architect positions at several companies including Aircell, NAVTEQ, and Dow Chemical. Jim

speaks at many industry events around the world on big data technologies and enterprise archi-

tecture. When he’s not solving business problems with technology, Jim enjoys cooking, watching-

and-quoting movies and spending time with his wife and kids. Jim is on Twitter as @kingmesal.

http://twitter.com/kingmesal

	Cover
	Copyright
	Table of Contents
	Chapter 1. What is Apache Spark
	What is Spark?
	Who Uses Spark?
	What is Spark Used For?

	Chapter 2. How to Install Apache Spark
	A Very Simple Spark Installation
	Testing Spark

	Chapter 3. Apache Spark Architectural Overview
	Development Language Support
	Deployment Options
	Storage Options
	The Spark Stack
	Resilient Distributed Datasets (RDDs)
	API Overview
	The Power of Data Pipelines

	Chapter 4. Benefits of Hadoop and Spark
	Hadoop vs. Spark - An Answer to the Wrong Question
	What Hadoop Gives Spark
	What Spark Gives Hadoop

	Chapter 5. Solving Business Problems with Spark
	Processing Tabular Data with Spark SQL
	Sample Dataset
	Loading Data into Spark DataFrames
	Exploring and Querying the eBay Auction Data
	Summary

	Computing User Profiles with Spark
	Delivering Music
	Looking at the Data
	Customer Analysis
	The Results

	Chapter 6. Spark Streaming Framework and Processing Models
	The Details of Spark Streaming
	The Spark Driver

	Processing Models
	Picking a Processing Model

	Spark Streaming vs. Others
	Performance Comparisons

	Current Limitations

	Chapter 7. Putting Spark into Production
	Breaking it Down
	Spark and Fighter Jets
	Learning to Fly
	Assessment

	Planning for the Coexistence of Spark and Hadoop
	Advice and Considerations

	Chapter 8. Spark In-Depth Use Cases
	Building a Recommendation Engine with Spark
	Collaborative Filtering with Spark
	Typical Machine Learning Workflow
	The Sample Set

	Loading Data into Spark DataFrames
	Explore and Query with Spark DataFrames
	Using ALS with the Movie Ratings Data
	Making Predictions
	Evaluating the Model

	Machine Learning Library (MLlib) with Spark
	Dissecting a Classic by the Numbers
	Building the Classifier
	The Verdict

	Getting Started with Apache Spark Conclusion

	Chapter 9. Apache Spark Developer Cheat Sheet
	Transformations (return new RDDs – Lazy)
	Actions (return values – NOT Lazy)
	Persistence Methods
	Additional Transformation and Actions
	Extended RDDs w/ Custom Transformations and Actions
	Streaming Transformations
	RDD Persistence
	Shared Data
	MLlib Reference
	Other References

	Cover

