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Abstract— In this work, we introduce two set of algorithms
inspired by the ideas from modern geometry. One is computa-
tional conformal geometry method, including harmonic maps,
holomorphic 1-forms and Ricci flow. The other one is optimiza-
tion method using affine normals.

In the first part, we focus on conformal geometry. Conformal
structure is a natural structure of metric surfaces. The concepts
and methods from conformal geometry play important roles
for real applications in scientific computing, computer graphics,
computer vision and medical imaging fields.

This work systematically introduces the concepts, methods
for numerically computing conformal structures inspired by
conformal geometry. The algorithms are theoretically rigorous
and practically efficient.

We demonstrate the algorithms by real applications, such as
surface matching, global conformal parameterization, conformal
brain mapping etc.

In the second part, we consider minimization of a real-valued
function f over Rn+1 and study the choice of the affine normal of
the level set hypersurfaces of f as a direction for minimization.
The affine normal vector arises in affine differential geometry
when answering the question of what hypersurfaces are invariant
under unimodular affine transformations. It can be computed at
points of a hypersurface from local geometry or, in an alternate
description, centers of gravity of slices. In the case where f is
quadratic, the line passing through any chosen point parallel to its
affine normal will pass through the critical point of f . We study
numerical techniques for calculating affine normal directions of
level set surfaces of convex f for minimization algorithms.

Index Terms— Conformal geometry, holomorphic 1-form, har-
monic maps, Ricci flow, global conformal parametrization, Con-
formal brain mapping,

I. INTRODUCTION

Conformal structure is a natural geometric structure of a
metric surface. It is more flexible than Riemannian metric
structure and more rigid than topological structure, therefore it
has advantages for many important engineering applications.

The first example is from computer graphics. Surface pa-
rameterization refers to the process to map a surface onto the
planar domains, which plays a fundamental role in graphics
and visualization for the purpose of texture mapping. Surface
parameterization can be reformulated as finding a special
Riemannian metric with zero Gaussian curvature everywhere,
namely a flat metric. If the parameterization is known, then
pull back metric induced by the map is the flat metric;
conversely, if a flat metric of the surface is known, then the
surface can be flattened onto the plane isometricly to induce
the parameterization.

The second example is from geometric modeling. Construct-
ing manifold splines on a surface is an important issue for
modeling. In order to define parameters and the knots of the

spline, special atlas of the surface is required such that all local
coordinate transition maps are affine. One way to construct
such an atlas is as follows, first a flat metric of the surface is
found, then a collection of open sets are located to cover the
whole surface, finally each open set is flattened using the flat
metric to form the atlas.

The third example is from medical imaging. The human
brain cortex surface is highly convolved. In order to compare
and register brain cortex surfaces, it is highly desirable to
canonically map them to the unit sphere. This is equivalent
to find a Riemannian metric on the cortex surface, such
that the Gaussian curvature induced by this metric equals to
one everywhere. Once such a metric is obtained, the cortex
surface can be coherently glued onto the sphere piece by piece
isometricly.

For most applications, the desired metrics should minimize
the angle distortion and the area distortion. The angles mea-
sured by the new metric should be consistent with those mea-
sured by the original metric. The existence of such metrics can
be summaried as Riemann uniformization theorem. Finding
those metrics is equivalent to compute surface conformal struc-
ture. Therefore, it is of fundamental importance to compute
conformal structures of general surfaces.

In modern geometry, conformal geometry of surfaces are
studied in Riemann surface theory. Riemann surface theory is
a rich and mature field, it is the intersection of many subjects,
such as algebraic geometry, algebraic topology, differential
geometry, complex geometry etc. This work focuses on con-
verting theoretic results in Riemann surface theory to practical
algorithms.

II. PREVIOUS WORKS

Much research has been done on mesh parameterization due
to its usefulness in computer graphics applications. The survey
of [Floater and Hormann 2005] provides excellent reviews on
various kinds of mesh parameterization techniques. Here, we
briefly discuss the previous work on the conformal mesh
parameterization.

Several researches on conformal mesh parameterization
tried to discretize the nature of the conformality such that any
intersection angle at any point on a given manifold is preserved
on the parameterized one at the corresponding point. Floater
[Floater 1997] introduced a mesh parameterization technique
based on convex combinations. For each vertex, its 1-ring
stencil is parameterized into a local parameterization space
while preserving angles, and then the convex combination of
the vertex is computed in the local parameterization spaces.
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The overall parameterization is obtained by solving a sparse
linear system. [Sheffer and de Sturler 2001] presented a con-
strained minimization approach, so called angle-based flatten-
ing (ABF), such that the variation between the set of angles of
an original mesh and one of 2D flatten version is minimized.
In order to obtain a valid and flipping-free parameterization,
several angular and geometric constraints are incorporated
with the minimization processes. Lately, they improved the
performance of ABF by using an advanced numerical approach
and a hierarchical technique [Sheffer et al. 2005].

Recently, much research has been incorporated with the
theories of differential geomety. [Levy et al. 2002] applied
the Cauchy-Riemann equation for mesh parameterization and
provided successful results on the constrained 2D parame-
terizations with free boundaries. [Desbrun et al. 2002] min-
imized the Dirichlet energy defined on triangle meshes for
computing conformal parameterization. It has been noted
that the approach of [Desbrun et al. 2002] has the same
expressional power with [Levy et al. 2002]. Gu and Yau
[Gu and Yau 2003] computed the conformal structure using
the Hodge theory. A flat metric of the given surface is induced
by computing the holomorphic 1-form with a genus-related
number of singularities and used for obtaining a globally
smooth parameterization. [Gortler et al. 2005] used discrete
1-forms for mesh parameterization. Their approach provided
an interesting result in mesh parameterization with several
holes, but they cannot control the curvatures on the boundaries.
Ray et al. [Ray et al. 2005] used the holomorphic 1-form to
follow up the principle curvatures on manifolds and computed
a quad-dominated parameterization from arbitrary models.
Kharevych et al. [34] applied the theory of circle patterns
from [Bobenko and Springborn 2004] to globally conformal

parameterizations. They obtain the uniform conformality by
preserving intersection angles among the circum-circles each
of which is defined from a triangle on the given mesh.
In their approach, the set of angles is non-linear optimized
first, and then the solution is refined with cooperating ge-
ometric constraints. They provide several parameterization
results, such as 2D parameterization with predefined boundary
curvatures, spherical parameterization, and globally smooth
parameterization of a high genus model with introducing
singularity points. [Gu et al. 2005] used the discrete Ricci
flow [Chow and Luo 2003] for generating manifold splines
with a single extraordinary point. The Ricci flow is utilized for
obtaining 2D parameterization of high-genus models in their
paper.

In theory, the Ricci flow [Chow and Luo 2003] and the vari-
ations with circle patterns [Bobenko and Springborn 2004]
have the same mathematical power. However, because of the
simplicity of the implementation, we adopt the Ricci flow as
a mathematical tool for the parameterization process.

In contrast to all previous approaches, the parameterization
spaces in our interests are not only the 2D space but also
arbitrary hyperbolic spaces. As a result, we can provide
novel classes of applications in this paper, such as param-
eterization with interior and exterior boundaries having pre-
scribed curvatures, PolyCube-mapping, quasi-conformal cross-
parameterization with high-genus surfaces, and geometry sig-
natures.

III. THEORETIC BACKGROUND

In this section, we introduce the theories of conformal
geometry.
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A. Riemann Surface

Suppose S is a two dimensional topological manifold cov-
ered by a collection of open sets {Uα}, S ⊂ ⋃

α Uα . A
homeomorphism φα : Uα →C maps Uα to the complex plane.
(Uα ,φα) forms a local coordinate system. Suppose two open
sets Uα and Uβ intersect, then each point p ∈ Uα

⋂
Uβ has

two local coordinates, the transformation between the local
coordinates is defined as the transition function

φαβ := φβ ◦φ−1
α : φα(Uα ∩Uβ )→ φβ (Uβ ∩Uβ ). (1)

Suppose a complex function f : C → C is holomorphic,
if its derivative exists. If f is invertible, and f−1 is also
holomorphic, then f is called bi-holomorphic.

Definition 1 (Conformal Structure): A two dimensional
topological manifold S with an atlas {(Uα ,φα)}, if all
transition functions φαβ ’s are bi-holomorphic, then the atlas
is called a conformal atlas. The union of all conformal atlas
is called the conformal structure of S.

A surface with conformal structure is called a Riemann
surface. All metric surfaces are Riemann surface.

B. Uniformization Metric

Suppose S is a C2 smooth surface embedded in R3 with
parameter (u1,v2). The position vector is r(u1,u2), then tan-
gent vector is dr = r1du1 + r2du2, where r1,r2 are the partial
derivatives of r with respect to u1,u2 respectively. The length
of the tangent vector is represented as the first fundamental
form

ds2 = ∑gi jdu1du2 (2)

where gi j =< ri,r j >. The matrix (gi j) is called the Rieman-
nian metric matrix.

A special parameterization can be chosen to simplify the
Riemannian metric, such that g11 = g22 = e2λ and g12 = 0,
such parameter is called the isothermal coordinates. If all the
local coordinates of an atlas are isothermal coordinates, then
the atlas is the conformal atlas of the surface. For all orientable
metric surfaces, such atlas exist, namely

Theorem 2 (Riemann Surface): All orientable metric sur-
faces are Riemann surfaces.

The Gauss curvature measures the deviation of a neighbor-
hood of a point on the surface from a plane, using isothermal
coordinates, the Gaussian curvature is calculated as

K =− 2
e2λ ∆λ , (3)

where ∆ is the Laplace operator on the parameter domain.
Theorem 3 (Gauss-Bonnet): Suppose a closed surface S,

the Riemannian metric g induces the Gaussian curvature
function K, then the total curvature is determined by

∫

S
KdA = 2πχ(S), (4)

where χ(S) is the Euler number of S.
Suppose u : S→ R is a function defined on the surface S,

then e2ug is another Riemannian metric on S. Given arbitrary
two tangent vectors at one point, the angle between them can
be measured by g or e2ug, the two measurements are equal.

Therefore we say e2ug is conformal (or angle preserving) to
g. (S,g) and (S,e2ug) are endowed with different Riemannian
metrics but the same conformal structure.

The following Poincaré uniformization theorem postulate
the existence of the conformal metric which induces constant
Gaussian curvature,

Theorem 4 (Poincaré Uniformization): Let (S,g) be a com-
pact 2-dimensional Riemannian manifold, then there is a
metric ḡ conformal to g which has constant Gauss curvature.
Such a metric is called the uniformization metric. According
to Gauss-Bonnet theorem 4, the sign of the constant Gauss
curvature is determined by the Euler number of the surface.
Therefore, all closed surfaces can be conformally mapped to
three canonical surfaces, the sphere for genus zero surfaces
χ > 0, the plane for genus one surfaces χ = 0, and the
hyperbolic space for high genus surfaces χ < 0.

C. Holomorphic 1-forms

Holomorphic and meromorphic functions can be defined
on the Riemann surface via conformal structure. Holomorphic
differential forms can also be defined,

Definition 5 (holomorphic 1-form): Suppose S is a Rie-
mann surface with conformal atlas {(Uα ,zα}, where zα is the
local coordinates. Suppose a complex differential form ω is
represented as

ω = fα(zα )dzα ,

where fα is a holomorphic function, then ω is called a
holomorphic 1-form.

Holomorphic 1-forms play important roles in computing
conformal structures.

A holomorphic 1-form can be interpreted as a pair of vector
fields, ω1 +

√
−1ω2, such that the curl and divergence of

ω1,ω2 are zeros,

∇×ωi = 0,∇ ·ωi = 0, i = 1,2,

and
n×ω1 = ω2,

everywhere on the surface. Both ωi are harmonic 1-forms, the
following Hodge theorem clarifies the existence and unique-
ness of harmonic 1-forms,

Theorem 6 (Hodge): Each cohomologous class of 1-forms
has a unique harmonic 1-form.

D. Ricci Flow

In geometric analysis, Ricci flow is a powerful tool to
compute Riemannian metric. Recently, Ricci flow is applied
to prove the Poincaré conjecture. The Ricci flow is the process
to deform the metric g(t) according to its induced Gauss
curvature K(t), where t is the time parameter

dgi j(t)
dt

=−K(t)gi j(t). (5)

It is proven that the curvature evolution induced by the Ricci
flow is exactly like heat diffusion on the surface

K(t)
dt

=−∆g(t)K(t), (6)
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where ∆g(t) is the Laplace-Beltrami operator induced by the
metric g(t). Ricci flow converges, the metric g(t) is conformal
to the original metric at any time t. Eventually, the Gauss
curvature will become to constant just like the heat diffusion
K(∞) ≡ const, the limit metric g(∞) is the uniformization
metric.

E. Harmonic Maps

Suppose S1,S2 are metric surfaces embedded in R3. φ : S1→
S2 is a map from S1 to S2. The harmonic energy of the map
is defined as

E(φ) =

∫

S1

< ∇φ ,∇φ > dA.

The critical point of the harmonic energy is called the har-
monic maps.

The normal component of the Laplacian is

∆φ⊥ =< ∆φ ,n◦φ > n,

If φ is a harmonic map, then the tangent component of
Laplacian vanishes,

∆φ = ∆φ⊥,

where ∆ is the Laplace-Beltrami operator.
We can diffuse a map to a harmonic map by the heat flow

method:
dφ
dt

=−(∆φ −∆φ⊥).

IV. COMPUTATIONAL ALGORITHMS

In practice, all surfaces are represented as simplicial com-
plexes embedded in the Euclidean space, namely, triangular
meshes. All the algorithms are discrete approximations of their
continuous counter parts. We denote a mesh by M, and use
vi to denote its ith vertex, edge ei j for the edge connecting vi
and v j, and fi jk for the triangle formed by vi,v j and vk, which
are ordered counter-clock-wisely.

If a mesh M is with boundaries, we fist convert it to a
closed symmetric mesh M̄ by the following double covering
algorithm:

1) Make a copy mesh M′ of M.
2) Reverse the orientation of M′ by change the order of

vertices of each face, fi jk→ f jik.
3) Glue M and M′ along their boundaries to form a closed

mesh M̄.
In the following discussion, we always assume the surfaces

are closed. We first introduce harmonic maps method for
genus zero surfaces, then holomorphic 1-forms for genus one
surfaces and finally Ricci flow method for high genus surfaces.

A. Genus Zero Surfaces - Harmonic Maps

For genus zero surfaces, the major algorithm to compute
their conformal mapping is harmonic maps, the basis proce-
dure is to diffuse a degree one map until the map becomes
harmonic.

1) Compute the normal of each face, then compute the
normal of each vertex as the average of normals of
neighboring faces.

2) Set the map φ equals to the Gauss map,

φ(vi) = ni,

3) Diffuse the map by Heat flow acting on the maps

φ(vi)−= (∆φ(vi)−∆φ(vi)
⊥)ε

where ∆φ(vi))
⊥ is defined as

< ∆φ(vi),φ(vi)> φ(vi).

4) Normalize the map by set

φ(vi) =
φ(vi)− c
|φ(vi)− c| ,

where c is the mass center defined as

c = ∑
vi

φ(vi).

5) Repeat step 2 and 3, until ∆φ(vi)) is very closed to
∆φ(vi))

⊥.
where ∆ is a discrete Laplace operator, defined as

∆φ(vi) = ∑
j

wi j(φ(vi)−φ(vi)),

where v j is a vertex adjacent to vi, wi j is the edge weight

wi j =
cotα + cotβ )

2
,

α ,β are the two angles against edge ei j.
The harmonic maps φ : M → S2 is also conformal. The

conformal maps are not unique, suppose φ1,φ2 : M→ S2 are
two conformal maps, then φ1 ◦ φ−1

2 : S2 → S2 is a conformal
map from sphere to itself, it must be a so-called Möbius
transformation. Suppose we map the sphere to the complex
plane by a stereo-graphics projection

(x,y,z)→ 2x + 2
√
−1y

2− z
,

then the Möbius transformation has the form

w→ aw + b
cw + d

,ad−bc = 1,a,b,c,d ∈ C.

The purpose of normalization step is to remove Möbius
ambiguity of the conformal map from M to S2.

For genus zero open surfaces, the conformal mapping is
straight forward

1) Double cover M′ to get M̄.
2) Conformally map the doubled surface to the unit sphere
3) Use the sphere Möbius transformation to make the

mapping symmetric.
4) Use stereographic projection to map each hemisphere to

the unit disk.
The Möbius transformation on the disk is also a conformal
map and with the form

w→ eiθ w−w0

1− w̄0w
, (7)

where w0 is arbitrary point inside the disk, theta is an angle.
Figure IV illustrates two conformal maps from the David
head surface to the unit disk, which differ by a Möbius
transformation.
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B. Genus One Surfaces - Holomorphic 1-forms
For genus one closed surfaces, we compute the basis of

holomorphic 1-form group, which induces the conformal pa-
rameterization directly. A holomorphic 1-form is formed by a
pair of harmonic 1-forms ω1,ω2, such that ω2 is conjugate to
ω1.

In order to compute harmonic 1-forms, we need to compute
the homology basis for the surface. A homology base curve is
a consecutive halfedges, which form a closed loop. First we
compute a cut graph of the mesh, then extract a homology
basis from the cut graph. Algorithm for cut graph:

1) Compute the dual mesh M̄, each edge e∈M has a unique
dual edge ē ∈ M̄.

2) Compute a spanning tree T̄ of M̄, which covers all the
vertices of M̄.

3) The cut graph is the union of all edges whose dual are
not in T̄ ,

G = {e ∈M|ē 6∈ T̄}.
Then, we can compute homology basis from G,

1) Compute a spanning tree T of G.
2) G

T = {e1,e2, · · · ,en}.
3) ei∪T has a unique loop, denoted as γi.
4) {γ1,γ2, · · · ,γn} form a homology basis of M.
A harmonic 1-form is represented as a linear map from the

halfedge to the real number, ω : {Hal f Edges}→R, such that




ω∂ f ≡ 0
∆ω ≡ 0∫

γi
ω = ci

(8)

where ∂ represents boundary operator, ∂ fi jk = ei j + e jk + eki,
therefore ω∂ fi jk = ω(ei j)+ω(e jk)+ω(eki); ∆ω represents the
Laplacian of ω ,

∆ω(vi) = ∑
j

wi jω(hi j),

hi j are the half edges from vi to v j; {ci} are prescribed
real numbers. It can be shown that the solution to the above
equation group exists and unique.

On each face fi jk there exists a unique vector t, such that on
each edge, ω(hi j) =< v j− vi, t >,ω(h jk) =< vk− v j, t > and
ω(hki) =< vi− vk, t >. Let t′ = n× t, then ω ′(hi j) =< v j −
vi, t′ > defines another harmonic 1-form, which is conjugate
to ω , (ω ,ω ′) form a holomorphic 1-form.

We cut a surface M along its cut graph to get an topological
disk DM , by gluing DM consistently, we can construct a finite
portion of the universial covering space of M.

We then integrate a holomorphic 1-form to map DM to the
plane conformally in the following way:

1) Fix one vertex v0 ∈DM , and map it to the origin φ(v0) =
(0,0).

2) For any vertex v∈DM , compute the shortest path γ from
v0 to v in DM ,

3) φ(v) = (
∫

γ ω ,
∫

γ ω ′).
We then visualize the holomorphic 1-forms by texture

mapping a checker board onto DM using texture coordinates φ .
Figure IV-B demonstrates the holomorphic 1-forms on three
different surfaces.

C. High Genus Surfaces - Discrete Ricci flow

For high genus surfaces, we apply discrete Ricci flow
method to compute their uniformization metric and then
embed them in the hyperbolic space.

1) Circle Packing Metric: We associate each vertex vi with
a circle with radius γi. On edge ei j, the two circles intersect
at the angle of Φi j . The edge lengths are

l2
i j = γ2

i + γ2
j + 2γiγ j cosΦi j

A circle packing metric is denoted by {Σ,Φ,Γ}, where Σ is
the triangulation, Φ the edge angle, Γ the vertex radii.

PSfrag replacements
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v2 v3

e12 e23

e31
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r2
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φ31

Two circle packing metrics {Σ,Φ1,Γ1} and {Σ,Φ2,Γ2} are
conformal equivalent, if
• The radii of circles are different, Γ1 6= Γ2.
• The intersection angles are same, Φ1 ≡Φ2.
In practice, the circle radii and intersection angles are

optimized to approximate the induced Euclidean metric of the
mesh as close as possible.

2) Poincaré Disk: According to Riemann uniformization
theorem, high genus surfaces can be conformally embed in
hyperbolic space. Instead of treat each triangle as an Euclidean
triangle, we can treat each triangle as a hyperbolic triangle.
The hyperbolic space is represented using Poincaré disk,
which is the unit disk on the complex plane, with Riemannian
metric

ds2 =
4dwdw̄

(1− w̄w)2 .

The rigid motion in Poincaré disk is Möbius transformation 7.
The geodesics are circle arcs which are orthogonal to the unit
circle. A hyperbolic circle in Poincaré disk with center c and
radius r is also an Euclidean circle with center C and radius
R, such that C = 2−2µ2

1−µ2|c|2 and R2 = |C|2− |c|2−µ2

1−µ2|c|2 ,µ = er−1
er+1 .

3) Hyperbolic Ricci Flow: Let

ui = logtanh
γi

2
, (9)

then discrete hyperbolic Ricci flow is defined as

dui

dt
= K̄i−Ki. (10)

In fact, discrete Ricci flow is the gradient flow of the following
hyperbolic Ricci energy

f (u) =

∫ u

u0

n

∑
i=1

(K̄i−Ki)dui, (11)
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where n is the number of edges, u = (u1,u2, · · · ,um), m is
the number of vertices. In practice, if we set K̄i ≡ 0 by
minimizing the Ricci energy using Newton’s method, the
hyperbolic uniformization metric can be computed efficiently.

Once the hyperbolic metric for a mesh is calculated, the
mesh can be flattened face by face in the Poincaré disk.
Determining the position of a vertex in the Poincaré disk
is equivalent to find the intersection between two hyperbolic
circles, which can be converted as finding the intersection
between two Euclidean circles.

V. APPLICATIONS

Conformal geometry has broad applications in medical
imaging, computer graphics, geometric modeling and many
other fields.

A. Conformal Brain Mapping

Human cortex surfaces are highly convoluted, it is difficult
to analyze and study them. By using conformal maps, we can
map the brain surface to the canonical unit sphere and carry
out all the geometric processing, analysis, measurement on
the spherical domain. Because the conformal map preserves
angle structure, local shapes are well preserved, it is valuable
for visualization purpose. Different cortical surfaces can be
automatically registered on the canonical parameter domain,
it is more efficient to compare surfaces using conformal brain
mapping.

Figure V-A illustrates an example of conformal brain map-
ping. The cortical surface is reconstructed from MRI images
and converted as a triangular mesh.

Fig. 3. Conformal Brain Mapping

B. Global Conformal Parameterization

In computer graphics, surface parameterization plays an im-
portant role for various applications, such as texture mapping,
texture synthesis.

Basically, a surface is mapped to the plane, the planar
coordinates of each vertex are used as texture coordinates. It
is highly desirable to reduce the distortion between the texture
image and the geometric surface. Conformal mapping is useful
because it is angle distortion free. Figure V-B illustrates an
example for texture mapping using global conformal parame-
terization of a genus two surface.

Fig. 4. Texture mapping using conformal mapping.

Fig. 5. Manifold Splines constructed from holomorphic 1-form.

C. Manifold Splines

In geometric modeling, conventional splines are defined on
the planar domains. It is highly desirable to define splines on
surfaces with arbitrary topologies directly.

In order to define splines on manifolds, one needs to
compute a special atlas of the manifold, such that all chart
transition maps are affine. Such kind of atlas can be easily
constructed by integrating a holomorphic 1-form.

Figure V-C demonstrates one example of genus 6 surface.
The holomorphic 1-form induces an affine atlas with singular-
ities, the planar powell-sabin splines are defined on the atlas
directly.

VI. AFFINE NORMAL

Many problems in engineering field can be formulated as
optimization problem. Suppose f : Rn→ R is a differentiable
function, finding its critical points is the basic task.

Situated at any point, a natural direction to choose for
minimization is the steepest descent direction. This is the
direction along which the function is locally diminishing the
most rapidly. The steepest descent direction can be computed
from derivative information of f through the form −∇ f .
Unfortunately, while this direction is intuitively sound, it
shows slow convergence.

Newton’s method use quadratic approximation at the origin,

f (x)≈ xT ∇2 f (0)x + ∇ f T (0)x + c.
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When the quadratic approximation is taken at a point y, the
critical point is at x = y−(∇2 f (y)−1∇ f (y), therefore, one use
x to replace y as the next guess. By iteration, the critical point
can be reached. Newton’s method quadratically converges. But
it is expensive to compute the inverse of the second derivative
matrices, the Hessian matrices.

A. Affine Normal

Let M be a hypersurface in Rn+1, N is the normal vector
field on M. Now if X and Y are vector fields on M and DXY
is the flat connection on Rn+1, then we decompose

DXY = ∇XY + h(X ,Y)N,

where ∇XY is the tangential part of DXY and h(X ,Y ) the
normal part, also known as the second fundamental form.
Furthermore, in this case, ∇XY is the Levi-Civita connection
of the Riemannian metric induced by Rn+1 on M.

We choose an arbitrary local frame field e1,e2, · · · ,en tan-
gent to M and det(e1,e2, · · · ,en+1) = 1, we may define h as
DXY = ∇XY + h(X ,Y)en+1, to arrive at the affine metric

IIik = H−
1

n+2 hik,

where H is the determinant det{hik}. In this case, the affine
normal field is given by ∆M, where the Laplacian is with
respect to the affine metric II and M is the position vector of
MM.

Suppose M is a level set surface of the function f , we can
derive the affine normal field as

H
1

n+2

(
f i j(− n

n+2 f pq fpqi + n fn+1,i
|∇ f | )

− n
|∇ f |

)
,

where the coordinates xi used are rotated so that xn+1 is in the
normal direction. It can be shown that when the hypersurface is
an ellipsoid, all affine normals point towards its center. in fact,
the affine normals of the level sets of a quadratic polynomial
will point toward the unique critical point, even if that critical
point is unstable.

B. Affine Normal Descent Algorithm

Using this affine normal field, we can summarize our
algorithm in the following steps, iterated to convergence:

1) Compute the affine normal direction to the level set of
the function at the current approximation location.

2) Use a line search to find the minimum of the function
along that direction. This location serves as the new
approximation.

We call this the affine normal descent algorithm. For the
quadratic minimization problem, due to the nature of the affine
normal and the ellipsoidal level sets of f , the approximations
of this algorithm will take on the value of the exact minimum
after one iteration. Thus, the affine normal and the vector
−(∇2 f )−1∇ f used in Newton’s method are parallel to each
other in this case. This means we may view this algorithm
as an extension of the steepest descent method, using the
affine normal direction, which points at the center of ellipsoids,
instead of the steepest descent direction, which points at the

center of spheres. On the other hand, we may view it as
a relative of Newton’s method, both exact for the quadratic
minimization problem but with different higher order terms.

C. Efficiency

In terms of computational costs, we note that the previously
derived formula for the affine normal direction requires first,
second, and third derivatives of f , as well as inversion of
an n× nn matrix of second derivatives. While it may be
possible to generate other forms or approximations of the
affine normal direction that simplify the inversion or diminish
the need of derivative information. Instead, we consider a
different viewpoint of the affine normal to bypass the need for
such information. Consider a convex hypersurface, a point on
that surface, and the tangent plane located there. Furthermore,
consider the class of planes intersecting with the surface
and parallel to the tangent plane. On each of these planes,
we look at the center of gravity of the region enclosed by
the intersection of the plane with the surface. The union
of these centers of gravity forms a curve. It turns out that
the one-sided tangent direction of this curve at the point of
interest is the affine normal vector. Thus, an alternate approach
for calculating the affine normal vector involves calculating
centers of gravity, completely bypassing the need for derivative
information higher than that of the first derivative which is
required for tangent planes.

D. Experimental Results

We tested our method for several cases and measure the ac-
curacy and efficiency. For a five-dimensional convex function,
let

f (x) =
5

∑
i=1

(x2
i + sinxi).

Let (−0.2,0,0.4,1,−0.3) be the starting point. The iterations
of our algorithm are shown in Table VI-D, the algorithm
converge to the point




−0.45018354967147
−0.45018354967140
−0.45018354967139
−0.45018354967125
−0.45018354967129




From the statistics, we can see that the affine normal method
is efficient and practical.

j f (p j) |p j − p j−1|
0 2.02669978966015
1 −0.87543513107826 2.17147295853185
2 −1.16211480429203 0.13960261665982
3 −1.16232787552543 0.00003483822789
4 −1.16232787579106 0.00001466875411
5 −1.16232787579106 0.00000000001789

TABLE I
FIVE-DIMENSIONAL RESULT: IN THIS FIVE-DIMENSIONAL EXAMPLE,

CONVERGENCE IS ACHIEVED AFTER 5 ITERATIONS.
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VII. CONCLUSION

This paper introduces some algorithms inspired by geomet-
ric insights.

We first introduce a series of computational algorithms
to compute conformal Riemannian metrics on surfaces, es-
pecially the uniformization metrics. The algorithms include
harmonic maps, holomorphic 1-forms and surface Ricci flow
on discrete meshes. The methods are applied for various appli-
cations in computer graphics, medical imaging and geometric
modeling.

In the future, we will generalize these algorithms for dis-
crete 3-manifolds represented as tetrahedral meshes.

Second, we introduce an efficient optimization algorithm
based on affine differential geometry, which reaches cirtical
point for quadratic functions in one step. The method is
practical and efficient. In the future, we will improve the
method for computing affine normals.
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[8] Bruno Lévy and Jean-Laurent Mallet, “Non-Distorted Texture Mapping
for Sheared Triangulated Meshes” Computer Graphics (Proceedings of
SIGGRAPH 98), pp. 343–352, 1998.

[9] Jérôme Maillot and Hussein Yahia and Anne Verroust, “Interactive
Texture Mapping” SIGGRAPH 93, pp. 27–34, 1993.

[10] P. Sander and J. Snyder and S. Gortler and H.Hoppe, “Texture Mapping
Progressive Meshes” SIGGRAPH 01, pp. 409–416, 2001.

[11] P. Sander and S. Gortler and J. Snyder and H. Hoppe, “Signal Spe-
cialized Parametrization” Proceedings of Eurographics Workshop on
Rendering 2002,, 2002.

[12] D. Zorin and P. Schröder and W. Sweldens, “Interactive multiresolution
mesh editing” Computer Graphics (Proceedings of SIGGRAPH 97), pp.
259–26, 1997.

[13] M. Desbrun and M. Meyer and P.Alliez, “Intrinsic Parametrizations of
surface meshes” Proceedings of Eurographics,, 2002.

[14] B. Lévy and S. Petitjean and N. Ray and J. Maillot, “Least Squares
Conformal Maps for Automatic Texture Atlas Generation” SIGGRAPH
02, pp. 362–371, 2002.
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Fig. 1. According to Riemann Mapping theorem, a topological disk can be conformally mapped to the unit disk. Two such conformal maps differ by a
Möbius transformation of the unit disk

Fig. 2. Holomorphic 1-forms on different surfaces.


