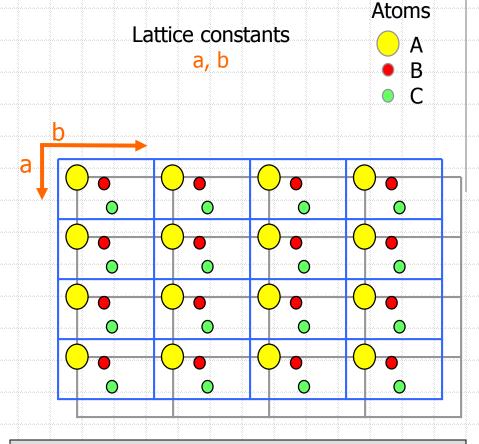
Geometry of Crystals

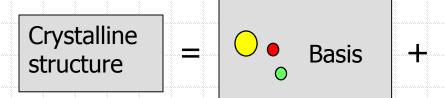
Crystal is a solid composed of atoms, ions or molecules that demonstrate long range periodic order in three dimensions

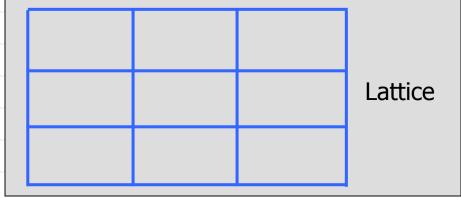
The Crystalline State

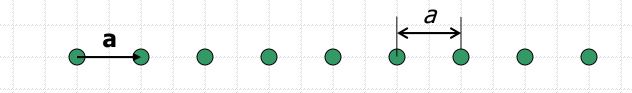
State of Matter	Fixed Volume	Fixed Shape	Order	Properties
Gas	No	No	No	Isotropic
Liquid	Yes	No	Short-range	Isotropic
Solid (amorphous)	Yes	Yes	Short-range	Isotropic
Solid (crystalline)	Yes	Yes	Long-range	Anisotropic

 Not only atom, ion or molecule positions are repetitious – there are certain symmetry relationships in their arrangement.



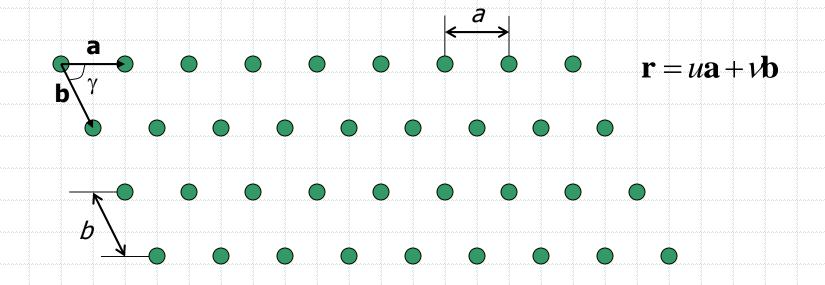




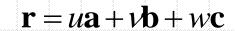


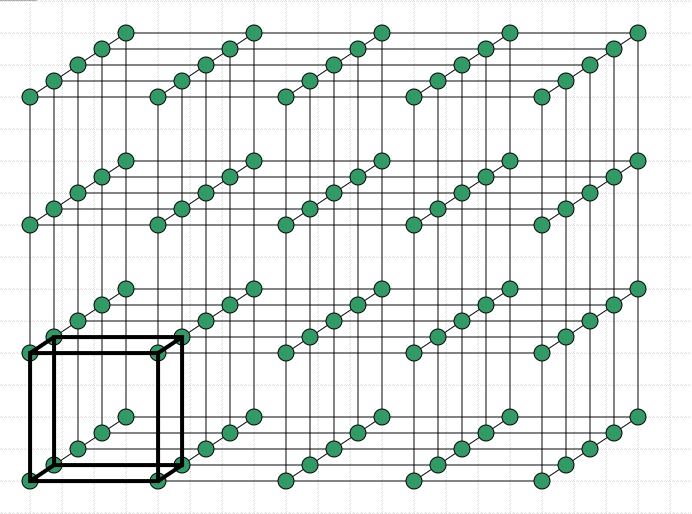
 $\mathbf{r} = u\mathbf{a}$

One-dimensional lattice with lattice parameter a

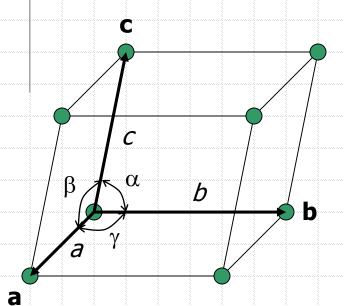


Two-dimensional lattice with lattice parameters a, b and γ



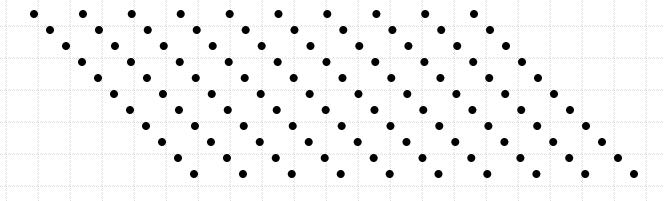


Lattice vectors, lattice parameters and interaxial angles



Lattice vector	а	b	С
Lattice parameter	а	В	С
Interaxial angle	α	β	γ

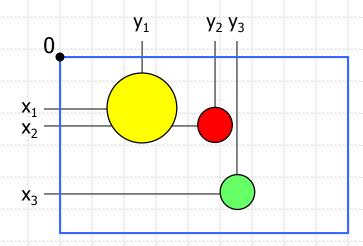
A lattice is an array of points in space in which the environment of each point is identical



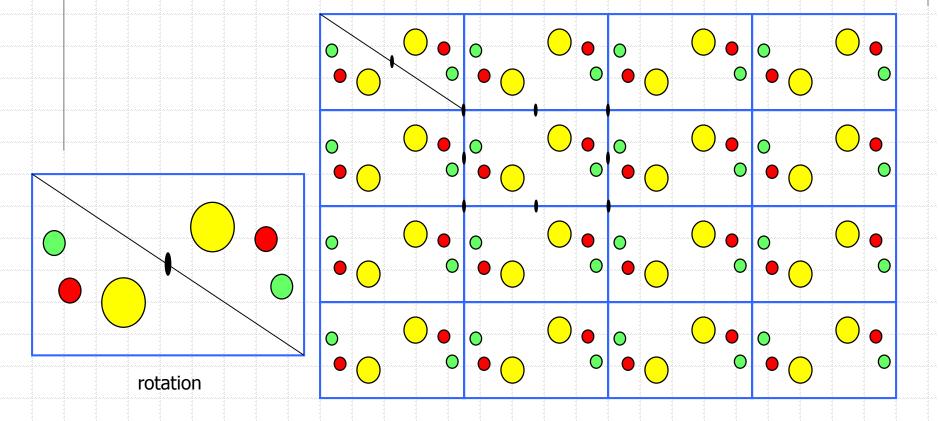
Lattice

Not a lattice

- Unit cell content
 - Coordinates of all atoms
 - Types of atoms
 - Site occupancy
 - Individual displacement parameters



- Usually unit cell has more than one molecule or group of atoms
- They can be represented by symmetry operators



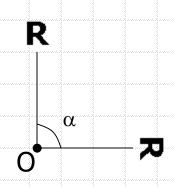
Symmetry

- Symmetry is a property of a crystal which is used to describe repetitions of a pattern within that crystal.
- Description is done using symmetry operators

$$R \rightarrow R \rightarrow R$$
Translation

m R 9

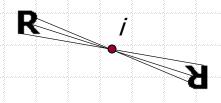
Mirror reflection



Rotation (about axis O)

$$\alpha = 360^{\circ}/n$$

where *n* is the *fold* of the axis $n = 1, 2, 3, 4$ or 6)



Inversion

Two-dimensional Symmetry Elements

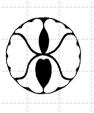
CI Br C == C < F

1

bromochlorofluoroethene

- 1. One-fold axis (no symmetry)
- Я | R (2)

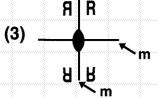
(1)



F H C = C H

m

- 2. Vertical mirror line
- 3. Vertical and horizontal mirror lines
- 4. Two-fold rotation axis
- 5. Three-fold rotation axis



H>c==c<H 2m

2

(4) **(**4)

$$F c = c \begin{cases} F \\ H \end{cases}$$

trans-difluoroethene

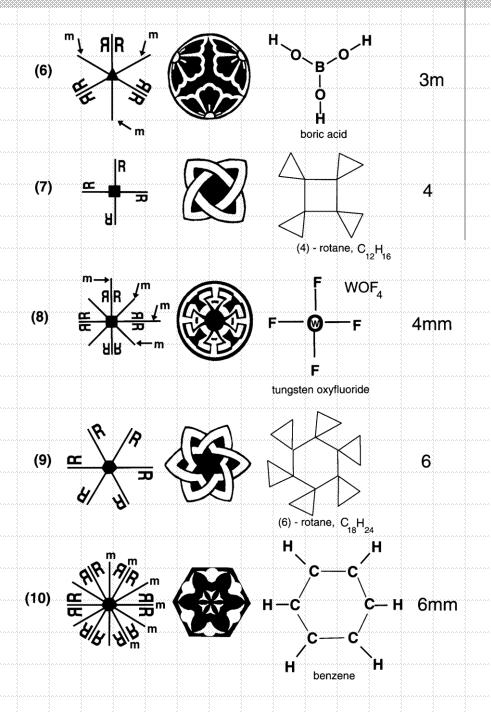
trifluoralkylammonia

3

Two-dimensional Symmetry Elements

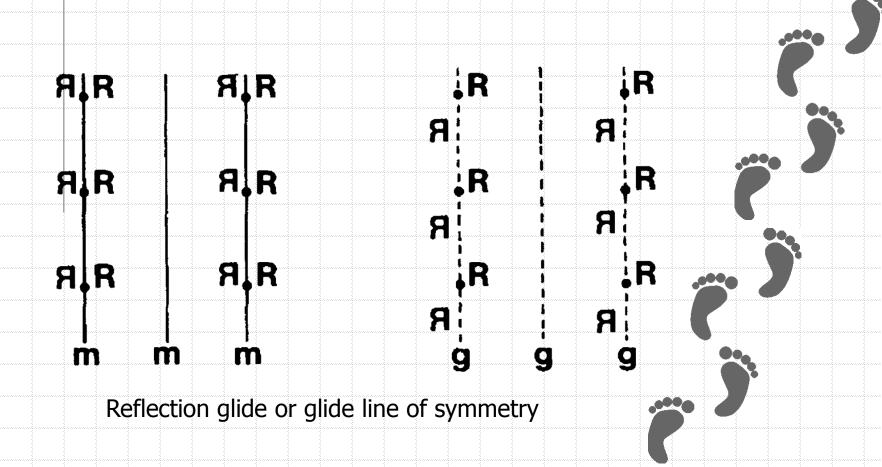
- 6. Tree-fold axis + vertical mirror line
- 7. Four-fold axis
- 8. Four-fold axis + mirror lines
- 9. Six-fold axis
- 10. Six-fold axis + mirror lines

10 two-dimensional crystallographic or plane point groups

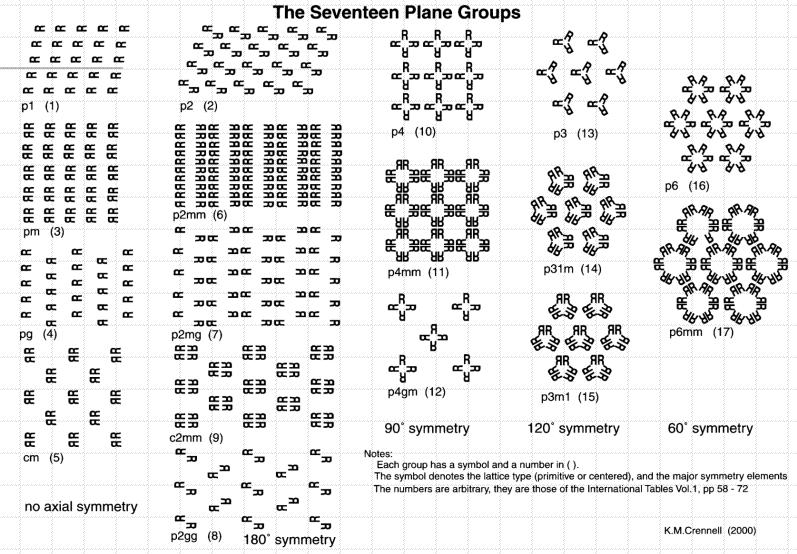


The Five Plane ρ 2 Lattices The oblique p-lattice Я | R ρ2mm **⋈**m The rectangular p-lattice c2mm The rectangular *c*-lattice ρ 4mm R The square p-lattice <u>~</u> ρ 6mm R The hexagonal p-lattice

Two-dimensional Symmetry Elements

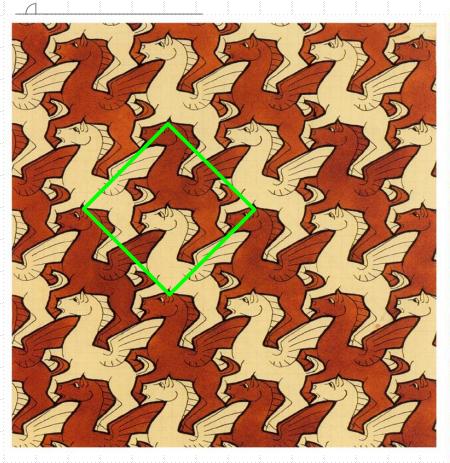


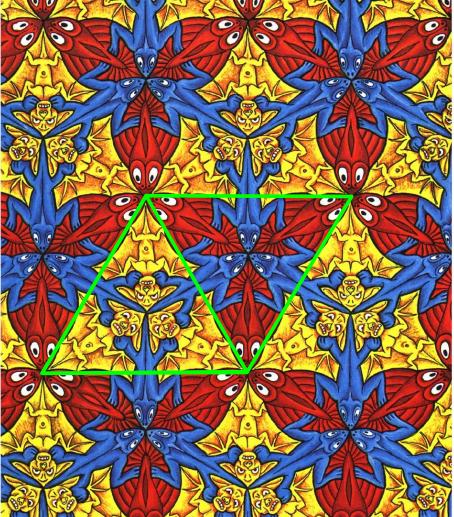
Two-dimensional Symmetry Elements



Lattice type: p for primitive, c for centred

Symmetry elements: *m* for mirror lines, *g* for glide lines, 4 for 4-fold axis etc.





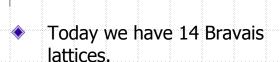
Bravais Lattices and Crystal Systems

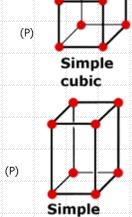
- ◆ In three dimensions: point symmetry elements and translational symmetry elements.
- For point symmetry elements:
 - centers of symmetry
 - mirror planes
 - inversion axes
- For translational symmetry elements:
 - glide planes
 - screw axes

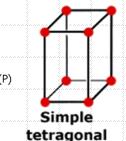
We end up with 230 space groups (was 17 plane groups) distributed among 14 space lattices (was 5 plane lattices) and 32 point group symmetries (instead of 10 plane point symmetries)

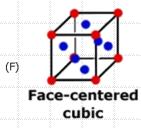
The 14 Space (Bravais) Lattices

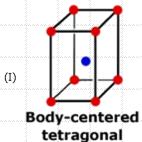
- The systematic work was done by Frankenheim in 1835. Proposed 15 space lattices.
- In 1848 Bravais pointed that two of his lattices were identical (unfortunate for Frankenheim).

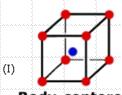


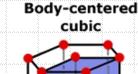


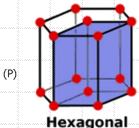


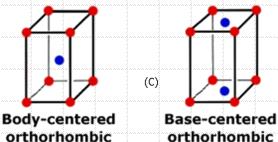


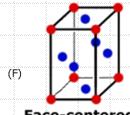




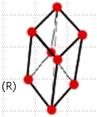








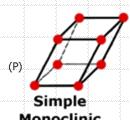
Face-centered orthorhombic



Simple

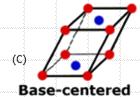
orthorhombic

Rhombohedral

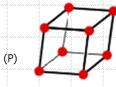


(I)

Monoclinic



monoclinic



Triclinic

a, b, c – unit cell lengths; α , β , γ - angles between them

(P)

Crystal Symmetry

Centering of the lattice	Lattice points per unit cell	International symbol	Lattice translation(s) due to centering	
Primitive	1	P	None	
Base-centered	2	Α	1/2(b+c)	
Base-centered	2	В	1/2(a+c)	
Base-centered	2	C	1/2(a+b)	
Body-centered	2	I	$1/2(\mathbf{a}+\mathbf{b}+\mathbf{c})$	
Face-centered	4	F	1/2(b+c); $1/2(a+c)$; $1/2(a+b)$	
Rhombohedral	3	R	1/3a+2/3b+2/3c; 2/3a+1/3b+1/3c	

The 14 Space (Bravais) Lattices

4	System Axial len		Bravais lattice	Lattice symbol
	Cubic	Three equal axes at right angles $a = b = c$, $\alpha = \beta = \gamma = 90^{\circ}$	Simple Body-centered Face-centered	P I F
	Tetragonal	Three axes at right angles, two equal $a = b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$	Simple Body-centered	P
	Orthorhombic	Three unequal axes at right angles $a \neq b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$	Simple Body-centered Base-centered Face-centered	P I C F
7 crystal systems	Rhombohedral*	Three equal axes, equally inclined $a = b = c$, $\alpha = \beta = \gamma \neq 90^{\circ}$	Simple	R
	Hexagonal	Two equal coplanar axes at 120°, third axis at right angles $a = b \neq c$, $\alpha = \beta = 90^{\circ}$ ($\gamma = 120^{\circ}$)	Simple	P
	Monoclinic	Three unequal axes, one pair not at right angles $a \neq b \neq c$, $\alpha = \gamma = 90^{\circ} \neq \beta$	Simple Base-centered	P C
	Triclinic	Three unequal axes, unequally inclined and none at right angles $a \neq b \neq c$, $(\alpha \neq \beta \neq \gamma \neq 90^{\circ})$	Simple	P
	* Also called trigona	al		

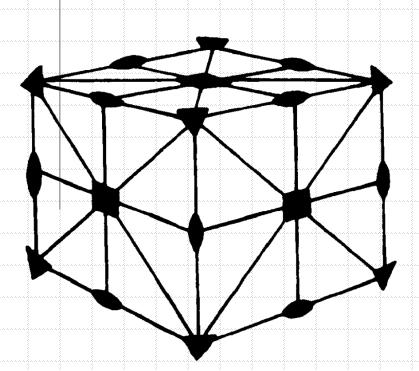
Crystal Symmetry

- \diamond 7 axial systems + 32 point groups \rightarrow 230 unique space groups
- ◆ A 3-D crystal must have one of these 230 arrangements, but the atomic coordinates (i.e. occupied equipoints) may be very different between different crystals

Crystal Class	Non-centrosymmetric Point Group	Centrosymmetric Point Group	Minimum Rotational Symmetry
Triclinic	1	Ī	One 1-fold
Monoclinic	2, m	2/m	One 2-fold
Orthorombic	222, mm2	mmm	Three 2-folds
Tetragonal	4, 422, 4 , 4mm, 4 2m	4/m, 4/mmm	One 4-fold
Trigonal	3, 32, 3 <i>m</i>	$\overline{3},\overline{3}m$	One 3-fold
Hexagonal	6, 622, 6 , 6 <i>mm</i> , 6 <i>m</i> 2	6/m, 6/mmm	One 6-fold
Cubic	23, 432, 4 3 <i>m</i>	$m\overline{3}, m\overline{3}m$	Four 3-folds

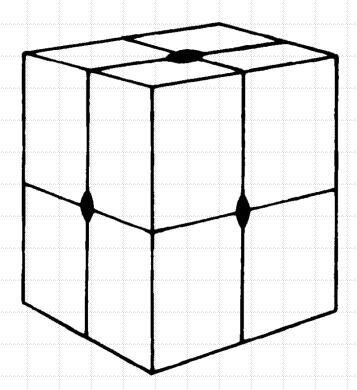
The Symmetry of Bravais Lattices

Point group symmetry of the cube



- Nine mirror planes
- Three four-fold axes
- Four three-fold axes
- Six two-fold axes

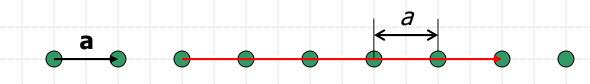
Point group symmetry of the orthorhombic cell



- Three mirror planes
- Three two-fold axes

Crystal Axes and the Reciprocal Lattice

Crystal Lattice & Directions



One-dimensional lattice with parameter a

$$\mathbf{r} = u\mathbf{a}$$

$$\mathbf{r} = u\mathbf{a} + v\mathbf{b}$$

Two-dimensional lattice with parameters a and b

Lattice Directions

For the lattice points u, v, w:

$$\mathbf{r} = u\mathbf{a} + v\mathbf{b} + w\mathbf{c}$$

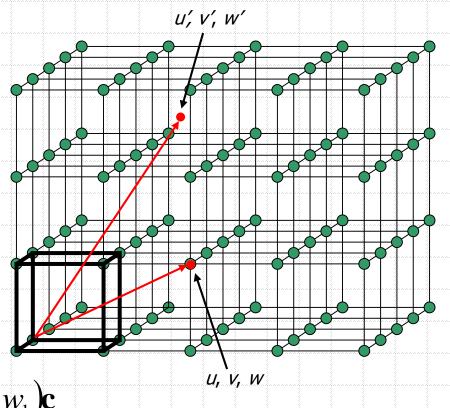
For the points in space u', v', w' that are not lattice points:

$$\mathbf{r} = u'\mathbf{a} + v'\mathbf{b} + w'\mathbf{c}$$

$$= (n + u_1)\mathbf{a} + (p + v_1)\mathbf{b} + (q + w_1)\mathbf{c}$$

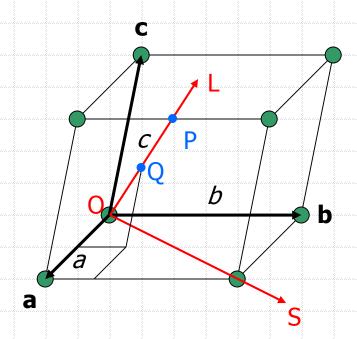
$$= (n\mathbf{a} + p\mathbf{b} + q\mathbf{c}) + (u_1\mathbf{a} + v_1\mathbf{b} + w_1\mathbf{c})$$

n, p, q – integers u_1 , v_1 , w_1 – fractions



Indexing Lattice Directions

- Direction must pass through the origin
- Coordinates of point P (in fractions of a, b and c) are 1, $\frac{1}{2}$, 1 \Rightarrow [212]
- For point Q coordinates are $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{2} \Rightarrow [212]$



[212] – defines direction for OL

For OS – the direction is [110]

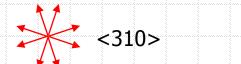
$$\mathbf{r}_{102} = 2\mathbf{a} + 1\mathbf{b} + 2\mathbf{c}$$
$$\mathbf{r}_{110} = 1\mathbf{a} + 1\mathbf{b} + 0\mathbf{c}$$

Indexing Lattice Directions

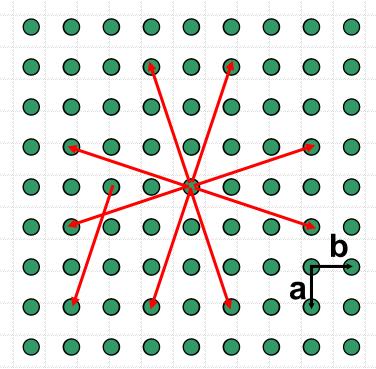
Specific direction $\Rightarrow [uvw]$

Family of directions $\Rightarrow \langle uvw \rangle$

Example:

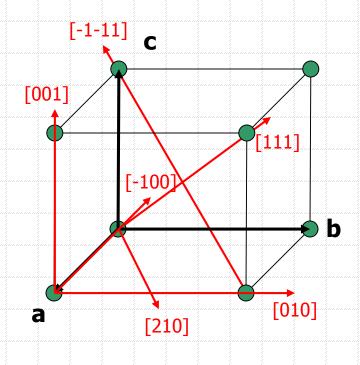


[3-10]



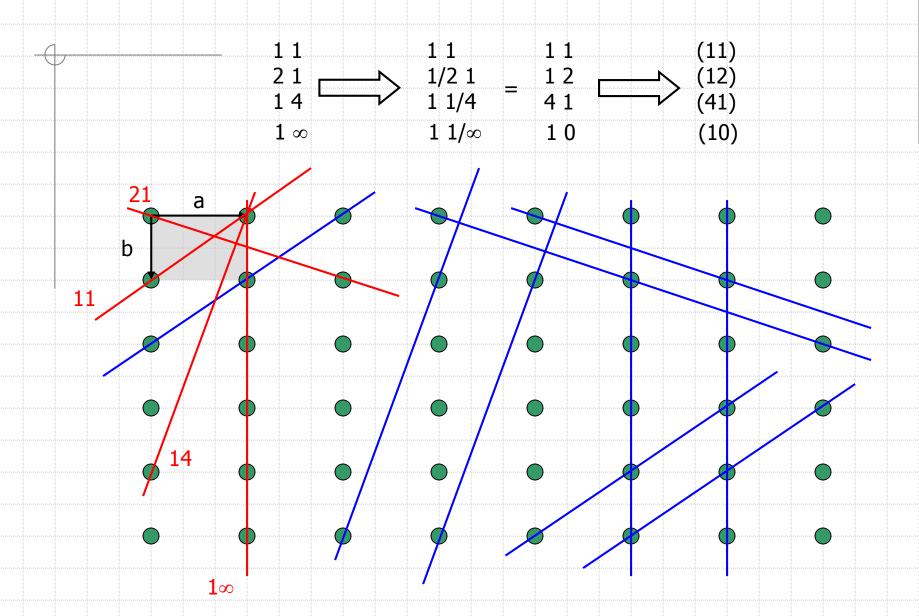
Indexing Lattice Directions

Directions related by symmetry are called directions of a form.



We have: [111], [-111], [-1-1-1], [11-1], ...

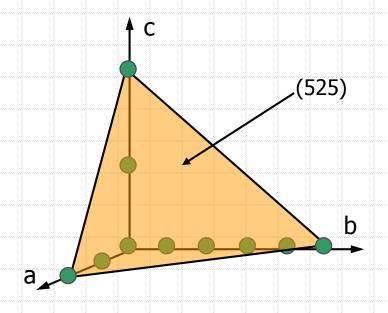
The Crystallographic Planes



Definition of the Miller Indices

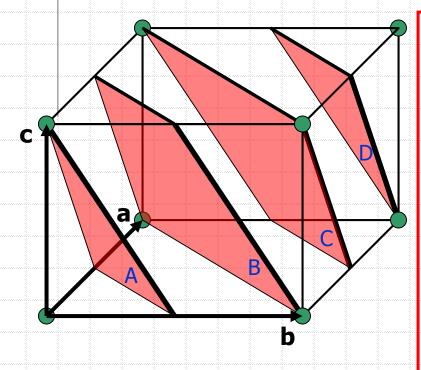
• Let's draw a plane at $2 \times a$, $5 \times b$, $2 \times c$.

	а	b	С
The intercepts	2	5	2
The reciprocals	1/2	1/5	1/2
Multiply by 10	5	2	5
The Miller indices	(525)		

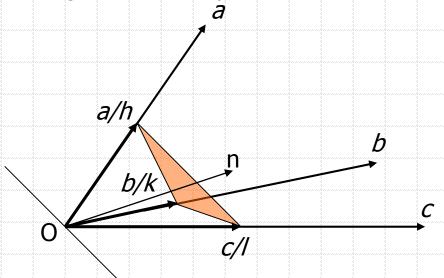


Definition of the Miller Indices

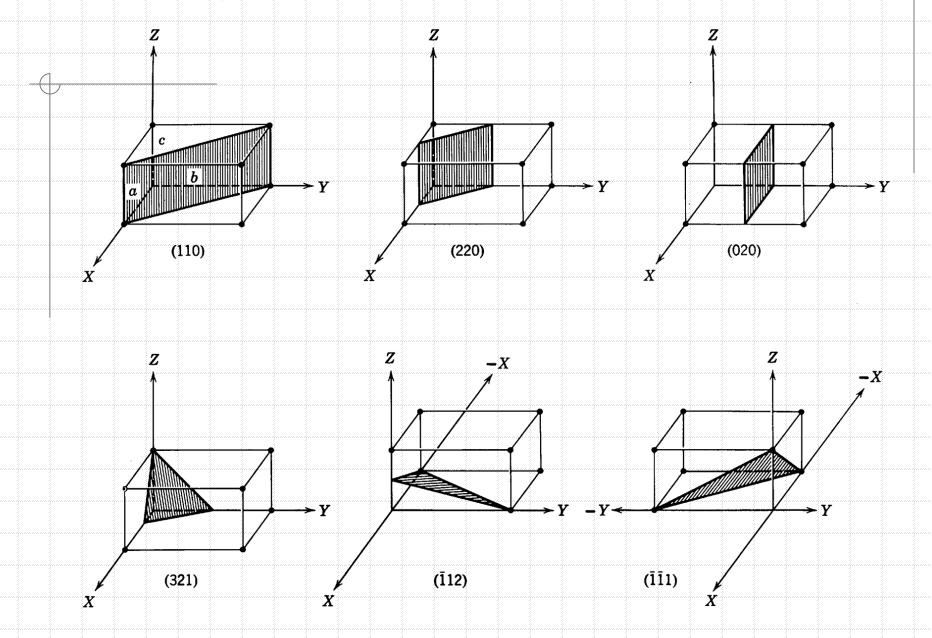
- For plane A a/2, b/2, and $1c \Rightarrow 2$, 2, $1 \Rightarrow$ plane is (221)
- For plane B 1*a*, 1*b*, and 2*c* \Rightarrow 1, 1, 1/2 \Rightarrow 2, 2, 1 \Rightarrow plane is (221)
- For plane C 3*a*/2, 3*b*/2, and 3*c* \Rightarrow 2/3, 2/3, 1/3 \Rightarrow 2, 2, 1 \Rightarrow plane is (221)
- For plane D 2*a*, 2*b*, and 4*c* \Rightarrow 1/2, 1/2, 1/4 \Rightarrow 2, 2, 1 \Rightarrow plane is (221)



- By the set of crystallographic planes hkl, we mean a set of parallel equidistant planes, one of which passes through the origin, and the next nearest makes intercepts a/h, b/k, and c/l on the three crystallographic axes.
- The integers hkl are usually called the Miller indices.



Miller Indices



Miller Indices and Zone Axis Symbols

Closures for crystallographic indices

[*uvw*] = square brackets designate a direction in the lattice from the origin to a point. Used to collectively include all the faces of a crystals whose intersects (i.e., edges) parallel each other. These are referred to as crystallographic **zones** and they represent a direction in the crystal lattice.

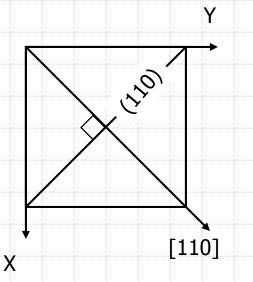
<uv>w> - designate family of directions.

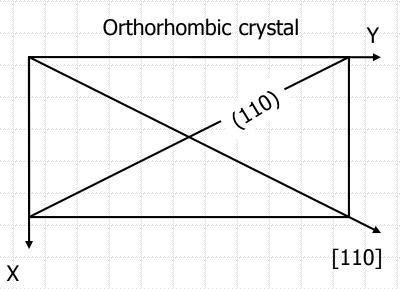
(hkl) = parenthesis designate a crystal face or a family of planes throughout a crystal lattice.

- {hkl} = "squiggly" brackets or braces designate a set of faces that are equivalent by the symmetry of the crystal. The set of face planes results in the **crystal form**. {100} in the isometric class includes (100), (010), (001), (-100), (0-10) and (00-1), while for the triclinic {100} only the (100) is included.
- **d-spacing** is defined as the distance between adjacent planes. When X-rays diffract due to interference amongst a family of similar atomic planes, then each diffraction plane may be reference by it's indices d_{hkl}

Miller Indices and Zone Axis Symbols

- For cubic crystal:
 - Direction symbols
 - <100> ⇒ [100], [-100], [010], 0 -10], [001], [00 -1]
 - <111> ⇒ [11-1], [-1-11], [1-11], [-11-1], [-111], [1-1-1], [111], [-1-1-1]
 - + <110> ⇒ 12 combinations
 - Miller indices
 - * $\{100\} \Rightarrow (100), (-100), (010), (0-10), (001), (00-1)$





Lattice Plane Spacings

For crystal with orthogonal axes:

$$OA\cos\alpha = ON \rightarrow (a/h)\cos\alpha = d_{hkl} \rightarrow \cos\alpha = (\frac{h}{a})d_{hkl}$$

 \diamond For angles β and γ:

$$\cos \beta = \left(\frac{k}{b}\right) d_{hkl}$$

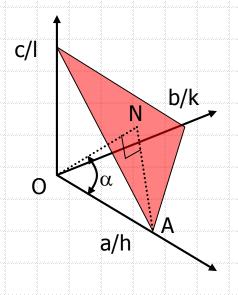
$$\cos \gamma = \left(\frac{l}{c}\right) d_{hkl}$$

Since for orthogonal axes:

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$

- We write: $\left(\frac{h}{a}\right)^2 d_{hkl}^2 + \left(\frac{k}{b}\right)^2 d_{hkl}^2 + \left(\frac{l}{c}\right)^2 d_{hkl}^2 = 1$
- For a cubic crystal a = b = c, hence

$$\frac{1}{d_{hkl}^2} = \frac{h^2 + k^2 + l^2}{a^2}$$



Lattice plane – (*hkl*) ON – interplanar spacing

Lattice Plane Spacings

Cubic:

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

Tetragonal:

$$\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$$

Hexagonal:

$$\frac{1}{d^2} = \frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} \right) + \frac{l^2}{c^2}$$

Rhombohedral:

$$\frac{1}{d^2} = \frac{(h^2 + k^2 + l^2)\sin^2\alpha + 2(hk + kl + hl)\cos^2\alpha - \cos\alpha}{a^2(1 - 3\cos^2\alpha + 2\cos^3\alpha)}$$

Orthorhombic:
$$\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$$

Monoclinic:

$$\frac{1}{d^2} = \frac{1}{\sin^2 \beta} \left(\frac{h^2}{a^2} + \frac{k^2 \sin^2 \beta}{b^2} + \frac{l^2}{c^2} - \frac{2hl \cos \beta}{ac} \right)$$

Triclinic:

$$\frac{1}{d^2} = \frac{1}{V^2} (S_{11}h^2 + S_{22}k^2 + S_{33}l^2 + 2S_{12}hk + 2S_{23}kl + 2S_{13}hl)$$

V =volume of unit cell

$$S_{11}=b^2c^2\sin^2\alpha,$$

$$S_{22}=a^2c^2\sin^2\beta,$$

$$S_{33}=a^2b^2\sin^2\gamma,$$

$$S_{12} = abc^2(\cos\alpha\cos\beta - \cos\gamma),$$

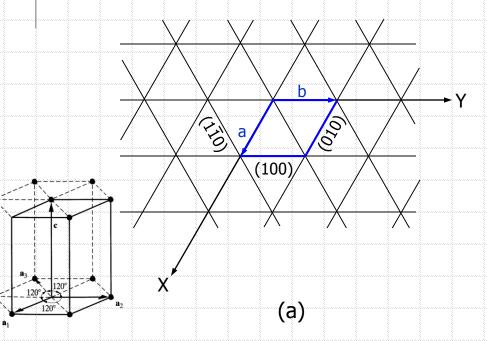
$$S_{23} = a^2 b c (\cos \beta \cos \gamma - \cos \alpha),$$

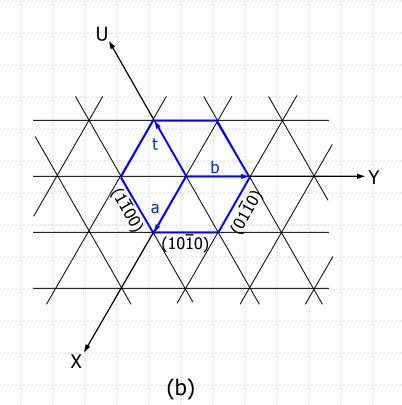
$$S_{13} = ab^2c(\cos\gamma\cos\alpha - \cos\beta).$$

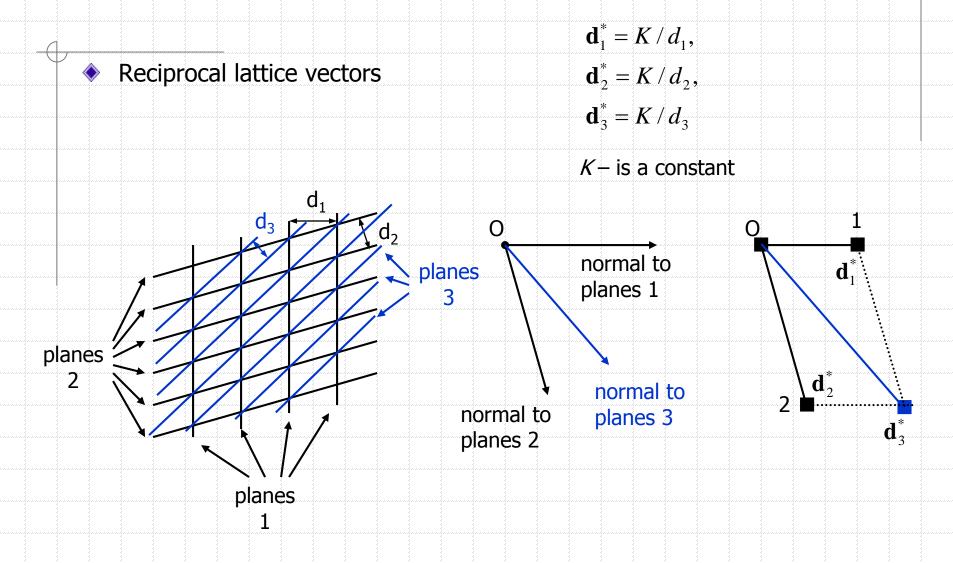
Special Case: Trigonal & Hexagonal Lattices

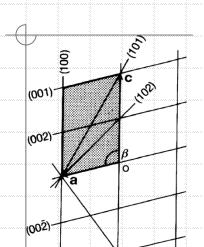
- (1-10), (100), and (010) are indices different in type but describe crystallographically equivalent lattice planes.
- Introducing the fourth axis U. We have Miller-Bravais indices (hkil).
- \diamond All indices of the planes are of the same form $-\{10 10\}$.

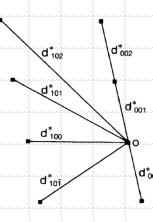
$$h + k + i = 0 \Rightarrow i = -(h + k) \Rightarrow \{hk./\}$$

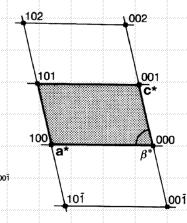


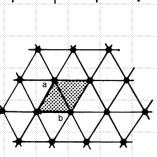


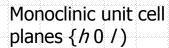










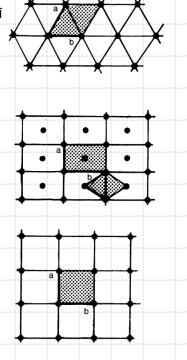


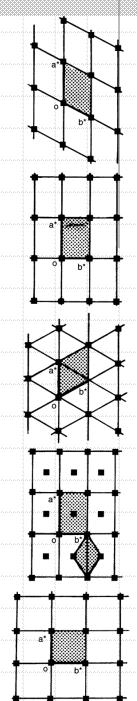
(001)-

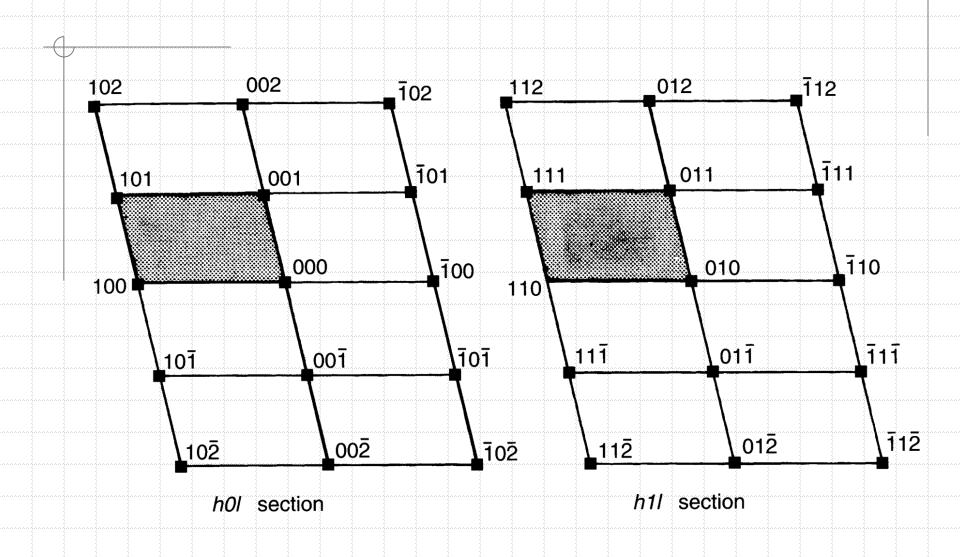
Reciprocal lattice vectors

Reciprocal lattice unit cell

$$\mathbf{c}^* = \mathbf{d}_{001}^*$$
 and $|\mathbf{c}^*| = 1/d_{001}$







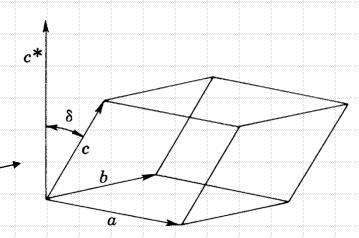
- Consider a real space unit cell with real lattice basis vectors a, b and c
- We define a set of reciprocal lattice basis vectors by:

$$\mathbf{a}^* = \frac{1}{V} (\mathbf{b} \times \mathbf{c}) = \frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}$$

volume of real space unit cell

$$\mathbf{b}^* = \frac{1}{V}(\mathbf{c} \times \mathbf{a})$$
 $\mathbf{c}^* = \frac{1}{V}(\mathbf{a} \times \mathbf{b})$

$$\mathbf{c}^* = \frac{1}{V} (\mathbf{a} \times \mathbf{b})$$



Just like we can define a real space lattice in terms of our real space lattice vectors, we can define a reciprocal space lattice in terms of our reciprocal space lattice vectors:

$$\mathbf{r}^* = \mathbf{d}_{hkl}^* = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*$$

The real and reciprocal space lattice vectors form an orthonormal set:

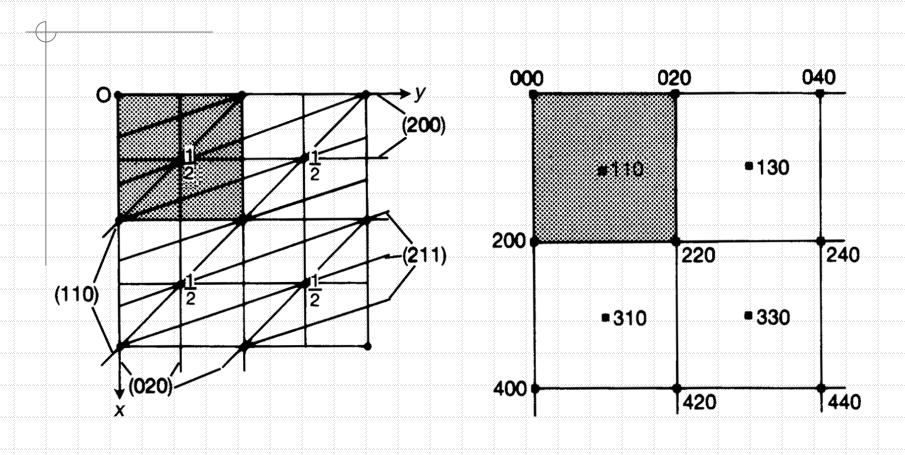
We can define a reciprocal unit cell with volume **V***:

$$V^* = \mathbf{a}^* \cdot (\mathbf{b}^* \times \mathbf{c}^*) \qquad V^* \cdot V = 1$$

Now we can write:

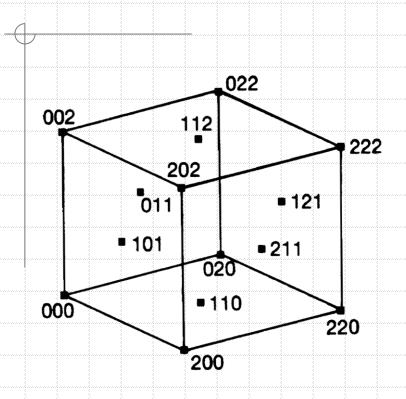
$$\mathbf{r}_{uvw} = u\mathbf{a} + v\mathbf{b} + w\mathbf{c}$$

$$\mathbf{d}_{hkl}^* = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*$$

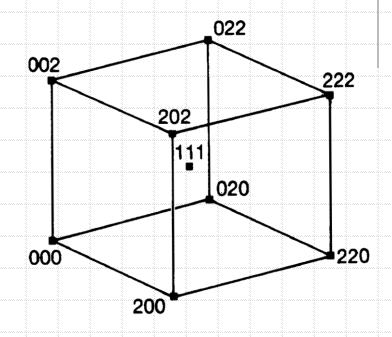


Plan of a cubic I crystal $\perp z$ -axis

Reciprocal lattice points



Cubic F reciprocal lattice unit cell of a cubic I direct lattice



Cubic *I* reciprocal lattice unit cell of a cubic *F* direct lattice

d-spacing of lattice planes

$$\mathbf{d}_{hkl}^* = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*$$

$$\mathbf{d}_{hkl}^* \cdot \mathbf{d}_{hkl}^* = \frac{1}{d_{hkl}^2} = (h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*) \cdot (h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*)$$

 $\left(\mathbf{a}^* \cdot \mathbf{a}^* = \frac{1}{a^2}\right)$

for orthorombic, tetragonal, cubic: $\mathbf{a}^* \cdot \mathbf{b}^* = 0$

therefore:
$$\frac{1}{d_{hkl}^2} = h\mathbf{a}^* \cdot h\mathbf{a}^* + k\mathbf{b}^* \cdot k\mathbf{b}^* + l\mathbf{c}^* \cdot l\mathbf{c}^* = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$$

• Angle ρ between plane normals $(h_1k_1l_1)$ and $(h_2k_2l_2)$

the angle between two vectors is $\cos \rho = \frac{\mathbf{a} \cdot \mathbf{b}}{ab}$

therefore:
$$\cos \rho = \frac{\mathbf{d}_{h_1 k_1 l_1}^* \cdot \mathbf{d}_{h_2 k_2 l_2}^*}{|\mathbf{d}_{h_1 k_1 l_1}^*| |\mathbf{d}_{h_2 k_2 l_2}^*|}$$