
Geometric Approximation Algorithms

Sariel Har-Peled¬

August 23, 2006

Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801, USA;
sariel@uiuc.edu; http://www.uiuc.edu/~sariel/. Work on this paper was partially supported by a NSF
CAREER award CCR-0132901.

http://www.uiuc.edu/~sariel/

2

Contents

Contents 3

1 The Power of Grids - Computing the Minimum Disk Containing k Points 9
1.1 Preliminaries . 9
1.2 Closest Pair . 10
1.3 A Slow 2-Approximation Algorithm for the k-Enclosing Minimum Disk 11
1.4 A Linear Time 2-Approximation Algorithm for the k-Enclosing Minimum Disk 12

1.4.1 The algorithm . 12
1.4.1.1 Description . 13
1.4.1.2 Analysis . 14

1.5 Bibliographical notes . 17
1.6 Exercises . 17

2 Quadtrees - Hierarchical Grids 19
2.1 Quadtrees - a simple point-location data-structure . 19

2.1.1 Fast point-location in a quadtree . 20
2.2 Compressed Quadtrees: Range Searching Made Easy . 20

2.2.1 Efficient construction of compressed quadtrees . 21
2.2.2 Fingering a Compressed Quadtree - Fast Point Location 22

2.3 Dynamic Quadtrees . 23
2.3.1 Inserting a point into the skip-quadtree. 23
2.3.2 Deleting a point from the skip-quadtree. 23
2.3.3 Constructing the skip-quadtree. 23
2.3.4 Running time analysis . 24

2.4 Balanced quadtrees, and good triangulations . 25
2.5 Bibliographical notes . 28
2.6 Exercises . 29

3 Clustering - k-center clustering 31
3.1 Preliminaries . 31
3.2 k-Center Clustering . 32

3.2.1 The Greedy Clustering Algorithm . 32
3.2.2 The greedy permutation . 33

3.3 k-median clustering . 33
3.3.1 Local Search . 34
3.3.2 Proof . 35

3.4 k-means clustering . 36

3

3.4.1 Local Search . 36
3.4.2 The k-means method . 36

3.5 Bibliographical Notes . 36

4 Well Separated Pairs Decomposition 37
4.1 WSPD . 37
4.2 Applications of WSPD . 39

4.2.1 Spanners . 39
4.2.2 Approximating the Minimum Spanning Tree and the Diameter of a Point Set 39
4.2.3 Closest Pair . 40

4.3 All Nearest Neighbors . 40
4.3.1 The bounded spread case . 40
4.3.2 The unbounded spread case . 41

4.4 Bibliographical Notes . 41

5 Approximate Nearest Neighbor Search in Low Dimension 43
5.1 Introduction . 43
5.2 Low Quality ANN Search - The Ring Separator Tree . 43
5.3 The bounded spread case . 45
5.4 ANN - general case . 46

5.4.1 Extending a compressed quadtree to support cell queries 46
5.4.2 ANN in Low Dimensions . 47

5.5 Bibliographical notes . 47
5.6 Exercises . 49

6 Approximate Nearest Neighbor via Point-Location among Balls 51
6.1 Hierarchical Representation of Points . 51

6.1.1 Low Quality Approximation by HST . 51
6.2 ANN using Point-Location Among Balls . 52

6.2.1 Handling a Range of Distances . 53
6.2.2 The General Case . 54

6.2.2.1 Efficient Construction . 56
6.3 ANN using Point-Location Among Approximate Balls . 57
6.4 Bibliographical notes . 57
6.5 Exercises . 58

7 Approximate Voronoi Diagrams 59
7.1 Introduction . 59
7.2 Fast ANN in IRd . 59
7.3 A Direct Construction of AVD . 61
7.4 Bibliographical notes . 63

8 The Johnson-Lindenstrauss Lemma 65
8.1 The Brunn-Minkowski inequality . 65
8.2 Measure Concentration on the Sphere . 67
8.3 Concentration of Lipshitz Functions . 68
8.4 The Johnson-Lindenstrauss Lemma . 68
8.5 An alternative proof of the Johnson-Lindenstrauss lemma 70

4

8.5.1 Some Probability . 70
8.5.2 Proof of the Johnson-Lindenstrauss Lemma . 71

8.6 Bibliographical notes . 73
8.7 Exercises . 73

9 ANN in High Dimensions 75
9.1 ANN on the Hypercube . 75

9.1.1 Hypercube and Hamming distance . 75
9.1.2 Constructing NNbr for the Hamming cube . 75
9.1.3 Construction the near-neighbor data-structure . 76

9.2 LSH and ANN on Euclidean Space . 78
9.2.1 Preliminaries . 78
9.2.2 Locality Sensitive Hashing . 78
9.2.3 ANN in High Dimensional Euclidean Space . 79

9.2.3.1 Low quality HST in high dimensional Euclidean space 79
9.2.3.2 The overall result . 80

9.3 Bibliographical notes . 81

10 Approximating a Convex Body by An Ellipsoid 83
10.1 Some Linear Algebra . 83
10.2 Ellipsoids . 83
10.3 Bibliographical notes . 86

11 Approximating the Minimum Volume Bounding Box of a Point Set 87
11.1 Some Geometry . 87
11.2 Approximating the Diameter . 88
11.3 Approximating the minimum volume bounding box . 88

11.3.1 Constant Factor Approximation . 88
11.4 Exact Algorithms . 89

11.4.1 An exact algorithm 2d . 89
11.4.2 An exact algorithm 3d . 90

11.5 Approximating the Minimum Volume Bounding Box in Three Dimensions 90
11.6 Bibliographical notes . 91

12 VC Dimension, ε-nets and ε-approximation 93
12.1 VC Dimension . 93

12.1.1 Examples . 93
12.2 On ε-nets and ε-sampling . 95
12.3 Proof of the ε-net Theorem . 96
12.4 Exercises . 98
12.5 Bibliographical notes . 98

13 Approximating the Directional Width of a Shape 99
13.1 Coreset for Directional Width . 99
13.2 Smaller coreset for directional width . 100

13.2.1 Transforming a set into a fat set . 101
13.2.2 Computing a smaller coreset . 101

13.3 Exercises . 103

5

13.4 Bibliographical notes . 103

14 Approximating the Extent of Lines, Hyperplanes and Moving Points 105
14.1 Preliminaries . 105
14.2 Motivation - Maintaining the Bounding Box of Moving Points 105
14.3 Duality and Extent . 106
14.4 Coresets . 107
14.5 Extent of Polynomials . 108
14.6 Roots of Polynomials . 109
14.7 Applications . 109

14.7.1 Minimum Width Annulus . 109
14.8 Exercises . 110
14.9 Bibliographical notes . 110

15 15 - Approximating the Extent of Lines, Hyperplanes and Moving Points II 111
15.1 More Coresets . 111

15.1.1 Maintaining certain measures of moving points . 111
15.1.1.1 Computing an ε-coreset for directional width. 111

15.1.2 Minimum-width cylindrical shell . 112
15.2 Exercises . 113
15.3 Bibliographical notes . 113

16 16 - Approximation Using Shell Sets 115
16.1 Covering problems, expansion and shell sets . 115
16.2 The Setting . 116
16.3 The Algorithm for Computing the Shell Set . 116

16.3.1 Correctness . 117
16.3.2 Set Covering in Geometric Settings . 118

16.4 Application - Covering Points by Cylinders . 119
16.5 Clustering and Coresets . 119
16.6 Union of Cylinders . 120

16.6.0.1 Covering by Cylinders - A Slow Algorithm 120
16.6.1 Existence of a Small Coreset . 121

16.7 Bibliographical notes . 121

17 Duality 123
17.1 Duality of lines and points . 123

17.1.1 Examples . 124
17.1.1.1 Segments and Wedges . 124
17.1.1.2 Convex hull and upper/lower envelopes 124

17.2 Higher Dimensions . 126
17.3 Exercises . 126
17.4 Bibliographical notes . 126

18 Finite Metric Spaces and Partitions 129
18.1 Finite Metric Spaces . 129
18.2 Examples . 130

18.2.1 Hierarchical Tree Metrics . 130

6

18.2.2 Clustering . 131
18.3 Random Partitions . 131

18.3.1 Constructing the partition . 131
18.3.2 Properties . 132

18.4 Probabilistic embedding into trees . 132
18.4.1 Application: approximation algorithm for k-median clustering 133

18.5 Embedding any metric space into Euclidean space . 134
18.5.1 The bounded spread case . 134
18.5.2 The unbounded spread case . 135

18.6 Bibliographical notes . 136
18.7 Exercises . 137

19 Tail Inequalities 139
19.1 Markov Inequality . 139
19.2 Tail Inequalities . 140

19.2.1 The Chernoff Bound — Special Case . 140
19.2.2 The Chernoff Bound — General Case . 141
19.2.3 A More Convenient Form . 143

19.3 Bibliographical notes . 143
19.4 Exercises . 144

Bibliography 145

Index 151

7

8

Chapter 1

The Power of Grids - Computing the
Minimum Disk Containing k Points

The Peace of Olivia. How sweat and peaceful it sounds! There the great powers noticed for the first time that the
land of the Poles lends itself admirably to partition.

– The tin drum, Gunter Grass

In this chapter, we are going to discuss two basic geometric algorithms. The first one, computes the
closest pair among a set of n points in linear time. This is a beautiful and surprising result that exposes the
computational power of using grids for geometric computation. Next, we discuss a simple algorithm for
approximating the smallest enclosing ball that contains k points of the input. This at first looks like a bizarre
problem, but turns out to be a key ingridiant to our later discussion.

1.1 Preliminaries

For r a real positive number and a point p = (x, y) in R2, define Gr(p) to be the point (bx/rc r, by/rc r). We
call r the width of the grid Gr. Observe that Gr partitions the plane into square regions, which we call grid
cells. Formally, for any i, j ∈ Z, the intersection of the half-planes x ≥ ri, x < r(i+1), y ≥ r j and y < r(j+1)
is said to be a grid cell. Further we define a grid cluster as a block of 3 × 3 contiguous grid cells.

Note, that every grid cell C of Gr, has a unique ID; indeed, let p = (x, y) be any point in C, and consider
the pair of integer numbers idC = id(p) = (bx/rc , by/rc). Clearly, only points inside C are going to be
mapped to idC . This is very useful, since we store a set P of points inside a grid efficiently. Indeed, given
a point p, compute its id(p). We associate with each unique id a data-structure that stores all the points
falling into this grid cell (of course, we do not maintain such data-structures for grid cells which are empty).
So, once we computed id(p), we fetch the data structure for this cell, by using hashing. Namely, we store
pointers to all those data-structures in a hash table, where each such data-structure is indexed by its unique
id. Since the ids are integer numbers, we can do the hashing in constant time.

Assumption 1.1.1 Through out the discourse, we are going to assume that every hashing operation takes
(worst case) constant time. This is quite a reasonable assumption when true randomness is available (using
for example perfect hashing [CLRS01]).

For a point set P, and parameter r, the partition of P into subsets by the grid Gr, is denoted by Gr(P).
More formally, two points p, q ∈ P belong to the same set in the partition Gr(P), if both points are being
mapped to the same grid point or equivalently belong to the same grid cell.

9

1.2 Closest Pair

We are interested in solving the following problem:

Problem 1.2.1 Given a set P of n points in the plane, find the pair of points closest to each other. Formally,
return the pair of points realizing CP(P) = minp,q∈P‖pq‖.

Lemma 1.2.2 Given a set P of n points in the plane, and a distance r, one can verify in linear time, whether
or not CP(P) < r or CP(P) ≥ r.

Proof: Indeed, store the points of P in the grid Gr. For every non-empty grid cell, we maintain a linked
list of the points inside it. Thus, adding a new point p takes constant time. Indeed, compute id(p), check if
id(p) already appears in the hash table, if not, create a new linked list for the cell with this ID number, and
store p in it. If a data-structure already exist for id(p), just add p to it.

This takes O(n) time. Now, if any grid cell in Gr(P) contains more than, say, 9 points of p, then it must
be that the CP(P) < r. Indeed, consider a cell C containing more than four points of P, and partition C into
3 × 3 equal squares. Clearly, one of those squares must contain two points of P, and let C′ be this square.
Clearly, the diameter of C′ = diam(C)/3 =

√
r2 + r2/3 < r. Thus, the (at least) two points of P in C′ are

distance smaller than r from each other.
Thus, when we insert a point p, we can fetch all the points of P that were already inserted, for the cell of

P, and the 8 adjacent cells. All those cells, must contain at most 9 points of P (otherwise, we would already
have stopped since the CP(·) of inserted points, is smaller than r). Let S be the set of all those points, and
observe that |S | ≤ 9 · 9 = O(1). Thus, we can compute by brute force the closest point to p in S . This takes
O(1) time. If d(p, S) < r, we stop, otherwise, we continue to the next point.

Overall, this takes O(n) time. As for correctness, first observe that if CP(P) > r then the algorithm
would never make a mistake, since it returns ‘CP(P) < r’ only after finding a pair of points of P with
distance smaller than r. Thus, assume that p, q are the pair of points of P realizing the closest pair, and
‖pq‖ = CP(P) < r. Clearly, when the later of them, say p, is being inserted, the set S would contain q, and
as such the algorithm would stop and return ‘CP(P) < r’.

Lemma 1.2.2 gives a natural way of computing CP(P). Indeed, permute the points of P in arbitrary
fashion, and let P = 〈p1, . . . , pn〉. Next, let ri = CP({p1, . . . , pi}. We can check if ri+1 < ri, by just calling
the algorithm for Lemma 1.2.2 on Pi+1 and ri. In fact, if ri+1 < ri, the algorithm of Lemma 1.2.2, would give
us back the distance ri+1 (with the other point realizing this distance).

In fact, consider the “good” case, where ri+1 = ri = ri−1. Namely, the length of the shortest pair does not
check for awhile. In this case, we do not need to rebuild the data structure of Lemma 1.2.2, for each point.
We can just reuse it from the previous iteration. Thus, inserting a single point takes constant time, as long
as the closest pair does not change.

Things become bad, when ri < ri−1. Because then, we need to rebuild the grid, and reinsert all the points
of Pi = 〈p1, . . . , pi〉 into the new grid Gri(Pi). This takes O(i) time.

So, if the closest pair radius, in the sequence r1, . . . , rn changes only k times, then the running time of
our algorithm would be O(nk). In fact, we can do even better.

Theorem 1.2.3 Let P be a set of n points in the plane, one can compute the closest pair of points of P in
expected linear time.

Proof: Pick a random permutation of the points of P, let 〈p1, . . . , pn〉 be this permutation. Let r2 =

‖p1 p2‖, and start inserting the points into the data structure of Lemma 1.2.2. In the ith iteration, if ri = ri−1,
then this insertion takes constant time. If ri < ri−1, then we rebuild the grid and reinsert the points. Namely,
we recompute Gri(Pi).

10

To analyze the running time of this algorithm, let Xi be the indicator variable which is 1 if ri , ri−1, and
0 otherwise. Clearly, the running time is proportional to

R = 1 +
n∑

i=2

(1 + Xi · i) .

Thus, the expected running time is

E[R] = 1 + E

1 + n∑
i=2

(1 + Xi · i)

 = n +
n∑

i=2

(E[Xi] · i) = n +
n∑

i=2

i · Pr[X1 = 1] ,

by linearity of expectation and since for indicator variable Xi, we have E[Xi] = Pr[Xi = 1].
Thus, we need to bound Pr[Xi = 1] = Pr[ri < ri−1]. To bound this quantity, fix the points of Pi, and

randomly permute them. A point q ∈ Pi is called critical, if CP(Pi \ {q}) > CP(Pi). If there are no critical
points, then ri−1 = ri and then Pr[Xi = 1] = 0. If there is one critical point, than Pr[Xi = 1] = 1/i, as this is
the probability that this critical point, would be the last point in the random permutation of Pi.

If there are two critical points, and let p, q be this unique pair of points of Pi realizing CP(Pi). The
quantity ri is smaller than ri−1, one if either p or q are pi. But the probability for that is 2/i (i.e., the
probability in a random permutation of i objects, that one of two marked objects would be the last element
in the permutation).

Observe, that there can not be more than two critical points. Indeed, if p and q are two points that
realizing the closest distance, than if there is a third critical point r, then CP(Pi \ {r}) = ‖pq‖, and r is not
critical.

We conclude that

E[R] = n +
n∑

i=2

i · Pr[X1 = 1] ≤ n +
n∑

i=2

i ·
2
i
≤ 3n.

We have that the expected running time is O(E[R]) = O(n).
Theorem 1.2.3 is a surprising result, since it implies that uniqueness (i.e., deciding if n real numbers

are all distinct) can be solved in linear time. However, there is a lower bound of Ω(n log n) on uniqueness,
using the comparison tree model. This reality dysfunction, can be easily explained, once one realizes that
the computation of Theorem 1.2.3 is considerably stronger, using hashing, randomization, and the floor
function.

1.3 A Slow 2-Approximation Algorithm for the k-Enclosing Minimum Disk

For a circle D, we denote by radius(D) the radius of D.
Let Dopt(P, k) be a disk of minimum radius which contains k points of P, and let ropt(P, k) denote the

radius of Dopt(P, k).
Let P be a set of n points in the plane. Compute a set of m = O(n/k) horizontal lines h1, . . . , hm such

that between two consecutive horizontal lines, there are at most k/4 points of P in the strip they define. This
can be easily done in O(n log(n/k)) time using deterministic median selection together with recursion.

Similarly, compute a set of vertical lines v1, . . . , vm, such that between two consecutive lines, there are at
most k/4 points of P.

Consider the (non-uniform) grid G induced by h1, . . . , hm and v1, . . . , vm. Let X be the set of all inter-
section points of G. We claim that Dopt(P, k) contains at least one point of X. Indeed, consider the center u

Indeed, compute the median in the x-order of the points of P, split P into two sets, and recurse on each set, till the number of
points in a subproblem is of size ≤ k/4. We have T (n) = O(n) + 2T (n/2), and the recursion stops for n ≤ k/4. Thus, the recursion
tree has depth O(log(n/k)), which implies running time O(n log(n/k)).

11

Dopt

c

Figure 1.1: If the disk Dopt(P, k) does not contain and vertex of the cell c, then it does not cover any shaded
area. As such, it can contain at most k/2 points, since the vertical and horizaontal strips containing c, each
has at most k/4 points of P inside them.

of Dopt(P, k), and let c be the cell of G that contains u. Clearly, if Dopt(P, k) does not cover any of the four
vertices of c, then it can cover only points in the vertical strip of G that contains c, and only points in the
horizontal strip of G that contains c. See Figure 1.1. However, each such strip contains at most k/4 points.
It follows that Dopt(P, k) contains at most k/2 points of P, a contradiction. Thus, Dopt(P, k) must contain a
point of X. For every point p ∈ X, compute the smallest circle centered at p that contains k points of P.
Clearly, for a point q ∈ X ∩ Dopt(P, k), this yields the required 2-approximation. Indeed, the disk of radius
2Dopt(P, k) centered at q contains at least k points of P since it also covers Dopt(P, k). We summarize as
follows:

Lemma 1.3.1 Given a set P of n points in the plane, and parameter k, one can compute in O(n(n/k)2)
deterministic time, a circle D that contains k points of P, and radius(D) ≤ 2ropt(P, k).

Corollary 1.3.2 Given a set of P of n points and a parameter k = Ω(n), one can compute in linear time, a
circle D that contains k points of P and radius(D) ≤ 2ropt(P, k).

1.4 A Linear Time 2-Approximation Algorithm for the k-Enclosing Mini-
mum Disk

In the following, we present a linear time algorithm for approximating the minimum eclosing disk. While
interesting on their own right, the results here are not used later and can be skipped on first reading.

1.4.1 The algorithm

We refer to the algorithm of Lemma 1.3.1 as AH(P, k).

Remark 1.4.1 For a point set P of n points, the radius r returned by the algorithm of Lemma 1.3.1 is the
distance between a vertex of the non-uniform grid, a point of P. As such, a grid Gr computed using this
distance is one of O(n3) possible grids. Indeed, a circle is defined by the distance between a vertex of the
non-uniform grid of Lemma 1.3.1, and a point of P. A vertex of such a grid is determined by two points of
P, through which the vertical and horizontal line passes. Thus, there are O(n3) such triples.

Let gdr(P) denote the maximum number of points of P mapped to a single point by the mapping Gr.
Define depth(P, r) to be the maximum number of points of P that a circle of radius r can contain.

12

Lemma 1.4.2 For any point set P, and r > 0, we have: (i) For any real number A > 0, it holds depth(P, Ar) ≤
(A+1)2 depth(P, r), (ii) gdr(P) ≤ depth(P, r) ≤ 9gdr(P), (iii) if ropt(P, k) ≤ r ≤ 2ropt(P, k) then gdr(P) ≤ 5k,
and (iv) Any circle of radius r is covered by at least one grid cluster in Gr.

Proof: (i) Consider the disk D of radius Ar realizing depth(P, Ar), and let D′ be the disk of radius
(A + 1)r having the same center as D. For every point p ∈ V = P ∩ D, place a disk around it of radius r,
and let S denote the resulting set of disks. Since every disk of S has area πr2, and they are all contained
in D′, which is of area π(A + 1)2r2, it follows that there must be a point p inside D′ which is contained in

µ =
⌈
|V |πr2

π(A+1)2r2

⌉
=

⌈
depth(P,Ar)

(A+1)2

⌉
disks. This means, that the disk D of radius r centered at p contains at least µ

points of P. Now, µ ≤ |D ∩ P| ≤ depth(P, r). Thus, depth(P,Ar)
(A+1)2 ≤ µ ≤ depth(P, r), as claimed.

(iv) Consider a (closed) disk D of radius r, and let c be its center. If c is in the interior of a grid cell C,
then the claim easily holds, since D can intersect only C or the cells adjacent to C. Namely, D is contained
in the cluster centered at C. The problematic case, is when c is on the grid boundaries. Since grid cells are
closed on one side, and open on the other, it is easy to verify that the claim holds again by careful and easy
case analysis, which we will skip here.

(ii) Consider the grid cell C of Gr(P) that realizes gdr(P), and let c be a point placed in the center of
C. Clearly, a disk D of radius

√
r2 + r2/2 = r/

√
2 centered at c, would cover completely the cell C. Thus,

gdr(P) ≤ |D ∩ P| ≤ depth(P, r). As for the other direction, observe that the disk D′ realizing depth(P, r),
can intersect at most 9 cells of the grid Gr, by (iv). Thus, depth(P, r) ≤ |D′ ∩ P| ≤ 9gdr(P).

(iii) Let C be the grid cell of Gr realizing gdr(P). Place 4 points, at the corners of C, and one point in the
center of C. Placing a disk of radius ropt(P, k) at each of those points, completely covers C, as can be easily
verified (since the side length of C is at most 2ropt(P, k)). Thus, |P ∩C| ≤ gdr(P) ≤ 5 depth(P, ropt(P, k)) =
5k.

1.4.1.1 Description

As in the previous sections, we construct a grid which partitions the points into small (O(k) sized) groups.
The key idea behind speeding up the grid computation is to construct the appropriate grid over several
rounds. Specifically, we start with a small set of points as seed and construct a suitable grid for this subset.
Next, we incrementally insert the remaining points, while adjusting the grid width appropriately at each
step.

Definition 1.4.3 (Gradation) Given a set P of n points, a sampling sequence (S m, . . . , S 1) of P is a sequence
of subsets of P, such that (i) S 1 = P, (ii) S i is formed by picking each point of S i−1 with probability 1/2,
and (iii) |S m| ≤ 2k, and |S m−1| > 2k. The sequence (S m, S m−1, . . . , S 1) is called a gradation of P.

Lemma 1.4.4 Given P, a sampling sequence can be computed in expected linear time.

Proof: Observe that the sampling time is O
(∑m

i=1 |S i|
)
, where m is the length of the sequence. Also observe

that E[|S 1|] = |S 1| = n and

E[|S i|] = E
[
E
[
|S i|

∣∣∣∣ |S i−1|

]]
= E

[
|S i−1|

2

]
=

1
2

E[|S i−1|] .

Now by induction, we get

E[|S i|] =
n

2i−1 .

Thus, the running time is O
(
E
[∑m

i=1 |S i|
])
= O(n).

13

G(Pi,ri−1,k)
Output: ri

begin
Gi−1 ← Gri−1(Pi)
for every grid cluster c ∈ Gi−1 with |c ∩ Pi| ≥ k do

Pc ← c ∩ Pi

rc ← AH(Pc, k)
// AH is the algorithm of Lemma 1.3.1
We have ropt(Pc, k) ≤ rc ≤ 2ropt(Pc, k),

return minimum rc computed.
end

Figure 1.2: Algorithm for the ith round.

Let P = (P1, . . . , Pm) be a gradation of P (see Definition 1.4.3), where P = Pm and |P1| ≥ max(k, n/
log n) (i.e. if k ≥ n/ log n start from the first set in P that has more than k elements). The sequence P can be
computed in expected linear time as shown in Lemma 1.4.4.

Since |P1| = O(k), we can compute r1, in O(|P1| (|P1| /k)2) = O(k) = O(n) time, using Lemma 1.3.1.
The remaining algorithm works in m rounds, where m is the length of the sequence P. At the end of the

ith round, we have a distance ri such that gdri(Pi) ≤ 5k, and there exists a grid cluster in Gri containing more
than k points of Pi and ropt(Pi) ≤ ri.

At the ith round, we first construct a grid Gi−1 for points in Pi using ri−1 as grid width. We know that
there is no grid cell containing more than 5k points of Pi−1. As such, intuitively, we expect every cell of
Gi−1 to contain at most 10k points of Pi, since Pi−1 ⊆ Pi was formed by choosing each point of Pi into Pi−1
with probability 1/2. (This is of course too good to be true, but something slightly weaker does hold.) Thus
allowing us to use the slow algorithm of Lemma 1.3.1 on those grid clusters. Note that, for k = Ω(n), the
algorithm of Lemma 1.3.1 runs in linear time, and thus the overall running time is linear.

The algorithm used in the ith round is more concisely stated in Figure 1.2. At the end of the m rounds we
have rm, which is a 2-approximation to the radius of the optimal k enclosing circle of Pm = P. The overall
algorithm is summarized in Figure 1.3.

1.4.1.2 Analysis

Lemma 1.4.5 For i = 1, . . . ,m, we have ropt(Pi, k) ≤ ri ≤ 2ropt(Pi, k), and the heaviest cell in Gri(Pi)
contains at most 5k points of Pi.

Proof: Consider the optimal circle Di that realizes ropt(Pi, k). Observe that there is a cluster c of Gri−1 that
contains Di, as ri−1 ≥ ri. Thus, when G handles the cluster c, we have Di ∩ Pi ⊆ c. The first part of the
lemma then follows from the correctness of the algorithm of Lemma 1.3.1.

As for the second part, observe that any grid cell of width ri can be covered with 5 circles of radius ri/2,
and ri/2 ≤ ropt(Pi, k). It follows that each grid cell of Gri(Pi) contains at most 5k points.

Now we proceed to upper-bound the number of cells of Gri−1 that contains “too many” points of Pi.
Since each point of Pi−1 was chosen from Pi with probability 1/2, we can express this bound as a sum of
independent random variables, and bound this using tail-bounds.

14

LA(P, k)
Output: r - a 2-approximation to ropt(P, k)

begin
Compute a gradation {P1, . . . , Pm} of P as in Lemma 1.4.4
r1 ← AH(P1, k)
// ApproxHeavy is the algorithm of Lemma 1.3.1
// which outputs a 2-approximation

for i← 2 to m do
r j ← G(Pi, ri−1, k)

for every grid cluster c ∈ Grm with |c ∩ P| ≥ k do
rc ← AH(c ∩ P, k)

return minimum rc computed over all clusters
end

Figure 1.3: 2-Approximation Algorithm.

Definition 1.4.6 For a point set P, and parameters k and r, the excess of Gr(P) is

E(P, k,Gr) =
∑

c∈Cells(Gr)

⌊
|c ∩ P|

50k

⌋
,

where Cells(Gr) is the set of cells of the grid Gr.

Remark 1.4.7 The quantity 100k · E(P, k,Gr) is an upper bound on the number of points of P in an heavy
cell of Gr(P), where a cell of Gr(P) is heavy if it contains more than 50k points.

Lemma 1.4.8 For any positive real t, the probability that Gri−1(Pi) has excess E(Pi, k,Gri−1) ≥ α = t +
5
⌈
log(n)

⌉
, is at most 2−t.

Proof: LetG be the set of O(n3) possible grids that might be considered by the algorithm (see Remark 1.4.1),
and fix a grid G ∈ G with excess M = E(Pi, k,G) ≥ α.

Let U =
{
{Pi ∩ c}

∣∣∣∣ c ∈ G, |Pi ∩ c| > 50k
}

be all the heavy cells in G(Pi). Furthermore, let V =
⋃

X∈U ψ(X, 50k),
where ψ(X, ν) denotes an arbitrary partition of the set X into disjoint subsets such that each one of them con-
tains ν points, except maybe the last subset that might contain between ν and 2ν − 1 points.

It is clear that |V | = E(Pi, k,G). From the Chernoff inequality, for any S ∈ V , we have µ = E[|S ∩ Pi−1|] ≥
25k, and setting δ = 4/5 we have

Pr[|S ∩ Pi−1| ≤ 5k] ≤ Pr
[
|S ∩ Pi−1| ≤ (1 − δ)µ

]
< exp

(
−µ

δ2

2

)
= exp

(
−

25k(4/5)2

2

)
<

1
2
.

Furthermore, since G = Gri−1 implying that each cell of G(Pi−1) contains at most 5k points. Thus we have

Pr
[
Gri−1 = G

]
≤

∏
S∈V

Pr[|S ∩ Pi−1| ≤ 5k] ≤
1

2|V |
=

1
2M ≤

1
2α
.

15

Since there are n3 different grids in G, we have

Pr
[
E(Pi, k,Gri−1) ≥ α

]
= Pr

⋃

G∈G,
E(Pi,k,G)≥α

(G = Gri−1)

≤

∑
G∈G,

E(Pi,k,G)≥α

Pr
[
G = Gri−1

]
≤ n3 1

2α
≤

1
2t .

We next bound the expected running time of the algorithm LA by bounding the expected time
spent in the ith iteration. In particular, let Y be the random variable which is the excess of Gri−1(Pi). In this
case, there are at most Y cells which are heavy in Gri−1(Pi), and each such cell contains at most O(Yk) points.
Thus, invoking the algorithm of AH on such a heavy cell takes O(Yk · ((Yk)/k)2) = O(Y3k) time.
Overall, the the running time of G, in the ith iteration, is T (Y) = O

(
|Pi| + Y · Y3k

)
= O

(
|Pi| + Y4k

)
.

For technical reasons, we need to consider the light and heavy cases separately to bound Y .

The Light Case: k < 4 log n. We have that the expected running time is proportional to

dn/ke∑
t=0

Pr[Y = t] T (t) = |Pi| + Pr
[
0 ≤ Y ≤ 2

⌈
log n

⌉]
T (2

⌈
log n

⌉
) +

n/k∑
t=2dlog ne+1

Pr[Y = t] T (t)

≤ |Pi| + T (2
⌈
log n

⌉
) +

n/k∑
t=1

1
2t T (t + 2

⌈
log n

⌉
)

= O(|Pi|) + O(k log4 n) +
n/k∑
t=1

(
t + 2

⌈
log n

⌉)4 k
2t

= O
(
|Pi| + k log4 n

)
= O(|Pi|) ,

by Lemma 1.4.8 and since T (·) is a monotone increasing function.

The Heavy Case: k ≥ 4 log n.

Lemma 1.4.9 The probability that Gri−1(Pi) has excess larger than t, is at most 2−t, for k ≥ 4 log n.

Proof: We use the same technique as in Lemma 1.4.8. By the Chernoff inequality, the probability that any
50k size subset of Pi would contain at most 5k points of Pi−1, is less than

≤ exp
(
−25k ·

16
25
·

1
2

)
≤ exp(−5k) ≤

1
n4 .

In particular, arguing as in Lemma 1.4.8, it follows that the probability that E(Pi, k, ri−1) exceeds t, is smaller
than n3/n4t ≤ 2−t.

Thus, if k ≥ 4 log n, the expected running time of G, in the ith iteration, is at most

O

 ∑
c∈Gri−1

|c ∩ Pi|

(
|c ∩ Pi|

k

)2
 = O

|Pi| +

∞∑
t=1

t ·

tk ·(tk
k

)2 · 1
2t

 = O(|Pi| + k) = O(|Pi|) ,

by Lemma 1.4.9.

16

Overall Running Time Analysis Thus, by the above analysis and by Lemma 1.4.4, the total expected
running time of LA inside the inner loop is O

(∑
i |Pi|

)
= O(n). As for the last step, of computing

a 2-approximation, consider the grid Grm(P). Each grid cell contains at most 5k points, and hence each grid
cluster contains at most 45k points. Also the smallest k enclosing circle is contained in some grid cluster. In
each cluster that contain more than k points, we use the algorithm of Corollary 1.3.2 and finally output the
minimum over all the clusters. The overall running time is O((n/k)k) = O(n) for this step, since each point
belongs to at most 9 clusters.

Theorem 1.4.10 Given a set P of n points in the plane, and a parameter k, one can compute, in expected
linear time, a radius r, such that ropt(P, k) ≤ r ≤ 2ropt(P, k).

Once we compute r such that ropt(P, k) ≤ r ≤ 2ropt(P, k), using the algorithm of Theorem 1.4.10, we
apply an exact algorithm to each cluster of the grid Gr(P) which contains more than k points.

Matoušek presented such an exact algorithm [Mat95], and it has running time of O(n log n + nk) and
space complexity O(nk). Since r is a 2 approximation to ropt(P, k), each cluster has O(k) points. Thus the
running time of the exact algorithm in each cluster is O(k2) and requires O(k2) space. The number of clusters
which contain more than k points is O(n/k). Hence the overall running time is O(nk), and the space used is
O(n + k2).

Theorem 1.4.11 Given a set P of n points in the plane and a parameter k, one can compute, in expected
O(nk) time, using O(n + k2) space, the radius ropt(P, k), and a circle Dopt(P, k) that covers k points of P.

1.5 Bibliographical notes

Our closest-pair algorithm follows Golin et al. [GRSS95]. This is in turn a simplification of a result of
Rabin [Rab76]. Smid provides a survey of such algorithms [Smi00]).

The proof of Lemma 1.4.2 is from [Mat95]. The min-disk approximation algorithm follows roughly the
work of Har-Peled and Mazumdar [HM03]. Exercise 1.6.2 is also taken from there.

1.6 Exercises

Exercise 1.6.1 [10 Points] Let C and P be two sets of points in the plane, such that k = |C| and n = |P|. Let
r = maxp∈P minc∈C‖c − p‖ be the covering radius of P by C (i.e., if we place a disk of radius r around each
point of C all those disks covers the points of P).

1. Give a O(n + k log n) expected time algorithm that outputs a number α, such that α ≤ r ≤ 10α.

2. For ε > 0 a prescribed parameter, give a O(n + kε−2 log n) expected time algorithm that outputs a
number α, such that α ≤ r ≤ (1 + ε)α.

Exercise 1.6.2 Given a set P of n points in the plane, and parameter k, present a (simple) randomized
algorithm that computes, in expected O(n(n/k)) time, a circle D that contains k points of P, and radius(D) ≤
2ropt(P, k).

(This is a faster and simpler algorithm than the one presented in Lemma 1.3.1.)

17

18

Chapter 2

Quadtrees - Hierarchical Grids

In this chapter, we discuss quadtrees and compressed quadtrees which are arguably one of the simplest ge-
ometric data-structure. We begin in Section 2.1 by giving a simple application of quadtrees and describe
a clever way for performing point-location queries quickly in such a quadtree. In Section 2.2 we describe
how such quadtrees can be compressed and how can they be quickly constructed and used for point-location
queries. In Section 2.3 we describe a randomized extension of this data-structure, known as skip-quadtree,
which enables us to maintain the compressed quadtree efficiently under insertions and deletions. In Sec-
tion 2.4, we turn our attention to applications of compressed quadtrees, showing how quadtrees can be used
to compute good triangulations of an input point set.

2.1 Quadtrees - a simple point-location data-structure

Let P be a planar map. To be more concrete, let P be a partition of the unit square into triangles (i.e., a
mesh). Since any simple polygon can be triangulated, P can represent any planar map, and its partition of
the unit square into different regions, with different properties. For the sake of simplicity, assume that every
vertex in P shares at most, say, nine triangles.

Let us assume that we want to preprocess P for point-location queries. Of course, there are data-
structures that can do it with O(n log n) preprocessing time, linear space, and logarithmic query time. In-
stead, let us consider the following simple solution (which in the worst case, can be much worse).

Build a tree T , where the root corresponds to the unit square. Every node v ∈ T corresponds to a cell
�v (i.e., a square), and it has four children. The four children correspond to the four squares formed by
splitting �v into four equal size squares, by horizontal and vertical cuts. The construction is recursive, and
we start from v = rootT . As long as the current node intersects more than, say, nine triangles, we create its
children nodes, and we call recursively on each child, with the list of input triangles that intersect its square.
We stop at a leaf, if its “conflict-list” (i.e., list of triangles it intersects) is of size at most nine. We store this
conflict-list in the leaf.

Given a query point q, in the unit square, we can compute the triangle of P containing q, by traversing
down T from the root, repeatedly going into the child of the current node, whose square contains q. We stop
at soon as we reach a leaf, and then we scan the leaf conflict-list, and check which of the triangles contains
q.

Of course, in the worst case, if the triangles are long and skinny, this quadtree might have unbounded
complexity. However, for reasonable inputs (say, the triangles are fat), then the quadtree would have linear
complexity in the input size (see Exercise 2.6.1) .The big advantage of quadtrees of course, is their simplicity.
In a lot of cases, quadtree would be a sufficient solution, and seeing how to solve a problem using a quadtree
might be a first insight into a problem.

19

FastPntLocInner(T, q, lo, hi).
mid ← b(lo + hi)/2c
v← GetNode(T, q,mid)
if v = null then

return FastPntLocInner(T, q, lo,mid − 1).
w← Child(v, q) //w is child of v containing the point q.
If w = null then

return v
return FastPntLocInner(T, q,mid + 1, hi)

Figure 2.1: One can perform point-location in a quadtree T by calling FastPntLocInner
(T, q, 0, height(T)).

2.1.1 Fast point-location in a quadtree

One possible interpretation of quadtrees is that they are a multi-grid representation of a point-set. In partic-
ular, given a node v, with a square S v, which is of depth i (the root has depth zero), then the side length of
S v is 2−i, and it is a square in the grid G2−i. In fact, we will refer to `(v) = −i as the level of v. However,
a cell in a grid has a unique ID made out of two integer numbers. Thus, a node v of a quadtree is uniquely
defined by the triple id(v) = (`(v), bx/rc , by/rc), where (x, y) is any point in �v, and r = 2`(v).

Furthermore, given a query point q, and a desired level `, we can compute the the ID of the quadtree
cell of this level that contains q in constant time. Thus, this suggests a very natural algorithm for doing a
point-location in a quadtree: Store all the IDs of nodes in the quadtree in a hash-table, and also compute
the maximal depth h of the quadtree. Given a query point q, we now have access to any node along the
point-location path of q in T , in constant time. In particular, we want to find the point in T where the point-
location path “falls off” the quadtree. This we can find by performing a binary search for the dropping off
point. Let GetNode(T, q, d) denote the procedure that, in constant time, returns the node v of depth d in the
quadtree T such that �v contains the point q. Given a query point q, we can perform point-location in T by
calling FastPntLocInner(T, q, 0, height(T)). See Figure 2.1 for the pseudo-code for FastPntLocInner.

Lemma 2.1.1 Given a quadtree T of size n and of height h, one can preprocess it in linear time, such that
one can perform a point-location query in T in O(log h) time. In particular, if the quadtree has height
O(log n) (i.e., it is “balanced”), then one can perform a point-location query in T in O(log log n) time.

2.2 Compressed Quadtrees: Range Searching Made Easy

Let P be a set of n points in the plane of spread Φ = Φ(P).

Definition 2.2.1 For a set P of n points in any metric space, let Φ(P) = (maxp,q∈P‖pq‖)/ (minp,q∈P,p,q‖pq‖)
be the spread of P. In words, the spread of P is the ratio between the diameter of P and the distance between
the two closest points. Intuitively, the spread tells us the range of distances that P posses.

One can build a quadtree for P, storing the points of P in the leaves of P, where one keep splitting a
node as long as it contains more than one point of P. During this recursive construction, if a leaf contains
no points of P, we save space by not creating this leaf, and instead creating a null pointer in the parent node
for this child.

20

Lemma 2.2.2 Let P be a set of n points in the unit square, such that diam(P) = maxp,q∈P‖pq‖ ≥ 1/2. Let T
be a quadtree of P constructed over the unit square. Then, the depth of T is bounded by O(logΦ(P)), it can
be constructed in O(n logΦ(P)) time, and the total size of T is O

(
n logΦ(P)

)
.

Proof: The construction is done by a straightforward recursive algorithm. Let us bound the depth of
T . Consider any two points p, q ∈ P, and observe that a node v of T of level u =

⌊
lg‖pq‖

⌋
− 1 containing

p must not contain q (we remind the reader that lg n = log2 n). Indeed, the diameter of �v is smaller than√
22u <

√
2‖pq‖ /2 < ‖pq‖. Thus, �v can not contain both p and q. In particular, any node of T of level

r = −
⌊
lgΦ

⌋
− 1 can contain at most one point of P, where Φ = Φ(P). Thus, all the nodes of T are of depth

O(logΦ).
Since the construction algorithm spends O(n) time at each level, it follows that the construction time is

O(n logΦ), and this also bounds the size of the quadtree T .
The bounds of Lemma 2.2.2 are tight, as one can easily verify, see Exercise 2.6.2. But in fact, if you

inspect a quadtree generated by Lemma 2.2.2, you would realize that there are a lot of nodes of T which are
of degree one. Indeed, a node v of T has degree larger than one, only if it has two children, and let Pv be
the subset of points of P stored in the subtree of v. Such a node v splits Pv into, at least, two subsets and
globally there can be only n − 1 such splitting nodes.

Thus, a quadtree T contains a lot of “useless” nodes. We can replace such a sequence of edges by a
single edge. To this end, we will store inside each quadtree node v, its square �v, and its level `(v). Given a
path of vertices in the quadtree that are of degree one, we will replace them with a single edge, from the first
node in the path, till the last vertex in this path (this is the first node of degree larger than one). We call the
resulting tree a compressed quadtree. Since all internal nodes in the new compressed quadtree have degree
larger than one, it follows that it has linear size (however, it still can have linear depth).

As an application for such a compressed quadtree, consider the problem of counting how many points
are inside a query rectangle r. We can start from the root of the quadtree, and recursively traverse it, going
down a node only if its region intersects the query rectangle. Clearly, we will report all the points contained
inside r. Of course, we have no guarantee about the query time performance of the query, but in practice,
this might be fast enough.

2.2.1 Efficient construction of compressed quadtrees

Let P be a set of n points in the unit square, with unbounded spread. We are interested in computing the
compressed quadtree of P. The regular algorithm for computing a quadtree when applied to P might required
unbounded time. Modifying it so it requires only quadratic time is an easy exercise.

Instead, compute in linear time a disk D of radius r, which contains at least n/10 of the points of P, such
that r ≤ 2ropt(P, n/10), where ropt(P, n/10) denotes the radius of the smallest disk containing n/10 points.
Computing D can be done in linear time, by a rather simple algorithm (Lemma 1.3.1).

Let l = 2blg rc. Consider the grid Gl. It has a cell that contains (n/10)/25 points (since D is covered
by 5 × 5 = 25 grid cells of Gl, since l ≥ r/2), and no grid cell contains more than 5(n/10) points, by
Lemma 1.4.2 (iii). Thus, compute Gl(P), and find the cell c containing the largest number of points. Let
Pin be the points inside this cell c, and Pout the points outside this cell. We know that |Pin| ≥ n/250, and
|Pout| ≥ n/2. Next, compute the compressed quadtrees for Pin and Pout, respectively, and let Tin and Tout
denote the respective quadtrees. Since the cell of the root of Tin has side length which is a power of two, and
it belongs to the grid Gl, it follows that c represents a valid region, which can be a node in Tout (note that if
it is a node in Tout, then it is empty). Thus, we can do a point-location query in Tout, and hang the root of Tin
in the appropriate node of Tout. This takes linear time (ignoring the time to construct Tin and Tout). Thus,
the overall construction time is O(n log n).

21

Theorem 2.2.3 Given a set P of n points in the plane, one can compute a compressed quadtree of P in
O(n log n) deterministic time.

A square is a canonical square, if it is contained inside the unit square, it is a cell in a grid Gr, and r is a
power of two (i.e., it might correspond to a node in a quadtree). For reasons that would become clear later,
we want to construct the quadtree out of a list of quadtree nodes that must appear in the quadtree. Namely,
we get a list of canonical grid cells that must appear in the quadtree (i.e., the level of the node, together with
its grid ID).

Lemma 2.2.4 Given a list C of n canonical squares, all lying inside the unit square, one can construct a
compressed quadtree T such that for any square c ∈ C, there exists a node v ∈ T, such that �v = c. The
construction time is O(n log n).

Proof: The construction is similar to Theorem 2.2.3. Let P be a set of n points, where pc ∈ P, if c ∈ C,
and pc is the center of c. Next, find, in linear time, a canonical square C that contains at least n/250 points
of P, and at most n/2 points of P. Let U be the list of all squares of C that contain c, let Cin be the list
of squares contained inside c, and let Cout be the list of squares of C that do not intersect the interior of c.
Recursively, build a compressed quadtree for Cin and Cout, denoted by Tin and Tout, respectively.

Next, sort the nodes of U in decreasing order of their level. Also, let π be the point-location path of c in
Tout. Clearly, adding all the nodes of U to Tout is no more than performing a merge of π together with the
sorted nodes of U. Whenever we encounter a square of U that does not have a corresponding node at π, we
create this node, and insert it into π. Let T ′out denote the resulting tree. Next, we just hang Tin in the right
place in T ′out. Clearly, the resulting quadtree has all the squares of C as nodes.

As for the running time, we have T (C) = T (Cin) + T (Cout) + O(n) + O(|U | log |U |) = O(n log n), since
|Cout| + |Cin| + |U | = n and |Cin| , |Cout| ≤ (249/250)n.

2.2.2 Fingering a Compressed Quadtree - Fast Point Location

Let T be a compressed quadtree of size n. We would like to preprocess it so that given a query point, we can
find the lowest node of T whose cell contains a query point q. As before, we can perform this by traversing
down the quadtree, but this might require Ω(n) time. Since the range of levels of the quadtree nodes is
unbounded, we can no longer use binary search on the levels of T to answer the query.

Instead, we are going to use a rebalancing technique on T . Namely, we are going to build a balanced
tree T ′, which would have cross pointers (i.e., fingers) into T . The search would be performed on T ′ instead
of on T . In the literature, the tree T is known as a finger tree.

Definition 2.2.5 Let T be a tree with n nodes. A separator in T is a node v, such that if we remove v from
T , we remain with a forest, such that every tree in the forest has at most dn/2e vertices.

Lemma 2.2.6 Every tree has a separator, and it can be computed in linear time.

Proof: Consider T to be a rooted tree, and initialize v to be the root of T . We perform a walk on T . If v
is not a separator, then one of the children of v in T must have a subtree of T of size ≥ dn/2e nodes. Set v to
be this node. Continue in this walk, till we get stuck. The claim is that v is the required node. Indeed, since
we always go down, and the size of the subtree shrinks, we must get stuck. Thus, consider w as the node
we got stuck at. Clearly, the subtree of w contains at least dn/2e nodes (otherwise, we would not set v = w).
Also, all the subtrees of w have size ≤ dn/2e, and the connected component of T \ {w} containing the root
contains at most n − dn/2e ≤ bn/2c nodes. Thus, w is the required separator.

This suggests a natural way for processing a compressed quadtree for point-location queries. Find a
separator v ∈ T , and create a root node fv for T ′ which has a pointer to v; now recursively build finger trees

22

to each tree of T \ {v}, and hang them on w. Given a query point q, we traverse T ′, where at node fv ∈ T ′, we
check whether the query point q ∈ �v, where v is the corresponding node of T . If q < �v, we continue the
search into the child of fv, which corresponds to the connected component outside �v that was hung on fv.
Otherwise, we continue into the child that contains q. This takes constant time per node. As for the depth
for the finger tree T ′, observe D(n) ≤ 1 + D(dn/2e) = O(log n). Thus, a point-location query in T ′ takes
logarithmic time.

Theorem 2.2.7 Given a compressed quadtree T of size n, one can preprocess it in O(n log n) time, such that
given a query point q, one can return the lowest node in T whose region contains q in O(log n) time.

2.3 Dynamic Quadtrees

What if we want to maintain the compressed quadtree under insertions and deletions? There is an elegant
way of doing this by using randomization. The resulting structure has similar behavior to skip-list where
instead of linked list we use quadtrees.

We remind the reader the concept of gradation:

Definition 2.3.1 (Gradation) Given a set P of n points, a sampling sequence (S m, . . . , S 1) of P is a sequence
of subsets of P, such that (i) S 1 = P, (ii) S i is formed by picking each point of S i−1 with probability 1/2,
and (iii) |S m| ≤ 2k, and |S m−1| > 2k. The sequence (S m, S m−1, . . . , S 1) is called a gradation of P.

Let T1, . . . ,Tm be the quadtrees of the sets P = S 1, . . . , S m. Note, that the nodes of Ti are a subset of the
nodes appear in Ti−1. As such, every node in Ti would have pointers to its own copy in Ti−1 and a pointer to
its copy in Ti+1 if it exists there. We will refer to this data-structure is skip-quadtree.

Point-location queries. Given a query point q we want to find the leaf of T1 that contains it. The search
algorithm is quite simple, starting at Tm you find the leaf in Ti that contains the query point, and then move
to the corresponding node in Ti−1, and continue the search from there.

2.3.1 Inserting a point into the skip-quadtree.

Let p be the point to be inserted into the skip-quadtree. We perform a point-location query and find the
lowest node v in T1 that contains p. Next, we split v and establish a new node (hanging from v) that contains
p. Next, we flip an unbiased coin, if the coin comes up tail, we are done. Otherwise, we add p to T2. We
continue in this fashion, adding p to the quadtrees in the relevant levels, till the coin comes up tail.

Note, that the amount of work and space needed at each level is a constant (ignoring the initial point-
location query), and by implementing this operation carefully, the time to perform it would proportional to
the point-location query time.

2.3.2 Deleting a point from the skip-quadtree.

Done in a similar fashion to the insertion described above.

2.3.3 Constructing the skip-quadtree.

Given a point-set P, we just insert the points one by one into the skip-quadtree.

23

2.3.4 Running time analysis

We analyze the time needed to perform a point-location query. In particular, we claim that the expected
query time O(log n). To see that we will use the standard backward analysis. Consider the leaf v of Ti that
contains q, and consider the path v = v1, v2, . . . , vr from v to the root vr of the compressed quadtree Ti. Let π
denote this path. Clearly, the amount of time spent in the search in the tree Ti, is proportional to how far we
have to go on this list, till we hit a node that appears in Ti+1. Note, that the node v j stores (at least) j points
of S i, and if any pair of them appears in S i+1 then at least one of the nodes on π below the node v j would
appear in Ti+1 (since the quadtree Ti+1 needs to “separate” these two points and this is done by a node of
the path). Let denote this set of points by U j, and let X j be an indicator variable which is one if v j does not
appear in Ti+1. Clearly,

E
[
X j

]
= Pr

[
no pair of points of U j is in Ti+1

]
≤

j + 1
2 j ,

since the points of S i are randomly and independently chosen to be in S i+1 and the event happens only if
zero or one points of U j are in S i+1.

Thus, the expected search time in Ti is E
[∑

j X j
]
=

∑
j E

[
X j

]
=

∑
j(j + 1)/2 j = O(1).

Thus, the overall expected search time in the skip-quadtree is proportional to the number of levels in the
gradation.

Let Zi = |S i| be the nub-mer elements stored in the ith level of the gradation. We know that Z1 = n,
and E[Zi] =. In particular, E[Zi] = E[E[Zi]] = E[Zi−1/2] = · · · = n/2i−1. Thus, E[Zα] ≤ 1/n10, where
α =

⌈
11 lg n

⌉
. Thus, by Markov’s inequality, we have that

Pr[m > α] = Pr[Zα ≥ 1] ≤ E[Zα]
1
=

1
n10 .

We summarize:

Lemma 2.3.2 A gradation defined over n elements has O(log n) levels both in expectation and with high
probability.

This implies that a point-location query in the skip quadtree takes, in expectation, O(log n) time.
Since, with high probability, there are only O(log n) levels in the gradation, it follows that the expected

search time is O(log n).

High Probability. In fact, one can show that this point-location query time bound holds with high proba-
bility, and we sketch (informally) the argument why this is true. Consider the variable Yi that is the number
of nodes of Ti being visited during the point-location query. We have that Pr[Yi ≥ k] ≤

∑
j=k(k + 1)/2k =

O(k/2k) = O(1/ck), for some constant c > 1. Thus, we have a sum of logarithmic number of independent
random variables, each one of them behaves like a variable with geometric distribution. As such, we can
apply a Chernoff-type inequality (see Exercise 19.4.3) to get an upper bound on the probably that the sum
of these variables exceeds O(log n). This probability is bounded by 1/nO(1).

Note, the longest query time is realized by one of the points stored in the quadtree. Since there are n
points stored in the quadtree, this implies that with high probability all point-location queries takes O(log n)
time. Also, observe that the structure of the skip-quadtree is uniquely determined by the gradation. Since
the gradation is oblivious to the history of the data-structure (i.e., what points where inserted and deleted).
As such, these bounds on the performance hold at any point in time during the usage of the skip-quadtree.
We summarize:

24

Theorem 2.3.3 Let T be an empty skip-quadtree used for a sequence of n operations (i.e., insertions,deletions
and point-location queries). Then, with high probability (and thus also in expectation), the time to perform
each such operation takes O(log n) time.

2.4 Balanced quadtrees, and good triangulations

The aspect ratio of a convex body is the ratio between its longest dimension and its shortest dimension. For
a triangle 4 = abc, the aspect ratio Aratio(4) is the length of the longest side divided by the height of the
triangle on the longest edge.

Lemma 2.4.1 Let φ be the smallest angle for a triangle. We have that 1/ sin φ ≤ Aratio(4) ≤ 2/ sin φ.

Proof: Consider the triangle 4 = 4abc.

φ

C

BA

h

b

c

a

We have Aratio(4) = c/h. However, h = b sin φ, and since a is the shortest edge in the triangle (since it is
facing the smallest angle), it must be that b is the middle length edge. As such, 2b ≥ a + b ≥ c. Thus,
Aratio(4) ≥ b/h = b/(b sin φ) = 1/ sin φ. And similarly,Aratio(4) ≤ 2b/h = 2b/(b sin φ) = 2/ sin φ.

Another natural measure of sharpness is the edge ratio Eratio(4), which is the ratio between a triangle’s
longest and shortest edges. Clearly, Aratio(4) > Eratio(4), for any triangle 4. For a triangulation T , we
denote byAratio(T) the maximum aspect ratio of a triangle in T . Similarly, Eratio(T) denotes the maximum
edge ratio of a triangle in T .

Definition 2.4.2 A corner of a quadtree cell is one of the four vertices of its square. The corners of the
quadtree are the points that are corners of its cells. We say that the side of a cell is split if either of the
neighboring boxes sharing it is split. A quadtree is balanced if any side of an unsplit cell may contain only
one quadtree corner in its interior. Namely, adjacent leaves are either of the same level, or of adjacent levels.

Lemma 2.4.3 Let P be a set of points in the plane, such that diam(P) = Ω(1) and Φ = Φ(P). Then, one can
compute a (minimal size) balanced quadtree T of P, in time O(n log n + m) time, where m is the size of the
output quadtree.

Proof: Compute a compressed quadtree T of P in O(n log n) time. Next, we traverse T , and replace
every compressed edge of T by the sequence of quadtree nodes that defines it. To guarantee the balance
condition, we create a queue of the nodes of T , and store the nodes of T in a hash table, with their IDs.

We handle the nodes in the queue, one by one. For a node v, we check whether the current adjacent
nodes to �v are balanced. Specifically, let c be one of �v’s neighboring cells in the grid of �v, and let cp

be the square containing c in a grid one level up. We compute id(c), id(cp), and check if there is a node in
T with those IDs. If not, we create a node w with region cp and id(cp), and recursively retrieve its parent
(i.e., if it exists we retrieve it, otherwise, we create it), and hang w from the parent node. We credit the work
involved in creating w to the output size. We add all the new nodes to the queue. We repeat the process till
the queue is empty.

Since the algorithm never creates nodes smaller than the smallest cell in the original compressed quadtree,
it follows that this algorithm terminates. It is also easy to argue by induction that any balanced quadtree of
P must contain all the nodes we created. Overall, the running time of the algorithm is O(n log n + m), since
the work associated with any newly created quadtree node is constant.

25

Figure 2.2: A well balanced triangulation.

Definition 2.4.4 The extended cluster of a cell c in a quadtree T is the set of 5 × 5 neighboring cells of c in
the grid containing c, which are all the cells in distance < 2l from c, where l is the sidelength of c.

A quadtree T over a point set P is well-balanced, if it is balanced, and for every leaf node v that contains
a (single) point of P, we have the property that all the nodes of the extended cluster of v are leaves in T (i.e.,
none of them is split and has children), and they do not contain any other point of P. In fact, we will also
require that for every non-empty node v, all the nodes of the extended cluster of v are nodes in the quadtree.

Lemma 2.4.5 Given a point set P of n points in the plane, one can compute a well-balanced quadtree of P
in O(n log n + m) time, where m is the size of the output quadtree.

Proof: We compute a balanced quadtree T of P. Next, for every leaf node v of T which contains a point
of P, we verify that all its extended cluster are leaves of T . If any other of the nodes of the extended cluster
of v contains a point of P, we split v. If any of the extended cluster nodes is missing as a leaf, we insert
it into the quadtree (with its ancestors if necessary). We repeat this process till we stop. Of course, during
this process, we keep the balanced property valid, by adding necessary nodes. Clearly, all this work can
be charged to newly created nodes, and as such takes linear time in the output size once the compressed
quadtree is computed.

A well-balanced quadtree T of P provides for every point, a region (i.e., extended cluster) where it is
well protected from other points. It is now possible to turn the partition of the plane induced by the leaves
of T into a triangulation of P.

We “warp” the quadtree framework as follows. Let y be the corner nearest x of the leaf of T containing
x; we replace y by x as a corner of the quadtree. Finally, we triangulate the resulting planar subdivision.
Unwarped boxes are triangulated with isosceles right triangles by adding a point in the center. Only boxes
with unsplit sides have warped corners; for these we choose the diagonal that gives better aspect ratio.
Figure 2.2 shows a triangulation resulting from a variant of this method.

Lemma 2.4.6 The method above gives a triangulation QT (P) withAratio(QT (P)) ≤ 4.

Proof: The right triangles used to triangulate the unwarped cells have aspect ratio 2. If a cell with side
length l is warped, we have two cases.

In the first case, the input point of P is inside the square of the original cell. Then we assume that the
diagonal touching the warped point is chosen; otherwise, the aspect ratio can only be better than what we

26

x

y

h′

w = (l, 0)(0, 0)

z

Figure 2.3: Illustration of the proof of Lemma 2.4.6.

prove. Consider one of the two triangles formed, with corners the input point and two other cell corners.
The maximum length hypotenuse is formed when the warped point is on its original location, and has length
h =
√

2l. The minimum area is formed when the point is in the center of the square, and has area a = l2/4.
Thus, the minimum height of such a triangle 4 is ≥ 2a/h, andAratio(4) ≤ h/(2a/h) = h2/2a = 4.

In the second case, the input point is outside the original square. Since the quadtree is well balanced, the
new point y is somewhere inside a square of sidelength l centered at x (since we always move the closest leaf
corner to the new point). In this case, we assume that the diagonal not touching the warped point is chosen.
This divides the cell into an isosceles right triangle and another triangle. If the chosen diagonal is the longest
edge of the other triangle, then one can argue as before, and the aspect ratio is bounded by 4. Otherwise, the
longest edge touches the input point. The altitude is minimized when the triangle is isosceles with as sharp
an angle as possible; see Figure 2.3. Using the notation of Figure 2.3, we have y = (l/2,

√
7l/2). Thus,

µ = area(4wyz) =
1
2

∣∣∣∣∣∣∣∣∣
1 0 l
1 l 0
1 l/2 (

√
7/2)l

∣∣∣∣∣∣∣∣∣ =
1
2

∣∣∣∣∣∣ l −l
l/2 (

√
7/2 − 1)l

∣∣∣∣∣∣ =
√

7 − 1
4

l2.

We have h
√

2l/2 = µ, and thus h′ =
√

2µ/l =
√

7−1
2
√

2
l. The longest distance y can be from w is α =√

(1/2)2 + (3/2)2l = (
√

10/2)l. Thus, the aspect ratio of the new triangle is bounded by α/h′ =
(√

10/2
)
/
√

7−1
2
√

2
≈

2.717 ≤ 4.
For a triangulation T , let |T | denote the number of triangles of T . The Delaunay triangulation of

a point set is the triangulation formed by all triangles defined by the points such that their circumscribing
triangles are empty (the fact that this collection of triangles forms a triangulation requires a proof). Delaunay
triangulations are extremely useful, and have a lot of useful properties. We denote byDT (P) the Delaunay
triangulation of P.

Lemma 2.4.7 There is a constant c′, independent of P, such that |QT (P)| ≤ c′
∑
4∈DT (P) log Eratio(4).

Proof: For this lemma, we modify the description of our algorithm for computing QT (P). We compute
the compressed quadtree T ′′ of P, and we uncompress the edges by inserting missing cells. Next, we split
a leaf of T ′′ if it has side length κ, it is not empty (i.e., it contains a point of P), and there is another point
of P of distance ≤ 2κ from it. We refer to such a node as being crowded. We repeat this, till there are no
crowded leaves. Let T ′ denote the resulting quadtree. We now iterate over all the nodes v of T ′, and insert
all the nodes of the extended cluster of v into T ′. Let T denote the resulting quadtree. It is easy to verify that
T is well-balanced, and identical to the quadtree generated by the algorithm of Lemma 2.4.5 (although it is
unclear how to implement the algorithm described here efficiently).

Now, all the nodes of T that were created when adding the extended cluster nodes can be charged to
nodes of T ′. Therefore we need only count the total number of crowded cells in T ′.

27

Linearly many crowded cells have more than one child with points in them. It can happen at most
linearly many times that a non-empty cell c has a point of P outside it of distance 2κ from it, which in the
next level is in a cell non-adjacent to the children of c, where κ is the side length of the cell, as this point
becomes further away due to the shrinking sizes of cells as they split.

If a cell b containing a point is split because an extended neighbor was split, but no extended neighbor
contains any point, then, when either b or b’s parent was split, a nearby point became farther away than 2κ.
Again, this can only happen linearly many times.

Finally a cell may contain two points, or several extended neighbor cells may contain points, and this
situation may persist when the cells split. If splitting the children of the cell or of its neighbors separates the
points, we can charge linear total work. Otherwise, let Y be a maximal set of points in the union of cell b
and its neighbors, such that splitting b, its neighbors, or the children of b and its neighbors does not further
divide Y . Then some triangle ofDT (P) connects two points y1 and y2 in Y with a point z outside Y .

Each split not yet accounted for occurs between the step when Y is separated from z, and the step when
y1 and y2 become more than 2κ units apart. These steps are at most O

(
log Eratio(4y1y2z)

)
quadtree levels

apart, so we can charge all the crowded cells caused by Y to 4y1y2z. This triangle will not be charged by
any other cells, because once we perform the splits charged to it all three points become far away from each
other in the quadtree.

Therefore the number of crowded cells can be counted as a linear term, plus terms of the form O(log Eratio(4abc))
for some Delaunay triangles 4abc.

Theorem 2.4.8 Given any point set P, we can find a triangulation QT (P) such that each point of P is a
vertex of QT (P) and Aratio(QT (P)) ≤ 4. There is a constant c′′, independent of P, such that if T is any
triangulation containing the points of P as vertices, |QT (P)| ≤ c′′ |T | logAratio(T).

In particular, any triangulation with constant aspect ratio containing P is of size Ω(QT (P)). Thus, up
to a constant, QT (P) is an optimal triangulation.

Proof: Let Y be the set of vertices of T . Lemma 2.4.7 states that there is a constant c such that |QT (Y)| ≤
c
∑
4∈DT (Y) log Eratio(4). The Delaunay triangulation has the property that it maximizes the minimum angle

of the triangulation, among all triangulations of the point set [For97].
If Y = P, then using this maxminŋangle property, we haveAratio(T) ≥ 1

2Aratio(DT (P)) ≥ 1
2 Eratio(DT (P)),

by Lemma 2.4.1. Hence

|QT (P)| ≤ c
∑

4∈DT (P)

log Eratio(DT (P)) = c |T | Eratio(DT (P)) ≤ 2c |T |Aratio(T).

Otherwise, P ⊂ Y . Imagine running our algorithm on point set Y , and observe that |QT (P)| ≤ |QT (Y)|.
By the same argument as above, |QT (Y)| ≤ c |T | logAratio(T).

Corollary 2.4.9 |QT (P)| = O(nlogAratio(DT (P))).

Corollary 2.4.9 is tight, as can be easily verified.

2.5 Bibliographical notes

The authoritative text on quadtrees is the book by Samet [Sam89]. The idea of using hashing in quadtrees in
a variant of an idea due to Van Emde Boas, and is also used in performing fast lookup in IP routing (using
PATRICIA tries which are one dimensional quadtrees [WVTP97]), among a lot of other applications.

To see that, observe that there must be an edge connecting a point y1 ∈ Y with a point z ∈ P \ Y (since the triangulation is
connected). Next, by going around y1 and the points it is connected to, it is easy to observe that since Y diameter is (considerably)
smaller then the distances between y1 and z, there must be an edge between y1 and another point y2 of Y (for example, take y2 to be
the closest point in Y to y1). This edge, together with the edge before it in the ordering around y1, form the required triangle.

28

The algorithm described for the efficient construction of compressed quadtrees, is as far as I know new.
The classical algorithms for computing compressed quadtrees efficiently achieve the same running time, but
require considerably more careful implementation, and paying careful attention to details [CK95, AMN+98].
The idea of fingering a quadtree is from [AMN+98] (although their presentation is different than ours).

The elegant skip-quadtree is from the recent work of Eppstein et al. [EGS05].
Balanced quadtree and good triangulations are due to Bern et al. [BEG94], and our presentation closely

follows theirs. The problem of generating good triangulations had received considerable attention recently,
as it is central to the problem of generating good meshes, which in turn are important for efficient numer-
ical simulations of physical processes. The main technique used in generating good triangulations is the
method of Delaunay refinement. Here, one computes the Delaunay triangulation of the point set, and inserts
circumscribed centers as new points, for “bad” triangles. Proving that this method converges and generates
optimal triangulations is a non-trivial undertaking, and is due to Ruppert [Rup93]. Extending it to higher
dimensions, and handling boundary conditions make it even more challenging. However, in practice, the
Delaunay refinement method outperforms the (more elegant and simpler to analyze) method of Bern et al.
[BEG94], which easily extends to higher dimensions. Namely, the Delaunay refinement method generates
good meshes with fewer triangles.

Furthermore, Delaunay refinement methods are slower in theory. Getting an algorithm to perform De-
launay refinement in the same time as the algorithm of Bern et al. is still open, although Miller [Mil04] got
an algorithm with only slightly slower running time.

Very recently, Alper Üngör came up with a “Delaunay-refinement type” algorithm, which outputs better
meshes than the classical Delaunay refinement algorithm [Üng04]. Furthermore, by merging the quadtree
approach with Üngör technique, one can get an optimal running time algorithm [HÜ05].

2.6 Exercises

Exercise 2.6.1 [5 Points]A triangle 4 is called α-fat if each one of its angles is at least α, where α > 0 is a
prespecified constant (for example, α is 5 degrees). Let P be a triangular planar map of the unit square (i.e.,
each face is a triangle), where all the triangles are fat, and the total number of triangles is n. Prove that the
complexity of the quadtree constructed for P is O(n).

Exercise 2.6.2 [5 Points] Prove that the bounds of Lemma 2.2.2 are tight. Namely, show that for any r > 2
and any positive integer n > 2, there exists a set of n points with diameter Ω(1) and spread Φ(P) = Θ(r), and
such that its quadtree has size Ω(n logΦ(P)).

Acknowledgments

The author wishes to thank John Fischer for his detailed comments on the manuscript.

29

30

Chapter 3

Clustering - k-center clustering

Do not read this story; turn the page quickly. The story may upset you. Anyhow, you probably know it already. It
is a very disturbing story. Everyone knows it. The glory and the crime of Commander Suzdal have been told in a
thousand different ways. Don’t let yourself realize that the story is the truth.

It isn’t. not at all. There’s not a bit of truth to it. There is no such planet as Arachosia, no such people as klopts, no
such world as Catland. These are all just imaginary, they didn’t happen, forget about it, go away and read something
else.

– The Crime and Glory of Commander Suzdal, Cordwainer Smith

In this chapter, we will initiate our discussion of clustering. Clustering is one of the most fundamental
computational tasks, but frustratingly, one of fuzziest. It can be stated informally as: “Given data, find
interesting structure in the data. Go!”

The fuzziness arise naturally from the requirement that it would be “interesting”, as this is not well
defined and depends on human perception which is sometime impossible to quantify clearly. Similarly,
what is “structure” is also open to debate. Nevertheless, clustering is inherent to many computational tasks
like learning, searching and data-mining.

Empirical study of clustering concentrates on trying various measures for the clustering, and trying out
various algorithms and heuristics to compute these clusterings. See bibliographical notes for some relevant
references.

Here, we will concentrate on some well defined clustering tasks, including k-center clustering, k-median
clustering, and k-means clustering.

3.1 Preliminaries

A clustering problem is usually defined by a set of items, and a distance function defined between these
items. While these items might be points in IRd and the distance function is just the regular Euclidean
distance, it is sometime beneficial to consider the more abstract setting of a general metric space.

Definition 3.1.1 A metric space is a pair (X,d) where X is a set and d : X×X→ [0,∞) is a metric, satisfying
the following axioms: (i) d(x, y) = 0 iff x = y, (ii) d(x, y) = d(y, x), and (iii) d(x, y)+d(y, z) ≥ d(x, z) (triangle
inequality).

For example, IR2 with the regular Euclidean distance is a metric space. In the following, we assume that
we are given a black-box access to d. Namely, given two points p, q ∈ X, we assume that d(p, q) can be
computed in constant time.

31

Thus, given a set of centers C, every point of P is assigned to its nearest neigbor in C. All the points of
P that are assigned to a center c form the cluster of c, denoted by

Π
(
C, c

)
=

{
p ∈ P

∣∣∣∣ d(p, c) ≤ d(p,C)
}
.

Namely, the center set C partition P into clusters. This spacific scheme of partitioning points by assigning
them to their closest center in a given center set is known as Voronoi partitions.

3.2 k-Center Clustering

In the k-center clustering problem, a set P ⊆ X is provided together with a parameter k. We would like to
find k points X ⊆ P, such that the maximum distance of a point in P to the closest point in X is minimized.

As a concrete example, consider the set of points to be a set of cities in a country. Distances between
cities represent the time it takes to travel from one point to another. We would like to build k hospitals and
minimize the maximum time it takes a patient to arrive to a hospital.

Formally, given a set of centers C, the k-center clustering price of clustering P by C is denoted by

rC
∞(P) = max

p∈P
d(p,C) ,

where d(p,C) = minc∈C d(p, c) denotes the distance of p to the set C.
Formally, the k-center problem is to find a set C of k points, such that rC

∞(P) is minimized; namely,

ropt
∞ (P, k) = min

C,|C|=k
rC
∞(P) .

We will denote the set of centers realizing the optimal clustering by Copt.
Every point in a clsuter is in distance at most rC

∞(P) from its respective center.
It is known that the k-center clustering is NP-H, and it is in fact hard to approximate within a factor

of 1, 86 even in two dimensions. Surprisingly, there is a simple and elegant algorithm that achieves 2-
approximation.

3.2.1 The Greedy Clustering Algorithm

The greedy algorithm GreedyKCenter starts by picking an arbitrary point c1 into C1. Next, we compute
for every point p ∈ P its distance d1[p] from c1. Next, consider the point worst served by c1; this is the point
realizing r1 = maxp∈P d1[p]. Let c2 denote this point, and add it to the set of centers C2.

Specifically, in the ith iteration, we compute for each point p ∈ P the quantity di−1[p] = minc∈Ci−1 d(p, c).
We also compute the radius of the clustering

ri−1 = max
p∈P

di−1[p] = max
p∈P

d(p,Ci−1) , (3.1)

and the bottleneck point ci that realizes it. Next, we add ci to Ci−1 to form the new set Ci. We repeat this
process k times.

To make this algorithm slightly faster, observe that

di[p] = d(p,Ci) = min
(
d(p,Ci−1) ,d(p, ci)

)
= min

(
di−1[p],d(p, ci)

)
.

In particular, if we maintain for p a single variable d[p] with its current distance to the closest center in the
current center set, then the above formula boils down to

d[p]← min
(
d[p],d(p, ci)

)
.

Namely, the above algorithm can be implemented using O(n) space, where n = |P|. The ith iteration of
choosing the ith center takes O(n) time. Thus, overall this approximation algorithm takes O(nk) time.

32

Theorem 3.2.1 Given a set of n points P ⊆ X, belonging to a metric space (X,d), the algorithm GreedyK-
Center computes a set K of k centers, such that K is a 2-approximation to the optimal k-center clustering
of P; namely, rK

∞(P) ≤ 2ropt
∞ (P, k). The algorithm takes O(nk) time.

Proof: The running time follows by the above description, so we concern ourselves only with the ap-
proximation quality.

If every cluster of Copt contains exactly one point of K then the claim follows. Indeed, consider a point
p ∈ P, and let c be the center it belongs to in Copt. Also, let k be the center of K that is in Π

(
Copt, c

)
. We

have that d
(
p, c

)
= d

(
p,Copt

)
≤ ropt
∞ = ropt

∞ (P, k). Similarly, observe that d
(
k, c

)
= d

(
k,Copt

)
≤ ropt
∞ . As such,

by the triangle inequality, we have that d
(
p, k

)
≤ d

(
p, c

)
+ d

(
c, k

)
≤ 2ropt

∞ .

By the pigeon hole principle, the only other possibility is that there are two centers k and u of K that
are both in Π

(
Copt, c

)
, for some c ∈ Copt. Assume, without loss of generality, that u was added later to the

center set K by the algorithm GreedyKCenter, say in the ith iteration. But then, since GreedyKCenter
always chooses the point furthest away from the current set of centers, we have that c ∈ Ci−1 and

rK
∞(P) ≤ rCi−1

∞ (P) = d(u,Ci−1) ≤ d
(
u, k

)
≤ d

(
u, c

)
+ d

(
c, k

)
≤ 2ropt

∞ .

3.2.2 The greedy permutation

There is an interesting phenomena associated with GreedyKCenter. We can ran it till it exhausts all the
points of P (i.e., k = n). Then, this algorithm generates a permutation of P; that is P =

〈
c1, c2, . . . , cn

〉
.

We will refer to P as the greedy permutation of P. There is also an associated sequence of radiuses
〈r1, r2, . . . , rn〉, where all the points of P are in distance at most ri from the points of Ci =

〈
c1, . . . , ci

〉
.

Definition 3.2.2 A set S ⊆ P is a r-net for P if the following two properties hold.

(i) Covering property: All the points of P are in distance at most r from the points of P.

(ii) Separation property: For any pair point of points p, q ∈ S , we have that d(p, q) ≥ r.

(One can relax the separation property by requiring that the points of S would be at distance Ω(r) apart.)

Intuitively, a r-net of a point-set P is a compact representation of P in the resolution r. Surprisingly, the
greedy permutation of P provides us with such a representation for all resolutions.

Theorem 3.2.3 Let P be a set of n points in a finite metric space, and let its greedy permutation be〈
c1, c2, . . . , cn

〉
with the associate sequence of radiuses 〈r1, r2, . . . , rn〉. For any i, we have that Ci =〈

c1, . . . , ci
〉

is a ri-net of P.

Proof: Note, that by construction rk = d(ck,Ck−1), for all k = 1, . . . , n. As such, for j < k ≤ n, we have that
d(c j, ck) ≥ rk, which implies the required separation property. The covering property follows by definition,
see Eq. (3.1).

3.3 k-median clustering

In the k-median clustering problem, a set P ⊆ X is provided together with a parameter k. We would like to
find k points C ⊆ P, such that the sum of distances of points of P to their closest point in C is minimized.

Formally, given a set of centers C, the k-center clustering price of clustering P by C is denoted by

rC
1 (P) = max

p∈P
d(p,C) ,

33

where d(p,C) = minc∈C d(p, c) denotes the distance of p to the set C.
Formally, the k-center problem is to find a set C of k points, such that rC

1 (P) is minimized; namely,

ropt
1 (P, k) = min

C,|C|=k
rC
1 (P) .

We will denote the set of centers realizing the optimal clustering by Copt.
There is a simple and elegant constant factor approximation algorithm for k-median clustering using

local search.

A note on notations. Consider the set U of all k-tuples of points of P. Let pi denote the ith point of P, for
i = 1, . . . , n, where n = |P|. for C ∈ U, consider the n dimensional point

φ(C) = (d(p1,C) ,d(p2,C) , . . . ,d(pn,C)) .

Clearly, we have that rC
∞(P) = ‖φ(C)‖∞ = maxi d(pi,C). And ropt

∞ (P, k) = min
C∈U
‖φ(C)‖∞.

Similarly, we have that rC
1 (P) = ‖φ(C)‖1 =

∑
i d(pi,C). And ropt

1 (P, k) = min
C∈U
‖φ(C)‖1.

Namely, k-center clustering under this interpeation is just finding the point minimizing the `∞ norm in a
set of points in n dimensions. Similarly, the k-median problem is to find the poitn minizing the norm under
the `1 norm. Since `1 and `∞ are equal up to a factor equal to the dimension, we get the following.

Observation 3.3.1 For any point set P of n points and a parameter k, we have that ropt
∞ (P, k) ≤ ropt

1 (P, k) ≤
n · ropt

∞ (P, k).

3.3.1 Local Search

A 2n-approximation. Observation 3.3.1 implies that if we compute a set of centers C using Theorem 3.2.1
then we have that

rC
1 (P) /2n ≤ rC

∞(P) /2 ≤ ropt
∞ (P, k) ≤ ropt

1 (P, k) ≤ rC
1 (P) ⇒ rC

1 (P) ≤ 2nropt
1 (P, k) . (3.2)

Namely, C is a 2n-approximation to the optimal solution.

Improving it. Let 0 < τ < 1 be a parameter to be determined shortly. The local search algorithm AlgLo-
calSearchKMed initially sets the current set of centers Ccurr to be C. Next, at each iteration it checks if
the current solution Ccurr can be improved by replacing one of the centers in it by a center from the outside.
There are at most |P| · |Ccurr| = nk choices to consider, as we pick a center c ∈ Ccurr to throw away and a new
center to replace it by e ∈ (P \ Ccurr). We consider the new candidate set of centers K ←

(
Ccurr \

{
c
})
∪

{
e
}
.

If rK
1 (P) ≤ (1 − τ)rCcurr

1 (P) then the algorithm sets Ccurr ← K and repeats.
The algorithm AlgLocalSearchKMed stops when there is no exchange that would improve the current

solution by a factor of (at least) (1 − τ). The final content of the set Ccurr is the required constant factor
approximation. Note, that the running time of the algorithm is

O

(nk)2 log1/(1−τ)
rC
1 (P)

ropt
1 (P, k)

 = O
(
(nk)2 log1+τ(2n)

)
= O

(
(nk)2 log n

ln(1 + τ)

)
= O

(
(nk)2 log n

τ

)
,

by (??) and since 1/(1 − τ) ≥ 1 + τ. The final step follows since 1 + τ ≤ exp(τ) ≤ 1 + 2τ, for τ < 1/2 as can
be easily verified. Thus, if τ is polynomially small, then the running time would be polynomial.

34

3.3.2 Proof

The proof of correctness is quite involved and the reader might want to skip it for now.
For the sake of simplicity of exposition, let us assume that the solution returned by the algorithm can not

be improved by any swapm, and let C be this set of cetners. For a center c ∈ C and e ∈ P \ C let C − c + e
denote the set of centers resulting from apply the swap c→ e to

C; namely, C − c + e =
(
C \

{
c
})
∪

{
e
}
. We are assuming that

∀c ∈ C, e ∈ P \ C ρ(C − c + e) ≥ ρ(C),

where ρ(C) = rC
1 (P). The contribution of a point p ∈ P to the quantity ∆(c, e) = ρ(C − c + e) − ρ(C) is

δp = d(p,C − c + e) − d(p,C). Clealry, if p is served by the same center in C and in C − c + e then δp = 0.
In particular, we have that ∀p ∈ P \ Π

(
C, c

)
it holds δp ≤ 0. Thus,

∀c ∈ C, e ∈ Copt 0 ≤ ∆(c, e) ≤
∑

p∈Π(C,c)∪Π(Copt,e)
δp =

∑
p∈Π(Copt,e)

δp +
∑

p∈Π(C,c)\Π(Copt,e)
δp (3.3)

where e ∈ Copt and Copt is the optimal set of centers. What Eq. (3.3) gives us is a large family of inequaliteis
that all of them hold together. Each inequality is represented by a swap c→ e. We would like to pick a set
of swaps such that these inequalities when added together, would imply that

5rCopt

1 (P) − rC
1 (P) ≥ 0.

This would imply that 5rCopt

1 (P) ≥ rC
1 (P); namely, that the local search algorithm provides a constant factor

approximation to optimal clustering. This idea seems to be somewhat mysterious, but to see that there is
indeed hope to achieve that, observe that if our set of swaps T has each center of Copt appearing in it exactly
once, then when we add up the first term on the right side of Eq. (3.3) then we have that

∑
c→e∈T

 ∑
p∈Π(Copt,e)

δp

 = ∑
c→e∈T

 ∑
p∈Π(Copt,e)

(
d(p,C − c + e) − d(p,C)

)
≤

∑
c→e∈T

 ∑
p∈Π(Copt,e)

(
d(p,Copt) − d(p,C)

) =∑
p∈P

(
d(p,Copt) − d(p,C)

)
= rCopt

1 (P) − rC
1 (P) ,

since e ranges over the elements of Copt exactly once, and for e ∈ Copt and p ∈ Π
(
Copt, e

)
we have that

d(p,C − c + e) ≤ d(p, e) = d(p,Copt). Thus, we can bound the first term of the right side of Eq. (3.3) as
required. We thus turn our attention to bounding the second term.

Namely,

0 ≤ ρ(C − c + e) − ρ(C) =
∑
p∈P

(
d(p,C − c + e) − d(p,C)

)
=

∑
p∈Π(C,c)∪Π(C−c+e,e)

(
d(p,C − c + e) − d(p,C)

)
Notice, that the change can be upper bounded as follows: (i) The points

35

the only points that have different contribution to ρ(C − c + p) and ρ(C) are the one that are in Π
(
C, c

)
and in uter
Πc

C
[C, c] P/C PC(c)
XXXXXXXXXXXX

3.4 k-means clustering

3.4.1 Local Search

3.4.2 The k-means method

3.5 Bibliographical Notes

In this chapter we introduced the problem of clustering and showed some algorithms that achieve constant
factor approximation. A lot more is known about these problems including faster and better clustering
algorithms but to discuss them we need more advanced tools than what we currently have at hand.

k-center Clustering. The algorithm GreedyKCenter was described by Gonzalez [Gon85], but it was
probably known before, as the notion of r-net is much older. The hardness of approximating k-center
clustering was shown by Feder and Greene [FG88].

36

Chapter 4

Well Separated Pairs Decomposition

4.1 WSPD

Let P be a set of n points in IRd, and 1/4 > ε > 0 a parameter. Denote by A ⊗ B =
{
{x, y}

∣∣∣ x ∈ A, y ∈ B
}
. A

well-separated pair decomposition (WSPD) with parameter ε−1 of P is a set of pairs {{A1, B1} , . . . , {As, Bs}},
such that

1. Ai, Bi ⊂ P for every i.

2. Ai ∩ Bi = ∅ for every i.

3. ∪s
i=1Ai ⊗ Bi = P ⊗ P.

4. d(Ai, Bi) ≥ ε−1 ·max {diam(Ai), diam(Bi)}, where d(Ai, Bi) = minp∈Ai,q∈Bi‖p − q‖.

Instead of maintaining such a decomposition explicitly, it is convenient to construct a compressed
quadtree T of the points of P, and every pair, (Ai, Bi) is just a pair of nodes (vi, ui) of T , such that Ai = Pvi

and Bi = Pui , where Pv denote the points of P stored in the subtree of v, where v is a node of T . This gives
us a compact representation of the distances.

We slightly modify the construction of the compressed quadtree, such that for every nodes v ∈ T , it
also stores a representative point repv, which is a point in Pv. Furthermore, repv is one of the representative
points of one of the children of v. This can be easily computed in linear time, once the compressed quadtree
is computed.

WSPD(u, v,T)
Assume `(u) > `(v) or (`(u) = `(v) and u � v)

(otherwise exchange u↔ v).
If 8
√

d · 2`(u) ≤ ε ·
∥∥∥repu − repv

∥∥∥ then
return { {u, v} }

else
Denote by u1, . . . , ur the children of u
return

⋃r
i=1 WSPD(ui, v,T).

End WSPD

Figure 4.1: The algorithm WSPD for computing well-
separated pairs decomposition.

Before presenting the algorithm for computing
WSPD, we remind the reader that `(v) is lg(κ(�v)),
where �v is the cell (i.e., square, cube or hyper-
cube depending on the dimension) which is the
region that the node v corresponds to, and κ(�v)
is the sidelength of �v. Since, the root node cor-
responds to the unit-square/hypercube, `(v) is al-
ways a non-positive integer number.

For techincal reasons, we induce an aribtrary
ordering of the nodes of the given quadtree. Let �
denote this ordering.

We compute the compressed quadtree T of P
in O(n log n) time. Next, we compute the WSPD

37

by calling WSPD(u0, u0), where u0 is the root of T and the algorithm WSPD is defined recursively in
Figure 4.1.

The following lemma follows by an easy packing argument.

Lemma 4.1.1 Let � be a cell in a grid Gr in IRd with sidelength r. Then, the number of cells in Gr such that
their distance small � is smaller than ρ, si smaller than O

(
(ρ/r)d

)
.

Lemma 4.1.2 The WSPD generated by WSPD is valid. Namely, for any pair {u, v} in the WSPD, we have
diam(Pu), diam(Pv) ≤ ε

∥∥∥repu − repv

∥∥∥ and
∥∥∥repu − repv

∥∥∥ ≤ (1 + ε) ‖x − y‖, for any x ∈ Pu and y ∈ Pv.

Proof: Since T is a compressed quadtree, for any node u ∈ T , we have diam(Pu) ≤
√

d2`(u). In particular,
for every output pair {u, v},

max{diam(Pu), diam(Pv)} ≤
√

d ·max
{
2`(u), 2`(v)

}
≤ ε

4

∥∥∥repu − repv

∥∥∥
≤ ε

4 (d(Pu, Pv) + diam(Pu) + diam(Pv)),

so max{diam(Pu), diam(Pv)} ≤ ε
4(1−ε/2) d(Pu, Pv) ≤ εd(Pu, Pv), since ε ≤ 1. Similarly, for any x ∈ Pu and

y ∈ Pv, we have ∥∥∥repu − repv

∥∥∥ ≤‖x − y‖ + diam(Pu) + diam(Pv) ≤ (1 + ε)‖x − y‖ .

Finally, by induction, it follows that every pair of points is covered by a pair of subsets {Pu, Pv} output
by the WSPD algorithm.

Lemma 4.1.3 The number of pairs in the computed WSPD is O(n/εd).

Proof: Let {u, v} be an output pair and assume that the call to WSPD(u, v) was issued by WSPD(u, v′),
where v′ = p(v) is the parent of v in T . We charge this call to v′, and we will prove that each node is charged
at most O(ε−d) times.

So fix a node v′ ∈ V(T). It is charged by pairs of the form {u, v} in which p(v) = v′, and which was
issued inside WSPD(u, v′). This implies that `(p(u)) ≥ `(v′) ≥ `(u). Since the pair (u, v′) was not generated
by WSPD we conclude that

∥∥∥repv′ − repu

∥∥∥ ≤ ρ, where ρ = 8
√

d · 2`(v
′)/ε. There are three possible cases:

(i) `(v′) = `(u). But there are at most O
((
ρ/2`(v

′)
)d

)
= O(1/εd) nodes that have the same level as v′ and

their cell are in distance at most ρ from it, by Lemma 4.1.1. Thus, this can happened at most O(1/εd)
times.

(ii) `(p(u)) = `(v′). By the same argumentation as at (i), there are at most O(2d/εd) = O(1/εd) nodes with
this property, since every node has at most 2d children.

(iii) `(p(u)) > `(v′) > `(u). Namely, the edge between u and p(u) is a compressed edge in T . But then,
consider the node τ in the uncompressed tree (on the path connecting u to p(u)) which has the same
level as v′ and its cell contains �u. We charge u to τ. Clealry, τ will get charged at most once, and we
have that d(�v′ ,�τ) ≤ d(�v′ ,�u) ≤

∥∥∥repv′ − repu

∥∥∥ ≤ ρ. As such, arguing as above, we have that this
happens at most O(1/εd) times.

Thus, v′ can be charged O
(
ε−d · |Cv′ |

)
times, where Cv′ is the set of children of v′. Since, |Cv′ | ≤ 2d,

we conclude that v′ might be charged at most O(2dε−d) = O(ε−d) times. Thus, the total number of pairs
generated by the algorithm is O(nε−d).

Since the running time of WSPD is clearly linear in the output size, we have the following result.

38

Theorem 4.1.4 For 1 ≥ ε > 0, one can construct a ε−1-WSPD of size nε−d, and the construction time is
O
(
n log n + nε−d

)
.

Furthermore, for any pair {u, v} in the WSPD, we have diam(Pu), diam(Pv) ≤ ε
∥∥∥repu − repv

∥∥∥ and∥∥∥repu − repv

∥∥∥ ≤ (1 + ε) ‖x − y‖, for any x ∈ Pu and y ∈ Pv.

4.2 Applications of WSPD

4.2.1 Spanners

A t-spanner of a set of points P ⊂ IRd is a weighted graph G whose vertices is the points of P, and for any
x, y ∈ P,

‖xy‖ ≤ dG(x, y) ≤ t ·‖xy‖ ,

where dG the metric of the shortest path on G, see [PS89].

Theorem 4.2.1 Given an n-point set P ⊆ IRd, and parameter 1 ≥ ε > 0, one can compute a (1+ ε)-spanner
of P with O(nε−d) edges, in O

(
n log n + nε−d

)
time.

Proof: Let c ≥ 16 be an arbitrary constant, and set δ = ε/c. Compute a δ−1-WSPD decomposition using
the algorithm of Theorem 4.1.4. For every pair {u, v} ∈WSPD, add an edge between

{
repu, repv

}
with weight∥∥∥repurepv

∥∥∥. Let G be the resulting graph, clearly, the resulting shortest path metric dG dominates‖·‖.
The upper bound on the stretch is proved by induction on the length of pairs in the WSPD. Fix a pair

x, y ∈ P, by our induction hypothesis, we have for every pair z,w ∈ P such that ‖zw‖ < ‖xy‖, it holds
dG(z,w) ≤ (1 + cδ)‖zw‖.

The pair x, y must appear in some pair {u, v} ∈ WSPD, where x ∈ Pu, and y ∈ Pv. Thus
∥∥∥repurepv

∥∥∥ ≤
(1 + δ)‖xy‖ and

∥∥∥repux
∥∥∥ ,∥∥∥repvy

∥∥∥ ≤ δ∥∥∥repurepv

∥∥∥, by Theorem 4.1.4. By the inductive hypothesis

‖xy‖ ≤ dG(x, y) ≤ dG(x, repu) + dG(repu, repv) + dG(repv, y)

≤ (1 + cδ)
∥∥∥repux

∥∥∥ +∥∥∥repurepv

∥∥∥ + (1 + cδ)
∥∥∥repvy

∥∥∥
≤ 2(1 + cδ) · δ ·

∥∥∥repurepv

∥∥∥ +∥∥∥repurepv

∥∥∥
≤ (1 + 2δ + 2cδ2)

∥∥∥repurepv

∥∥∥ ≤ (1 + 2δ + 2cδ2)(1 + 2δ)‖xy‖

≤ (1 + 4δ)(1 + δ)‖xy‖ ≤ (1 + 5δ + 4δ2)‖xy‖

≤ (1 + cδ)‖xy‖ ≤ (1 + ε)‖xy‖ ,

since δc ≤ ε ≤ 1 and 16δ ≤ 1 and c ≥ 11.

4.2.2 Approximating the Minimum Spanning Tree and the Diameter of a Point Set

For a graph G, let G≤r denote the subgraph of G, resulting from removing all edges of weight larger than r
from G.

Lemma 4.2.2 Given a set P of n points in IRd, one can compute a spanning tree T of P, such that w(T) ≤
(1 + ε)w(M), whereM is the minimum spanning tree of P, and w(T) is the total weight of the edges of T .
This takes O(n log n + nε−d) time.

In fact, for any r ≥ 0, we have that for any connected C component ofM≤r is contained in a connected
component of T≤(1+ε)r.

39

Proof: Compute a (1 + ε)-spanner G of P. Let T be the minimum spanning tree of G. Clearly, T is the
required (1 + ε)-approximate MST. Indeed, for any u, v ∈ P, let πu,v denote the shortest path between u and
v in G. We have that G′ = (P,∪(u,v)∈Mπu,v) is connected subgraph of G. Furthermore, w(G′) ≤ (1+ ε)w(M).
It thus follows thatM(G) ≤ w(G′) ≤ (1 + ε)w(M(P)).

The second claim follows by similar argumentation.

Lemma 4.2.3 Given a set P of n points in IRd, one can compute, in O(n log n + nε−d) time, a pair u, v ∈ P,
such that‖uv‖ ≥ (1 − ε) diam(P).

Proof: Compute a (ε−1/4)-WSPD of P. Then for every pair in the WSPD, compute the distance of the
representative point of every pair. Return the pair of representative farthest away from each other.

4.2.3 Closest Pair

Let P be a set of points in IRd, and compute a ε−1-WSPDW of P, for ε = 1/4. Consider the pair of closest
points p, q ∈ P, and consider the pair {u, v} ∈ W, such that p ∈ Pu and q ∈ Pv. If Pu contains an additional
point r ∈ Pu, then we have that‖pr‖ ≤ ε(1 + ε)‖uv‖ ≤ ‖uv‖ /2, by Theorem 4.1.4 and since ε = 1/4. Thus,
‖pr‖ < ‖pq‖, a contradiction to the choice of p, q as closest pair. Thus, |Pu| = |Pv| = 1 and repu = p and
repv = q. Thus, scan all the pairs ofW, and check for all the pairs which connect singletons, what is the
distance between their points. Clearly, the closest computed pair, is the closest pair of points.

Theorem 4.2.4 Given a set P of points in IRd, one can compute the closest pair of points of P in O(n log n)
time.

We remind the reader that we already saw a linear time (expected) time algorithm for this problem.
However, this is a deterministic algorithm, and it can be applied in more abstract settings of finite metric
spaces that have small WSPD.

4.3 All Nearest Neighbors

Given a set P of n points in IRd, we would like to compute for each point p ∈ P, its closest neighbor in P.
This is harder than it might seem at first, since this is not a symmetrical relationship. Indeed, p might be the
nearest neighbor to q, but q might have r for a nearest neighbor.

4.3.1 The bounded spread case

Assume P is contained in the unit square, and diam(P) ≥ 1/4. Furthermore, let Φ = Φ(P) denote the spread
of P. Compute a ε−1-WSPDW of P, for ε = 1/4. Arguing as in the closest pair case, we have that if q is a
nearest neighbor to p, then there exists a pair {u, v} ∈ W, such that Pu = {p} and q ∈ Pv. Thus, scan all the
pairs with singleton as one of their sides, and for each such singleton, record the closest point encountered.

Lemma 4.3.1 Let P be a set n points in the plane, then one can solve the all nearest neighbor problem, in
time O(n(log n + logΦ(P))) time, where Φ is the spread of P.

Proof: The algorithm is described above. We only remain with the task of analyzing the running time.
For a number i ∈

{
0,−1, . . . ,−

⌊
lgΦ

⌋
− 4

}
, consider the set of pairs Wi, such that {u, v} ∈ Wi, if and only if

{u, v} ∈ W, and 2i−1 ≤
∥∥∥repurepv

∥∥∥ ≤ 2i.
We claim, that for any node u in the compressed quadtree, we have that the number of pairs of Wi that

contains u is a constant. As such, the points of Pu are being scanned only constant number of times because

40

of pairs in Wi, and thus every point is being scanned only O(logΦ) times overall, yielding the required
running time.

Indeed, if {u, v} ∈ Wi, then �p(v) must have a side length which is Ω(ε
∥∥∥repurepv

∥∥∥) = Ω(
∥∥∥repurepv

∥∥∥) =
Ω(2i). On the other hand, the set

U(u) =
{
pv

∣∣∣∣ {u, v} ∈ Wi

}
is a set of nodes which their corresponding cells are disjoint, and all of them are in distances O(2i) from �u.

It follows that |U(u)| = O(1). This in turn implies that
∣∣∣∣∣{v

∣∣∣∣ {u, v} ∈ Wi

}∣∣∣∣∣ = O(1).

4.3.2 The unbounded spread case

To handle the unbounded case, we need to use some additional geometric properties.

Lemma 4.3.2 Let u be a node in QT (P), we partition spaces around repu into cones of angle ≤ π/20. Let
cone be one of those cones, and let Q be the set of all points in P which are in distance ≥ 8 diam(Pu) from
repu, and they all lie inside cone. Let q be the closest point in Q to repu. Then, q is the only point in Q that
its nearest neighbor might be in Pu.

Lemma 4.3.2 implies that we can do a top-down traversal of QT (P), after computing a ε−1-WSPD of
P, for ε = 1/16. For every node u, we maintain its nearest neighbor in its cone, but only of points that
are in nodes v that are well separated from u, and that Pv is a singleton. We can do that, by first getting
the candidate points from our parent, in addition, we just need to add all the points that lie in a pair {u, v}
such that |Pv| = 1. After we computed this set, we keep only the closest point inside each cone around repu.
Clearly, this can be done in linear time, since those sets have constant size, and every pair contribute a point
at most once to this top-down computation.

Theorem 4.3.3 Given a set P of n points in IRd, one can solve the all nearest neighbor problem in O(n log n)
time.

4.4 Bibliographical Notes

Well separated pairs decomposition was defined by Callahan and Kosaraju [CK95]. They defined a different
space decomposition tree, known as the fair split tree. Here, one compute the axis parallel bounding box
of the point-set, and always split along the longest edge by a perpendicular plane in the middle (or near
the middle). This splits the point set into two sets, which we construct fail split tree for them recursively.
Implementing this in O(n log n) time requires some cleverness. See [CK95] for details.

Callahan and Kosaraju [CK95] were inspired by the work of Vaidya [Vai86] on all nearest neighbor
problem (i.e., compute for each points in P, their nearest neighbor in P). He defined the fair split tree, and
show how to compute the all nearest neighbors in O(n log n) time. However, the first to give an O(n log n)
time algorithm for the all nearest neighbor algorithm was Clarkson [Cla83] (this was part of his PhD thesis).

Section 4.3 is a simplification of the all k-nearest neighbor problem. This computes for every points its
k-nearest neighbor in O(n log n + nk) time. See [CK95] for details.

WSPD can be maintained in polylogarithmic time under insertions and deletions. This is quite surprising
when one considers that in the worst case, a point might participate in linear number of pairs, and in fact,
a node in the quadtree might participate in linear number of pairs. This is described in detail in Callahan
thesis []

41

42

Chapter 5

Approximate Nearest Neighbor Search in
Low Dimension

“Napoleon has not been conquered by man. He was greater than all of us. But god punished him because he relied
on his own intelligence alone, until that prodigious instrument was strained to breaking point. Everything breaks in
the end.”

– – Carl XIV Johan, King of Sweden

5.1 Introduction

Let P be a set of n points in IRd. We would like to preprocess it, such that given a query point q, one can
determine the closet point in P to q quickly. Unfortunately, the exact problem seems to require prohibitive
preprocessing time. (Namely, computing the Voronoi diagram of P, and preprocessing it for point-location
queries. This requires (roughly) O

(
ndd/2e

)
time.)

Instead, we will specify a parameter ε > 0, and build a data-structure that answers (1 + ε)-approximate
nearest neighbor queries.

Definition 5.1.1 For a set P ⊆ IRd, and a point q, we denote by q̂ the closest point in P to q. We denote by
dP(q) the distances between q and its closest point in P; that is dP(q) =

∥∥∥qq̂
∥∥∥.

For a query point q, and a set P of n points in IRd, the point x ∈ P is an (1 + ε)-approximate nearest
neighbor if‖qx‖ ≤ (1 + ε)dP(q). Alternatively, for any y ∈ P, we have‖xq‖ ≤ (1 + ε)‖yq‖. We will denote
this fact by saying that x is (1 + ε)-ANN of q.

5.2 Low Quality ANN Search - The Ring Separator Tree

Definition 5.2.1 A binary tree T having the points of P as leaves, is a t-ring separator tree for P, if every
node v ∈ T , is associated with a ball bv, such that all the points of Pv

in = Pv ∩ bv are in one child of T , where
bv = b(pv, rv) and Pv are the points of P stored in the subtree of v. Furthermore, all the other points of Pv

are outside the interior of the enlarged ball b(pv, (1 + t)rv), and are stored in the other child of v. Finally, we
store a representative point repv ∈ Pv

in in v.

Lemma 5.2.2 Given a t-ring separator tree T , one can answer (1 + 4/t)-approximate nearest neighbor
queries, in O(depth(T)) time.

Proof: Let q denote the query point, and set v to be the root of T . The algorithm answer the nearest-
neighbor query by traversing down T .

43

During the traversal, we first compute the distance l =
∥∥∥q repv

∥∥∥. If this is shorter than the nearest neighbor
of q encountered so far, we update the closest distance currently stored for q.

If ‖qpv‖ ≤ (1 + t/2)rv, we continue the search recursively in the child containing Pv
in. Otherwise, we

continue the search in the subtree containing Pv
out. Let π denote the generated search path in T .

As for the quality of approximation, let q̂ denote the nearest neighbor to q in P. And let w denote the
last node in the search path π, such that q̂ ∈ Pw. Clearly, if q̂ ∈ Pw

in, but we continued the search in Pw
out, then∥∥∥̂qq

∥∥∥ ≥ (t/2)rw, and ∥∥∥q repw

∥∥∥ ≤∥∥∥qq̂
∥∥∥ +∥∥∥̂q repw

∥∥∥ ≤∥∥∥̂qq
∥∥∥ + 2rw,

since q̂, repw ∈ bw = b(pw, rw). In particular,∥∥∥q repw

∥∥∥∥∥∥̂qq
∥∥∥ ≤

∥∥∥̂qq
∥∥∥ + 2rw∥∥∥̂qq

∥∥∥ ≤ 1 +
4
t
.

Namely, repw is a (1 + 4/t)-approximate nearest neighbor to q.
Similarly, if q̂ ∈ Pw

out, but we continued the search in Pw
in, then

∥∥∥̂qq
∥∥∥ ≥ (t/2)rw and

∥∥∥q repw

∥∥∥ ≤ ‖qpw‖ +∥∥∥pw repw

∥∥∥ ≤ (2 + t/2)rw. Thus, repw is a (2+t/2)rw
(t/2)rw

-ANN of q. Namely, repw is a (1 + 4/t)-ANN of q.

Lemma 5.2.3 Given a set P of n points in IRd, one can compute a (1/n)-ring separator tree of P in O(n log n)
time.

Proof: The construction is recursive. Compute the ball D = b(p, r) that contains ≥ n/c points of P,
such that r ≤ 2ropt(P, n/c), where c is a constant to be determined shortly. We remind the reader that D
can be computed in linear time, by Lemma 1.3.1. Consider the ball D′ of radius 2r centered at p. The ball
D′ can be covered by a hypercube S with side length 4r. Furthermore, partition S into a grid such that
every cell is of side length r/L, for L =

⌈
16
√

d
⌉
. Every cell in this grid has diameter ≤ 4r

√
d/L ≤ r/4 ≤

ropt(P, n/c)/2. Thus, every grid cell can contain at most n/c points, since it can be covered with a ball of

radius ropt(P, n/c)/4. There are M =
(

4r
r/L

)d
= (4L)d grid cells. Thus, D′ contains at most (4L)d(n/c) points.

Specifically, for c = 2(4L)d the disk D′ contains at most n/2 points of P.
In particular, there must be a radius r′ such that r ≤ r′ ≤ 2r, and there is a h ≥ r/n, such that the ring

b(p, r′ + h) \ b(p, r′) does not contain any points of P in its interior.
Indeed, sort the points of P inside D′ \ D by their distances from p. There are n/2 numbers in the range

of distances [r, 2r]. As such, there must be an interval of length r/(n/2+ 1) which is empty. And this empty
range, corresponds to the empty ring.

Computing r′ and h is done by computing the distance of each point from p, and partitioning the distance
range [r, 2r] into 2n equal length segments. In each segment, we register the point with minimum and
maximum distance from c in this range. This can be done in linear time using the floor function. Next,
scan those buckets from left to right. Observe, that the maximum length gap is realized by a maximum of
one bucket together with a consecutive sequence of empty buckets, ending by the minimum of a non empty
bucket. As such, the maximum length interval can be computed in linear time, and yield r′ and h.

Thus, let v be the root of the new tree, set Pv
in to be P∩b(p, r′) and Pv

out = P \Pv
in, store bv = b(p, r′) and

pv = p. Continue the construction recursively on those two sets. Since
∣∣∣Pv

in

∣∣∣ , ∣∣∣Pv
out

∣∣∣ ≥ n/c, and c is constant.
It follows that the construction time of the algorithm is T (n) = O(n) + T (

∣∣∣Pv
in

∣∣∣) + T (
∣∣∣Pv

out

∣∣∣) = O(n log n), and
the depth of the resulting tree is O(log n).

Combining the above two lemmas, we get the following result.

Theorem 5.2.4 Let P be a set of n points in IRd. One can preprocess it in O(n log n) time, such that given a
query point q ∈ IRd, one can return a (4n + 1)-ANN of q in P in O(log n) time.

44

5.3 The bounded spread case

Lemma 5.3.1 Let P be a set of n points contained inside the unit hypercube in IRd, and letQT be a quadtree
of P, where diam(P) = Ω(1). Let q be a query point, such that

∥∥∥̂qq
∥∥∥ ≥ r. Then, given a parameter ε > 0, one

can return an (1 + ε)-ANN to q in O
(
1/εd + log(1/r)

)
time

Proof: Let A0 = {root(T)}, and let rcurr =
∥∥∥q reproot(T)

∥∥∥.
In the ith iteration, for i > 0, the algorithm expands the nodes of Ai to get Ai+1. Formally, for v ∈ Ai−1,

let Cv be the set of children of v in QT and �v denote the cell (i.e., region) v corresponds to. For every node
w ∈ Cv, we compute rcurr = min(rcurr,

∥∥∥q repw

∥∥∥). If
∥∥∥q repw

∥∥∥ − diam(�w) < (1 − ε/2)rcurr, the set Pw might
contain points which are closers to q than the current point we have, and we add q to Ai (more precisely, Pw

might contain a point which is (1 − ε/2) closer to q than any point we encountered so far). We stop as soon
as Ai is an empty set, and we return rcurr together with the point of P that realized it, as the ANN to q.

Let us first argue that the algorithm works. Consider the last node w inspected by the algorithm such
that q̂ ∈ Pw. Since the algorithm decided to throw this node away, we have, by the triangle inequality, that∥∥∥qq̂

∥∥∥ ≥∥∥∥q repw

∥∥∥ − diam(�w) ≥ (1 − ε/2)rcurr.

Thus,
∥∥∥qq̂

∥∥∥ /(1 − ε/2) ≥ rcurr. However, 1/(1 − ε/2) ≤ 1 + ε, for 1 ≥ ε > 0, as can be easily verified. Thus,
rcurr ≤ (1 + ε)dP(q), and the algorithm returns an (1 + ε)-ANN to q.

As for the running time, observe that if a node w ∈ QT is considered by the algorithm, and diam(�w) <
(ε/4)

∥∥∥qq̂
∥∥∥ then∥∥∥q repw

∥∥∥ − diam(�w) ≥
∥∥∥q repw

∥∥∥ − (ε/4)
∥∥∥qq̂

∥∥∥ ≥ rcurr − (ε/4)rcurr ≥ (1 − ε/4)rcurr,

which implies that neither w nor any of its children would be inserted into the sets A1, . . ., Am, where m is
the depth QT . Thus, no nodes of level ≤ h =

⌈
lg(

∥∥∥qq̂
∥∥∥ ε/4)

⌉
are going to be considered by the algorithm.

Furthermore, in the end of the ith iteration, we have that rcurr ≤ li =
∥∥∥qq̂

∥∥∥ + √d2−i. The only cells of
G2−i−1 that might be considered by the algorithm are the ones in distance ≤ li from q. The number of such
cells is

ni = O
(⌈

li
2−i−1

⌉)d

.

In particular, as long as
√

d2−i−1 ≥
∥∥∥qq̂

∥∥∥, we have that li = O(2−i−1) and ni = O(1). On the other hand, let j
be the first iteration for which

√
d2− j−1 ≤

∥∥∥qq̂
∥∥∥. We have for i ≥ j that

ni = O

⌈2− j−1

2−i−1

⌉d .
Thus, n j, n j+1, . . . , nm is a geometrically growing series, dominated by the last element. However, we know
that we never access nodes of level ≤ h. Thus, the running time of the algorithm is bounded by

O

∑
i

|Ai|

 = O

|h| + h∑
i=0

ni

 = O

|h| + h∑
i= j

ni

 = O(|h| + nh)

= O

|h| +

∥∥∥qq̂

∥∥∥
2h

d

= O

|h| +

∥∥∥qq̂
∥∥∥

2dlg(‖qq̂‖ε/4)e

d = O

(
log

1
εr
+

1
εd

)
= O

(
log

1
r
+ log

1
ε
+

1
εd

)
= O

(
log

1
r
+

1
εd

)
,

45

since
∥∥∥qq̂

∥∥∥ ≥ r.
To apply Lemma 5.3.1 for the bounded spread, first realize that if the distance between the closest pair of

points of P is µ = CP(P), then the algorithm would never search in (the children of) cells that have diameter
≤ µ/2, since all such nodes are leafs. As such, we can replace in the above argumentation r by µ.

Lemma 5.3.2 Let P be a set of n points in IRd, and let QT be a quadtree of P, where diam(P) = Ω(1).
Given a query point q and 1 ≤ ε > 0, one can return an (1 + ε)-ANN to q in O

(
1/εd + logΦ(P)

)
time.

A less trivial task, is to adapt the algorithm, so that it uses compressed quadtrees. To this end, the
algorithm would still handle the nodes by levels. This requires us to keep a heap of integers in the range
0,−1, . . . ,−

⌊
lgΦ(P)

⌋
. This can be easily done by maintaining an array of size O(logΦ(P)), where each array

cell, maintains a linked list of all nodes with this level. Clearly, an insertion/deletion of this data-structure
can be handled in constant time by augmenting it with a hash table.

Theorem 5.3.3 Let P be a set of n points in IRd. One can preprocess P in O(n log n) time, and using linear
space, such that given a query point q and parameter 1 ≥ ε > 0, one can return an (1 + ε)-ANN to q in
O
(
1/εd + logΦ(P)

)
time.

If the spread of P is not known, but we are provided with a lower bound r ≤
∥∥∥qq̂

∥∥∥ then the query time is
O(1/εd + log(diam(P)/r)), where q̂ is the nearest neighbor of q in P.

5.4 ANN - general case

The scheme for handling the general case is to use the ring separator tree to get a fast rough approximation.
Next, using a compressed quadtree, we would find a constant number of relevant nodes, and apply Theo-
rem 5.3.3 to those nodes. This would yields the required approximation. Before solving this problem, we
need a minor extension of the compressed quadtree data-structure.

5.4.1 Extending a compressed quadtree to support cell queries

Let �̂ be a canonical grid cell (we remind the reader that this is a cell of the grid G2−i , for some integer
i ≤ 0). Given a compressed quadtree T̂ , we would like to find the single node v ∈ T̂ , such that P ∩ �̂ = Pv.

To this end, we construct a finger tree over T̂ . We recall that the finger tree is constructed by finding
a separator node in T̂ , which breaks T̂ into a constant number of connected components, creating a corre-
sponding node in the finger tree, and continuing the construction recursively on each connected component.
The construction takes O(n log n) time.

Thus, we are going to perform the search on the finger tree. At every stage, we have a node w′, which
corresponds to a node w in the compressed quadtree. There are several possibilities:

1. If �w∩�̂ = ∅, we continue the search recursively in the child of w′ which corresponds to the connected
component of T̂ constructed for the region which is the complement of �w. Let u′ denote this child of
w′.

2. If �w ⊆ �̂ ⊂ �p(w), where p(w) is the parent of w in T̂ , then w is the required node, and the algorithm
returns it.

3. If �p(w) ⊆ �̂, then we continue the search recursively in u′.

4. Otherwise, we need to continue the search in one of the children of w. We can determine which one
in constant time.

46

Since the depth of the finger tree is logarithmic, this takes O(log n) time overall.

Lemma 5.4.1 Given a compressed quadtree T̂ of a set P of n points, one can preprocess it in O(n log n)
time, such that given a query canonical cell �̂, one can find, in O(log n) time, the node w ∈ T̂ such that
�w ⊆ �̂ and P ∩ �̂ = Pw.

5.4.2 ANN in Low Dimensions

Let P be a set of n points in IRd contained in the unit hypercube. We build the compressed quadtree T̂ of P,
and the ring separator tree TR of P. Furthermore, we preprocess T̂ for cell queries, using Lemma 5.4.1.

Given a query point q, using the ring tree TR, we compute a point u ∈ P, such that dP(q) ≤ ‖uq‖ ≤
(4n+ 1)dP(q). Let R =‖uq‖ and r =‖uq‖ /(4n+ 1). Clearly, r ≤ dP(q) ≤ R. Next, compute l =

⌈
lg R

⌉
, and let

C be the set of cells of G2l that are in distance ≤ R from q. Clearly, since R ≤ 2l, it follows that q̂ ∈
⋃
�∈C �.

For each cell � ∈ C, we compute the node v ∈ T̂ such that P ∩ � = Pv. This can be done in O(log n) time,
using Lemma 5.4.1. Let V be the resulting set of nodes of P.

For each node of v ∈ V , we now apply the algorithm of Theorem 5.3.3 to the compressed quadtree
rooted at v. Since |V | = O(1), and diam(Pv) = O(R), for all v ∈ V , the query time is

∑
v∈V

O
(

1
εd + log

diam(Pv)
r

)
= O

 1
εd +

∑
v∈V

log
diam(Pv)

r

 = O

 1
εd +

∑
v∈V

log
R
r

= O

(
1
εd + log n

)
.

As for the correctness of the algorithm, notice that there is a node w ∈ V , such that q̂ ∈ Pw. As such,
when we apply the algorithm of Theorem 5.3.3 to w, it would return us a (1 + ε)-ANN to q.

Theorem 5.4.2 Let P be a set of n points in IRd. One can construct a data-structure of linear size, in
O(n log n) time, such that given a query point q ∈ IRd, and a parameter 1 ≥ ε > 0, one can compute a
(1 + ε)-ANN to q in O(1/εd + log n) time.

5.5 Bibliographical notes

The presentation of the ring separator tree follows the recent work of Har-Peled and Mendel [?]. Ring sep-
arator trees are probably an old idea. A more elaborate but similar data-structure is described by Indyk and
Motwani [IM98]. Of course, the property that “thick” ring separators exist, is inherently low dimensional, as
the regular simplex in n−1 dimensions show. One option is to allow the rings to contain points, and replicate
the points inside the ring in both subtrees. As such, the size of the resulting tree is not necessarily linear.
However, careful implementation yields linear (or small) size, see Exercise 5.6.1 for more details. This and
several additional ideas are used in the construction of the cover tree of Indyk and Motwani [IM98].

Section 5.3 is a simplification of Arya et al. [AMN+98] work. Section 5.4 is also inspired to a certain
extent by Arya et al. work, although it is essentially a simplification of Har-Peled and Mendel [?] data-
structure to the case of compressed quadtrees. In particular, we believe that the data-structure presented is
conceptually simpler than previously published work.

There is a huge literature on approximate nearest neighbor search, both in low and high dimensions in
the theory, learning and database communities. The reason for this huge work lies in the importance of this
problem, special input distributions, different computation models (i.e., I/O-efficient algorithms), search in
high-dimensions, and practical efficiency.

47

Liner space. In the low dimensions, the seminal work of Arya et al. [AMN+98], mentioned above, was
the first to offer linear size data-structure, with logarithmic query time, such that the approximation quality
is specified with the query. The query time of Arya et al. is slightly worse than the running time of
Theorem 5.4.2, since they maintain a heap of cells, always handling the cell closest to the query point. This
results in running time O(ε−d log n). It can be further improved to O(1/εd log(1/ε) + log n) by observing
that this heap has only very few del-min, and many insertions. This rather nice observation is due to Duncan
[Dun99].

Instead of having a separate finger tree, Arya et al. rebalance the compressed quadtree directly. This
results in nodes, which correspond to cells that have the shape of an annulus (i.e., the region formed by the
difference between two canonical grid cells).

Duncan [Dun99] and some other authors offered data-structure (called the BAR-tree) with similar query
time, but it is seems to be inferior, in practice, to Arya et al. work, for the reason that while the regions the
nodes correspond to are convex, they have higher descriptive complexity, and it is harder to compute the
distance of the query point to a cell.

Faster query time. One can improve the query time if one is willing to specify ε during the construc-
tion of the data-structure, resulting in a trade off between space for query time. In particular, Clarkson
[Cla94] showed that one can construct a data-structure of (roughly) size O(n/ε(d−1)/2), and query time
O(ε−(d−1)/2 log n). Chan simplified and cleaned up this result [Cha98] and presented also some other re-
sults.

Details on Faster Query Time. A set of points Q is
√
ε-far from a query point q, if the

∥∥∥pcQ

∥∥∥ ≥ diam(Q)/
√
ε, where

cQ is some point of Q. It is easy to verify that if we partition space around cQ into cones with central angle O(
√
ε)

(this requires O(1/ε(d−1)/2) cones), then the most extreme point of Q in such a cone cone, furthest away from cQ, is
the (1 + ε)-approximate nearest neighbor for any query point inside cone which is

√
ε-far. Furthermore, by careful

implementation (i.e., grid in the angles space), we can decide, in constant time, which cone the query point lies in.
Thus, using O(1/ε(d−1)/2) space, we can answer (1 + ε)-ANN queries for Q, if the query point is

√
ε-far.

We next, construct this data-structure for every set Pv, for v ∈ T̂ (P). This results in a data-structure of size O(n/ε(d−1)/2).
Given a query point q, we use the algorithm of Theorem 5.4.2, and stop as soon as for a node v, Pv is

√
ε-far,

and then we use the secondary data-structure for Pv. It is easy to verify that the algorithm would stop as soon as
diam(�v) = O(

√
εdP(q). As such, the number of nodes visited would be O(log n + 1/εd/2), and identical query time.

Note, that we omitted the construction time (which requires some additional work to be done efficiently), and our
query time is slightly worse than the best known. The interested reader can check out the work by Chan [Cha98],
which is somewhat more complicated than what is outlined here.

The first to achieve O(log(n/ε)) query time (using near linear space), was Har-Peled [Har01], using
space roughly O(nε−d log2 n). This was later simplified and improved by Arya and Malamatos [AM02],
which present a data-structure with the same query time, and of size O(n/εd). Those data-structure relies on
the notion of computing approximate Voronoi diagrams and performing point location queries in those dia-
grams. By extending the notion of approximate Voronoi diagrams, Arya, Mount and Malamatos [AMM02]
showed that one can answer (1 + ε)-ANN queries in O(log(n/ε)) time, using O(n/ε(d−1)) space. On the
other end of the spectrum, they showed that one can construct a data-structure of size O(n) and query time
O(log n + 1/ε(d−1)/2) (note, that for this data-structure ε > 0 has to be specified in advance). In particular,
the later result breaks a space/query time tradeoff that all other results suffers from (i.e., the query time
multiplied by the construction time has dependency of 1/εd on ε).

Practical Considerations Arya et al. [AMN+98] implemented their algorithm. For most inputs, it is
essentially a kd-tree. The code of their library was carefully optimized and is very efficient. In particular, in
practice, I would expect it to beat most of the algorithms mentioned above. The code of their implementation
is available online as a library [AM98].

48

Higher Dimensions. All our results have exponential dependency on the dimension, in query and pre-
processing time (although the space can be probably be made subexponential with careful implementation).
Getting a subexponential algorithms requires a completely different techniques, and would be discussed in
detail at some other point.

Stronger computation models. If one assume that the points have integer coordinates, in the range [1,U],
then approximate nearest-neighbor queries can be answered in (roughly) O(log log U+1/εd) time [AEIS99],
or even O(log log(U/ε)) time [Har01]. The algorithm of Har-Peled [Har01] relies on computing a com-
pressed quadtree of height O(log(U/ε)), and performing fast point-location query in it. This only requires
using the floor function and hashing (note, that the algorithm of Theorem 5.4.2 uses the floor function and
hashing during the construction, but it is not used during the query). In fact, if one is allowed to slightly
blowup the space (by a factor Uδ, where δ > 0 is an arbitrary constant), the ANN query time can be improved
to constant [HM04].

By shifting quadtrees, and creating d+1 quadtrees, one can argue that the approximate nearest neighbor
must lie in the same cell (and of the “right” size) of the query point in one of those quadtrees. Next, one can
map the points into a real number, by using the natural space filling curve associated with each quadtree.
This results in d + 1 lists of points. One can argue that a constant approximate neighbor must be adjacent to
the query point in one of those lists. This can be later improved into (1 + ε)-ANN by spreading 1/εd points.
This simple algorithm is due to Chan [Cha02].

The reader might wonder why we bothered with a considerably more involved algorithm. There are
several reasons: (i) This algorithm requires the numbers to be integers of limited length (i.e., O(log U) bits),
and (ii) it requires shuffling of bits on those integers (i.e., for computing the inverse of the space filling
curve) in constant time, and (iii) the assumption is that one can combine d such integers into a single integer
and perform xor on their bits in constant time. The last two assumptions are not reasonable when the input
is made out of floating point numbers.

Further research. At least (and only) in low dimensions, the ANN problem seems to be essentially solved
both in theory and practice (such proclamations are inherently dangerous, and should be taken with consid-
erable amount of healthy skepticism). Indeed, for ε > 1/ log1/d n, the current data structure of Theorem 5.4.2
provide logarithmic query time. Thus, ε has to be quite small for the query time to become bad enough that
one would wish to speed it up.

Main directions for further research seems to be working on this problem in high dimensions, and
solving it in other computation models.

Surveys. A survey on approximate nearest neighbor search in high dimensions is by Indyk [Ind04]. In
low dimensions, there is a survey by Arya and Mount [AM04].

5.6 Exercises

Exercise 5.6.1 [10 Points]
Let P be a set of n points in IRd. Show how to build a ring tree, of linear size, that can answer O(log n)-

ANN queries in O(log n) time. [Hint: Show, that there is always a ring containing O(n/ log n) points, such
that it is of width w, and its interior radius is O(w log n). Next, build a ring tree, replicating the points in both
children of this ring node. Argue that the size of the resulting tree is linear, and prove the claimed bound on
the query time and quality of approximation.]

49

50

Chapter 6

Approximate Nearest Neighbor via
Point-Location among Balls

Today I know that everything watches, that nothing goes unseen, and that even wallpaper has a better memory than
ours. It isn’t God in His heaven that sees all. A kitchen chair, a coat-hanger a half-filled ash tray, or the wood replica
of a woman name Niobe, can perfectly well serve as an unforgetting witness to every one of our acts.

– – The tin drum, Gunter Grass

6.1 Hierarchical Representation of Points

In the following, it would be convenient to carry out our discussion in a more generalized settings than just
low dimensional Euclidean space.

Definition 6.1.1 A metric space M is a pair (X,d) where X is a set and d : X × X → [0,∞) is a metric,
satisfying the following axioms: (i) d(x, y) = 0 iff x = y, (ii) d(x, y) = d(y, x), and (iii) d(x, y) + d(y, z) ≥
d(x, z) (triangle inequality).

For example, IR2 with the regular euclidean distance is a metric space.
In the following, we are going to assume that we are provided with a black box, such that given two

points x, y ∈ X, we can compute the distances d(x, y) in constant time.

6.1.1 Low Quality Approximation by HST

We will use the following special type of metric spaces:

Definition 6.1.2 Let P be a set of elements, and T a tree having the elements for P as leaves. The tree T
defines a hierarchically well-separated tree (HST) over the points of P, if to each vertex u ∈ T there is
associated a label ∆u ≥ 0, such that ∆u = 0 if and only if u is a leaf of T . The labels are such that if a vertex
u is a child of a vertex v then ∆u ≤ ∆v. The distance between two leaves x, y ∈ T is defined as ∆lca(x,y), where
lca(x, y) is the least common ancestor of x and y in T .

If every internal node of T has exactly two children, we will refer to it as being a binary HST (BHST).

For convenience, we will assume that the underlying tree is binary (any HST can be converted to binary
HST in linear time, while retaining the underlying distances). We will also associate with every vertex

u ∈ T , an arbitrary leaf repu of the subtree rooted at u. We also require that repu ∈

{
repv

∣∣∣∣ v is a child of u
}
.

A metric N is said to t-approximate the metricM, if they are on the same set of points, and dM(u, v) ≤
dN(u, v) ≤ t · dM(u, v), for any u, v ∈ M.

51

It is not hard to see that any n-point metric is (n − 1)-approximated by some HST.

Lemma 6.1.3 Given a weighted connected graph G on n vertices and m edges, it is possible to construct,
in O(n log n + m) time, a binary HST H that (n − 1)-approximates the shortest path metric on G.

Proof: Compute the minimum spanning tree of G in O(n log n + m) time, and let T denote this tree.
Sort the edges of T in non-decreasing order, and add them to the graph one by one. The HST is built

bottom up. At each point we have a collection of HSTs, each corresponds to a connected component of the
current graph. When an added edge merges two connected components, we merge the two corresponding
HSTs into one by adding a new common root for the two HST, and labeling this root with the edge’s weight
times n − 1. This algorithm is only slight variation on Kruskal algorithm, and has the same running time.

We next estimate the approximation factor. Let x, y be two vertices of G. Denote by e the first edge
that was added in the process above that made x and y in the same connected component C. Note that at
that point of time e is the heaviest edge in C, so w(e) ≤ dG(x, y) ≤ (|C| − 1) w(e) ≤ (n − 1) w(e). Since
dH(x, y) = (n − 1) w(e), we are done.

Corollary 6.1.4 For a set P of n points in IRd, one can construct, in O(n log n) time, a BHST H that (2n−2)-
approximates the distances of points in P. That is, for any p, q ∈ P, we have dH(p, q)/(2n − 2) ≤ ‖pq‖ ≤
dH(p, q).

Proof: We remind the reader, that in IRd, one can compute a 2-spanner for P of size O(n), in O(n log n)
time (see Theorem 4.2.1). Let G be this spanner, and apply Lemma 6.1.3 to this spanner. Let H be the
resulting metric. For any p, q ∈ P, we have ‖pq‖ ≤ dH(p, q) ≤ (n − 1)dG(p, q) ≤ 2(n − 1)‖pq‖.

Corollary 6.1.4 is unique to IRd since for general metric spaces, no HST can be computed in subquadratic
time, see Exercise 6.5.1.

Corollary 6.1.5 For a set P of n points in a metric space M, one can compute a HST H that (n − 1)-
approximates the metric dM.

6.2 ANN using Point-Location Among Balls

In the following, let P be a set of n points inM, whereM is a metric space.

Definition 6.2.1 For a set of balls B such that
⋃
b∈B

b = M (i.e., one of the balls might be of infinite radius

and it covers the whole spaceM), and a query point q ∈ M, the target ball of q in B, denoted by �B(q), is
the smallest ball of B that contains q (if several equal radius balls contain q we resolve this in an arbitrary
fashion).

Our objective, is to show that (1 + ε)-ANN queries can be reduced to target ball queries, among a near
linear size set of balls. But let us first start from a “silly” result, to get some intuition about the problem.

Lemma 6.2.2 Let B = ∪∞i=−∞B(P, (1 + ε)i), where B(P, r) = ∪p∈Pb(p, r). For q ∈ IRd, let b = �B(q), and
let p ∈ P be the center of b. Then, p is (1 + ε)-ANN to q.

Proof: Let q̂ be the nearest neighbor to q in P, and let r = dP(q). Let i be such that (1+ε)i < r ≤ (1+ε)i+1.
Clearly, radius(b) > (1 + ε)i. On the other hand, p ∈ b(̂q, (1 + ε)i+1). It follows that, ‖qp‖ ≤ (1 + ε)i+1 ≤

(1 + ε)dP(q). Implying that p is (1 + ε)-ANN to P.

52

Remark 6.2.3 Here is an intuitive construction of a set of balls of polynomial size, such that target queries
answer (1 + ε)-ANN correctly. Indeed, consider two points u, v ∈ P. As far as correctness, we care if
the ANN returns either u or v, for a query point q, only if dP(()q) ∈ [dM(u, v)/4, 2dM(u, v)/ε] (for shorter
distances, either u or v are the unique ANN, and for longer distances either one of them is ANN for the set
{u, v}).

Next, consider a range of distances [(1 + eps)i, (1 + ε)i+1] to be active, if there is u, v ∈ P, such that
ε(1 + ε)i ≤ dM(u, v) ≤ 4(1 + ε)i+1/ε. Clearly, the number of active intervals is O(n2ε−1 log(1/ε)) (one can
prove a better bound). Generate a ball for each point of P, for each active range. Clearly, the resulting
number of balls is polynomial, and can be used to resolve ANN queries.

Getting the number of balls to be near linear, requires to be more careful, and the details are provided
below.

6.2.1 Handling a Range of Distances

Definition 6.2.4 For a real number r > 0, a near-neighbor data structure, denoted by NNbr = NNbr(P, r), is
a data-structure, such that given a query point q, it can decide whether dP(q) ≤ r, or dP(q) > r. If dP(q) ≤ r,
it also returns as a witness a point p ∈ P, such that d(p, q) ≤ r.

The data-structure NNbr(P, r) can be realized by just a set n balls around the points of P of radius r,
and performing target ball queries on this set. For the time being, the reader can consider NNbr(P, r) as just
being this set of n balls.

Definition 6.2.5 One can in fact, resolve ANN queries on a range of distances, [a, b], by building NNbr data
structures, with exponential jumps on this range. Formally, let Ni = NNbr(P, ri), where ri = (1 + ε)ia, for
i = 0, . . . ,M − 1, where M =

⌈
log1+ε(b/a)

⌉
. And let NM = NNbr(P,M), where rM = b. We will denote this

set of data-structures by Î(P, a, b, ε) = {N0, . . . ,NM}. We refer to Î is interval near-neighbor data structure.

Lemma 6.2.6 Given P as above, and parameters a ≤ b and ε > 0. We have: (i) Î(P, a, b, ε) is made out of
O(ε−1 log(b/a)) NNbr data structures, and (ii) Î(P, a, b, ε) contains O(ε−1n log(b/a)) balls overall.

Furthermore, one can decide if either of the following options holds: (i) dP(q) < a, (ii) dP(q) > b, (iii)
or return a number r and a point p ∈ P, such that ‖pq‖ ≤ dP(q) ≤ (1 + ε)‖pq‖. This requires two NNbr
queries if (i) or (ii) holds, and O(log(ε−1 log(b/a))) otherwise.

Proof: Given a query point q, we first check if dP(q) ≤ a, by querying N0, and if so, the algorithm
returns “dP(q) ≤ a”. Otherwise, we check if dP(q) > b, by querying NM, and if so, the algorithm returns
“dP(q) > b”.

Otherwise, let Xi = 1 if and only if dP(q) ≤ ri, for i = 0, . . . ,m. We can determine the value of Xi by
performing a query in the data-structure Ni. Clearly, X0, X1, . . . , XM is a sequence of zeros, followed by a
sequence of ones. As such, we can find the i, such that Xi = 0 and Xi+1 = 1, by performing a binary search.
This would require O(log M) queries. In this case, we have that ri < dP(q) ≤ ri+1 ≤ (1 + ε)ri. Namely, the
ball in NNbr(P, ri+1) covering q, corresponds to (1 + ε)-ANN to q.

To get the state bounds, observe that by the Taylor’s expansion ln(1 + x) = x − x2/2 + x3/3 + · · · ≥ x/2,
for x ≥ 1. Thus,

M =
⌈
log1+ε(b/a)

⌉
= O

(
ln(b/a)

ln(1 + ε)

)
= O

(
log(b/a)/ε

)
,

since 1 ≥ ε > 0.

Corollary 6.2.7 Let P be a set of n points inM, and let a < b be real numbers. For a query point q ∈ M,
such that dP(()q) ∈ [a, b], the target query over the set of balls NNbr(P, a, b, ε) returns a ball centered at
(1 + ε)-ANN to q.

53

Lemma 6.2.6 implies that we can “cheaply” resolve (1 + ε)-ANN over intervals which are not too long.

Definition 6.2.8 For a set P of n points in a metric spaceM, let Uballs(P, r) =
⋃

p∈P b(p, r) denote the union
of balls of radius r around the points of P.

Lemma 6.2.9 Let Q be a set of m points inM and r > 0 a real number, such that Uballs(Q, r) is a connected
set. Then: (i) Any two points p, q ∈ Q are in distance ≤ 2r(m − 1) from each other. (ii) For q ∈ M a query
point, such that dQ(q) > 2mr/δ, then any point of Q is (1 + δ)-ANN of q.

Proof: (i) Since Uballs(Q, r) is a connected set, there is a path of length ≤ (m − 1)2r between any two
points x, y of P. Indeed, consider the graph G, which connects two vertices u, v ∈ P, if dM(u, v) ≤ 2r. Since
Uballs(Q, r) is a connected set, it follows that G is connected. As such, there is a path of length m−1 between
x and y in G. This corresponds to a path of length ≤ (m − 1)2r connecting x to y inM, and this path lies
inside Uballs(Q, r).

(ii) For any p ∈ Q, we have

2mr
δ
≤ dM(q, p) ≤ dM(q, q̂) + dM(̂q, p) ≤ dM(q, q̂) + 2mr ≤ (1 + δ)dM(q, q̂),

where q̂ is the nearest-neighbor of q in Q.
Lemma 6.2.9 implies that for faraway query points, a cluster points Q which are close together can be

treated as a single point.

6.2.2 The General Case

Theorem 6.2.10 Given a set P of n points in M, then one can construct data-structures D that answers
(1 + ε)-ANN queries, by performing O(log(n/ε)) NNbr queries. The total number of balls stored at D is
O(nε−1 log(n/ε)).

Let B be the set of all the balls stored at D. Then a target query on B answers (1 + ε)-ANN query.

Proof: We are going to build a tree D, such that each node v would have an interval near-neighbor
data-structure Îv associated with it. As we traverse down the tree, we will use those data-structure to decide
to what child to continue the search into.

Compute the minimum value r > 0 such that Uballs(P, r) is made out of dn/2e connected components.
We set Îroot(T) = Î(P, r,R, ε/4), where R = 2cµnr/ε, µ is a global parameter and c > 1 is an appropriate
constant, both to be determined shortly. For each connected component C of Uballs(P, r), we build recursively
a tree for C ∩ P (i.e., the points corresponding to C), and hung it on root(T). Furthermore, from each such
connected component C, we pick one representative point q ∈ C∩ P, and let Q be this set of points. We also
build (recursively) a tree for Q, and hang it on root(T). We will refer to the child of root(T) corresponding
to Q, as the outer child of root(T).

Given a query point q ∈ M, use Îroot(T) = Î(P, r,R, ε/4) to determine, if dP(q) ≤ r. If so, we continue
the search recursively in the relevant child built for the connected component of Uballs(P, r) containing q (we
know which connected component it is, because Îroot(T) also returns a point of P in distance ≤ r from q). If
dP(q) ∈ [r,R], then we will find its (1 + ε)-ANN from Îroot(T). ‘Otherwise, dP(q) > R, and we continue the
search recursively in the outer child of root(T).

Observe, that in any case, we continue the search on a set of balls of size ≤ n/2 + 1. As such, after
number of steps ≤ log3/2 n the search halts.

54

correctness. If during the search the algorithm traverse from a node v down to one of the connected
components which is a child of Uballs(Pv, rv), then no error is introduced, where Pv is the point set used in
constructing v, and rv is the value of r used in the construction. If the query is resolved by Îv, then a (1+ε/4)
error is introduced into the quality of approximation. If the algorithm continues the search in the outer child
of v, then an error of 1 + δv is introduced in the answer, where δv = ε/(cµ), by Lemma 6.2.9 (ii). Thus, the
overall quality of the ANN returned in the worst case is

t ≤
(
1 +

ε

4

) log3/2 n∏
i=1

(
1 +

ε

cµ

)
≤ exp

(
ε

4

) log3/2 n∏
i=1

exp
(

cε
cµ

)
,

since x ≤ ex for x ≤ 1. Thus, setting µ =
⌈
log3/2 n

⌉
and c to be a sufficiently large constant, we have

t ≤ exp
(
ε/4 +

∑log3/2 n
i=1 ε/cµ

)
≤ exp(ε/2) ≤ 1 + ε, since ε < 1/2. We used the fact that ex ≤ (1 + 2x) for

x ≤ 1/2, as can be easily verified.

Number of queries. As the search algorithm proceeds down the tree D, at most two NNbr queries are
performed at each node. At last node of the traversal, the algorithm performs O(log(ε−1 log(n/ε))) =
O(log(n/ε)) queries, by Lemma 6.2.6

Number of balls. We need a new interpretation of the construction algorithm. In particular, let H be
the HST constructed for P using the exact distances. It is easy to observe, that a connected component of
Uballs(P, r) is represented by a node v and its subtree in H. In particular, the recursive construction for each
connected component, is essentially calling the algorithm recursively on a subtree of H. Let V be the set of
nodes of H which represent connected components of Uballs(P, r).

Similarly, the outer recursive call, can be charged to the upper tree of H, having the nodes of V for leafs.

Indeed, the outer set of points, is the set rep(V) =
{
repv

∣∣∣∣ v ∈ V
}
. Let L̂ be this collection of subtrees of H.

Clearly, those subtrees are not disjoint in their vertices, but they are disjoint in their edges. The total number
of edges is O(n), and

∣∣∣∣L̂∣∣∣∣ ≥ n/2.
Namely, we can interpret the algorithm (somewhat counter intuitively) as working on H. At every

stage, we break the current HST into subtrees, and recursively continue the construction on those connected
subtrees.

In particular, for a node v ∈ T , let nv be the number of children of v. Clearly, |Pv| = O(nv), and since we
can charge each such child to the fact that we are disconnecting the edges of H from each other, we have
that

∑
vinD nv = O(n).

At a node v ∈ D, we have that the data-structure Îv requires storing mv = O(ε−1 |Pv| log(Rv/rv)) =
O(ε−1nv log(µnv/ε)) balls. In particular, mv = O(ε−1nv log(µnv/ε)). We conclude, that the overall number of
balls stored in D is ∑

v∈D

O
(nv

ε
log

µnv

ε

)
= O

(
n
ε

log
n log n
ε

)
= O

(n
ε

log
n
ε

)
.

A single target query. The claim that a target query on B answers (1 + ε)-ANN query on P, follows by
an inductive proof on the algorithm execution. Indeed, if the algorithm is at node v, and let Bv be the set of
balls stored in the subtree of v. We claim, that if the algorithm continue the search in w, then all the balls of
U = Bv \Bw are not relevant for the target query.

Indeed, if w is the outer child of v, then all the balls in U are too small, and none of them contains q.
Otherwise, q ∈ Uballs(Pv, rV). As such, all the balls of Bv that are bigger than the balls of Uballs(Pv, rv),
and as such they can be ignored. Furthermore, all the other balls stored in other children of v, are of radius
≤ rv, and are not in the same connected component as Uballs(Pw, rv) in Uballs(Pv, rv), as such, none of them
is relevant for the target query.

55

The only other case, is when the algorithm stop the search at v. But at this case, we have rv ≤ dP(q) ≤ Rv,
and then all the balls in the children of v are either too big (i.e., the balls stored at the outer child are of radius
> Rv), or too small (i.e., the balls stored at the regular children are of radius < rv). Thus, only the balls of
Î(Pv, rv,Rv, ε/4) are relevant, and there we know that the returend ball is a (1+ε/4)-ANN by Corollary 6.2.7.

Thus, the point returned by the target query on B, is identical to running the search algorithm on D, and
as such, by the above prove, the result is correct.

6.2.2.1 Efficient Construction

Theorem 6.2.10 does not provide any bounds on the construction time, since it requires quadratic time in
the worst case.

Lemma 6.2.11 Given a set P of n points inM and H be a HST of P that t-approximatesM. Then one can
construct data-structures D that answers (1 + ε)-ANN queries, by performing O(log(n/ε)) NNbr queries.
The total number of balls stored at D is O(nε−1 log(tn/ε)).

The construction time is O(nε−1 log(tn/ε)).

Proof: We reimplement the algorithm of Theorem 6.2.10, by doing the decomposition directly on the

HST H. Indeed, let U =
{
∆v

∣∣∣∣ v ∈ H, and v is an internal node
}
. Let ` be the median value of U. Let V be

the set of all the nodes v of H, such that v ∈ V , if ∆v ≤ ` and ∆p(v) > `. Next, build an Î = Î(P, r,R), where

r = `/(2tn) and R = (2cnr log n)/ε, (6.1)

where c is a large enough constant. As in the algorithm of Theorem 6.2.10, the set V breaks H into dn/2e+1
subtrees, and we continue the construction on each such connected component. In particular, for the new
root node we create, set rroot(D) = r, Rroot(D) = R, and `root(D) = `.

Observe, that for a query point q ∈ M, if dQ(p) ≤ r, then Î would return a ball, which in turn would
correspond to a point stored in one of the subtrees rooted at a node v ∈ V . Let C be the connected component
of Uballs(P, r) that contains q, and let Q = P ∩ C. It is easy to verify that Q ⊆ Pv. Indeed, since H t-
approximates dM, and Q is a connected component of Uballs(P, r), it follows that Q must be in the same
connected component of H, when considering distances ≤ t · r < `. But such a connected component of H,
is no more than a node v ∈ H, and the points of P stored in the subtree v in H. However, such a node v is
either in V , or one of its ancestors is in V .

For a node v, the number of balls of ÎV is O(ε−1nv log((log n)nvy/ε)). Thus, the overall number of balls
in the data-structure is as claimed.

As for the construction time, it is dominated by the size of Î data-structures, and as such the same bound
holds.

Using Corollary 6.1.4 with Lemma 6.2.11 we get the following.

Theorem 6.2.12 Let P be a set of n points in IRd, and ε > 0 a parameter. One can compute an a set of
O(nε−1 log(tn/ε)) balls (the same bound holds for the running time), such that a ANN can be resolved by a
target ball query on this set of balls.

Alternatively, one can construct a data-structure where (1 + ε)-ANN can be resolved by O(log(n/ε))
NNbr queries.

56

6.3 ANN using Point-Location Among Approximate Balls

While the results of Theorem 6.2.10 and Theorem 6.2.12 might be surprising, they can not be used immedi-
ately to solve ANN, since they reduce the ANN problem into answering near neighbor queries, which seems
to be also a hard problem to solve efficiently.

The key observation is, that we do not need to use exact balls. We are allowed to slightly deform the
balls. This approximate near neighbor problem is considerably easier.

Definition 6.3.1 For a ball b = b(p, r), a set b≈ is an (1 + ε)-approximation to b, if b ⊆ b≈ ⊆ b(p, (1 + ε)r).
For a set of balls B, the set B≈ is an (1 + ε)-approximation to B, if for any ball b ∈ B there is a

corresponding (1 + ε)-approximation b≈ ∈ B≈. For a set b≈ ∈ B≈, let b ∈ B denote the ball corresponding
to b≈, rb be the radius of b, and let pb ∈ P denote the center of b.

For a query point q ∈ M, the target set of B≈ in q, is the set b≈ of B≈ that contains q and has the smallest
radius rb.

Luckily, the interval near-neighbor data-structure still works in this settings.

Lemma 6.3.2 Let I≈ = I≈(P, r,R, ε/16) be a (1 + ε/16)-approximation to Î(P, r,R, ε/16). For a query
point, q ∈ M, if I≈ returns a ball centered at p ∈ P of radius α, and α ∈ [r,R] then p is (1+ ε/4)-ANN to q.

Proof: The data-structure of I≈ returns p as an ANN to q, if and only if there are two consecutive
indices, such that q is inside the union of the approximate balls of Ni+1 but not inside the balls of Ni. Thus,
r(1 + ε/16)i ≤ dP(q) ≤ d(p, q) ≤ r(1 + ε/16)i+1(1 + ε/16) ≤ (1 + ε/4)r. Thus p is indeed (1 + ε/4)-ANN.

Lemma 6.3.3 Let P be a set of n points in a metric spaceM, and let B be a set of balls with centers at P,
computed by the algorithm of Lemma 6.2.11, such that one can answer (1 + ε/16)-ANN queries on P, by
performing a single target query in B.

Let B≈ be a (1 + ε/16)-approximation to B. A target query on B≈, for a query point q, returns a
(1 + ε)-ANN to q in P.

Proof: Let D be the tree computed by Lemma 6.2.11. We prove the correctness of the algorithm by an
inductive proof over the height of D, similar in nature to the proofs of Lemma 6.2.11 and Theorem 6.2.10.

Indeed, for a node v ∈ D, let I≈v = I≈(Pv, rv,Rv, ε/16) be the set of (1+ ε/16)-approximate balls of B≈
that corresponds to the set of balls stored in Îv = Î(Pv, rv,Rv, ε/4). If the algorithm stops at v, we know by
Lemma 6.3.2 that we returned a (1 + ε/4)-ANN to q in Pv.

Otherwise, if we continued the search into the outer child of v using Îv, then we would also continue
the search into the this node when using I≈v. As such, by induction the result is correct.

Otherwise, we continue the search into a node w, where q ∈ Uballs(Pw, (1 + ε/16)rv). We observe that
because of the factor 2 slackness of Eq. (6.1), we are guaranteed to continue the search in the right connected
component of Uballs(Pv, `v).

Thus, the quality of approximation argument of Lemma 6.2.11 and Theorem 6.2.10 still holds, and
require easy adaption to this case (we omit the straightforward by tedios details). We conclude, that the
result returned is correct.

6.4 Bibliographical notes

Finite metric spaces would receive more attention later in the course. HSTs, despite their simplicity are a
powerful tool in giving a compact (but approximate) representation of metric spaces.

57

Indyk and Motwani observed that ANN can be reduced to small number of near neighbor queries (i.e.,
this is the PLEB data-structure of [IM98]). In particular, the elegant argument in Remark 6.2.3 is due to
Indyk (personal communications). Indyk and Motwani also provided a rather involved reduction showing
that a near linear number of balls is sufficient. A considerably simpler reduction was provided by Har-Peled
[Har01], and we loosely follow his exposition in Section 6.2, although our bound on the number of balls
is better by a logarithmic factor than the bounded provided by Har-Peled. This improvement was pointed
out by Sabharwal et al. [SSS02]. They also provide a more involved construction, which achieves a linear
dependency on n.

Open problems. The argument showing that one can use approximate near-neighbor data-structure in-
stead of exact (i.e., Lemma 6.3.3), is tedious and far from being elegant; see Exercise 6.5.2. A natural
question for further research, is to try and give a simple concrete condition on the set of balls, such that
using approximate near neighbor data-structure still give the correct result. Curretly, it seems that what we
need is somekind of separability property. However, it would be nice to give a simpelr direct condition.

As mentioned above, Sabharwal et al. [SSS02] showed a reduction from ANN to linear number of balls
(ignoring the dependency on ε). However, it seems like a simpler construction should work.

6.5 Exercises

Exercise 6.5.1 [10 Points] Show, that by adversarial argument, that for any t > 1, we have: Any algorithm
computing a HST H for n points in a metric spaceM, that t approximates dM, must in the worst case inspect
all

(
n
2

)
distances in the metric. Thus, computing a HST requires quadratic time in the worst case.

Exercise 6.5.2 Lemma 6.3.3 is not elegant. A more natural conjecture would be the following:

Conjecture 6.5.3 Let P be a set of n points in the plane, and let B be a set of balls
such that (1+ε/c)-ANN, let B≈ be a (1+ε/c)-approximation to B. Then a target query
on B≈, answers (1 + ε)-ANN on P, for c large enough constant.

Give a counter example to the above conjecture, showing that it is incorrect.

58

Chapter 7

Approximate Voronoi Diagrams

“She had given him a smile, first because that was more or less what she was there for, and then because she had
never seen him before and she had a prejudice in favor of people she did not know.”

– – The roots of heaven, Romain Gary

7.1 Introduction

A Voronoi diagram of a point set P ⊆ IRd is a partition of space into regions, such that the cell of p ∈ P,

is V(p, P) =
{
x

∣∣∣∣‖xp‖ ≤‖xp′‖ for all p′ ∈ P
}
. Vornoi diagrams are a powerful tool and have numerous

applications [Aur91].
One problem with Vornoi diagrams is that their descriptive complexity is O(ndd/2e) in IRd, in the worst

case. See Figure 7.1 for an exmaple in three dimensions. It is a natrual question to ask, whether one can
reduce the complexity to linear (or near linear) by allow some approximation.

Definition 7.1.1 (Approximate Voronoi Diagram.) Given a set P of n points in IRd, and parameter ε > 0,
an (1+ε)-approximated Voronoi diagram of P, is a partitionV of space into regions, such that for any region
ϕ ∈ V, there is an associated point repϕ ∈ P, such that for any x ∈ ϕ, we have that repϕ is a (1+ ε)-ANN for
x in P. We will refer toV as (1 + ε)-AVD.

7.2 Fast ANN in IRd

In the following, assume P is a set of points contained in the hypercube [0.5 − ε/d, 0.5 + ε/d]d. This can be
easily guaranteed by affine linear transformation T which preserves relative distances (i.e., computing the
ANN for q on P, is equivalent to computing the ANN for T (q) on T (P)).

In particular, if the query point is outside the unit hypercube
[
0, 1

]d
then any point of P is (1 + ε)-ANN,

and we are done. Thus, we need to answer ANN only for points inside the unit hypercube.
We are going to use the reduction we saw between ANN and target queries among balls. In particular,

one can compute the set of (exact) balls of Lemma 6.3.3 using the algorithm of Theorem 6.2.12. Let B be
this set of balls. This takes O(nε−1 log(n/ε)) time. Next, we approximate each ball b ∈ B of radius r, by the
set of grid cells of G2i that intersects it, where

√
d2i ≤ (ε/16)r; namely, i =

⌊
lg(εr/

√
d)

⌋
. In particular, let

b≈ denote the region corresponding to the grid cells intersected by b. Clearly, b≈ is an approximate ball of
b.

Let B≈ be the resulting set of approximate balls for B, and let C′ be the associated (multi) set of grid
cells formed by those balls. The multi-set C′ is a collection of canonical grid cells from different resolutions.

59

(a) (b) (c)

Figure 7.1: (a) The point-set in 3D inducting a Voronoi diagram of quadratic complexity. (b) Some cells in
this Voronoi diagram. Note that the cells are thin and flat, and every cell from the lower part touches the
cells on the upper part. (c) The contact surface between the two parts of the Voronoi diagram has quadratic
complexity, and thus the Voronoi diagram itself has quadratic complexity.

We create a set out of C′, by picking from all the instances of the same cell � ∈ C′, the instance associated
with the smallest ball of B. Let C be the resulting set of canonical grid cells.

Thus, by Lemma 6.3.3, answering (1+ε)-ANN is no more than performing a target query on B≈. This in
turn, just finding the smallest canonical grid cell of C which contains the query point q. In previous lecture,
we showed that one can construct a compressed quadtree T̂ that has all the nodes of C appear as nodes of T̂ .
The construction of this compressed quadtree takes O(|C| log |C|) time, by Lemma 2.2.4.

By performing a point-location query in T̂ , we can compute the smallest grid cell of C that contains the
query point in O(log |C|) time. Specificly, the query returns a leaf v of T̂ . We need to find, along the path
of v to the root, the smallest ball associated with those nodes. This information can be propogated down the
compressed quadtree during the preprocessing stage, and as such, once we have v at hand, one can answer
the ANN query in constant time. We conclude:

Theorem 7.2.1 Let P be a set of n points in IRd. One can build a compressed quadtree T̂ , in O(nε−d log2(n/ε))
time, of size O(nε−d log(n/ε)), such that (1+ε)-ANN query on P, can be answered by a single point-location
query in T̂ . Such a point-location query takes O(log(n/ε)) time.

Proof: The construction is described above. We only need to prove the bounds on the running time. It
takes O(nε−1 log(n/ε)) time to compute B. For every such ball, we generate O(1/εd) canonical grid cells
that cover it. Let C be the resulting set of grid cells (after filtering multiple instance of the same grid cell).
Naively, the size of C is bounded by O

(
|B| /εd

)
. However, it is easy to verify that B has a large number of

balls of similar size centered at the same point (because the set Î has a lot of such balls). In particular, if we
have the set of balls Î({p} , r, 2r, ε/16), it requires only O(1/εd) canonical grid cells to approximate it. Thus,
we can bound |C| by N = O

(
|B| /εd−1

)
= O(nε−d log(n/ε)). We can also compute C in this time, by careful

implementation (we omit the straightforward and tedious details).
Constructing T̂ for C takes O(N log N) = O(nε−d log2(n/ε)) time (Lemma 2.2.4). The resulting com-

pressed quadtree is of size O(N). Point location queries at T̂ takes O(log N) = O(log(n/ε)) time. Given a
query point, and the leaf v, such that q ∈ �v, we need to find the first ancestor above v that has a point asso-
ciated with it. This can be done in constant ti1me, by preprocessing T̂ , by propagating down the compressed

60

Figure 7.2: Exponential grid.

quadtree the nodes they are associated with.

7.3 A Direct Construction of AVD

Intuitively, constructing an approximate Voronoi diagram, can be interpret as a meshing problem. Indeed,
consider the function dP(q), for q ∈ IRd,and a cell � ⊆ IRd such that diam(�) ≤ (ε/4) minq∈� dP(q). Since
for any x, y ∈ IRd, we have dP(y) ≤ dP(x) +‖xy‖. It follows that

∀x, y ∈ � dP(x) ≤ (1 + ε/4)dP(y). (7.1)

Namely, the distance function dP(·) is essentially a “constant” in such a cell. Of course, if there is only a
unique nearest neighbor to all the points in �, we do not need this condition.

Namely, we need to partition space into cells, such that for each cell, either it has a unique nearest
neighbor (no problem), or alternatively, Eq. (7.1) holds in the cell. Unfortunately, forcing Eq. (7.1) globally
is too expensive. Alternatively, we sill force Eq. (7.1) only in “critical” regions where there are two points
which are close to being ANN to a cell.

The general idea, as before is to generate a set of canonical grid cells. We are guaranteed, that when
generating the compressed quadtree for the point-set, and considering the space partition induced by the
leafs, then necessarily those cells would be smaller than the input grid cells.

Definition 7.3.1 (Exponential Grid.) For a point p ∈ IRd, and parameters r,R and ε > 0, let GE(p, r,R, ε)
denote an exponential grid centered at p.

let bi = b(p, ri), for i = 0, . . . ,
⌈
lg R/r

⌉
, where ri = r2i. Next, let G′i be the set of cells of the canonical

grid Gαi that intersects bi, where αi = 2blg(εri/(16d))c. Clearly,
∣∣∣G′i ∣∣∣ = O(1/εd). We remove from G′i all the

canonical cells completely covered by cells of Gi−1. Similarly, for cells the that are partially covered in G′i
by cells in G′i−1, we replace them by the cells covering them in Gαi−1 . Let Gi be the resulting set of canonical
grid cells. And let GE(p, r,R, ε) = ∪iGi. We have |GE(p, r,R, ε)| = O(ε−d log(R/r)). Furthermore, it can be
computed in linear time in its size; see Figure 7.2.

Let P be a set of n points, and let 0 < ε < 1/2. As before, we assume that P ⊆ [0.5 − ε/d, 0.5 + ε/d]d.

61

rep�

r̃ep�`

l/8

≤ l/4

q̂

q

Figure 7.3: Illustration of the proof of Claim 7.3.2.

Compute a (1/(8d))−1-WSPD W of P. Note that |W| = O(n). For every pair X = {u, v} ∈ W, let
`uv =‖uv‖, and consider the set of canonical cells

W(u, v) = GE(repu, `uv/4, 4`uv/ε, ε) ∪ GE(repv, `uv/4, 4`uv/ε, ε).

For a query point q, if dP(q) ∈ [`uv/4, `uv/ε], and the nearest neighbor of q is in Pu ∪ Pv, then the cell
� ∈ W(u, v) containing q is of the right size, it comply with Eq. (7.1), and as such any (1+ ε/4)-ANN to any
point of � is a (1 + ε)-ANN to q.

Thus, let W = ∪{u,v}∈WW(u, v) ∪ [0, 1]d. Let T̂ be a compressed quadtree constructed so that it contains
all the canonical nodes of W as nodes (we remind the reader that this can be done in O(|W | log |W |) time; see
Lemma 2.2.4). Next, let U be the space decomposition induced by the leafs of T̂ .

For each cell � ∈ U, take an arbitrary point inside it rep�, and compute a (1 + ε/4)-ANN to p. Let
r̃ep� ∈ P be this ANN, and store it together with �.

Claim 7.3.2 The set U is a (1 + ε)-AVD.

Proof: Let q be am arbitrary query point, and let � ∈ U be the cell containing q. Let rep� ∈ � be its
representative, and let r̃ep� ∈ P be the (1+ε/4)-ANN to rep� stored at �. Also, let q̂ be the nearest neighbor
of q in P. If r̃ep� = q̂ then we are done. Otherwise, consider the pair {u, v} ∈ W such that r̃ep� ∈ Pu and
q̂ ∈ Pv. Finally, let ` =

∥∥∥r̃ep� q̂
∥∥∥.

If
∥∥∥qq̂

∥∥∥ > `/ε then r̃ep� is (1 + ε)-ANN since
∥∥∥q r̃ep�

∥∥∥ ≤∥∥∥qq̂
∥∥∥ +∥∥∥̂q r̃ep�

∥∥∥ ≤ (1 + ε)
∥∥∥qq̂

∥∥∥.
If

∥∥∥qq̂
∥∥∥ < `/4, then by the construction of W(u, v), we have that diam(�) ≤ (ε/16)

∥∥∥repu repv

∥∥∥ ≤ ε`/8.
This holds by the construction of the WSPD, where repu, repv are the representative from the WSPD con-
struction of Pu and Pv, respecitvely. See Figure 7.3. But then,

∥∥∥̂q rep�
∥∥∥ ≤∥∥∥qq̂

∥∥∥ + diam(�) ≤
`

4
+
`ε

8
<

5
16
`,

for ε ≤ 1/2. On the other hand,∥∥∥rep� r̃ep�
∥∥∥ ≥

∥∥∥repurepv

∥∥∥ −∥∥∥repvq̂
∥∥∥ −∥∥∥̂qq

∥∥∥ − diam(�) −
∥∥∥repur̃ep�

∥∥∥
≥ ` − `/8 − `/4 − ε`/8 − `/8 ≥ (7/16)`.

But then, (1 + ε/4)
∥∥∥rep�q̂

∥∥∥ ≤ (5/16)(9/8)` < `/2 ≤
∥∥∥rep� r̃ep�

∥∥∥. A contradiction, because r̃ep� is not
(1 + ε/4)-ANN in P for rep�. See Figure 7.3.

62

If
∥∥∥qq̂

∥∥∥ ∈ [`/4, `/ε], then by the construction of W(u, v), we have that diam(�) ≤ (ε/4)dPu∪Pv(q). We
have dP(z) ≤ (1 + ε/4)dP(q) and∥∥∥q r̃ep�

∥∥∥ ≤
∥∥∥q rep�

∥∥∥ +∥∥∥rep� r̃ep�
∥∥∥ ≤ diam(�) + (1 + ε/4)dP(rep�)

≤ (ε/4)dP(q) + (1 + ε/4)(1 + ε/4)dP(q) ≤ (1 + ε)dP(q),

as required.

Theorem 7.3.3 Given a set P of n points in IRd one can compute, in O(n/εd log(1/ε)(ε−d + log(n/ε))) time,
a (1 + ε)-AVD of P. The AVD is of complexity O(nε−d log(1/ε)).

Proof: The total number of cubes in W is O(nε−d log(1/ε)), and W can also be computed in this time,
as described above. For each node of W we need to perform a (1 + ε/4)-ANN query on P. After O(n log n)
preprocessing, such queries can be answered in O(log n+ 1/εd) time (Theorem 5.4.2). Thus, we can answer
those queries, and built the overall data-structure, in the time stated in the theorem.

7.4 Bibliographical notes

The realization that point-location among approximate balls is sufficient for ANN, was realized by Indyk
and Motwani [IM98]. The idea of first building a global set of balls, and using a compressed quadtree on
the associated set of approximate balls, is due to Har-Peled [Har01]. The space used by the data-structure
of Theorem 7.2.1 was further improved (by a logarithmic factor) by Sabharwal et al. [SSS02] and Arya
and Malamatos [AM02]. As mentioned before, Sabharwal et al. improved the number of balls needed (for
the general metric case), while Arya and Malamatos showed a direct construction for the low-dimensional
euclidean space using O(n/εd) balls.

The direct construction (Section 7.3) of AVD is due to Arya and Malamatos [AM02]. The reader might
wonder why we went through the excruciating pain of first approximating the metric by balls, and then
using it to construct AVD. The reduction to point location among approximate balls, would prove to be
useful when dealing with proximity in high dimensions. Of course, once we have the fact about ANN via
point-location among approximate balls, the AVD construction is relatively easy.

63

64

Chapter 8

The Johnson-Lindenstrauss Lemma

8.1 The Brunn-Minkowski inequality

Definition 8.1.1 For two sets A and B in IRn, let A + B denote the Minkowski sum of A and B. Formally,

A + B =
{
a + b

∣∣∣∣ a ∈ A, b ∈ B
}
.

It is easy to verify that if A′, B′ are translated copies of A, B respectively, then A′ + B′ is a translated
copy of A + B.

Theorem 8.1.2 (Brunn-Minkowski inequality) Let A and B be two non-empty compact sets in IRn. Then

Vol(A + B)1/n ≥ Vol(A)1/n + Vol(B)1/n

Definition 8.1.3 A set A ⊆ IRn is a brick set if it is the union of finitely many (close) axis parallel boxes
with disjoint interiors.

It is intuitively clear, by limit arguments, that proving the claim for brick sets will imply Theorem 8.1.2.

Lemma 8.1.4 (Brunn-Minkowski inequality for Brick Sets) Let A and B be two non-empty brick sets in
IRn. Then

Vol(A + B)1/n ≥ Vol(A)1/n + Vol(B)1/n

Proof: By induction on the number k of bricks in A and B. If k = 2 then A and B are just bricks, with
dimensions a1, . . . , an and b1, . . . , bn, respectively. In this case, the dimensions of A+B are a1+b1, . . . , an+bn,
as can be easily verified. Thus, we need to prove that

(∏n
i=1 ai

)1/n
+
(∏n

i=1 bi
)1/n
≤
(∏n

i=1(ai + bi)
)1/n

. Dividing
the left side by the right side, we have n∏

i=1

ai

ai + bi

1/n

+

 n∏
i=1

bi

ai + bi

1/n

≤
1
n

n∑
i=1

ai

ai + bi
+

1
n

n∑
i=1

bi

ai + bi
= 1,

by the generalized arithmetic-geometric mean inequality, and the claim follows for this case.

Here is a proof of this generalized form: Let x1, . . . , xn be n positive real numbers. Consider the quantity R = x1 x2 · · · xn. If we
fix the sum of the n numbers to be equal α, then R is maximized when all the xis are equal. Thus, n√x1 x2 · · · xn ≤

n√(α/n)n = α/n =
(x1 + · · · + xn)/n.

65

Now let k > 2 and suppose that the Brunn-Minkowski inequality holds for any pair of brick sets with
fewer than k bricks (together). Let A, B be a pair of sets having k bricks together, and A has at least two
(disjoint) bricks. However, this implies that there is an axis parallel hyperplane h that separates between
the interior of one brick of A and the interior of another brick of A (the hyperplane h might intersect other
bricks of A). Assume that h is the hyperplane x1 = 0 (this can be achieved by translation and renaming of
coordinates).

Let A+ = A ∩ h+ and A− = A ∩ h−, where h+ and h− are the two open half spaces induced by h. Let A+

and A− be the closure of A+ and A−, respectively. Clearly, A+ and A− are both brick sets with (at least) one
fewer brick than A.

Next, observe that the claim is translation invariant, and as such, let us translate B so that its volume is
split by h in the same ratio A’s volume is being split. Denote the two parts of B by B+ and B−, respectively.
Let ρ = Vol(A+)/Vol(A) = Vol(B+)/Vol(B) (if Vol(A) = 0 or Vol(B) = 0 the claim trivially holds).

Observe, that A+ + B+ ⊆ A+ B, and it lies on one side of h, and similarly A− + B− ⊆ A+ B and it lies on
the other side of h. Thus, by induction, we have

Vol(A + B) ≥ Vol(A+ + B+) + Vol(A− + B−)

≥
(
Vol(A+)1/n + Vol(B+)1/n

)n
+
(
Vol(A−)1/n + Vol(B−)1/n

)n

=
[
ρ1/n Vol(A)1/n + ρ1/n Vol(B)1/n

]n

+
[
(1 − ρ)1/n Vol(A)1/n + (1 − ρ)1/n Vol(B)1/n

]n

= (ρ + (1 − ρ))
[
Vol(A)1/n + Vol(B)1/n

]n

=
[
Vol(A)1/n + Vol(B)1/n

]n
,

establishing the claim.

Proof of Theorem 8.1.2: Let A1 ⊆ A2 ⊆ · · · Ai ⊆ be a sequence of brick sets, such that
⋃

i Ai = A, and
similarly let B1 ⊆ B2 ⊆ · · · Bi ⊆ · · · be a sequence of brick sets, such that

⋃
i Bi = B. It is well known fact

in measure theory, that limi→∞Vol(Bi) = Vol(B) and limi→∞ Vol(Bi) = Vol(B).
We claim that limi→∞Vol(Ai + Bi) = Vol(A+ B). Indeed, consider any point z ∈ A+ B, and let u ∈ A and

v ∈ B be such that u + v = z. By definition, there exists i, such that for all j > i we have u ∈ A j, v ∈ B j, and
as such z ∈ Ai + Bi. Thus, ∪i(Ai + Bi) = A + B.

Furthermore, for any i > 0, since Ai and Bi are brick sets, we have

Vol(Ai + Bi)1/n ≥ Vol(Ai)1/n + Vol(Bi)1/n,

by Lemma 8.1.4. Thus,

Vol(A + B) = lim
i→∞

Vol(Ai + Bi)1/n ≥ lim
i→∞

(
Vol(Ai)1/n + Vol(Bi)1/n

)
= Vol(A)1/n + Vol(B)1/n.

Theorem 8.1.5 (Brunn-Minkowski for slice volumes.) Let P be a convex set in IRn+1, and let A = P ∩
(x1 = a), B = P ∩ (x1 = b) and C = P ∩ (x1 = c) be three slices of A, for a < b < c. We have
Vol(B) ≥ min(Vol(A),Vol(C)).

In fact, consider the function
v(t) = (Vol(P ∩ (x1 = t)))1/n ,

and let I = [tmin, tmax] be the interval where the hyperplane x1 = t intersects P. Then, v(t) is concave in I.

66

Proof: If a or c are outside (tmin, tmax), then Vol(A) = 0 or Vol(C) = 0, respectively, and then the claim
trivially holds.

Otherwise, let α = (b − a)/(c − a). We have that b = (1 − α) · a + α · c, and by the convexity of P, we
have (1 − α)A + αC ⊆ B. Thus, by Theorem 8.1.2 we have

v(b) = Vol(B)1/n ≥ Vol((1 − α)A + αC)1/n ≥ Vol((1 − α)A)1/n + Vol(αC)1/n

= (1 − α) · Vol(A)1/n + α · Vol(C)1/n

≥ (1 − α)v(a) + α · v(c).

Namely, v(·) is concave on [tmin, tmax]. In particular, v(b) ≥ min(v(a), v(c)), which in turn implies that
Vol(B) = v(b)n ≥ min(Vol(A),Vol(B)).

Corollary 8.1.6 For A and B compact sets in IRn, we have Vol((A + B)/2) ≥
√

Vol(A) Vol(B).

Proof: Vol((A + B)/2)1/n = Vol(A/2 + B/2) ≥ Vol(A/2)1/n + Vol(B/2)1/n = (Vol(A) + Vol(B))/2 ≥√
Vol A Vol B by Theorem 8.1.2, and since (a + b)/2 ≥

√
ab for any a, b ≥ 0.

8.2 Measure Concentration on the Sphere

Let S(n−1) be the unit sphere in IRn. We assume there is a uniform probability measure defined over S(n−1),
such that its total measure is 1. Surprisingly, most of the mass of this measure is near the equator. In fact, as
the dimension increases, the width of the strip around the equator (x1 = 0) ∩ S(n−1) containing, say, 90% of
the measure is of width ≈ 1/

√
n. Counter intuitively, this is true for any equator. We are going to show that

in fact a stronger result holds: The mass is concentrated close to the boundary of any set A ⊆ S(n−1) such
that Pr[A] = 1/2.

Theorem 8.2.1 (Measure concentration on the sphere.) Let A ⊆ S(n−1) be a measurable set with Pr[A] ≥
1/2, and let At denote the set of points of S(n−1) in distance at most t from A. Then 1−Pr[At] ≤ 2 exp

(
−tn2/2

)
Proof: We will prove a slightly weaker bound, with−tn2/4 in the exponent. Let Â =

{
αx

∣∣∣∣ x ∈ A, αin[0, 1]
}
⊆

bn, where bn is the unit ball in IRn. We have that Pr[A] = µ
(
Â
)
, where µ

(
Â
)
= Vol(Â)/Vol(bn).

Let B = S(n−1) \ At. We have that‖a − b‖ ≥ t for all a ∈ A and b ∈ B.

Lemma 8.2.2 For any â ∈ Â and b̂ ∈ B̂, we have
∥∥∥a+b

2

∥∥∥ ≤ 1 − t2/8.

Proof: Let â = αa and b̂ = βb, where a ∈ A and binB.∥∥∥∥∥a + b
2

∥∥∥∥∥ ≤
√

1 −
t2

4
≤ 1 −

t2

8
.

When passing to â and b̂, we can assume that β = 1. As such∥∥∥∥∥∥∥ â + b̂
2

∥∥∥∥∥∥∥ =

∥∥∥∥∥αa + b
2

∥∥∥∥∥ ≤∥∥∥∥∥α(a + b)
2

∥∥∥∥∥ +∥∥∥∥∥(1 − α)
b
2

∥∥∥∥∥
≤ α(1 − t2/8) + (1 − α)(1 − 1/2) ≤ 1 −

t2

8
.

67

By the Lemma, the set (Â + B̂)/2 is contained in a ball of radius ≤ 1 − t2/8 around the origin. Applying
the Brunn-Minkowski inequality in the form of Corollary 8.1.6, we have(

1 −
t2

8

)n

≥ µ

 Â + B̂
2

 ≥ √
µ
(
Â
)
µ
(
B̂
)
=

√
Pr[A] Pr[B] ≥

√
Pr[B] /2.

Thus, Pr[B] ≤ 2(1 − t2/8)2n ≤ 2 exp(−2nt2/8), since 1 − x ≤ exp(−x), for x ≥ 0.

8.3 Concentration of Lipshitz Functions

Consider a function f : S(n−1) → IR. Furthermore, imagine that we have a probability density define over

the sphere. Let Pr
[
f ≤ t

]
= Pr

[{
x ∈ S n−1

∣∣∣∣ f (x) ≤ t
}]

. We define the median of f , denoted by med(f), to be

the sup t, such that Pr
[
f ≤ t

]
≤ 1/2.

Lemma 8.3.1 Let Pr
[
f < med(f)

]
≤ 1/2 and Pr

[
f > med(f)

]
≤ 1/2.

Proof: Since
⋃

k≥1(−∞,med(f) − 1/k] = (−∞,med(f)), we have

Pr
[
f < med(f)

]
= sup

k≥1
Pr

[
f ≤ med(f) −

1
k

]
≤

1
2
.

Definition 8.3.2 A function f : A→ B is c-Lipschitz if, for any x, y ∈ S(n−1), we have‖ f (x) − f (y)‖ ≤ c‖xy‖.

Theorem 8.3.3 (Lévy’s Lemma.) Let f : S(n−1) → IR be 1-Lipschitz. Then for all t ∈ [0, 1],

Pr
[
f > med(f) + t

]
≤ 2 exp

(
−t2n/2

)
and Pr

[
f < med(f) − t

]
≤ 2 exp

(
−t2n/2

)
.

Proof: We prove only the first inequality, the second follows by symmetry. Let A =
{
x ∈ S(n−1)

∣∣∣∣ f (x) ≤ med(f)
}
.

By Lemma 8.3.1, we have Pr[A] ≥ 1/2. Since f is 1-Lipschitz, we have f (x) ≤ med(f) + t, for x ∈ At.
Thus, by Theorem 8.2.1, we get Pr

[
f > med(f) + t

]
≤ 1 − Pr[At] ≤ 2 exp

(
−t2n/2

)
.

8.4 The Johnson-Lindenstrauss Lemma

Lemma 8.4.1 For a unit vector x ∈ S(n−1), let

f (x) =

√√√ k∑
i=1

x2
1 + x2

2 + · · · + x2
k

be the length of the projection of x into the subspace formed by the first k coordinates. Let x be a vector
randomly chosen with uniform distribution from S(n−1). Then f (x) is sharply concentrated. Namely, there
exists m = m(n, k) such that

Pr
[
f (x) ≥ m + t

]
≤ 2 exp(−t2n/2) and Pr

[
f (x) ≤ m − t

]
≤ 2 exp(−t2n/2).

Furthermore, for k ≥ 10 ln n, we have m ≥ 1
2

√
k/n.

68

Proof: The orthogonal projection p : `n
2 → `k

2 given by p(x1, . . . , xn) = (x1, . . . , xk) is 1-Lipshitz,
and so f is 1-Lipshitz, since for any x, y we have | f (x) − f (y)| ≤ |‖ f (x)0‖ −‖ f (y)0‖| ≤ ‖ f (x) f (y)‖ ≤ ‖xy‖.
Theorem 8.3.3 (i.e., Lévy’s lemma) gives the tail estimate with mmed(f). Thus, we only need to prove the
lower bound on m.

For a random x ∈ S(n−1), we have E
[
‖x‖2

]
= 1. By linearity of expectations, and symmetry, we have

1 = E
[
‖x‖2

]
= E

[∑n
i=1 x2

i

]
=

∑n
i=1 E

[
x2

i

]
= n E

[
x2

j

]
, for any 1 ≤ j ≤ n. Thus, E

[
x2

j

]
= 1/n, for j = 1, . . . , n.

Thus, E
[
(f (x))2

]
= k/n. We next use the fact that f is concentrated, to show that f 2 is also relatively

concentrated.
For any t ≥ 0, we have

k
n
= E

[
f 2

]
≤ Pr

[
f ≤ m + t

]
(m + t)2 + Pr

[
f ≥ m + t

]
· 1 ≤ 1 · (m + t)2 + 2 exp(−t2n/2),

since f (x) ≤ 1, for any x ∈ S(n−1). Let t =
√

k/5n. Since k ≥ 10 ln n, we have that 2 exp(−t2n/2) ≤ 2/n.
We get that k

n ≤ (m + k/5n)2 + 2/n. Implying that
√

(k − 2)/n ≤ m + k/5n, which in turn implies that
m ≥

√
(k − 2)/n − k/5n ≥ 1

2

√
k/n.

At this point, we would like to flip Lemma 8.4.1 around, and instead of randomly picking a point and
projecting it down to the first k-dimensional space, we would like x to be fixed, and randomly pick the
k-dimensional subspace. However, we need to pick this k-dimensional space carefully, so that if we rotate
this random subspace, by a transformation T , so that it occupies the first k dimensions, then the point T (x)
is uniformly distributed on the hypersphere.

To this end, we would like to randomly pick a random rotation of IRn. This is an orthonormal matrix
with determinant 1. We can generate such a matrix, by randomly picking a vector e1 ∈ S

(n−1). Next, we set
e1 is the first column of our rotation matrix, and generate the other n− 1 columns, by generating recursively
n − 1 orthonormal vectors in the space orthogonal to e1.

Generating a random vector from the unit hypersphere, and a random rotation. At this point, the reader might
wonder how do we pick a point uniformly from the unit hypersphere. The idea is to pick a point from the multi-
dimensional normal distribution Nd(0, 1), and normalizing it to have length 1. Since the multi-dimensional normal
distribution has the density function

(2π)−n/2 exp
(
−(x2

1 + x2
2 + · · · + x2

n)/2
)
,

which is symmetric (i.e., all the points in distance r from the origin has the same distribution), it follows that this
indeed randomly generates a point randomly and uniformly on S(n−1).
Generating a vector with multi-dimensional normal distribution, is no more than picking each coordinate according
to the normal distribution. Given a source of random numbers according to the uniform distribution, this can be done
using a O(1) computations, using the Box-Muller transformation [BM58].
Since projecting down n-dimensional normal distribution to the lower dimensional space yields a normal distribution,
it follows that generating a random projection, is no more than randomly picking n vectors according to the multidi-
mensional normal distribution v1, . . . , vn. Then, we orthonormalize them, using Graham-Schmidt, where v̂1 = v1/‖v1‖,
and v̂i is the normalized vector of vi − wi, where wi is the projection of vi to the space spanned by v1, . . . , vi−1.
Taking those vectors as columns of a matrix, generates a matrix A, with determinant either 1 or −1. We multiply one
of the vectors by −1 if the determinant is −1. The resulting matrix is a random rotation matrix.

Theorem 8.4.2 (Johnson-Lindenstrauss lemma.) Let X be an n-point set in a Euclidean space, and let
ε ∈ (0, 1] be given. Then there exists a (1 + ε)-embedding of X into IRk, where k = O(ε−2 log n).

Proof: Let X ⊆ IRn (if X lies in higher dimensions, we can consider it to be lying in the span of its points,
if it is in lower dimensions, we can add zero coordinates). Let k = 200ε−2 ln n. Assume k < n, and let L be
a random k-dimensional linear subspace of IRn. Let p : IRn → L be the orthogonal projection operator. Let
m be the number around which‖p(x)‖ is concentrated, for x ∈ S(n−1), as in Lemma 8.4.1.

69

Fix two points x, y ∈ IRn, we prove that(
1 −

ε

3

)
m‖x − y‖ ≤‖p(x) − p(y)‖ ≤

(
1 +

ε

3

)
m‖x − y‖

holds with probability ≥ 1 − n−2. Since there are
(
n
2

)
pairs of points in X, it follows that with constant

probability this holds for all pair of points of X. In such a case, the mapping p is D-embedding of X into IRk

with D ≤ 1+ε/3
1−ε/3 ≤ 1 + ε, for ε ≤ 1.

Let u = x − y, we have p(u) = p(x) − p(y) since p(·) is a linear operator. Thus, the condition becomes(
1 − ε

3

)
m‖u‖ ≤ ‖p(u)‖ ≤

(
1 + ε

3

)
m‖u‖. Since this condition is scale independent, we can assume ‖u‖ = 1.

Namely, we need to show that
|‖p(u)‖ − m| ≤

ε

3
m.

Lemma 8.4.1 (exchanging the random space with the random vector) implies, for t = ε
3 m, that this is

bounded by

4 exp(−t2n/2) = 4 exp
(
−ε2m2n

18

)
≤ 4 exp

(
−
ε2k
72

)
< n−2,

since m ≥ 1
2

√
k/n.

8.5 An alternative proof of the Johnson-Lindenstrauss lemma

8.5.1 Some Probability

Definition 8.5.1 Let N(0, 1) denote the one dimensional normal distribution. This distribution has density
n(x) = e−x2/2/

√
2π.

Let Nd(0, 1) denote the d-dimensional Gaussian distribution, induced by picking each coordinate inde-
pendently from the standard normal distribution N(0, 1).

Let Exp(λ) denote the exponential distribution, with parameter λ. The density function of the exponen-
tial distribution is f (x) = λ exp(−λx).

Let Γλ,k denote the gamma distribution, with parameters λ and k. The density function of this dis-
tribution is gλ,k(x) = λ (λx)k−1

(k−1)! exp(−λx). The cumulative distribution function of Γλ,k is Gλ,k(x) = 1 −

exp(−λx)
(
1 + λx

1! + · · · +
(λx)i

i! + · · · +
(λx)k−1

(k−1)!

)
. As we prove below, gamma distribution is how much time one

has to wait till k experiments succeed, where an experiment duration distributes according to the exponential
distribution.

A random variable X has the Poisson distribution, with parameter η > 0, which is a discrete distribution,
if Pr[X = i] = e−η η

i

i! .

Lemma 8.5.2 The following properties hold for the d dimensional Gaussian distribution Nd(0, 1):

(i) The distribution Nd(0, 1) is centrally symmetric around the origin.

(ii) If X ∼ Nd(0, 1) and u is a unit vector, then X · u ∼ N(0, 1).

(iii) If X,Y ∼ N(0, 1) are two independent variables, then Z = X2+Y2 follows the exponential distribution
with parameter λ = 1

2 .

(iv) Given k independent variables X1, . . . , Xk distributed according to the exponential distribution with
parameter λ, then Y = X1 + · · · + Xk is distributed according to the Gamma distribution Γλ,k(x).

70

Proof: (i) Let x = (x1, . . . , xd) be a point picked from the Gaussian distribution. The density φd(x) =
φ(x1)φ(x2)·φ(xd), where φ(xi) is the normal distribution density function, which is φ(xi) = exp(−x2

i /2)/
√

2π.
Thus φd(x) = (2π)−n/2 exp(−(x2

1 · · · + x2
d)/2). Consider any two points x, y ∈ IRn, such that r = ‖x‖ = ‖y‖.

Clearly, φd(x) = φd(y). Namely, any two points of the same distance from the origin, have the same density
(i.e., “probability”). As such, the distribution Nd(0, 1) is centrally symmetric around the origin.

(ii) Consider e1 = (1, 0, . . . , 0) ∈ IRn. Clearly, x · e1 = x1, which is distributed N(0, 1). Now, by the
symmetry of of Nd(0, 1), this implies that x ·u is distributed N(0, 1). Formally, let R be a rotation matrix that
maps u to e1. We know that Rx is distributed Nd(0, 1) (since Nd(0, 1) is centrally symmetric). Thus x · u has
the same distribute as Rx · Ru, which has the same distribution as x · e1, which is N(0, 1).

(iii) If X,Y ∼ N(0, 1), and consider the integral of the density function

A =
∫ ∞

x=−∞

∫ ∞

y=−∞

1
2π

exp
(
−

x2 + y2

2

)
dx dy.

We would like to change the integration variables to x(r, α) =
√

r sinα and y(r, α) =
√

r cosα. The Jacobian
of this change of variables is

I(r, α) =

∣∣∣∣∣∣∣
∂x
∂r

∂x
∂α

∂y
∂r

∂y
∂α

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

sinα
2
√

r

√
r cosα

cosα
2
√

r
−
√

r sinα

∣∣∣∣∣∣∣ = −1
2

(
sin2 α + cos2 α

)
= −

1
2
.

As such, we have

Pr[Z = z] =
∫

x2+y2=α

1
2π

exp
(
−

x2 + y2

2

)
=

∫ 2π

α=0

1
2π

exp
(
−

x(
√

z, α)2 + y(
√

z, α)2

2

)
· |I(r, α)|

=
1

2π
·

1
2
·

∫ 2π

α=0
exp

(
−

z
2

)
=

1
2

exp
(
−

z
2

)
.

As such, Z has an exponential distribution with λ = 1/2.
(iv) For k = 1 the claim is trivial. Otherwise, let gk−1(x) = λ (λx)k−2

(k−2)! exp(−λx). Observe that

gk(t) =
∫ t

0
gk−1(t − x)g1(x) dx =

∫ t

0

(
λ

(λ(t − x))k−2

(k − 2)!
exp(−λ(t − x))

)(
λ exp(−λx)

)
dx

=

∫ t

0
λ2 (λ(t − x))k−2

(k − 2)!
exp(−λt) dx

= λ exp(−λt)
∫ t

0
λ

(λx)k−2

(k − 2)!
dx = λ exp(−λt)

(λt)k−1

(k − 1)!
= gk(x).

8.5.2 Proof of the Johnson-Lindenstrauss Lemma

Lemma 8.5.3 Let u be a unit vector in IRd. For any even positive integer k, let U1, . . . ,Uk be random
vectors chosen independently from the d-dimensional Gaussian distribution Nd(0, 1). For Xi = u ·Ui, define
W = W(u) = (X1, . . . , Xk) and L = L(u) =‖W‖2. Then, for any β > 1, we have:

1. E[L] = k.

2. Pr
[
L ≥ βk

]
≤ k+3

2 exp
(
− k

2 (β − (1 + ln β))
)
.

3. Pr
[
L ≤ k/β

]
< O(k) × exp(− k

2 (β−1 − (1 − ln β))).

71

Proof: By Lemma 8.5.2 (ii) each Xi is distributed as N(0, 1), and X1, . . . , Xk are independent. Define
Yi = X2

2i−1+X2
2i, for i = 1, . . . , τ, where τ = k/2. By Lemma 8.5.2 (iii) Yi follows the exponential distribution

with parameter λ = 1/2. Let L =
∑τ

i=1 Yi. By Lemma 8.5.2 (iv), the variable L follows the Gamma
distribution (k/2, 1/2), its expectation E[L] =

∑k/2
i=1 E[Yi] = τ × 2 = k.

Now, let η = λβk, we have

Pr
[
L ≥ βk

]
= 1 − Pr

[
L ≤ βk

]
= 1 −Gλ,τ(βk) =

τ∑
i=0

e−η
ηi

i!
≤ (τ + 1)e−η

ητ

τ!
,

since η = βτ > τ, as β > 1. Now, since τ! ≥ (τ/e)τ, as can be easily verified, and thus

Pr
[
L ≥ βk

]
≤ (τ + 1)e−η

ητ

ττ/eτ
= (τ + 1)e−η

(eη
τ

)τ
= (τ + 1)e−βτ

(eβτ
τ

)τ
= (τ + 1)e−βτ · exp(τ ln(eβ)) = (τ + 1) exp(−τ(β − (1 + ln β)))

≤
k + 3

2
exp

(
−

k
2

(β − (1 + ln β))
)
.

Arguing in a similar fashion, we have, for a large constant ρ � 1

Pr
[
L ≤ k/β

]
=

∞∑
i=τ

e−τ/β
(τ/β)i

i!
≤ e−τ/β

∞∑
i=τ

(
eτ
iβ

)i

= e−τ/β
ρeτ/β∑

i=τ

(
eτ
iβ

)i

+

∞∑
i=ρeτ/β+1

(
eτ
iβ

)i

The second sum is very small for ρ � 1 and we bound only the first one. As the sequence (eτ
iβ)i is decreasing

for i ≥ τ/β, we can bound the first sum by(
ρeτ
β

)
e−τ/β

(
e
β

)τ
= O(τ) exp

(
−τ(β−1 − (1 − ln β))

)
.

Since τ = k/2, we obtain the desired result.
Next, we show how to interpret the above inequalities in a somewhat more intuitive way. Let β = 1 + ε,

ε > 0. From Taylor expansion we know that ln β ≤ ε− ε2/2+ ε3/3. By plugging it into the upper bound for
Pr

[
L ≥ βk

]
we get

Pr
[
L ≥ βk

]
≤ O(k) × exp(−

k
2

(β − 1 − ε + ε2/2 − ε3/3))

≤ O(k) × exp(−
k
2

(ε2/2 − ε3/3))

On the other hand, we also know that ln β ≥ ε − ε2/2. Therefore

Pr
[
L ≤ k/β

]
≤ O(k) × exp(−

k
2

(β−1 − 1 + ε − ε2/2))

≤ O(k) × exp(−
k
2

(
1

1 + ε
− 1 + ε − ε2/2))

≤ O(k) × exp(−
k
2

(
ε2

1 + ε
− ε2/2))

≤ O(k) × exp(−
k
2
·
ε2 − ε3

2(1 + ε)
)

Indeed, ln τ! =
∑τ

i=1 ln i ≥
∫ n

x=1
ln x dx =

[
x ln x − x

]n

x=1
= n ln n − n + 1 ≥ n ln n − n = ln((n/e)n).

72

Thus, the probability that a given unit vector gets distorted by more than (1+ ε) in any direction® grows
roughly as exp(−kε2/4), for small ε > 0. Therefore, if we are given a set P of n points in l2, we can set k to
roughly 8 ln(n)/ε2 and make sure that with non-zero probability we obtain projection which does not distort
distances¯ between any two different points from P by more than (1 + ε) in each direction. This is (up to
the constants) the statement of Johnson-Lindenstrauss lemma [JL84, FM88]. We mention that our constant
8 yields a slight improvement over the earlier constant 9 obtained in [FM88].

8.6 Bibliographical notes

Our presentation follows Matoušek [Mat02]. The Brunn-Minkowski inequality is a powerful inequality
which is widely used in mathematics. A nice survey of this inequality and its applications is provided by
Gardner [Gar02]. Gardner says: “In a sea of mathematics, the Brunn-Minkowski inequality appears like an
octopus, tentacles reaching far and wide, its shape and color changing as it roams from one area to the next.”
However, Gardner is careful in claiming that the Brunn-Minkowski inequality is one of the most powerful
inequalities in mathematics since as a wit put it “the most powerful inequality is x2 ≥ 0, since all inequalities
are in some sense equivalent to it.”

A striking application of the Brunn-Minkowski inequality is the proof that in any partial ordering of n
elements, there is a single comparison that knowing its result, reduces the number of linear extensions that
are consistent with the partial ordering, by a constant fraction. This immediately implies (the uninteresting
result) that one can sort n elements in O(n log n) comparisons. More interestingly, it implies that if there
are m linear extensions of the current partial ordering, we can always sort it using O(log m) comparisons. A
nice exposition of this surprising result is provided by Matoušek [Mat02, Section 12.3].

The probability review of Section 8.5.1 can be found in Feller [Fel71]. The alternative proof of the
Johnson-Lindenstrauss lemma of Section 8.5.2 is due to Indyk and Motwani [IM98]. It exposes the fact
that the Johnson-Lindenstrauss lemma is no more than yet another instance of the concentration of mass
phenomena (i.e., like the Chernoff inequality). The alternative proof is provided since it is conceptually
simpler (although the computations are more involved), and it is technically easier to use. Another alternative
proof is provided by Dasgupta and Gupta [DG99].

Interestingly, it is enough to pick each entry in the dimension reducing matrix randomly out of −1, 0, 1.
This requires more involved proof [Ach01]. This is useful when one care about storing this dimension
reduction transformation efficiently.

Magen [Mag01] observed that in fact the JL lemma preserves angles, and in fact can be used to preserve
any “k dimensional angle”, by projecting down to dimension O(kε−2 log n). In particular, Exercise 8.7.1 is
taken from there.

Dimension reduction is crucial in learning, AI, databases, etc. One common technique that is being
used in practice is to do PCA (i.e., principal component analysis) and take the first few main axises. Other
techniques include independent component analysis, and MDS (multidimensional scaling). MDS tries to
embed points from high dimensions into low dimension (d = 2 or 3), which preserving some properties.
Theoretically, dimension reduction into really low dimensions is hopeless, as the distortion in the worst case
is Ω(n1/(k−1)), if k is the target dimension [Mat90].

8.7 Exercises

Exercise 8.7.1 [10 Points] Show that the Johnson-Lindenstrauss lemma also (1±ε)-preserves angles among
triples of points of P (you might need to increase the target dimension however by a constant factor). [Hint:

®Note that this implies distortion (1 + ε)2 if we require the mapping to be a contraction.
¯In fact, this statement holds even for the square of the distances.

73

For every angle, construct a equilateral triangle that its edges are being preserved by the projection (add the
vertices of those triangles [conceptually] to the point set being embedded). Argue, that this implies that the
angle is being preserved.]

74

Chapter 9

ANN in High Dimensions

9.1 ANN on the Hypercube

9.1.1 Hypercube and Hamming distance

Definition 9.1.1 The set of points Hd = {0, 1}d is the d-dimensional hypercube. A point p = (p1, . . . , pd) ∈
Hd can be interpreted, naturally, as a binary string p1 p2 . . . pd. The Hamming distance dH(p, q) between
p, q ∈ Hd, is the number of coordinates where p and q disagree.

It is easy to verify that the Hamming distance comply with the triangle inequality, and is as such a metric.

As we saw in previous lectures, all we need to solve (1 + ε)-ANN, is it is enough to efficiently solve
the approximate near neighbor problem. Namely, given a set P of n points in Hd, and radius r > 0 and
parameter ε > 0, we want to decide for a query point q whether dH(q, P) ≤ r or dH(q, P) ≥ (1 + ε)r.

Definition 9.1.2 For a set P of points, a data-structure NNbr≈(P, r, (1 + ε)r) solves the approximate near
neighbor problem, if given a query point q, the data-structure works as follows.

• If d(q, P) ≤ r then NNbr≈ outputs a point p ∈ P such that d(p, q) ≤ (1 + ε)r.

• If d(q, P) ≥ (1 + ε)r, in this case NNbr≈ outputs that “d(q, P) ≥ r”.

• If r ≤ d(q, P) ≤ (1 + ε)r, either of the above answers is acceptable.

Given such a data-structure NNbr≈(P, r, (1 + ε)r), one can construct a data-structure that answers ANN
using O(log(n/ε)) queries.

9.1.2 Constructing NNbr for the Hamming cube

Let P = {p1, . . . , pn} be a subset of vertices of the hypercube in d dimensions. Let r, ε > 0 be two prespecified
parameters. We are interested in building an NNbr≈ for balls of radius r in the Hamming distance.

Definition 9.1.3 Let U be a (small) positive integer. A family F = {h : S → [0,U]} of functions, is an
(r,R, α, β)-sensitive if for any u, q ∈ S , we have:

• If u ∈ b(q, r) then Pr[h(u) = h(v)] ≥ α.

• If u < b(q,R) then Pr[h(u) = h(v)] ≤ β,

where h is randomly picked from F, r < R, and α > β.

75

Intuitively, if we can construct a (r,R, α, β)-sensitive family, then we can distinguish between two points
which are close together, and two points which are far away from each other. Of course, the probabilities α
and β might be very close to each other, and we need a way to do amplification.

Lemma 9.1.4 For the hypercube Hd = {0, 1}d, and a point b = (b1, . . . , bd) ∈ Hd, let F be the set of
functions {

hi(b) = bi

∣∣∣∣ b = (b1, . . . , bd) ∈ Hd, for i = 1, . . . , d
}
.

Then for any r, ε, the family F is
(
r, (1 + ε)r, 1 − r

d , 1 −
r(1+ε)

d

)
-sensitive.

Proof: If u, v ∈ {0, 1}d are in distance smaller than r from each other (under the Hamming distance),
then they differ in at most r coordinates. The probability that h ∈ F would project into a coordinate that u
and v agree on is ≥ 1 − r/d.

Similarly, if dH(u, v) ≥ (1 + ε)r then the probability that h would map into a coordinate that u and v
agree on is ≤ 1 − (1 + ε)r/d.

Let k be a parameter to be specified shortly. Let

G(F) =
{
g : {0, 1}d → {0, 1}k

∣∣∣∣ g(u) = (h1(u), . . . , hk(u)), for h1, . . . , hk ∈ F

}
.

Intuitively, G is a family that extends F by probing into k coordinates instead of only one coordinate.

9.1.3 Construction the near-neighbor data-structure

Let τ be (yet another) parameter to be specified shortly. We pick g1, . . . , gτ functions randomly and uni-
formly from G. For each point u ∈ P compute g1(u), . . . , gτ(u). We construct a hash table Hi to store all the
values of gi(p1), . . . , gi(pn), for i = 1, . . . , τ.

Given a query point q ∈ Hd, we compute p1(q), . . . , pτ(q), and retrieve all the points stored in those
buckets in the hash tables H1, . . . ,Hτ, respectively. For every point retrieved, we compute its distance to q,
and if this distance is ≤ (1 + ε)r, we return it. If we encounter more than 4τ points we abort, and return
‘fail’. If no “close” point is encountered, the search returns ‘fail’.

We choose k and τ so that with constant probability (say larger than half) we have the following two
properties:

(1) If there is a point u ∈ P, such that dH(u, q) ≤ r, then g j(u) = g j(q) for some j.

(2) Otherwise (i.e., dH(u, q) ≥ (1 + ε)r), the total number of points colliding with q in the τ hash tables, is
smaller than 4τ.

Given a query point, q ∈ Hd, we need to perform τ probes into τ hash tables, and retrieve at most 4τ
results. Overall this takes O(dO(1)τ) time.

Lemma 9.1.5 If there is a (r, (1 + ε)r, α, β)-sensitive family F of functions for the hypercube, then there
exists a NNbr≈(P, r, (1 + ε)r) which uses O

(
dn + n1+ρ

)
space and O(nρ) hash probes for each query, where

ρ =
ln 1/α
ln 1/β

.

This data-structure succeeds with constant probability.

76

Proof: It suffices to ensure that properties (1) and (2) holds with probability larger than half.
Set k = log1/β n = ln n

ln(1/β) , then the probability that for a random hash function g ∈ G(F), we have
g(p) = g(q) for p ∈ P \ b(q, (1 + ε)r) is at most

Pr
[
g(p′) = g(q)

]
≤ βk ≤ exp

(
ln(β) · ln n

ln(1/β)

)
≤

1
n
.

Thus, the expected number of elements from P \ b(q, (1 + ε)r) colliding with q in the jth hash table H j is
bounded by one. In particular, the overall expected number of such collisions in H1, . . . ,Hτ is bounded by
τ. By the Markov inequality we have that the probability that the collusions number exceeds 4τ is less than
1/4; therefore the probability that the property (2) holds is ≥ 3/4.

Next, for a point p ∈ b(q, r), consider the probability of g j(p) = g j(q), for a fixed j. Clearly, it is
bounded from below by

≥ αk = αlog1/β n = n−
ln 1/α
ln 1/β = n−ρ.

Thus the probability that such a g j exists is at least 1 − (1 − n−ρ)τ. By setting τ = 2nρ we get property (1)
holds with probability ≥ 1 − 1/e2 > 4/5. The claim follows.

Claim 9.1.6 For x ∈ [0, 1) and t ≥ 1 such that 1 − tx > 0 we have
ln(1 − x)
ln(1 − tx)

≤
1
t

.

Proof: Since ln(1 − tx) < 0, it follows that the claim is equivalent to t ln(1 − x) ≥ ln(1 − tx). This in turn
is equivalent to

g(x) ≡ (1 − tx) − (1 − x)t ≤ 0.

This is trivially true for x = 0. Furthermore, taking the derivative, we see g′(x) = −t + t(1 − x)t−1, which is
non-positive for x ∈ [0, 1) and t ≥ 1. Therefore, g is non-increasing in the region in which we are interested,
and so g(x) ≤ 0 for all values in this interval.

Lemma 9.1.7 There exists a NNbr≈(r, (1 + ε)r) which uses O
(
dn + n1+1/(1+ε)

)
space and O(n1/(1+ε)) hash

probes for each query. The probability of success (i.e., there is a point u ∈ P such that dH(u, q) ≤ r, and we
return a point v ∈ P such that ‖uv‖ ≤ (1 + ε)r) is a constant.

Proof: By Lemma 9.1.4, we have a (r, (1+ ε)r, α, β)-sensitive family of hash functions, where α = 1− r
d

and β = 1 − r(1+ε)
d . As such

ρ =
ln 1/α
ln 1/β

=
lnα
ln β
=

ln d−r
d

ln d−(1+ε)r
d

=
ln

(
1 − r

d

)
ln

(
1 − (1 + ε) r

d

) ≤ 1
1 + ε

,

by Claim 9.1.6.
By building O(log n) structures of Lemma 9.1.7, we can do probability amplification and get a correct

result with High probability.

Theorem 9.1.8 Given a set P of n points on the hypercube Hd, parameters ε > 0 and r > 0, one can build
a NNbr≈ = NNbr≈(P, r, (1 + ε)r), such that given a query point q, one can decide if:

• b(q, r) ∩ P , ∅, then NNbr≈ returns a point u ∈ P, such that dH(u, q) ≤ (1 + ε)r.

• b(q, (1 + ε)r) ∩ P = ∅ then NNbr≈ returns that no point is in distance ≤ r from q.

In any other case, any of the answers is correct. The query time is O(dn1/(1+ε) log n) and the space used is
O
(
dn + n1+1/(1+ε) log n

)
. The result returned is correct with high probability.

77

Proof: Note, that every point can be stored only once. Any other reference to it in the data-structure can be
implemented with a pointer. Thus, the O(dn) requirement on the space. The other term follows by repeating
the space requirement of Lemma 9.1.7 O(log n) times.

In the hypercube case, we can just build M = O(ε−1 log n) such data-structures such that (1 + ε)-ANN
can be answered using binary search on those data-structures, which corresponds to radiuses r1, . . . , rM,
where ri = (1 + ε)i.

Theorem 9.1.9 Given a set P of n points on the hypercube Hd, parameters ε > 0 and r > 0, one can
build ANN data-structure using O

(
(d + n1/(1+ε))ε−1n log2 n

)
space, such that given a query point q, one can

returns an ANN in P (under the Hamming distance) in O(dn1/(1+ε) log(ε−1 log n)) time. The result returned
is correct with high probability.

9.2 LSH and ANN on Euclidean Space

9.2.1 Preliminaries

Lemma 9.2.1 Let X = (X1, . . . , Xd) be a vector of d independent variables which have distribution N(0, 1),
and let v = (v1, . . . , vd) ∈ IRd. We have that v · X =

∑
i viXi is distributed as‖v‖Z, where Z ∼ N(0, 1).

Proof: If ‖v‖ = 1 then this holds by the symmetry of the normal distribution. Indeed, let e1 =

(1, 0, . . . , 0). By the symmetry of the d-dimensional normal distribution, we have that v · X ∼ e1 · X =
X1 ∼ N(0, 1).

Otherwise, v · X/‖V‖ ∼ N(0, 1), and as such v · X ∼ N
(
0,‖v‖2

)
, which is indeed the distribution of‖v‖Z.

A d-dimensional distribution that has the property of Lemma 9.2.1, is called a 2-stable distribution.

9.2.2 Locality Sensitive Hashing

Let q, r be two points in IRd. We want to perform an experiment to decide if‖q − r‖ ≤ 1 or‖q − r‖ ≥ η, where
η = 1 + ε. We will randomly choose a vector ~v from the d-dimensional normal distribution Nd(0, 1) (which
is 2-stable). Next, let r be a parameter, and let t be a random number chosen uniformly from the interval
[0, r]. For p ∈ IRd, and consider the random hash function

h(p) =
⌊

p · ~v + t
r

⌋
. (9.1)

If p and q are in distance η from each other, and when we project to~v, the distance between the projection
is t, then the probability that they get the same hash value is 1 − t/r, since this is the probability that the
random sliding will not separate them. As such, we have that the probability of collusion is

α(η) = Pr
[
h(p) = h(q)

]
=

∫ r

t=0
Pr

[∣∣∣p · ~v − q · ~v
∣∣∣ = t

](
1 −

t
r

)
dt.

However, since ~v is chosen from a 2-stable distribution, we have that p ·~v − q ·~v = (p − q) ·~v ∼ N(0,‖pq‖2).
Since we are considering the absolute value of the variable, we need to multiply this by two. Thus, we have

α(η, r) =
∫ r

t=0

2
√

2πη
exp

(
−

t2

2η2

)(
1 −

t
r

)
dt.

78

Intuitively, we care about the difference α(1 + ε, r) − α(1, r), and we would like to maximize it as much as
possible (by choosing the right value of r). Unfortunately, this integral is unfriendly, and we have to resort
to numerical computation.

In fact, if are going to use this hashing scheme for constructing locality sensitive hashing, like in
Lemma 9.1.5, then we care about the ratio

ρ(1 + ε) = min
r

log(1/α(1))
log(1/α(1 + ε))

.

The following is verified using numerical computations on a computer,

Lemma 9.2.2 ([DNIM04]) One can choose r, such that ρ(1 + ε) ≤ 1
1+ε .

Lemma 9.2.2 implies that the hash functions defined by Eq. (9.1) are (1, 1 + ε, α′, β′)-sensitive, and
furthermore, ρ = log(1/α′)

log(1/β′) ≤
1

1+ε , for some values of α′ and β′. As such, we can use this hashing family
to construct NNbr≈ for the set P of points in IRd. Following the same argumentation of Theorem 9.1.8, we
have the following.

Theorem 9.2.3 Given a set P of n points in IRd, parameters ε > 0 and r > 0, one can build a NNbr≈ =
NNbr≈(P, r, (1 + ε)r), such that given a query point q, one can decide if:

• b(q, r) ∩ P , ∅, then NNbr≈ returns a point u ∈ P, such that dH(u, q) ≤ (1 + ε)r.

• b(q, (1 + ε)r) ∩ P = ∅ then NNbr≈ returns that no point is in distance ≤ r from q.

In any other case, any of the answers is correct. The query time is O(dn1/(1+ε) log n) and the space used is
O
(
dn + n1/(1+ε)n log n

)
. The result returned is correct with high probability.

9.2.3 ANN in High Dimensional Euclidean Space

Unlike the hypercube case, where we could just do direct binary search on the distances. Here we need to
use the reduction from ANN to near-neighbor queries. We will need the following result (which follows
from what we had seen in previous lectures).

Theorem 9.2.4 Given a set P of n points in IRd, then one can construct data-structures D that answers
(1 + ε)-ANN queries, by performing O(log(n/ε)) NNbr≈ queries. The total number of points stored at
NNbr≈ data-structures of D is O(nε−1 log(n/ε)).

Constructing the data-structure of Theorem 9.2.4 requires building a low quality HST. Unfortunately,
the previous construction seen for HST are exponential in the dimension, or take quadratic time. We next
present a faster scheme.

9.2.3.1 Low quality HST in high dimensional Euclidean space

Lemma 9.2.5 Let P be a set of n in IRd. One can compute a nd-HST of P in O(nd log2 n) time (note, that
the constant hidden by the O notation does not depend on d).

Proof: Our construction is based on a recursive decomposition of the point-set. In each stage, we split
the point-set into two subsets. We recursively compute a nd-HST for each point-set, and we merge the two
trees into a single tree, by creating a new vertex, assigning it an appropriate value, and hung the two subtrees
from this node. To carry this out, we try to separate the set into two subsets that are furthest away from each
other.

79

Let R = R(P) be the minimum axis parallel box containing P, and let ν = l(P) =
∑d

i=1‖Ii(R)‖, where
Ii(R) is the projection of R to the ith dimension.

Clearly, one can find an axis parallel strip H of width ≥ ν/((n − 1)d), such that there is at least one point
of P on each of its sides, and there is no points of P inside H. Indeed, to find this strip, project the point-set
into the ith dimension, and find the longest interval between two consecutive points. Repeat this process for
i = 1, . . . , d, and use the longest interval encountered. Clearly, the strip H corresponding to this interval is
of width ≥ ν/((n − 1)d). On the other hand, diam(P) ≤ ν.

Now recursively continue the construction of two trees T+,T−, for P+, P−, respectively, where P+, P− is
the splitting of P into two sets by H. We hung T+ and T− on the root node v, and set ∆v = ν. We claim that
the resulting tree T is a nd-HST. To this end, observe that diam(P) ≤ ∆v, and for a point p ∈ P− and a point
q ∈ P+, we have‖pq‖ ≥ ν/((n − 1)d), which implies the claim.

To construct this efficiently, we use an efficient search trees to store the points according to their order in
each coordinate. Let D1, . . . ,Dd be those trees, where Di store the points of P in ascending order according
to the ith axis, for i = 1, . . . , d. We modify them, such that for every node v ∈ Di, we know what is the
largest empty interval along the ith axis for the points Pv (i.e., the points stored in the subtree of v in Di).
Thus, finding the largest strip to split along, can be done in O(d log n) time. Now, we need to split the d trees
into two families of d trees. Assume we split according to the first axis. We can split D1 in O(log n) time
using the splitting operation provided by the search tree (Treaps for example can do this split in O(log n)
time). Let assume that this split P into two sets L and R, where |L| < |R|.

We still need to split the other d − 1 search trees. This is going to be done by deleting all the points of
L from those trees, and building d − 1 new search trees for L. This takes O(|L| d log n) time. We charge this
work to the points of L.

Since in every split, only the points in the smaller portion of the split get charged, it follows that every
point can be charged at most O(log n) time during this construction algorithm. Thus, the overall construction
time is O(dn log2 n) time.

9.2.3.2 The overall result

Plugging Theorem 9.2.3 into Theorem 9.2.4, we have:

Theorem 9.2.6 Given a set P of n points in IRd, parameters ε > 0 and r > 0, one can build ANN data-
structure using

O
(
dn + n1+1/(1+ε)ε−2 log3(n/ε)

)
space, such that given a query point q, one can returns an (1 + ε)-ANN in P in

O
(
dn1/(1+ε)(log n

)
log

n
ε

)
time. The result returned is correct with high probability.

The construction time is O
(
dn1+1/(1+ε)ε−2 log3(n/ε)

)
.

Proof: We compute the low quality HST using Lemma 9.2.5. This takes O(nd log2 n) time. Using
this HST, we can construct the data-structure D of Theorem 9.2.4, where we do not compute the NNbr≈
data-structures. We next traverse the tree D, and construct the NNbr≈ data-structures using Theorem 9.2.3.

We only need to prove the bound on the space. Observe, that we need to store each point only once,
since other place can refer to the point by a pointer. Thus, this is the O(nd) space requirement. The other
term comes from plugging the bound of Theorem 9.2.4 into the bound of Theorem 9.2.3.

80

9.3 Bibliographical notes

Section 9.1 follows the exposition of Indyk and Motwani [IM98]. The fact that one can perform approximate
nearest neighbor in high dimensions in time and space polynomial in the dimension is quite surprising,
One can reduce the approximate near-neighbor in euclidean space to the same question on the hypercube
(we show the details below). This implies together with the reduction from ANN to approximate near-
neighbor (seen in previous lectures) that one can answer ANN in high dimensional euclidean space with
similar performance. Kushilevitz, Ostrovsky and Rabani [KOR00] offered an alternative data-structure with
somewhat inferior performance.

The value of the results showed in this write-up depend to large extent on the reader perspective. Indeed,
for small value of ε > 0, the query time O(dn1/(1+ε)) is very close to linear dependency on n, and is almost
equivalent to just scanning the points. Thus, from low dimension perspective, where ε is assumed to be
small, this result is slightly sublinear. On the other hand, if one is willing to pick ε to be large (say 10), then
the result is clearly better than the naive algorithm, suggesting running time for an ANN query which takes
(roughly) n1/11.

The idea of doing locality sensitive hashing directly on the Euclidean space, as done in Section 9.2 is
not shocking after seeing the Johnson-Lindenstrauss lemma. It is taken from a recent paper of Datar et al.
[DNIM04]. In particular, the current analysis which relies on computerized estimates is far from being
satisfactory. It would be nice to have a simpler and more elegant scheme for this case. This is an open
problem for further research. Another open problem is to improve the performance of the LSH scheme.

The low-quality high-dimensional HST construction of Lemma 9.2.5, is taken from [Har01]. The run-
ning time of this lemma can be further improved to O(dn log n) by more careful and involved implementa-
tion, see [CK95] for details.

From approximate near-neighbor in IRd to approximate near-neighbor on the hypercube. The reduction is
quite involved, and we only sketch the details. Let P Be a set of n points in IRd. We first reduce the dimension
to k = O(ε−2 log n) using the Johnson-Lindenstrauss lemma. Next, we embed this space into `k′

1 (this is the space
IRk, where distances are the L1 metric instead of the regular L2 metric), where k′ = O(k/ε2). This can be done with
distortion (1 + ε).
Let Q the resulting set of points in IRk′ . We want to solve NNbr≈ on this set of points, for radius r. As a first step, we
partition the space into cells by taking a grid with sidelength (say) k′r, and randomly translating it, clipping the points
inside each grid cell. It is now sufficient to solve the NNbr≈ inside this grid cell (which has bounded diameter as a
function of r), since with small probability that the result would be correct. We amplify the probability by repeating
this polylogarithmic number of times.
Thus, we can assume that P is contained inside a cube of side length ≤ k′nr, and it is in IRk′ , and the distance metric
is the L1 metric. We next, snap the points of P to a grid of sidelength (say) εr/k′. Thus, every point of P now has an
integer coordinate, which is bounded by a polynomial in log n and 1/ε. Next, we write the coordinates of the points
of P using unary notation. (Thus, a point (2, 5) would be written as (010, 101) assuming the number of bits for each
coordinates is 3.) It is now easy to verify that the hamming distance on the resulting strings, is equivalent to the L1

distance between the points.
Thus, we can solve the near-neighbor problem for points in IRd by solving it on the hypercube under the Hamming
distance.
See Indyk and Motwani [IM98] for more details.

This relationship indicates that the ANN on the hypercube is “equivalent” to the ANN in Euclidean
space. In particular, making progress on the ANN on the hypercube would probably lead to similar progress
on the Euclidean ANN problem.

We had only scratched the surface of proximity problems in high dimensions. The interested reader is
referred to the survey by Indyk [Ind04] for more information.

81

82

Chapter 10

Approximating a Convex Body by An
Ellipsoid

10.1 Some Linear Algebra

In the following, we cover some material from linear algebra. Proofs of those facts can be found in any text
on linear algebra, for example [Leo98].

For a matrix A, let AT denote the transposed matrix. We remind the reader that for two matrices A and
B, we have (AB)T = BT AT . Furthermore, for any three matrices A, B and C, we have (AB)C = A(BC).

A matrix A ∈ IRn×n is symmetric if AT = A. All the eigenvalues of a symmetric matrix are real numbers.
A matrix A is positive definite if xT Ax > 0, for all x ∈ IRn. Among other things this implies that A is
non-singular. If A is symmetric then it is positive definite if and only if all its eigenvalues are positive
numbers.

In particular, if A is symmetric positive definite then det(A) > 0.
For two vectors u, v ∈ IRn, let 〈u, v〉 = uT v denote their dot product.

10.2 Ellipsoids

Definition 10.2.1 Let b =
{
x

∣∣∣∣‖x‖ ≤ 1
}

be the unit ball. Let a ∈ IRn be a vector and let T : IRn → IRn be an
invertible linear transformation. The set

E = T (b) + a

is called an ellipsoid and a is its center.

Alternatively, we can write

E =

{
x ∈ IRn

∣∣∣∣∥∥∥T−1(x − a)
∥∥∥ ≤ 1

}
.

However,∥∥∥T−1(x − a)
∥∥∥ = 〈

T−1(x − a),T−1(x − a)
〉
= (T−1(x − a))T T−1(x − a) = (x − a)T

(
T−1

)T
T−1(x − a).

In particular, let Q =
(
T−1

)T
T−1. Observe that Q is symmetric, and that it is positive definite. Thus,

E =

{
x ∈ IRn

∣∣∣∣ (x − a)T Q(x − a) ≤ 1
}
.

83

(−1, 0) a = (ρ, 0)(τ, 0)

E1

`

(u, v)

o

bc

Figure 10.1: Ellipse

If we change the basis of IRn to be the set of unit eigenvectors of E, then Q becomes a diagonal matrix, and
we have that

E =

{
(y1, . . . , yn) ∈ IRn

∣∣∣∣ λ1(y1 − a1)2 + · · · + λn(yn − an)2 ≤ 1
}
,

where a = (a1, . . . , an) and λ1, . . . , λn are the eigenvalues of Q. In particular, this implies that the point
(a1, . . . , ai + 1/

√
λi, . . . , an) ∈ ∂E, for i = 1, . . . , n. In particular,

Vol(E) =
Vol(b)

√
λ1 · · ·

√
λn
=

Vol(b)
√

det(Q)
.

For a convex body P (i.e., a convex and bounded set), let E be a largest volume ellipsoid contained inside
P. One can show that E is unique. Namely, there is a single maximum volume ellipsoid inside P.

Theorem 10.2.2 Let K ⊂ IRn be a convex body, and let E ⊆ K be its maximum volume ellipsoid. Suppose

that E is centered at the origin, then K ⊆ n E =

{
nx

∣∣∣∣ x ∈ E

}
.

Proof: Applying a linear transformation, we can assume that E is the unit ball b. And assume for the sake
of contradiction that there is a point x ∈ K, such that‖x‖ > n. Consider the set C which is the convex-hull of
{x} ∪ b. Since K is convex, we have that C ⊆ K.

We will reach a contradiction, by finding an ellipsoid E1 which has volume larger than b, which is
enclosed inside C.

By rotation of space, we can assume that x = (ρ, 0, . . . , 0), for ρ > n. We consider ellipsoids of the form

E1 =

(y1, . . . , yn)

∣∣∣∣∣∣∣ (y1 − τ)2

α2 +
1
β2

n∑
i=2

y2
i ≤ 1

 .
We need to pick the values of τ, α and β such that E1 ⊆ C. Observe that by symmetry, it is enough to enforce
that E1 ⊆ C in the first two dimensions. Thus, we can consider C and E to be in two dimensions.

Thus, the center of E1 is going to be on the x-axis, at the point (τ, 0). The set E is just an ellipse with
axises parallel to x and y. See Figure 10.1. In particular, we require that (−1, 0) would be on the boundary

84

of E1. This implies that (−1 − τ)2 = α2 and that 0 ≤ τ ≤ (ρ + (−1))/2. Namely, α = 1 + τ. In particular, the
equation of E1 is

F(x, y) =
(x − τ)2

(1 + τ)2 +
y2

β2 − 1 = 0.

We next compute the value of β2.
The tangent line ` from a = (ρ, 0) touching the unit circle, touches the unit circle at a point b. See

Figure 10.1. We have 4aob , 4obc. As such‖cb‖ /‖bo‖ = ‖bo‖ /‖oa‖. Since‖bo‖ = 1, we have‖cb‖ = 1/ρ.
Since b is on the unit circle, we have b = (1/ρ,

√
1 − 1/ρ2). As such, the equation of this line is

〈b, (x, y)〉 = 1 ⇒
x
ρ
+

√
1 − 1/ρ2y = 1 ⇒ ` ≡ y = −

1√
ρ2 − 1

x −
ρ√
ρ2 − 1

.

The slope of the tangent `′ to E1 at (u, v) is

dy
dx
= −

Fx(u, v)
Fy(u, v)

= −

(
2(u − τ)
(1 + τ)2

)
/

(
2v
β2

)
=
β2(u − τ)
v(1 + τ)2

by derivatives of implicit functions. The line `′ is just

(u − τ)
α2 (x − τ) +

v
β2 y = 1,

since it has the required slope and it passes through (u, v). Namely `′ ≡ y = −
β2(u − τ)

vα2 (x − τ) +
β2

v
. The

line `′ passes through (ρ, 0). As such,

(ρ − τ)(u − τ)
α2 = 1 ⇒

(u − τ)
α

=
α

ρ − τ
⇒

(u − τ)2

α2 =
α2

(ρ − τ)2 . (10.1)

Since ` and `′ are the same line, we have that

β2(u − τ)
vα2 =

1√
ρ2 − 1

.

However,
β2(u − τ)

vα2 =
β2

vα
·

(u − τ)
α

=
β2

vα
·

α

ρ − τ
=

β2

v(ρ − τ)
. Thus,

β2

v
=

ρ − τ√
ρ2 − 1

.

Squaring and inverting both sides, we have
v2

β4 =
ρ2 − 1

(ρ − τ)2 and thus
v2

β2 = β
2 ρ2 − 1

(ρ − τ)2 . The point (u, v) ∈ ∂E1,

and as such
(u − τ)2

α2 +
v2

β2 = 1. Using Eq. (10.1) and the above, we get

α2

(ρ − τ)2 + β
2 ρ2 − 1

(ρ − τ)2 = 1,

and thus β2 =
(ρ − τ)2 − α2

ρ2 − 1
=

(ρ − τ)2 − (τ + 1)2

ρ2 − 1
=

(ρ − 2τ − 1)(ρ + 1)
ρ2 − 1

=
ρ − 2τ − 1
ρ − 1

= 1 −
2τ
ρ − 1

.

85

Namely, for n ≥ 2, and 0 ≤ τ < (ρ − 1)/2, we have that the ellipsoid E1 defined by the parameters
α = 1 + τ and β2 =

(ρ−τ)2−(τ+1)2

ρ2−1 is contained inside C. We have Vol(E1) = βn−1αVol(b). As such,

µ = ln
Vol(E1)
Vol(b)

= (n − 1) ln β + lnα =
n − 1

2
ln β2 + lnα.

For τ > 0 sufficiently small, we have lnα = ln(1 + τ) = τ + O(τ2), because of the Taylor expansion
ln(1 + x) = x − x2/2 + x3/3 − · · · , for −1 < x ≤ 1. Similarly, ln β2 = ln

(
1 − 2τ

ρ−1

)
= − 2τ

ρ−1 + O(τ2). Thus,

µ =
n − 1

2

(
−

2τ
ρ − 1

+ O(τ2)
)
+ τ + O(τ2) > 0,

for τ sufficiently small and if ρ > n. Thus, Vol(E1)/Vol(b) = exp(µ) > 1 implying that Vol(E1) > Vol(b). A
contradiction.

A convex body K centered at the origin is symmetric if p ∈ K, implies that −p ∈ K. Interestingly, the
constant in Theorem 10.2.2 can be improved to

√
n in this case. We omit the proof, since it is similar to the

proof of Theorem 10.2.2.

Theorem 10.2.3 Let K ⊂ IRn be a symmetric convex body, and let E ⊆ K be its maximum volume ellipsoid.
Suppose that E is centered at the origin, then K ⊆

√
n E.

10.3 Bibliographical notes

We closely follow the exposition of Barvinok [Bar02]. One can approximate the John ellipsoid using the
interior point techniques [GLS88]. However, this is not very efficient in low dimensions. In the next lecture,
we will show how to do this by other (simpler) techniques, which are faster (and simpler) for point sets in
low dimensions.

The maximum volume ellipsoid is sometimes referred to as John’s ellipsoid. In particular, Theo-
rem 10.2.2 is known as John’s theorem, and was originally proved by Fritz John [Joh48].

There are numerous interesting results in convexity theory about how convex shapes looks like. One of
the surprising results is Dvoretsky’s theorem, which states that any symmetric convex body K around the
origin (in “high enough” dimension) can be cut by a k-dimensional subspace, such that the intersection of K
with this k-dimensional space, contains an ellipsoid E and is contained inside an ellipsoid (1+ ε)E (k here is
an arbitrary parameter). Since one can define a metric in a Banach space by providing a symmetric convex
body which defines the unit ball, this implies that any high enough dimensional Banach space contains (up
to translation that maps the ellipsoid to a ball) a subspace which is almost Euclidean.

A survey of those results is provided by Ball [Bal97].

86

Chapter 11

Approximating the Minimum Volume
Bounding Box of a Point Set

Isn’t it an artificial, sterilized, didactically pruned world, a mere sham world in which you cravenly vegetate, a world
without vices, without passions without hunger, without sap and salt, a world without family, without mothers,
without children, almost without women? The instinctual life is tamed by meditation. For generations you have left
to others dangerous, daring, and responsible things like economics, law, and politics. Cowardly and well-protected,
fed by others, and having few burdensome duties, you lead your drones’ lives, and so that they won’t be too boring
you busy yourselves with all these erudite specialties, count syllables and letters, make music, and play the Glass
Bead Game, while outside in the filth of the world poor harried people live real lives and do real work.

– The Glass Bead Game, Hermann Hesse

11.1 Some Geometry

Let H = [0, 1]d denote the unit hypercube in IRd. The width of a convex body P in IRd is the minimum
distance between two parallel planes that encloses P. Alternatively, the width is the minimum length of the
projection of P into a line in IRd. The diameter of P is the maximum distance between two points of P.
Alternatively, this is the maximum length projection of P into a line.

Lemma 11.1.1 The width of H is 1 and its diameter is
√

d.

Proof: The upper bound on the width is obvious. As for the lower bound, observe that P encloses a ball of
radius 1/2, and as such its projection in any direction is at least 1.

The diameter is just the distance between the two points (0, . . . , 0) and (1, . . . , 1).

Lemma 11.1.2 Let P be a convex body, and let h be a hyperplane cutting P. Let µ = Vol(h ∩ P), and let
~v be unit vector orthogonal to h. Let ρ be the length of the projection of P into the direction of ~v. Then
Vol(P) ≥ µ · v/d.

Proof: Let P+ = P ∩ h+ and a be the point of maximum distance of P+ from h, where h+ denotes the
positive half space induced by h.

Let C = h∩P. By the convexity of P, the pyramid R = CH(C∪{a}) is contained inside P, where CH(S)
denotes the convex-hull of S . We explicitly compute the volume of R for the sake of completeness. To this
end, let s be the segment connecting a to its projection on h, and let α denote the length of s. Parameterizing
s by the interval [0, ρ−], let C(t) denote the intersection of the hyperplane passing through s(t) and R, where
s(0) = a, and s(t) ∈ h. Clearly, Vol(C(t)) = (t/α)d−1 Vol(C) = (t/α)d−1µ. (We abuse notations a bit and refer

87

to the (d − 1)-dimensional volume and d-dimensional volume by the same notation.) Thus,

Vol(R) =
∫ α

t=0
Vol(C(t)) dt =

∫ α

t=0
(t/α)d−1 dt =

µ

αd−1

∫ α

t=0
td−1 dt =

µ

αd−1 ·
αd

d
=
αµ

d
.

Thus, Vol(P+) ≥ αµ/d. Similar argumentation can be applied to P− = P∩h−. Thus, we have Vol(P) ≥ ρµ/d.

Lemma 11.1.3 Let h be any hyperplane. We have Vol(h ∩ [0, 1]d) ≤ d.

Proof: Since the width of H = [0, 1]d is 1 and thus the projection of H on the direction perpendicular
to h is of length ≥ 1. As such, by Lemma 11.1.2 if Vol(h ∩H) > d then Vol(H) > 1. A contradiction.

Lemma 11.1.4 Let P ⊆ [0, 1]d be a convex body. Let µ = Vol(P). Then ω(P) ≥ µ/d and P contains a ball
of radius µ/(2d2).

Proof: By Lemma 11.1.3, any hyperplane cut P in a set of volume at most d. Thus, µ = Vol(P) ≤ ω(P)d.
Namely, ω(P) ≥ µ/d.

Next, let E be the largest volume ellipsoid that is contained inside P. By John’s theorem, we have that
P ⊆ dE. Let α be the length of the shortest axis of E. Clearly, ω(P) ≤ 2dα, since ω(dE) = 2dα. Thus
2dα ≥ µ/d. This implies that α ≥ µ/(2d2).

Thus, E is an ellipsoid with its shortest axis is of length α ≥ µ/(2d2). In particular, E contains a ball of
radius α, which is in turn contained inside P.

In Lemma 11.1.4 we used the fact that r(P) ≥ ω(P)/(2d) (which we proved using John’s theorem), where
r(P) is the radius of the largest ball enclosed inside P. Not surprisingly, considerably better bounds are
known. In particular, it is known that ω(P)/(2

√
d) ≤ r(p) for add dimension, and ω(P)/(2(d+1)/

√
d + 2) ≤

r(P). Thus, r(p) ≥ ω(P)/(2
√

d + 1) [GK92]. Plugging this fact into the proof of Lemma 11.1.4, will give us
slightly better result.

11.2 Approximating the Diameter

Lemma 11.2.1 Given a point set S in IRd, one can compute in O(nd) time a pair of points s, t ∈ S , such
that |st| ≤ diam(S) ≤ min(2,

√
d)|st|.

Proof: Let B be the minimum axis-parallel box containing S , and let s and t be the points in S that define
the longest edge of B, whose length is denoted by l. By the diameter definition,‖st‖ ≤ diam(S), and clearly,
diam(S) ≤

√
d l ≤

√
d‖st‖. The points s and t are easily found in O(nd) time.

Alternatively, pick a point s′ ∈ S , and compute its furthest point t′ ∈ S . Next, let a, b be the two points
realizing the diameter. We have diam(S) = ‖ab‖ ≤‖as′‖ +‖s′b‖ ≤ 2‖s′t;‖. Thus,‖s′t′‖ is 2-approximation to
the diameter of P.

11.3 Approximating the minimum volume bounding box

11.3.1 Constant Factor Approximation

Lemma 11.3.1 Given a set P of n points in IRd, one can compute in O(d2n) time a bounding box B(P) with
Vol(Bopt(P)) ≤ Vol(B(P)) ≤ 2dd! Vol(Bopt(P)), where Bopt is the minimum volume bounding box of P.

Furthermore, there exists a vector v ∈ IRd, such that c · B + v ⊆ CH(P). constant c = 1/
(
2dd!d5/2

)
.

88

Proof: By using the algorithm of Lemma 11.2.1 we compute in O(n) time two points s, t ∈ P which
form a 2-approximation of the diameter of P. For the simplicity of exposition, we assume that st is on the
xd-axis (i.e., the line ` ≡ ∪x(0, . . . , 0, x)), and there is one point of S that lies on the hyperplane h ≡ xd = 0,
an that xd ≥ 0 for all points of P.

Let P′ be the orthogonal projection of P into h, and let I be the shortest interval on ` which contain the
projection of P into `s.

By recursion, we can compute a bounding box B′ of P′ in h. Let the bounding box be B = B′ × I. Note,
that in the bottom of the recursion, the point-set is one dimensional, and the minimum interval containing
the points can be computed in linear time.

Clearly, P ⊆ B, and thus we only need to bound the quality of approximation. We next show that
Vol(B) ≥ Vol(P)/cd, where C = CH(P), and cd = 2d · d!. We prove this by induction on the dimension. For
d = 1 the claim trivially holds. Otherwise, by induction, that Vol(B′) ≥ Vol(C′)/cd−1, where C′ = CH(P′).

For a point p ∈ C′, let `p be the line parallel to xd-axis passing through p. Let L(p) be the minimum
value of xd for the points of `p lying inside C, and similarly, let U(p) be the maximum value of xd for the
points of `p lying inside C. That is `p ∩ C = [L[p),U(p)]. Clearly, since C is convex, the function L(·) is
concave, and U(·) is convex. As such, γ(p) = U(p)−L(p) is a convex function, being the difference between
a convex and a concave function. In particular, γ(·) induces the following convex body

U =
⋃
x∈C′

[
(x, 0), (x, γ(x))

]
.

Clearly, Vol(U) = Vol(C). Furthermore, γ((0, . . . , 0)) ≥‖st‖ and U is shaped like a “pyramid” its base is on
the hyperplane xd = 0 is the set C′, and the segment [(0, . . . , 0), (0, . . . , 0,‖st‖)] is contained inside it. Thus,

Vol(C) = Vol(U) ≥ |st|Vol(C′)/d,

by Lemma 11.1.2. Let r = |I| be the length of the projection of S into the line `, we have that r ≤ 2‖st‖.
Thus,

Vol(B) = Vol(B′) |I| ≤ Vol(B′)‖st‖ 2 ≤ Vol(C′) · cd−1‖st‖ 2.

On the other hand,

Vol(Bopt(P)) ≥ Vol(C) ≥
Vol(C′)‖st‖

d
≥

(Vol(B′)/cd−1) · (2‖st‖)
2d

≥
Vol(B′) |I|

2cd−1d
=

Vol(B)
2dd!

.

Let T be an affine transformation that maps B to the unit hypercube H = [0, 1]d. Observe that
Vol(T (C)) ≥ 1/cd. By Lemma 11.1.4, there is ball b of radius r ≥ 1/(cd · 2d2) contained inside T (C).
The ball b contains a hypercube of sidelength 2r/

√
d ≥ 2/(2d2

√
dcd). Thus, for c = 1/

(
2dd!d5/2

)
, there

exists a vector v′ ∈ IRd, such that cH + v′ ⊆ T (C). Thus, applying T−1 to both sides, we have that there
exists a vector v ∈ IRd, such that c · B + v = c · T−1(H) + v ⊆ C.

11.4 Exact Algorithms

11.4.1 An exact algorithm 2d

Let P be a set of points in the plane. We compute the convex hull C = CH(P). Next, we rotate to lines
parallel to each other, which touches the boundary of C. This can be easily done in linear time. We can
also rotate two parallel lines which are perpendicular to the first set. Those four lines together induces a
rectangle. It is easy to observe that during this rotation, we will encounter the minimum area rectangle.
The function those lines define, changes every time the lines changes the vertices they rotate around. This

89

happens O(n) time. When the vertices the lines rotate around are fixed, the area function is a constant size
function, and as such its minimum/maximum can be computed in linear time. Thus, the minimum volume
bounding box, can be computed in O(n log n) time.

An important property of the minimum area rectangle, is that one of the edges of the convex hull lie
on one of the bounding rectangle edges. We will refer to this edge as being flush. Thus, there are only n
possibilities we have to check.

11.4.2 An exact algorithm 3d

Let P be a set of points in IR3, our purpose is to compute the minimum volume bounding box Bopt of P. It is
easy to verify that Bopt must touch P on every one of its faces. In fact, consider an edge e for the bounding
box Bopt. Clearly, if we project the points in the direction of e into a perpendicular plane h, it must hold that
the projection of Bopt into this plane is a minimum area rectangle. As such, it has one flush edges, which
corresponds to a flush edge of the convex hull of P that must lie on a face of Bopt. In fact, there must be two
adjacent faces of Bopt that have flush edges of CH(P) on them.

Otherwise, consider a face f of Bopt that has an edge flush on it. All the four adjacent faces of Bopt do
not have flush edges on them. But thats not possible, since we can project the points in the direction of the
normal of f , and argue that in the projection there must be a flush edge. This flush edge, corresponds to an
edge of CH(P) that lies on one of the faces of Bopt that is adjacent to f .

Lemma 11.4.1 If Bopt is the minimum volume bounding box of P, then it has two adjacent faces which are
flush.

This provides us with a natural algorithm to compute the minimum volume bounding box. Indeed, let us
check all possible pair of edges e, e′ ∈ CH(P). For each such pair, compute the minimum volume bounding
box that has e and e′ as flush.

Consider the normal ~n of the face of a bounding box that contains e. The normal ~n lie on a great circle
on the sphere of directions, which are all the directions that are orthogonal to e. Let us parameterize ~n by
a point on this normal. Next, consider the normal ~n′ to the face that is flush to e′. Clearly, ~n′ is orthogonal
both to e′ and ~n. As such, we can compute this normal in constant time. Similarly, we can compute the
third direction of the bounding box using vector product in const time. Thus, if e and e′ are fixed, there is
one dimensional family of bounding boxes of P that have e and e′ flush on them, and comply with all the
requirements to be a minimum volume bounding box.

It is now easy to verify that we can compute the representation of this family of bounding boxes, by
tracking what vertices of the convex-hull the bounding boxes touches (i.e., this is similar to the rotating
calipers algorithm, but one has to be more careful about the details). This can be done in linear time, and as
such, one con compute the minimum volume bounding box in this family in linear time. Doing this for all
pair of edges, results in O(n3) time algorithm, where n = |P|.

Theorem 11.4.2 Let P be a set of n points in IR3. One can compute the minimum volume bounding box of
P in O(n3) time.

11.5 Approximating the Minimum Volume Bounding Box in Three Dimen-
sions

Let P be a set of n points in IR3, and let Bopt denote the minimum volume bounding box of P. We re-
mind the reader, that for two sets A and B in IR3. The Minkowski sum of A and B is the set A ⊕ B ={
a + b

∣∣∣∣ a ∈ A, b ∈ B
}
.

90

Let B = B(P) be the bounding box of P computed by Lemma 11.3.1, and let Bε be a translated copy of
ε
c B centered at the origin, where c is an appropriate constant to be determined shortly. In addition, define
Q = CH(P) ⊕ Bε and G = G(1

2 Bε) denote the grid covering space, where every grid cell is a translated copy
of Bε/2. We approximate P on G. For each point p ∈ P let G(p) be the set of eight vertices of the cell of G
that contains p, and let SG = ∪p∈SG(p). Define P = CH(SG). Clearly, CH(P) ⊆ P ⊆ Q. Moreover, one can
compute P in O(n + (1/ε2) log (1/ε)) time. On the other hand, P ⊆ B ⊕ Bε. The latter term is a box which
contains at most k = 2c/ε + 1 grid points along each of the directions set by B, so k is also an upper bound
for the number of grid points contained by P in each direction. As such, the convex hull of CH(P) is O(k2),
as every grid line can contribute at most two vertices to the convex hull. Let P′′ the set of vertices of P. We
next apply the exact algorithm of Theorem 11.4.2 to P′′. Let B̂ denote the resulting bounding box.

It remains to show that B̂ is a (1 + ε)-approximation of Bopt(P). Let Bεopt be a translation of ε
4 Bopt(P)

that contains Bε. (The existence of Bεopt is guaranteed by Lemma 11.3.1, if we take c = 160.) Thus,
P′′ ⊆ CH(P)⊕ Bε ⊆ CH(P)⊕ Bεopt ⊆ Bopt(P)⊕ Bεopt. Since Bopt(P)⊕ Bεopt is a box, it is a bounding box of P
and therefore also of CH(P). Its volume is

Vol(Bopt(P) ⊕ Bεopt) =
(
1 +

ε

4

)3
Vol(Bopt(P)) < (1 + ε) Vol(Bopt(P)),

as desired. (The last inequality is the only place where we use the assumption ε ≤ 1.)
To recap, the algorithm consists of the four following steps:

1. Compute the box B(P) (see Lemma 11.3.1) in O(n) time.

2. Compute the point set SG in O(n) time.

3. Compute P = CH(SG) in O(n + (1/ε2) log (1/ε)) time. This is done by computing the convex hull of
all the extreme points of SG along vertical lines of G. We have O(1/ε2) such points, thus computing
their convex hull takes O((1/ε2) log(1/ε)) time. Let P′′ be the set of vertices of P.

4. Compute Bopt(P′′) by the algorithm of Theorem 11.4.2. This step requires O((1/ε2)3) = O(1/ε6) time.

Theorem 11.5.1 Let P be a set of n points in IR3, and let 0 < ε ≤ 1 be a parameter. One can compute in
O(n + 1/ε6) time a bounding box B(P) with Vol(B(P)) ≤ (1 + ε) Vol(Bopt(P)).

Note that the box B(S) computed by the above algorithm is most likely not minimal along its directions.
The minimum bounding box of P homothet of B(S) can be computed in additional O(n) time.

11.6 Bibliographical notes

Our exposition follows roughly the work of Barequet and Har-Peled [BH01]. However, the basic idea, of
finding the diameter, projecting along it and recursively finding a good bounding box on the projected input,
is much older, and can be traced back to the work of Macbeath [Mac50].

For approximating the diameter, one can find in linear time a (1/
√

3)-approximation of the diameter in
any dimension; see [EK89].

The rotating calipers algorithm (Section 11.4.1) is due to Toussaint [Tou83]. The elegant extension of
this algorithm to the computation of the exact minimum volume bounding box algorithm is due to O’Rourke
[O’R85].

Lemma 11.3.1 is (essentially) from [BH01].
The current constants in Lemma 11.3.1 are unreasonable, but there is no reason to believe they are tight.

Conjecture 11.6.1 The constants in Lemma 11.3.1 can be improved to be polynomial in the dimension.

91

Coresets. One alternative approach to the algorithm of Theorem 11.5.1 is to construct G using Bε/2 as
before, and picking from each non-empty cell of G, one point of P as a representative point. This results in
a set S of O(1/ε2) points. Compute the minimum volume bounding box S using the exact algorithm. Let
B denote the resulting bounding box. It is easy to verify that (1 + ε)B contains P, and that it is a (1 + ε)-
approximation to the optimal bounding box of P. The running time of the new algorithm is identical. The
interesting property is that we are running the exact algorithm on on a subset of the input.

This is a powerful technique for approximation algorithms. You first extract a small subset from the
input, and run an exact algorithm on this input, making sure that the result provides the required approxi-
mation. The subset S is referred to as coreset of B as it preserves a geometric property of P (in our case, the
minimum volume bounding box). We will see more about this notion in the following lectures.

92

Chapter 12

VC Dimension, ε-nets and ε-approximation

“I’ve never touched the hard stuff, only smoked grass a few times with the boys to be polite, and that’s all, though
ten is the age when the big guys come around teaching you all sorts to things. But happiness doesn’t mean much to
me, I still think life is better. Happiness is a mean son of a bitch and needs to be put in his place. Him and me aren’t
on the same team, and I’m cutting him dead. I’ve never gone in for politics, because somebody always stand to gain
by it, but happiness is an even crummier racket, and their ought to be laws to put it out of business.”

– – Momo, Emile Ajar

12.1 VC Dimension

Definition 12.1.1 A range space S is a pair (X,R), where X is a (finite or infinite) set and R is a (finite or
infinite) family of subsets of X. The elements of X are points and the elements of R are ranges. For A ⊆ X,

PR(A) =
{
r ∩ A

∣∣∣∣ r ∈ R
}

is the projection of R on A.

If PR(A) contains all subsets of A (i.e., if A is finite, we have |PR(A)| = 2|A|) then A is shattered by R.
The Vapnik-Chervonenkis dimension (or VC-dimension) of S , denoted by VC(S), is the maximum

cardinality of a shattered subset of X. It there are arbitrarily large shattered subsets then VC(S) = ∞.

12.1.1 Examples

Example 12.1.2 Let X = IR2, and let R be the set of disks in the plane. Clearly, for three points in the plane
1, 2, 3, one can find 8 disks that realize all possible 23 different subsets. See Figure 12.1.

But can disks shatter a set with four points? Consider such a set P of four points, and there are two
possible options. Either the convex-hull of P has three points on its boundary, and in this case, the subset
having those vertices in the subset but not including the middle point is impossible, by convexity. Alterna-
tively, if all four points are vertices of the convex hull, and they are p1, p2, p3, p4 along the boundary of the
convex hull, either the set {p1, p3} or the set {p2, p4} is not realizable. Indeed, if both options are realizable,
then consider the two disks D1,D2 the realizes those assignments. Clearly, D1 and D2 must intersect in four
points, but this is not possible, since two disks have at most two intersection points. See Figure 12.1 (b).

Example 12.1.3 Consider the range space S = (IR2,R), where R is the set of all (closed) convex sets in
the plane. We claim that the VC(S) = ∞. Indeed, consider a set U of n points p1, . . . , pn all lying on the
boundary of the unit circle in the plane. Let V be any subset of U, and consider the convex-hull CH(V).
Clearly, CH(V) ∈ R, and furthermore, CH(V) ∩ U = V . Namely, any subset of U is realizable by S . Thus,
S can shatter sets of arbitrary size, and its VC dimension is unbounded.

93

1

2

3

{1.2}

a

b

c

d

(a) (b)

Figure 12.1: Disks in the plane can shatter three points.

Example 12.1.4 Let S = (X,R), where X = IRd and R is the set of all (closed) halfspaces in IRd. To see
what is the VC dimension of S , we nee the following result of Radon:

Theorem 12.1.5 (Randon’s Lemma) Let A be a set of d+ 2 points in IRd. Then, there exists two
disjoint subsets C,D of A, such that CH(C) ∩ CH(D) , ∅.

Proof: The points p1, . . . , pd+2 of A are linearly dependent. As such, there exists β1, . . . , βd+2, non
all of them zero, such that

∑
i βi pi = 0 and

∑
i βi = 0 (to see that, remember that the affine subspace

spanned by p1, . . . , pd+2 is induced by all points that can be represented as p1 +
∑d+2

i=2 αi(pi − p1)
where

∑
i αi = 0). Assume, for the sake of simplicity of exposition, that the β1, . . . βk ≥ 0 and

βk+1, . . . , βd+2 < 0. Furthermore, let µ =
∑k

i=1 βi. We have that

k∑
i=0

βi pi = −

d+2∑
i=k+1

βi pi.

In particular, v =
∑k

i=0(βi/µ)pi is a point in the CH({p1, . . . , pk}) and
∑d+2

i=k+1 −(βi/µ)pi ∈

CH({pk+1, . . . , pd+2}). We conclude that v is in the intersection of the two convex hulls, as re-
quired.

In particular, this implies that if a set Q of d + 2 points is being shattered by S , we can partition this set
Q into two disjoint sets A and B such that CH(A) ∩ CH(B) , ∅. It should now be clear that any halfspace
h+ containing all the points of A, must also contain a point of the CH(B). But this implies that a point of
B must be in h+. Namely, the subset A can not be realized by a halfspace, which implies that Q can not be
shattered. Thus VC(S) < d + 2. It is also easy to verify that the regular simplex with d + 1 vertices is being
shattered by S . Thus, VC(S) = d + 1.

Lemma 12.1.6 Let S = (X,R) and S ′ = (X,R′) be two range spaces of dimension d and d′, respectively,

where d, d′ > 1. Let R̂ =
{
r ∪ r′

∣∣∣∣ r ∈ R, r′ ∈ R′
}
. Then, for the range space Ŝ = (X, R̂), we have that

VC
(
Ŝ
)
= O((d + d′) log(d + d′))

Proof: Let A be a set of n points in X that are being shattered by Ŝ . There are g(n, d) and G(n, d′) different
assignments for the elements of A by ranges of R and R′, respectively. Every subset C of A realized by r̂ ∈ R̂,
is a union of two subsets A ∩ r and A ∩ r′ where r ∈ R and r′ ∈ R′. Thus, the number of different subsets of
A realized by Ŝ is bounded by g(n, d)g(n, d′). Thus, 2n ≤ ndnd′ , for d, d′ > 1. We conclude n ≤ (d + d′) lg n,
which implies that n ≤ O((d + d′) log(d + d′)).

94

12.2 On ε-nets and ε-sampling

Let

g(d, n) =
d∑

i=0

(
n
i

)
.

Note that for all n, d ≥ 1, g(d, n) = g(d, n − 1) + g(d − 1, n − 1)

Lemma 12.2.1 (Sauer’s Lemma) If (X,R) is a range space of VC-dimension d with |X| = n points then
|R| ≤ g(d, n).

Proof: The claim trivially holds for d = 0 or n = 0.
Let x be any element of X, and consider the sets

Rx =

{
r \ {x}

∣∣∣∣ x ∈ r, r ∈ R, r \ {x} ∈ R
}

and
R \ x =

{
r \ {x}

∣∣∣∣ r ∈ R
}
.

Observe that |R| = |Rx| + |R \ x| (Indeed, if r does not contain x than it is counted in Rx, if does contain x but
r \ x < R, then it is also counted in Rx. The only remaining case is when both r \ {x} and r ∪ {x} are in R, but
then it is being counted once in Rx and once in R \ x.)

Observe that Rx has VC dimension d − 1, as the largest set that can be shattered is of size d − 1. Indeed,
any set A ⊂ X shattered by Rx, implies that A ∪ {x} is shattered in R.

Thus,
|R| = |Rx| + |R \ x| = g(n − 1, d − 1) + g(n − 1, d) = g(d, n),

by induction.
By applying Lemma 12.2.1, to a finite subset of X, we get:

Corollary 12.2.2 If (X,R) is a range space of VC-dimension d then for every finite subset A of X, we have
|PR(A)| ≤ g(d, |A|).

Definition 12.2.3 Let (X,R) be a range space, and let A be a finite subset of X. For 0 ≤ ε ≤ 1, a subset
B ⊆ A, is an ε-sample for A if for any range r ∈ R, we have∣∣∣∣∣ |A ∩ r|

|A|
−
|B ∩ r|
|B|

∣∣∣∣∣ ≤ ε.
Similarly, N ⊆ A is an ε-net for A, if for any range r ∈ R, if |r ∩ A| ≥ ε |A| implies that r contains at least one
point of N (i.e., r ∩ N , ∅).

Theorem 12.2.4 There is a positive constant c such that if (X,R) is any range space of VC-dimension at
most d, A ⊆ X is a finite subset and ε, δ > 0, then a random subset B of cardinality s of A where s is at least
the minimum between |A| and

c
ε2

(
d log

d
ε
+ log

1
δ

)
is an ε-sample for A with probability at least 1 − δ.

95

Theorem 12.2.5 Let (X,R) be a range space of VC-dimension d, let A be a finite subset of X and suppose
0 < ε, δ < 1. Let N be a set obtained by m random independent draws from A, where

m ≥ max
(
4
ε

log
2
δ
,

8d
ε

log
8d
ε

)
. (12.1)

Then N is an ε-net for A with probability at least 1 − δ.

12.3 Proof of the ε-net Theorem

Let (X,R) be a range space of VC-dimension d, and let A be a subset of X of cardinality n. Suppose that
m satisfiers Eq. (12.1). Let N = (x1, . . . , xm) be the sample obtained by m independent samples from A
(the elements of N are not necessarily distinct, and thats why we treat N as a ordered set). Let E1 be the
probability that N fails to be an ε-net. Namely,

E1 =

{
∃r ∈ R

∣∣∣∣ |r ∩ A| ≥ εn, r ∩ N = ∅
}
.

(Namely, there exists a “heavy” range r that does not contain any point of N.) To complete the proof, we
must show that Pr[E1] ≤ δ. Let T = (y1, . . . , ym) be another random sample generated in a similar fashion
to N. Let E2 be the event that N fails, but T “works”, formally

E2 =

{
∃r ∈ R

∣∣∣∣∣ |r ∩ A| ≥ εn, r ∩ N = ∅, |r ∩ T | ≥
εm
2

}
.

(We remind the reader that |r ∩ T | denotes the number of elements of T belong to r.)
Intuitively, since ET

[
|r ∩ T |

]
≥ εm, then for the range r that N fails for, we have with “good” probability

that |r ∩ T | ≥ εn
2 . Namely, E1 and E2 have more or less the same probability.

Claim 12.3.1 Pr[E2] ≤ Pr[E1] ≤ 2 Pr[E2].

Proof: Clearly, E2 ⊆ E1, and thus Pr[E2] ≤ Pr[E1]. As for the other part, note that Pr
[
E2

∣∣∣∣ E1

]
=

Pr[E2 ∩ E1] /Pr[E1] = Pr[E2] /Pr[E1]. It is thus enough to show that Pr
[
E2

∣∣∣∣ E1

]
≥ 1/2.

Assume that E1 occur. There is r ∈ R, such that |r ∩ A| > εn and r ∩ N = ∅. The required probability is
at least the probability that for this specific r, we have |r ∩ T | ≥ εn

2 . However, |r ∩ T | is a binomial variable
with expectation εm, and variance ε(1 − ε)m ≤ εm. Thus, by Chebychev inequality (Theorem 19.1.2),

Pr
[
|r ∩ T | <

εm
2

]
≤ Pr

[∣∣∣|r ∩ T | − εm
∣∣∣ > εm

2

]
Pr

[∣∣∣|r ∩ T | − εm
∣∣∣ > √εm

2
√
εm

]
≤

4
εm
≤

1
2
,

by Eq. (12.1). Thus, Pr[E2] /Pr[E1] = Pr
[
|r ∩ T | ≥ εn

2

]
= 1 − Pr

[
|r ∩ T | < εm

2

]
≥ 1

2 .
Thus, it is enough to bound the probability of E2. Let

E′2 =
{
∃r ∈ R

∣∣∣∣∣ r ∩ N = ∅, |r ∩ T | ≥
εm
2

}
,

Clearly, E2 ⊆ E′2. Thus, bounding the probability of E′2 is enough to prove the theorem. Note however,
that a shocking thing happened! We no longer have A as participating in our event. Namely, we turned
bounding an event that depends on a global quantity, into bounding a quantity that depends only on local
quantity/experiment. This is the crucial idea in this proof.

96

Claim 12.3.2 Pr[E2] ≤ Pr
[
E′2

]
≤ g(d, 2m)2−em/2.

Proof: We imagine that we sample the elements of N ∪ T together, by picking Z = (z1, . . . , z2m) inde-
pendently from A. Next, we randomly decide the m elements of Z that go into N, and remaining elements
go into T . Clearly,

Pr
[
E′2

]
=

∑
Z

Pr
[
E′2

∣∣∣∣ Z]
Pr[Z] .

Thus, from this point on, we fix the set Z, and we bound Pr
[
E′2

∣∣∣∣ Z]
.

It is now enough to consider the ranges in the projection space PZ(R). By Lemma 12.2.1, we have
|PZ(r)| ≤ g(d, 2m).

Let us fix any r ∈ PZ(R), and consider the event

Er =

{
r ∩ N = ∅ and |r ∩ T | >

εm
2

}
.

For k = |r ∩ (N ∪ T)|, we have

Pr[Er] ≤ Pr
[
r ∩ N = ∅

∣∣∣∣∣ |r ∩ (N ∪ T)| >
εm
2

]
=

(
2m−k

m

)(
2m
m

)
=

(2m − k)(2m − k − 1) · · · (m − k + 1)
2m(2m − 1) · · · (m + 1)

=
m(m − 1) · · · (m − k + 1)

2m(2m − 1) · · · (2m − k + 1)
≤ 2−k ≤ 2−εm/2.

Thus,
Pr

[
E′2

∣∣∣∣ Z]
≤

∑
r∈PZ (R)

Pr[Er] ≤ |PZ(R)| 2−εm/2 = g(d, 2m)2−εm/2,

implying that Pr
[
E′2

]
≤ g(d, 2m)2−εm/2.

Proof of Theorem 12.2.5. By Lemma 12.3.1 and Lemma 12.3.2, we have Pr[E1] ≤ 2g(d, 2m)2−εm/2. It
is thus remains to verify that if m satisfies Eq. (12.1), then 2g(d, 2m)2−εm/2 ≤ δ. One can verify that this
inequality is implied by Eq. (12.1).

Indeed, we know that 2m ≥ 8d and as such g(d, 2m) =
∑d

i=0

(
2m
i

)
≤

∑d
i=0

(2m)i

i! ≤ (2m)d, for d > 1.
Thus, it is sufficient to show that the inequality 2(2m)d2−εm/2 ≤ δ holds. By taking lg of both sides and
rearranging, we have that this is equivalent to

εm
2
≥ d lg(2m) + lg

2
δ
.

By our choice of m (see Eq. (12.1)), we have that εm/4 ≥ lg(2/δ). Thus, we need to show that
εm
4
≥ d lg(2m).

We verify this inequality for m = 8d
ε lg 8d

ε , indeed

2d lg
8d
ε
≥ d lg

(
16d
ε

lg
8d
ε

)
.

This is equivalent to
(
8d
ε

)2

≥
16d
ε

lg
8d
ε

. Which is equivalent to
4d
ε
≥ lg

8d
ε

, which is certainly true for

0 ≤ ε1 and d > 1. Note that it is easy to verify that the inequality holds for m ≥ 8d
ε lg 8d

ε , by deriving both
sides of the inequality.

This completes the proof of the theorem.

97

12.4 Exercises

Exercise 12.4.1 (Flip and Flop) [20 Points]

(a) [5 Points] Let b1, . . . , b2m be m binary bits. Let Ψ be the set of all permutations of 1, . . . , 2m, such
that for any σ ∈ Ψ, we have σ(i) = i or σ(i) = m + i, for 1 ≤ i ≤ m, and similarly, σ(m + i) = i or
σ(m+ i) = m+ i. Namely, σ ∈ Ψ either leave the pair i, i+m in their positions, or it exchange them, for
1 ≤ i ≤ m. As such |Ψ| = 2m.

Prove that for a random σ ∈ Ψ, we have

Pr
[∣∣∣∣∣∣
∑m

i=1 bσ(i)

m
−

∑m
i=1 bσ(i+m)

m

∣∣∣∣∣∣ ≥ ε
]
≤ 2e−ε

2m/2.

(b) [5 Points] Let Ψ′ be the set of all permutations of 1, . . . , 2m. Prove that for a random σ ∈ Ψ′, we have

Pr
[∣∣∣∣∣∣
∑m

i=1 bσ(i)

m
−

∑m
i=1 bσ(i+m)

m

∣∣∣∣∣∣ ≥ ε
]
≤ 2e−Cε2m/2,

where C is an appropriate constant. [Hint: Use (a), but be careful.]

(c) [10 Points] Prove Theorem 12.2.4 using (b).

12.5 Bibliographical notes

The exposition here is based on [AS00]. The usual exposition of the ε-net/ε-sample tend to be long and
tedious in the learning literature. The proof of the ε-net theorem is due Haussler and Welzl [HW87]. The
proof of the ε-sample theorem is due to Vapnik and Chervonenkis [VC71]. However, the importance of Vap-
nik and Chervonenkis result was not realized at the time, and only in the late eighties the strong connection
to learning was established.

An alternative proof of both theorems exists via the usage of discrepancy. Using discrepancy, one can
compute ε-samples and ε-nets deterministically. In fact, in some geometric cases, discrepancy yields better
results than the ε-net and ε-sample theorem. See [Mat99, Cha01] for more details.

Exercise 12.4.1 is from Anthony and Bartlett [AB99].

98

Chapter 13

Approximating the Directional Width of a
Shape

“From the days of John the Baptist until now, the kingdom of heaven suffereth violence, and the violent bear it
away.”

– – Matthew 11:12

13.1 Coreset for Directional Width

Let P be a set of points in IRd. For a vector v ∈ IRd, such that v , 0, let

ω(v,P) = max
p∈P
〈v, p〉 −min

p∈P
〈v, p〉 ,

denote the directional width of P in the direction of v.
A set Q ⊆ P is a ε-coreset for directional width, if

∀v ∈ S(d−1) ω(v,Q) ≥ (1 − ε)ω(v, P).

Namely, the coreset Q provides a concise approximation to the directional width of P. The usefulness of
such a coreset might become clearer in the light of the following claim.

Claim 13.1.1 Let P be a set of points in IRd, 0 < ε ≤ 1 a parameter and let Q be a δ-coreset of P for
directional width, for δ = ε/(8d). Let Bopt(Q) denote the minimum volume bounding box of Q. Let B′ be the
rescaling of Bopt(Q) around its center by a factor of (1 + 3δ).

Then, P ⊂ B′, and in particular, Vol(B′) ≤ (1 + ε)Bopt(P), where Bopt(P) denotes the minimum volume
bounding box of P.

Proof: Let v be a direction parallel to one of the edges of Bopt(Q), and let ` be a line through the origin
with the direction of v. Let I and I′ be the projection of Bopt(Q) and B′, respectively, into `. Let IP be the
interval formed by the projection of CH(P) into `. We have that I ⊆ IP and |I| ≥ (1 − δ) |IP|. The interval I′

is the result of expanding I around its center point c by a factor of 1+ 3δ. In particular, the distance between
c and the furthest endpoint of Ip is ≤ (1 − (1 − δ)/2)

∣∣∣Ip
∣∣∣ = (1 + δ)

∣∣∣Ip
∣∣∣ /2. Thus, we need to verify that after

the expansion of I it contains this endpoint. Namely,

(1 + 3δ)
1 − δ

2
|IP| ≥

1 + 2δ − 3δ2

2
|IP| ≥

1 + δ
2
|IP| ,

for δ ≤ 1/3. Thus, IP ⊆ I′ and P ⊆ B′.

99

Observe that Vol(B′) ≤ (1 + 3δ)d Vol(Bopt(Q)) ≤ exp(3δd) Vol(Bopt(Q)) ≤ (1 + ε)Bopt(Q) ≤ (1 +
ε)Bopt(P).

It is easy to verify, that a coreset for directional width, also preserves (approximately) the diameter and
width of the point set. Namely, it captures “well” the geometry of P. Claim 13.1.1 hints on the connection
between coreset for directional width and the minimum volume bounding box. In particular, if we have a
good bounding box, we can compute a small coreset for directional width.

Lemma 13.1.2 Let P be a set of n points in IRd, and let B be a bounding box of P, such that v+cdB ⊆ CH(P),
where v is a vector in IRd, cd = (4d + 1)d and cdB denote the rescaling of B by a factor of cd around its
center point.

Then, one can compute a ε-coreset S for directional width of P. The size of the coreset is O(1/εd−1), and
construction time is O

(
n +min(n, 1/εd−1)

)
.

Proof: We partition B into a grid, by breaking each edge of B into M = d4/(εcd)e equal length intervals
(namely, we tile B with Md copies of B/M). A cell in this grid is uniquely defined by a d-tuple (i1, . . . , id). In
particular, for a point p ∈ P, lets I(p) denote the ID of this point. Clearly, I(p) can be computed in constant
time.

Given a (d − 1)-tuple I = (i1, . . . , id−1) its pillar is the set of grid cells that have (i1, . . . , id−1) as the first
d − 1 coordinates of their ID. Scan the points of P, and for each pillar record the highest and lowest point
encountered. Here highest/lowest refer to their value in the dth direction.

We claim that the resulting set S is the required coreset. Indeed, consider a direction v ∈ S(d−1), and a
point p ∈ P. Let q, q′ be the highest and lowest points in P which are inside the pillar of p, and are thus in
S. Let Bq, Bq′ be the two grid cells containing q and q′. Clearly, the projection of CH(Bq ∪ Bq′) into the
direction of v contains the projection of p into the direction of v. Thus, for a vertex u of Bq it is sufficient to
show that

ω(v, {u, q}) ≤ ω(v, B/M) ≤ (ε/2)ω(v,P),

since this implies that ω(v, S) ≥ ω(v,P) − 2ω(v, B/M) ≥ (1 − ε)ω(v,P). Indeed,

ω(v, B/M) ≤ ω(v, B)/M ≤ ω(v,P)/(cd M) ≤
ω(v,P)

4/ε
≤
ε

4
ω(v,P).

As for the preprocessing time, it requires a somewhat careful implementation. We construct a hash-table
(of size O(n)) and store for every pillar the top and bottom points encountered. When handling a point this
hash table can be updated in constant time. Once the coreset was computed, the coreset can be extracted
from the hash-table in linear time.

Theorem 13.1.3 Let P be a set of n points in IRd, and let 0 < ε < 1 be a parameter. One can compute
a ε-coreset S for directional width of P. The size of the coreset is O(1/εd−1), and construction time is
O
(
n +min(n, 1/εd−1)

)
.

Proof: Compute a good bounding box of P using Theorem ??. Then apply Lemma 13.1.2 to P.

13.2 Smaller coreset for directional width

We call P ⊆ IRd α-fat, for α ≤ 1, if there exists a point p ∈ IRd and a hypercube H centered at the origin so
that

p + αH ⊂ CH(P) ⊂ p +H.

100

13.2.1 Transforming a set into a fat set

Lemma 13.2.1 Let P be a set of n points in IRd such that the volume of CH(P) is non-zero, and let H =

[−1, 1]d. One can compute in O(n) time an affine transform τ so that τ(P) is an α-fat point set satisfying
αH ⊂ CH(τ(P)) ⊂ H, where α is a positive constant depending on d, and so that a subset S ⊆ P is an
ε-coreset of P for directional width if and only if τ(Q) is an ε-coreset of τ(P) for directional width.

Proof: Using the algorithm of Theorem ?? compute, in O(n) time, a bounding B of P, such that there
exists a vector ~w such that ~w + 1

d(4d+1) B ⊆ CH(P) ⊆ B.
Let T1 be the linear transformation that translates the center of T to the origin. Clearly, S ⊆ P is a ε-

coreset for direction width of P, if and only if S1 = T1(S) is an ε-coreset for directional width of P1 = T1(P).
Next, let T2 be a rotation that rotates B1 = T1(B) such that its sides are parallel to the axises. Again,
S2 = T2(S1) is a ε-coreset for P2 = T2(P1) if and only if S1 is a coreset for P1. Finally, let T3 be a scaling of
the axises such that B2 = T2(B1) is mapped to the hypercube H.

Note, that T3 is just a diagonal matrix. As such, for any p ∈ IRd, and a vector v ∈ S(d−1) we have

〈v,T3 p〉 = vT T3 p =
(
T T

3 v
)T

p ==
〈
T T

3 v, p
〉
= 〈T3v, p〉 .

Let S3 = T3(S2) and let P3 = T3(P2). Clearly, for v ∈ IRd, v , 0 we have

ω(v,P3) = max
p∈P3
〈v, p〉 −min

p∈P3
〈v, p〉 = max

p∈P2
〈v,T3 p〉 −min

p∈P2
〈v,T3 p〉 = max

p∈P2
〈T3v, p〉 −min

p∈P2
〈T3v, p〉

= ω(T3v,P2).

Similarly, ω(v, S3) = ω(T3v, S2).
By definition, S2 is a ε-coreset for P2 iff for any non zero v ∈ IRd, we have ω(v,P2) ≥ (1 − ε)ω(v, S2).

Since T3 non singular, this implies that for any non-zero v, we have ω(T3v, S2) ≥ (1 − ε)ω(T3v,P2), which
holds iff ω(v, S3) = ω(v,T3(S2)) ≥ (1 − ε)ω(v,T3(P2)) = (1 − ε)ω(v,P3). Thus S3 is a ε-coreset for P3.
Clearly, the other direction holds by a similar argumentation.

Set T = T3T2T1, and observe that, by the above argumentation, S is a ε-coreset for P if and only if T (S)
is a ε-coreset for T (P). However, note that T (B) = H, and T (~w + 1

d(4d+1) B) ⊆ CH(T (P)). Namely, there

exists a vector ~w′ such that ~w′ + 1
d(4d+1)H ⊆ CH(T (P)) ⊆ H. Namely, the point set T (P) is α = 1

d(4d+1) -fat.

13.2.2 Computing a smaller coreset

Observation 13.2.2 If A is a δ-coreset for directional width of B, and B is a ε-coreset for directional width
of C, then A is a (δ + ε)-coreset of C.

Proof: For any vector v, we have ω(v, A) ≥ (1 − δ)ω(v, B) ≥ (1 − δ)(1 − ε)ω(v,C) ≥ (1 − δ − ε)ω(v,C).
Thus, given a point-set P, we can first extract from it a ε/2-coreset of size O(1/εd−1), using Lemma 13.1.2.

Let P′ denote the resulting set. We will compute a ε/2-coreset for P′, which would be by the above obser-
vation a ε-coreset for directional width of P.

We need the following technical lemma.

Lemma 13.2.3 Let b be a ball of radius r centered at (L, 0, . . . , 0) ∈ IRd, where L ≥ 2r. Let p be an
arbitrary point in b, and let b′ be the largest ball centered at p and touching the origin. Then, we have that
for µ(p) = min

(x1,x2,...,xd)∈b′
x1 we have µ(p) ≥ −r2/L.

101

r

p{√
(L− r)2 + r2

x1

(L, 0)L− r

Figure 13.1: Illustration of the proof of Lemma 13.2.3.

Proof: Clearly, if we move p in parallel to the x1-axis by decreasing the value of x1, we are decreasing
the value of µ(p). Thus, in the worst case x1(p) = L − r. Similarly, the farther away p is from the x1-axis
the smaller µ(p) is. Thus, by symmetry, the worst case is when p = (L − r, r, 0, . . . , 0). See Figure 13.1. The
distance between p and the origin is

√
(L − r)2 + r2, and

µ(p) = (L − r) −
√

(L − r)2 + r2 =
(L − r)2 − (L − r)2 − r2

(L − r) +
√

(L − r)2 + r2
≥ −

r2

2(L − r)
≥ −

r2

L
,

since L ≥ 2r.

Lemma 13.2.4 Let P′ be a set of m points. Then one can compute a ε/2-coreset for P′ of size O(1/ε(d−1)/2),
in time O(m/ε(d−1)/2).

Proof: Note, that byLemma 13.2.1, we can assume that P′ is α-fat for some constant α, and v +
α[−1, 1]d ⊆ CH(P′) ⊆ [−1, 1]d, where v ∈ IRd. In particular, for any direction u ∈ S(d−1), we have
ω(u,P′) ≥ 2α.

Let S be the sphere of radius
√

d + 1 centered at the origin. Set δ =
√
εα/4 ≤ 1/4. One can construct

a set I of O(1/δd−1) = O(1/ε(d−1)/2) points on the sphere S so that for any point x on S, there exists a point
y ∈ I such that ‖x − y‖ ≤ δ. We process P′ into a data structure that can answer ε-approximate nearest-
neighbor queries. For a query point q, let φ(q) be the point of P′ returned by this data structure. For each
point y ∈ I, we compute φ(y) using this data structure. We return the set S = {φ(y) | y ∈ I}; see Figure 13.2
(ii).

We now show that S is is an (ε/2)-coreset of P′. For simplicity, we prove the claim under the assumption
that φ(y) is the exact nearest-neighbor of y in P′. Fix a direction u ∈ S(d−1). Let σ ∈ P′ be the point that
maximizes 〈u, p〉 over all p ∈ P′. Suppose the ray emanating from σ in direction u hits S at a point x. We
know that there exists a point y ∈ I such that‖x − y‖ ≤ δ. If φ(y) = σ, then σ ∈ S and

max
p∈P′
〈u, p〉 −max

q∈S
〈u, q〉 = 0.

Now suppose φ(y) , σ. Rotate and translate space, such that σ is at the origin, and u is the positive x1 axis.
Setting L = ‖ox‖ and r = δ, we have that 〈u, y〉 ≥ −r2/L ≥ −δ2/1 = −δ2 = −εα/4, by Lemma 13.2.3. We
conclude that ω(u, S) ≥ ω(u,P′) − 2(εα/4) = ω(u,P′) − εα/2. On the other hand, since ω(u,P′) ≥ 2α, it
follows tat ω(u, S) ≥ (1 − ε/2)ω(u,P′).

As for the running time, we just perform the scan in the most naive way to find φ(y) for each y ∈ I.
Thus, the running time is as stated.

Theorem 13.2.5 Let P be a set of n points in IRd. One can compute a ε-coreset for directional width of P in
O(n + 1/ε3(d−1)/2) time. The coreset size is O(ε(d−1)/2).

102

y

(y)

CH(P)

B

x

h

w

u

S

y

z

σ

(i) (ii)

Figure 13.2: (i) An improved algorithm. (ii) Correctness of the improved algorithm.

Proof: We use the algorithm of Lemma 13.2.1 and Lemma 13.1.2 on the resulting set. This computes a
ε/2-coreset P′ of P of size O(1/εd−1). Next, we apply Lemma 13.2.4 and compute a ε/2-coreset S of P′.
This is a ε-coreset of P.

13.3 Exercises

Exercise 13.3.1 [5 Points]
Prove that in the worst case, a ε-coreset for directional width has to be of size Ω(ε−(d−1)/2).

13.4 Bibliographical notes

Section 13.1 and Section 13.2.1 is from [AHV04]. The result of Section 13.2.2 was observed independently
by Chan [Cha04] and Yu et al. [YAPV04]. It is a simplification of an algorithm of Agarwal et al. [AHV04]
which in turn is an adaptation of a method of Dudley [Dud74].

The running time of Theorem 13.2.5 can be improved to O(n+1/εd−1) by using special nearest neighbor
algorithm on a grid. Trying to use some of the other ANN data-strictures will not work since it would not
improve the running time over the naive algorithm. The interested reader, can see the paper by Chan [Cha04].

103

104

Chapter 14

Approximating the Extent of Lines,
Hyperplanes and Moving Points

Once I sat on the steps by a gate of David’s Tower, I placed my two heavy baskets at my side. A group of tourists
was standing around their guide and I became their target marker. “You see that man with the baskets? Just right of
his head there’s an arch from the Roman period. Just right of his head.”

“But he’s moving, he’s moving!”

I said to myself: redemption will come only if their guide tells them, “You see that arch from the Roman period? It’s
not important: but next to it, left and down a bit, there sits a man who’s bought fruit and vegetables for his family.”

– –Yehuda Amichai, Tourists

14.1 Preliminaries

Definition 14.1.1 Given a set of hyperplanesH in IRd, the minimization diagram ofH , known as the lower
envelope ofH , is the function LH : IRd−1 → IR, where we have L(x) = minh∈H h(x), for x ∈ IRd−1.

Similarly, the upper envelope ofH is the function U(x) = maxh∈H h(x), for x ∈ IRd−1.
The extent ofH and x ∈ IRd−1 is the vertical distance between the upper and lower envelope at x; namely,

EH (x) = U(x) − L(x).

14.2 Motivation - Maintaining the Bounding Box of Moving Points

Let P = {p1, . . . , pn} be a set of n points moving in IRd. For a given time t, let pi(t) = (x1
i (t), . . . , xd

i (t))
denote the position of pi at time t. We will use P(t) denote the set P at time t. We say that the motion of P
has degree k if every x j

i (t) is a polynomial of degree at most k. We call a motion of degree 1 linear. Namely,
pi(t) = ai + it, where ai, i ∈ IRd. The values ai, i are fixed.

Our purpose is to develop efficient approaches for maintaining various descriptors of the extent of P,
including the smallest enclosing orthogonal rectangle of P. This measure indicates how spread out the
point set P is. As the points move continuously, the extent measure of interest changes continuously as
well, though its combinatorial realization changes only at certain discrete times. For example, the smallest
orthogonal rectangle containing P can be represented by a sequence of 2d points, each lying on one of the
facets of the rectangle. As the points move, the rectangle also changes continuously. At certain discrete
times, the points lying on the boundary of the rectangle change, and we have to update the sequence of
points defining the rectangle. Similarly, Our approach is to focus on these discrete changes (or events) and
track through time the combinatorial description of the extent measure of interest.

105

t

I(t)

lower envelope

upper envelope

(i)
t

Iε(t) I(t)
inner
extent

outer
extent

(ii)

Figure 14.1: (i) The extent of the moving points, is no more than the vertical segment connecting the lower
envelope to the upper envelope. The black dots mark where the movement description of I(t) changes. (ii)
The approximate extent.

Since we are computing the axis parallel bounding box of the moving points, we can solve the problem
in each dimension separately. Thus, consider the points as points moving linearly in one dimension. The
extent B(t) of P(t) is the smallest interval containing P(t).

It will be convenient to work in a parametric xt-plane in which a moving point p(t) ∈ IR at time t is
mapped to the point (t, p(t)). For 1 ≤ i ≤ n, we map the point pi ∈ P to the line `i =

⋃
t(t, pi(t)), for

i = 1, . . . , n. Let L = {`1, . . . , `n} be the resulting set of lines, and let A(L) be their arrangement. Clearly,
the extent B(t0) of P(t0) is the vertical interval I(t0) in the arrangement A(L) connecting the upper and lower
envelopes of L at t = t0. See Figure 14.1(i). The combinatorial structure of I(t) changes at the vertices of
the two envelopes of L, and all the different combinatorial structures of I(t) can be computed in O(n log n)
time by computing the upper and lower envelopes of L.

We want to maintain a vertical interval I+ε (t) so that I(t) ⊆ I+ε (t) and
∣∣∣I+ε (t)

∣∣∣ ≤ (1 + ε) |I(t)| for all t,
so that the endpoints of I+ε (t) follow piecewise-linear trajectories, and so that the number of combinatorial
changes in Iε(t) is small. Alternatively, we want to maintain a vertical interval I−ε (t) ⊆ I(t) such that

∣∣∣I−ε (t)
∣∣∣ ≥

(1 − ε) |I(t)|. Clearly, having one approximation would imply the other by appropriate rescaling.
Geometrically, this has the following interpretation: We want to simplify the upper and lower envelopes

of A(L) by convex and concave polygonal chains, respectively, so that the simplified upper (resp. lower)
envelope lies above (resp. below) the original upper (resp. lower) envelope and so that for any t, the vertical
segment connecting the simplified envelopes is contained in (1 + ε)I(t). See Figure 14.1 (ii).

14.3 Duality and Extent

A hyperplane h : xd = b1x1 + · · · + bd−1xd−1 − bd in IRd can be interpreted as a function from IRd−1 to
IR. Given a point (y1, . . . , yd) let h(y) = b1y1 + · · · + bd−1yd−1 − bd. In particular, a point y lies above the
hyperplane h if yd > h(y). Similarly, y is below the hyperplane h if yd < h(y). Finally, a point is on the
hyperplane if h(y) = yd.

The dual of a point b = (b1, . . . , bd) ∈ IRd is a hyperplane b∗ : xd = b1x1 + · · · bd−1xd−1 − bd, and the
dual of a hyperplane h : xd = a1x1 + a2x2 + · · · + ad−1xd−1 + ad is the point h∗ = (a1, . . . , ad−1,−ad). There
are several alternative definitions of duality, but they are essentially similar. Summarizing:

b = (b1, . . . , bd) ⇒ b∗ : xd = b1x1 + · · · bd−1xd−1 − bd

h : xd = a1x1 + a2x2 + · · · + ad−1xd−1 + ad ⇒ h∗ = (a1, . . . , ad−1,−ad).

The proof of the following lemma is straightforward, and is delegated to Exercise 17.3.1.

Lemma 14.3.1 For a point b = (b1, . . . , bd), we have:

106

(i) b∗∗ = b.

(ii) The point b lies above (resp. below, on) the hyperplane h, if and only if the point h∗ lies above (resp.
below, on) the hyperplane b∗.

(iii) The vertical distance between b and h is the same as that between b∗ and h∗.

(iv) The vertical distance δ(h, g) between two parallel hyperplanes h and g is the same as the length of the
vertical segment h∗g∗.

(v) For x ∈ IRd−1, the hyperplane h dual to the point LH (p) (resp. UH (p)) is normal to the vector (p,−1) ∈
IRd and supports CH(H∗). Furthermore,H∗ lies below (resp. above) the hyperplane h.
Furthermore, EH (x) is the vertical distance between these two parallel supporting planes.

Definition 14.3.2 For a set of hyperplanesH , a subset S ⊂ H is a ε-coreset ofH for the extent measure, if
for any x ∈ IRd−1 we have ES ≥ (1 − ε)EH .

Similarly, for a point-set P ⊆ IRd, a set S ⊆ P is a ε-coreset for vertical extent of P, if, for any direction
v ∈ S(d−1), we have that µv(S) ≥ (1−ε)µv(P), where µv(P) is the vertical distance between the two supporting
hyperplanes of P which are perpendicular to v.

Thus, to compute a coreset for a set of hyperplanes, it is by duality and Lemma 17.2.1 enough to find a
coreset for the vertical extent of a point-set.

Lemma 14.3.3 The set S is a ε-coreset of the point set P ⊆ IRd for vertical extent if and only if S is a
ε-coreset for directional width.

Proof: Consider any direction v ∈ S(d−1), and let α be its (smaller) angle with with the xd axis. Clearly,
ω(v, S) = µv(S) cosα and ω(v,P) = µv(PntS et) cosα. Thus, if ω(v, S) ≥ (1 − ε)ω(v,P) then µv(S) ≥
(1 − ε)µv(P), and vice versa.

Theorem 14.3.4 Let H be a set of n hyperplanes in IRd. One can compute a ε-coreset of H of, size
O(1/εd−1), in O(n + min(n, 1/εd−1)) time. Alternatively, one can compute a ε-coreset of size O(1/ε(d−1)/2),
in time O(n + 1/ε3(d−1)/2).

Proof: By Lemma 14.3.3, the coreset computation is equivalent to computing coreset for directional
width. However, this can be done in the stated bounds, by Theorem 13.1.3 and Theorem 13.2.5.

Going back to our motivation, we have the following result:

Lemma 14.3.5 Let P(t) be a set of n points with linear motion in IRd. We can compute an axis parallel
moving bounding box b(t) for P(t) that changes O(d/

√
ε) times (in other times, the bounding box moves

with linear motion). The time to compute this bounding box is O(d(n + 1/ε3/2)).
Furthermore, we have that Box(P(t)) ⊆ b(t) ⊆ (1 + ε)Box(P(t)), where Box(t) is the minimum axis

parallel bounding box of P.

Proof: We compute the solution for each dimension separately. In each dimension, we compute a coreset
of the resulting set of lines in two dimensions, and compute the upper and lower envelope of the coreset.
Finally, we expand the upper and lower envelopes appropriately so that the include the original upper and
lower envelopes. The bounds on the running time follows from Theorem 14.3.4.

14.4 Coresets

At this point, our discussion exposes a very powerful technique for approximate geometric algorithms: (i)
extract small subset that represents that data well (i.e., coreset), and (ii) run some other algorithm on the
coreset. To this end, we need a more unified definition of coresets.

107

Definition 14.4.1 (Coresets) Given a set P of points (or geometric objects) in IRd, and an objective function
f : 2IRd

→ IR (say, f (P) is the width of P), a ε-coreset is a subset S of the points of P such that

f (S) ≥ (1 − ε) f (P).

We will state this fact, by saying that S is a ε-coreset of P for f (·).
If the function f (·) is parameterized, namely f (Q, v), then S ⊆ P is a coreset if

∀v f (S, v) ≥ (1 − ε) f (P, v).

As a concrete example, for v a unit vector, consider the function ω(v,P) which is the directional width
of P; namely, it is the length of the projection of CH(P) into the direction of v.

Coresets are of interest when they can be computed quickly, and have small size, hopefully of size
independent of n, the size of the input set P. Interestingly, our current techniques are almost sufficient to
show the existence of coresets for a large family of problems.

14.5 Extent of Polynomials

Let F = { f1, . . . , fn} be a family of d-variate polynomials and let u1, . . . , ud be the variables over which
the functions of F are defined. Each fi corresponds to a surface in IRd+1: For example, any d-variate linear
function can be considered as a hyperplane in IRd+1 (and vice versa). The upper/lower envelopes and extent
of F can now be defined similar to the hyperplane case.

Each monomial over u1, . . . , ud appearing in F can be mapped to a distinct variable xi. Let x1, . . . , xs be
the resulting variables. As such F can be linearized into a setH = {h1, . . . , hn} of linear functions over IRs.
In particular, H is a set of n hyperplanes in IRs+1. Note that the surface induced by fi in IRd+1 corresponds
only to a subset of the surface of hi in IRs+1. This technique is called linearization.

For example, consider a family of polynomialsF = { f1, . . . , fn}, where fi(x, y) = ai(x2+y2)+bix+ciy+di,
and ai, bi, ci, di ∈ IR, for i = 1, . . . , n. This family of polynomials defined over IR2, can be linearized to a
family of linear functions defined over IR3, by hi(x, y, z) = aiz + bix + ciy + di, and settingH = {h1, . . . , hn}.
Clearly, H is a set of hyperplanes in IR4, and fi(x, y) = hi(x, y, x2 + y2). Thus, for any point (x, y) ∈
IR2, instead of evaluating F on (x, y), we can evaluate H on η(x, y) = (x, y, x2 + y2), where η(x, y) is the
linearization image of (x, y). The advantage of this linearization is thatH , being a family of linear functions,
is now easier to handle than F .

Observe, that X = η(IR2) is a subset of IR3 (this is the “standard” paraboloid), and we are interested
in the value of H only on points belonging to X. In particular, the set X is not necessarily convex. The
set X resulting from the linearization is a semi-algebraic set of constant complexity, and as such basic
manipulation operations of X can be performed in constant time.

Note that for each 1 ≤ i ≤ n, fi(p) = hi(η(p)) for p ∈ IRd. As such, ifH ′ ⊆ H is a ε-coreset ofH for the
extent, then clearly the corresponding subset in F is a ε-coreset of F for the extent measure. The following
theorem is a restatement of Theorem 14.3.4 in this settings.

Theorem 14.5.1 Given a family of d-variate polynomials F = { f1, . . . , fn}, and parameter ε, one can com-
pute, in O(n + 1/εs) time, a subset F ′ ⊆ F of O(1/εs) polynomials, such that F ′ is a ε-coreset of F for the
extent measure. Here s is the number of different monomials present in the polynomials of F .

Alternatively, one can compute a ε-coreset, of size O(1/εs/2), in tiem O(n + 1/ε3s/2).

108

14.6 Roots of Polynomials

We now consider the problem of approximating the extent a family of square-roots of polynomials. Note,
that this is considerably harder than handling polynomials because square-roots of polynomials can not be
directly linearized. It turns out, however, that it is enough to O(ε2)-approximate the extent of the functions
inside the roots, and take the root of the resulting approximation.

Theorem 14.6.1 Let F =
{
(f1)1/2, . . . , (fn)1/2

}
be a family of k-variate functions (over p = (x1, . . . , xk) ∈

IRk), where each fi is a polynomial that is non-negative for every p ∈ IRk. Given any ε > 0, we can compute,
in O(n + 1/ε2k′) time, a ε-coreset G ⊆ F of size O(1/ε2k′), for the measure of the extent. Here k′ is the
number of different monomials present in the polynomials in f1, . . . , fn.

Alternatively, one can compute a set G′ ⊆ F , in O(n + 1/ε3k′) time, that ε-approximates F , so that
|G′| = O(1/εk′).

Proof: Let F 2 denote the family { f1, . . . , fn}. Using the algorithm of Theorem 14.5.1, we compute a
δ′-coreset G2 ⊆ F 2 of F 2, where δ′ = ε2/64. Let G ⊆ F denote the family

{
(fi)1/2| fi ∈ G2

}
.

Consider any point x ∈ IRk. We have that EG2(x) ≥ (1 − δ′)EF 2(x), and let a = LF 2(x), A = LG2(x),
B = UG2(x), and b = UF 2(x). Clearly, we have 0 ≤ a ≤ A ≤ B ≤ b and B − A ≥ (1 − δ′)(b − a). Since
(1 + 2δ′)(1 − δ′) ≥ 0, we have that (1 + 2δ′)(B − A) ≥ b − a.

By Lemma 14.6.2 below, we have that Then,
√

A −
√

a ≤ (ε/2)U , and
√

b −
√

B ≤ (ε/2)U, where
U =

√
B −
√

A. Namely,
√

B −
√

A ≥ (1 − ε)(
√

b −
√

a). Namely, G is a ε-coreset for the extent of F .
The bounds on the size of G and the running time are easily verified.

Lemma 14.6.2 Let 0 ≤ a ≤ A ≤ B ≤ b, and 0 < ε ≤ 1 be given parameters, so that b − a ≤ (1 + δ)(B − A),
where δ = ε2/16. Then,

√
A −
√

a ≤ (ε/2)U , and
√

b −
√

B ≤ (ε/2)U, where U =
√

B −
√

A.

Proof: Clearly,
√

A +
√

B ≤
√

a +
√

A − a +
√

b ≤
√

a +
√
δb +

√
b ≤ (1 +

√
δ)(
√

a +
√

b).

Namely,
√

A+
√

B
1+
√
δ
≤
√

a +
√

b. On the other hand,

√
b −
√

a =
b − a
√

b +
√

a
≤

(1 + δ)(B − A)
√

b +
√

a
≤ (1 + δ)(1 +

√
δ)

B − A
√

B +
√

A

= ‘(1 + ε2/16)(1 + ε/4)(
√

B −
√

A) ≤ (1 + ε/2)(
√

B −
√

A).

14.7 Applications

14.7.1 Minimum Width Annulus

Let P = {p1, . . . , pn} be a set of n points in the plane. Let fi(q) denote the distance of the ith point from the

point q. It is easy to verify that fi(q) =
√(

xq − xpi

)2
+
(
yq − ypi

)2
. Let F = { f1, . . . , fn}. It is easy to verify

that for a center point x ∈ IR2, the width of the minimum width annulus containing P which is centered at x
has width EF (x). Thus, we would like to compute a ε-coreset for F .

Consider the set of functions F 2. Clearly, f 2
i (x, y) =

(
x − xpi

)2
+
(
y − ypi

)2
= x2 − 2xpi x + x2

pi
+ y2 −

2ypiy + y2
pi

. Clearly, all the functions of F 2 have this (additive) common factor of x2 + y2. Since we only

care about the vertical extent, we have H =
{
−2xpi x + x2

pi
− 2ypiy + y2

pi

∣∣∣∣ i = 1, . . . , n
}

has the same extent

109

as F 2; formally, for any x ∈ IR2, we have EF 2(x) = EH (x). Now, H is just a family of hyperplanes in IR3,
and it has a ε2/64-coreset SH for the extent of size 1/ε which can be computed in O(n + 1/ε3) time. This
corresponds to a ε2/64-coreset SF 2 of F 2. By Theorem 14.6.1, this corresponds to a ε-coreset SF of F .
Finally, this corresponds to coreset S ⊆ P of size O(1/ε), such that the minimum width annulus of S, if we
expand it by (1 + 2ε), it contains all the points of P. Thus, we can just find the minimum width annulus of
S. This can be done in O(1/ε2) time using an exact algorithm. Putting everything together, we get:

Theorem 14.7.1 Let P be a set of n points in the plane, and let 0 ≤ ε ≤ 1 be a parameter. One can compute
a (1 + ε)-approximate minimum width annulus to P in O(n + 1/ε3) time.

14.8 Exercises

14.9 Bibliographical notes

Linearization was widely used in fields such as machine learning [CS00] and computational geometry [AM94].
There is a general technique for finding the best possible linearization (i.e., a mapping η with the target

dimension as small as possible), see [AM94] for details.

110

Chapter 15

15 - Approximating the Extent of Lines,
Hyperplanes and Moving Points II

Drug misuse is not a disease, it is a decision, like the decision to step out in front of a moving car. You would call
that not a disease but an error in judgment. When a bunch of people begin to do it, it is a social error, a life-style. In
this particular life-style the motto is “be happy now because tomorrow you are dying,” but the dying begins almost
at once, and the happiness is a memory. ... If there was any “sin,” it was that these people wanted to keep on
having a good time forever, and were punished for that, but, as I say, I feel that, if so, the punishment was far too
great, and I prefer to think of it only in a Greek or morally neutral way, as mere science, as deterministic impartial
cause-and-effect.

– A Scanner Darkly, Philip K. Dick

15.1 More Coresets

15.1.1 Maintaining certain measures of moving points

We show that our techniques can be extended to handle other measure of moving points (width, diam-
eter, etc). Let P = {p1, . . . , pn} be a set of n points in IRd, each moving independently. Let pi(t) =
(pi1(t), . . . , pid(t)) denote the position of point pi at time t. Set P(t) = {pi(t) | 1 ≤ i ≤ n}. If each pi j is a
polynomial of degree at most r, we say that the motion of P has degree r. We call the motion of P linear if
r = 1 and algebraic if r is bounded by a constant.

Given a parameter ε > 0, we call a subset Q ⊆ P an ε-coreset of P for directional width if for any
direction u ∈ S(d−1), we have

(1 − ε)ω(u, P(t)) ≤ ω(u,Q(t)) for all t ∈ IR.

15.1.1.1 Computing an ε-coreset for directional width.

First let us assume that the motion of P is linear, i.e., pi(t) = ai + bit, for 1 ≤ i ≤ n, where ai, bi ∈ IRd. For a
direction u = (u1, . . . , ud) ∈ S(d−1), we define a (d + 1)-variate polynomial

fi(u, t) = 〈pi(t), u〉 = 〈ai + bit, u〉 =
d∑

j=1

ai ju j +

d∑
j=1

bi j · (tu j).

Set F = { f1, . . . , fn}. Then

ω(u, P(t)) = max
i
〈pi(t), u〉 −min

i
〈pi(t), u〉 = max

i
fi(u, t) −min

i
fi(u, t) = EF (u, t).

111

Since F is a family of (d + 1)-variate polynomials, which admits a linearization of dimension 2d (there are
2d monomials), using Theorem 14.5.1, we conclude the following.

Theorem 15.1.1 Given a set P of n points in IRd, each moving linearly, and a parameter ε > 0, we can
compute an ε-coreset of P for directional width of size O(1/ε2d), in O(n + 1/ε2d) time, or an ε-coreset of
size O(1/εd) in O(n + 1/ε3(d)) time.

If the degree of motion of P is r > 1, we can write the d-variate polynomial fi(u, t) as:

fi(u, t) = 〈pi(t), u〉 =
〈 r∑

j=0

ai jt j, u
〉
=

r∑
j=0

〈
ai jt j, u

〉
where ai j ∈ IRd. A straightforward extension of the above argument shows that fi’s admit a linearization of
dimension (r + 1)d. Using Theorem 14.5.1, we obtain the following.

Theorem 15.1.2 Given a set P of n moving points in IRd whose motion has degree r > 1 and a parameter
ε > 0, we can compute an ε-coreset for directional width of P of size O(1/ε(r+1)d) in O(n + 1/ε(r+1)d) time,
or of size O(1/ε(r+1)d/2) in O(n + 1/ε3(r+1)d/2) time.

15.1.2 Minimum-width cylindrical shell

Let P = {p1, . . . , pn} be a set of n points in IRd, and a parameter ε > 0. Let w∗ = w∗(P) denote the width
of the thinnest cylindrical shell, the region lying between two co-axial cylinders, containing P. Let d(`, p)
denote the distance between a point p ∈ IRd and a line ` ⊂ IRd. If we fix a line `, then the width of the
thinnest cylindrical shell with axis ` and containing P is w(`, P) = maxp∈P d(`, p) − minp∈P d(`, p). A line
` ∈ IRd not parallel to the hyperplane xd = 0 can be represented by a (2d − 2)-tuple (x1, . . . , x2d−2) ∈ IR2d−2:

` = {p + tq | t ∈ IR} ,

where p = (x1, . . . , xd−1, 0) is the intersection point of `with the hyperplane xd = 0 and q = (xd, . . . , x2d−2, 1)
is the orientation of ` (i.e., q is the intersection point of the hyperplane xd = 1 with the line parallel to `
and passing through the origin). (The lines parallel to the hyperplane xd = 0 can be handled separately by a
simpler algorithm, so let us assume this case does not happend.) The distance between ` and a point p is the
same as the distance of the line `′ = {(p − p) + tq | t ∈ IR} from the origin; see Figure 15.1. The point y on `′

closest to the origin satisfies y = (p − p) + tq for some t, and at the same time 〈y, q〉 = 〈(p − p) + tq, q〉 = 0,
which implies that t = − 〈(p − p), q〉 /‖q‖2. Thus,

d(`, p) =‖y‖ =‖(p − p) + tq‖ =

∥∥∥∥∥∥(p − p) −
[〈p − p, q〉]q

‖q‖2

∥∥∥∥∥∥ ,
Define fi(`) = fi(p, q) = d(`, pi), and set F = { fi | pi ∈ P}. Then w∗ = minx∈IR2d−2 EF (x). (We assume
for simplicity that the axis of the optimal shell is not parallel to the hyperplane xd = 0.) Let f ′i (p, q) =
‖q‖2 · fi(p, q) =

∥∥∥‖q‖2 (p − pi) − 〈p − pi, q〉 q
∥∥∥, and set F ′ =

{
f ′1 , . . . , f ′n

}
.

Define gi(p, q) =
(

f ′i (p, q)
)2

, and let G = {g1 . . . , gn}. Then gi is a (2d − 2)-variate polynomial and has
O(d2) monomials. Therefore G admits a linearization of dimension O(d2). By Theorem 14.5.1, we compute
a O(ε2)-coreset of G of size O

(
1/εd2)

in O
(
n + 1/εO(d2)

)
. This in turn correspons to a ε-coreset of F ′, by

Theorem 14.6.1. It is now easy to verfiy that this corresponds to a ε-coreset (for the extent) for F . Finally,
this corresponds to a subset S ⊆ P, such that S is a coreset of P for w(`,P). Formally, a subset S ⊆ P is a
ε-coreset for cyilindrical shell width , if

w(`, S) ≥ (1 − ε)w(`,P), for all v ∈ S(d−1).

112

�

�

�

� ��� �

���
	��

���	��� ���

Figure 15.1: Parametrization of a line ` in IR3 and its distance from a point p; the small hollow circle on ` is
the point closest to p.

Thus, we can compute in O(n + 1/εO(d2)) time a set Q ⊆ P of 1/εO(d2) points so that for any line `,
w(`, P) ≥ w(`,Q) ≥ (1 − ε)w(`, P) as well as a cylindrical shell of width at most (1 + ε)w∗(P) that contains
P. Hence, we conclude the following.

Theorem 15.1.3 Given a set P of n points in IRd and a parameter ε > 0, we can compute in O(n+ 1/εO(d2))
time a subset S ⊆ P of size O(1/εO(d2)) so that for any line ` in IRd, we have w(`, S) ≥ (1 − ε)w(`, P).

Note, that Theorem 15.1.3 does not compute the optimal cyilinder, it just computes a small coreset for
this problem. Clearly, we can now run any brute force algorithm on this coreset. This would result in
running time O(n + 1/εO(d4)), which would output a cylinder which if expanded by factor 1 + ε, will cover
all the points of P. In fact, the running time can be further improved.

15.2 Exercises

15.3 Bibliographical notes

Section 15.1.1 is from Agarwal et al. [AHV04], and the results can be (very slightly) improved by treating
hte direction as (d − 1)-dimensional entity, see [AHV04] for details.

Theorem 15.1.3 is also from [AHV04]. The improved running time to compute the approximate cylinder
mentioned in the text, follows by a more involved algorithm, which together with the construction of the
coreset, also compute a compact representation of the extent of the coreset. The technical details are not triv-
ial, and we skip them. In particular, the resulting running time for computing the approximate cylinderical
shell is O(n + 1/εO(d2)). See [AHV04] for more details.

Computing a compact representation of the extent of hyperplanes. FILL IN

113

114

Chapter 16

16 - Approximation Using Shell Sets

“And so ended Svejk’s Budejovice anabasis. It is certain that if Svejk had been granted liberty of movement he
would have got to Budejovice on his own. However much the authorities may boast that it was they who brought
Svejk to his place of duty, this is nothing but a mistake. With Svejk energy and irresistible desire to fight, the
authorities action was like throwing a spanner into the works.”

– – The good soldier Svejk, Jaroslav Hasek

16.1 Covering problems, expansion and shell sets

Consider a set P of n points in IRd, that we are interested in covering by the best shape in a family of shapes
F. For example, F might be the set of all balls in IRd, and we are looking for the minimum enclosing ball of
P. A ε-coreset S ⊆ P would guarantee that any ball that covers S will cover the whole point set if we expand
it by (1 + ε).

However, sometimes, computing the coreset is computationally expensive, the coreset does not exist at
all, or its size is prohibitively large. It is still natural to look for a small subset S of the points, such that
finding the optimal solution for S generates (after appropriate expansion) an approximate solution to the
original problem.

Definition 16.1.1 (Shell sets) Given a set P of points (or geometric objects) in IRd, and F be a family of
shapes in IRd. Let f : F → IR be a target optimization function, and assume that there is a natural expansion
operation defined over F. Namely, given a set r ∈ F, one can compute a set (1 + ε)r which is the expansion
of r by a factor of 1 + ε. In particular, we would require that f ((1 + ε)r) ≤ (1 + ε) f (r).

Let f opt(P) = minr∈F,P⊆r f (r) be the shape in F that bests fits P.
Furthermore, assume that f opt(·) is a monotone function, that is for A ⊆ B ⊆ P we have f opt(A) ≤ f opt(B).
A subset S ⊆ P is a ε-shell set for P, if SlowAlg on a set B that contains S, if the range r returned

by SlowAlg(S) covers S, (1 + ε)r covers P, and f (r) ≤ (1 + ε) f opt(S). Namely, the range (1 + ε)r is an
(1 + ε)-approximation to the optimal range of F covering P.

A shell set S is a monotone ε-shell set if for any subset B containing S, if we apply SlowAlg(B) and
get the range r, then P is contained inside (1 + ε)r and r covers B.

Note, that ε-shell sets are considerably more restricted and weaker than coresets. Of course, a ε-coreset
is automatically a (monotone) ε-shell set. Note also, that if a problem has a monotone shell set, then to
approximate it efficiently, all we need to do is to find some set, hopefully small, that contains the shell set.

115

ComputeShellSet(P)
We initialize all the points of P to have weight 1, and we repeatedly do the following:

• Pick a random sample R from P of size r = O((α/δ) log(α/δ)), where δ = 1/(4kopt). With
constant probability R is a δ-net for P by Theorem 12.2.5.

• Compute, using SlowAlg(R) the range r in F, such that (1 + ε)r covers R and realizes
(maybe approximately) f opt(R).

• Compute the set S of all the points of P outside (1 + ε)r. If the total weight of those points
exceeds δw(P) then the random sample is bad, and return to the first step.

• If the set S is empty then return R as the required shell set, and r as the approximation.
• Otherwise, double the weight of the points of S .

When done, return r and the set R.

Figure 16.1: The algorithm for approximating optimal cover and computing a small shell set.

16.2 The Setting

Let P be a set of n points in IRd, and let F be a family of shapes in IRd. Furthermore, let us assume that the
range space X = (IRd,F) has low VC dimension α. Finally, assume that we want to compute the best shape
in F that covers P under a target function f (·). Namely, we would like to compute f opt(P) = minr∈F,P⊆B f (r).

Assume that f opt(·) is a monotone target function. Namely, if S ⊆ T ⊆ P then f opt(S) ≤ f opt(T). This
monotonicity property holds (almost) always for problems with small coresets.

Next, assume that we only have a slow algorithm SlowAlgthat can solve (maybe approximately) the
given optimization problem. Namely, given a subset S ⊆ P, it computes a range r ∈ F such that f (r) ≤
(1 + ε) f opt(S), and the running time of SlowAlg is TSlowAlg(|S |).

Finally, assume that we know that a small monotone shell set of size kopt exists for P, but unfortunately
we have no way of computing it explicitly (because, for example, we only have a constructive proof of the
existence of such a shell set).

A natural question is how to compute this small shell set quickly, or alternatively compute an approxi-
mate shell set which is not much bigger. Clearly, once we have such a small shell set, we can approximate
the optimal cover for P in F.

Example. We start with a toy example, a more interesting example is given below. Let F be the set of
all balls in IRd, and let f (r) be the radius of the ball r ∈ F. It is known that there is a ε-shell set for the
minimum radius ball of size O(1/ε) (we will prove this fact later in the course). The expansion here is the
natural enlargement of a ball radius.

16.3 The Algorithm for Computing the Shell Set

Assume, that a kind oracle, told us that the there exist a monotone ε-shell set for P of size kopt, and that F

is of VC dimension α. The algorithm to approximate the optimal cover of P and extract a small shell set is
depicted in Figure 16.1. Note, that if we do not have a kind oracle at our possession, we can just perform a
binary search for the right value of kopt.

There are several non-trivial technicalities in implementing this algorithm The first one is that Theo-
rem 12.2.5 is for unweighted sets, but by replicating a point p of wp times (conceptually), where wp is the
weight of p, it follows that it still holds in this weighted settings.

116

Random sampling from a weighted set. Another technicality is that the weights might be quite large.
To overcome this, we will store the weight of an element by storing an index i, such that the weight of the
element is 2i, We still need to do m independent draws from this weighted set. The easiest way to do that, is
to compute the element e in of P in maximum weight, and observing that all elements of weight ≤ we/n10

have weight which is so tiny, so that it can be ignored, where wp is the weight of e. Thus, normalize all
the weights of by dividing them by 2blg we/n10c, and remove all elements with weights smaller than 1. For a
point p, let ω̂(p) denote its normalized weight. Clearly, all the normalized weights are integers in the range
1, . . . , 2n10. Thus, we now have to pick points for a set with (small) integer weights. Place the elements
in an array, and compute the prefix sum array of their weights. That is ak =

∑k
i=1 ω̂(pi), for i = 1, . . . , n.

Next, pick a random number γ uniformly in the range [0, an], and using a binary search, find the j, such that
a j−1 ≤ γ < a j. This picks the points p j to be in the random sample. This requires O(n) preprocessing, but a
single random sample can now be done in O(log n) time. We need to perform r independent samples. Thus,
this takes O(n + r log n).

16.3.1 Correctness

Lemma 16.3.1 The algorithm described above computes a ε-shell set for P of size O(r) = O(koptα log
(koptα)). The algorithm performs O(4kopt ln n) iterations.

Proof: We only need to prove that the algorithm terminates in the claimed number of iterations. Observe,
that with constant probability (say ≥ 0.9), the sample Ri, in the ith iteration, is an δ-net for Pi−1 (the weighted
version of P in the end of the (i−1)th iteration), in relation to the ranges of F. Observe, that this also implies

that Ri is a δ-net for the complement family F =

{
IRd \ r

∣∣∣∣ r ∈ F

}
, with constant probability (since (IRd,F)

and (IRd,F) have the same VC dimension).
If Ri is such a δ-net, then we know that range r we compute completely covers the set Ri, and as such,

for any range r′ ∈ F that avoids Ri we have w(r′) ≤ δw(Pi). In particular, this implies that ω(S i) ≤ δw(Pi−1).
If not, than Ri is not a δ-net, and we resample. The probability for that is ≤ 0.1. As such, we expect to repeat
this O(1) times in each iteration, till we have w(S i) ≤ δw(Pi−1).

Thus, in each iteration, the algorithm doubles the weight of at most a δ-fraction of the total point set.
Thus w(Pi) ≤ (1 + δ)w(Pi−1) = n(1 + δ)i.

On the other hand, consider the smallest shellS of P, which is of size kopt. If all the elements ofS are in
Ri, then the algorithm would have terminated, since S is a monotone shell set1. Thus, if we continue to the
next iteration, it must be that |S ∩ S i| ≥ 1. In particular, we are doubling the weight of at least one element
of the shell set. We conclude that the weight of Pi in the ith iteration, is at least

kopt2i/kopt ,

since in every iteration at least one element of S gets its weight redoubled. Thus, we have

exp
(

i
2kopt

)
≤ 2i/kopt ≤ kopt2i/kopt ≤ (1 + δ)in ≤ n · exp(δi) = n · exp

(
i

4kopt

)
.

Namely, exp
(

i
4kopt

)
≤ n. Implying that i ≤ 4kopt ln n. Namely, after 4kopt ln n iterations the algorithm

terminates, and thus returns the required shell set and approximation.

Theorem 16.3.2 Under the settings of Section 16.2, one can compute a monotone ε-shell set for P of size
O(koptα log(koptα)). The running time of the resulting algorithm is O

(
(n + T (koptα log(koptα)))kopt ln n

)
, with

high probability, for kopt ≤ n/ log3 n. Furthermore, one can compute an ε-approximation to f opt(P) in the
same time bounds.

117

Proof: The algorithm is described above. The bounds on the running time follows from the bounds on
the number of iterations from Lemma 16.3.1. The only problem we need to address, is that the resampling
would repeatedly fail, and the algorithm would spend exuberant amount of time on resampling. However,
the probability of failure in sampling is ≤ 0.1. Furthermore, we need at most 4kopt log n good samples
before the algorithm succeeds. It is now straightforward to show using Chernoff inequality, that with high
probability, we will perform at most 8kopt log n samplings before achieving the required number of good
samples.

16.3.2 Set Covering in Geometric Settings

Interestingly, the algorithm we discussed, can be used to get an improved approximation algorithm for the
set covering problem in geometric settings. We remind the reader that set covering is the following problem.

Problem: Set Covering

Instance: (S ,F)
S - a set of n elements
F - a family of subsets of S , s.t.

⋃
X∈F

X = S .

Question: What is the set X ⊆ F such that X contains as few sets as possible, and X
covers S ?

The natural algorithm for this problem is the greedy algorihtm that repeatedly pick the set in the family
F that covers the largest number of uncovered elements in S . It is not hard to show that this provides a
O(|S |) apporximation. In fact, it is known that set covering can be better approximated unless P = NP.

Assume, however, that we know that the VC dimension of the set system (S ,F) has VC dimension α. In
fact, we need a stronger fact, that the dual family

S =
(
F,

{
U(s,F)

∣∣∣∣ s ∈ S
})
,

is of low VC dimension α, where U(s,F) =
{
X

∣∣∣∣ s ∈ X, X ∈ F

}
.

It turns out that the algorithm of Figure 16.1 also works in this setting. Indeed, we set the weight of the
sets to 1, we pick a random sample of sets. IF they cover the universe S , we are done. Otherwise, there
must be a point p which is not covered. Arguing as above, we know that the random sample is a δ-net of
(the weighted) S, and as such all the sets containing p have total weight ≤ δ(S). As such, double the weight
of all the sets covering p, and repeat. Arugeing as above, one can show that the algorithm terminates after
O(kopt log m) iterations, where m is the number of sets, where kopt is the number of sets in the optimal cover
of S . Furhtermore, the size of the cover generated is O(koptα log(koptα)).

Theorem 16.3.3 Let (S ,F) be a range space, such that the dual range space S has VC dimension α.
Then, one can compute a set covering for S using sets of F using O(koptα log(koptα)) sets. This requires
O(kopt log n) iterations, and takes polynomial time.

Note, that we did not provide in Theorem 16.3.3 exact running time bounds. Usually in geometric
settings, one can get improved running time using the underlying geometry. Interestingly, the property
that the dual system has low VC dimension “buys” one a lot, as it implies that one can do O(log kopt)
approximation, instead of O(log n) in the general case.

118

16.4 Application - Covering Points by Cylinders

16.5 Clustering and Coresets

We would like to cover a set P of n points IRd by k balls, such that the radius of maximum radius ball is
minimized. This is known as the k-center clustering problem (or just k-center). The price function, in this
case, rdk(P) is the radius of the maximum radius ball in the optimal solution.

Definition 16.5.1 Let P be a point set in IRd, 1/2 > ε > 0 a parameter.
For a cluster c, let c(δ) denote the cluster resulting form expanding c by δ. Thus, if c is a ball of radius

r, then c(δ) is a ball of radius r + δ. For a set C of clusters, let

C(δ) =
{
c(δ)

∣∣∣∣ c ∈ C}
,

be the additive expansion operator; that is, C(δ) is a set of clusters resulting form expanding each cluster of
C by δ.

Similarly,

(1 + ε)C =
{
(1 + ε)c

∣∣∣∣ c ∈ C}
,

is the multiplicative expansion operator, where (1+ ε)c is the cluster resulting from expanding c by a factor
of (1 + ε). Namely, if C is a set of balls, then (1 + ε)C is a set of balls, where a ball c ∈ C, corresponds to a
ball radius (1 + ε) radius(c) in (1 + ε)C.

A set S ⊆ P is an (additive) ε-coreset of P, in relation to a price function radius, if for any clustering C
of S, we have that P is covered by C(ε radius(C)), where radius(C) = maxc∈C radius(c). Namely, we expand
every cluster in the clustering by an ε-fraction of the size of the largest cluster in the clustering. Thus, if C
is a set of k balls, then C(ε f (C)) is just the set of balls resulting from expanding each ball by εr, where r is
the radius of the largest ball.

A set S ⊆ P is a multiplicative ε-coreset of P, if for any clustering C of S, we have that P is covered by
(1 + ε)C.

Lemma 16.5.2 Let P be a set of n points in IRd, and ε > 0 a parameter. There exists an additive ε-coreset
for the k-center problem, and this coreset has O(k/εd) points.

Proof: Let C denote the optimal clustering of P. Cover each ball of C by a grid of side length εropt/d,
where ropt is the radius of the optimal k-center clustering of P. From each such grid cell, pick one points of
P. Clearly, the resulting point set S is of size O(k/εd) and it is an additive coreset of P.

The following is a minor extension of an argument used in [APV02].

Lemma 16.5.3 Let P be a set of n points in IRd, and ε > 0 a parameter. There exists a multiplicative
ε-coreset for the k-center problem, and this coreset has O

(
k!/εdk

)
points.

Proof: For k = 1, the additive coreset of P is also a multiplicative coreset, and it is of size O(1/εd).
As in the proof of Lemma 16.5.2, we cover the point set by a grid of radius εropt/(5d), let SQ the set of

cells (i.e., cubes) of this grid which contains points of P. Clearly, |SQ| = O(k/εd).
Let S be the additive ε-coreset of P. Let C be any k-center clustering of S, and let ∆ be any cell of SQ.
If ∆ intersects all the k balls of C, then one of them must be of radius at least (1 − ε/2)rd(P, k). Let c be

this ball. Clearly, when we expand c by a factor of (1+ ε) it would completely cover ∆, and as such it would
also cover all the points of ∆ ∩ P.

119

Thus, we can assume that ∆ intersects at most k − 1 balls of C. As such, we can inductively compute an
ε-multiplicative coreset of P ∩ ∆, for k − 1 balls. Let Q∆ be this set, and let Q = S ∪

⋃
∆∈SQ Q∆.

Note that |Q| = T (k, ε) = O(k/εd)T (k − 1, ε) + O(k/εd) = O
(
k!/εdk

)
. The set Q is the required multi-

plicative coreset by the above argumentation.

16.6 Union of Cylinders

Let assume we want to cover P by k cylinders of minimum maximum radius (i.e., fit the points to k lines).

Formally, consider G to be the set of all cylinders in IRd, and let F =

{
c1 ∪ c2 ∪ . . . ∪ ck

∣∣∣∣ c1, . . . , ck ∈ F

}
be the set, which its memebers are union of k cyilinders. For C ∈ F, let f (C) = maxc∈C radius(c). Let
f opt(P) = minC∈F,P⊆C f (C).

One can compute the optimal cover of P by k cylinders in O(n(2d−1)k+1) time, see below for details.
Furthermore, (IRd,F) has VC dimesnion α = O(dk log(dk)). Finally, one can show that this set of cylin-
ders has ε-coreset of small size ???. Thus, we would like to compute a small ε-coreset, and compute an
approximation quickly.

16.6.0.1 Covering by Cylinders - A Slow Algorithm

It is easy to verify (but tedios) that the VC dimension of (IRd,Fk) is bounded by α = O(dk log(dk)). Fur-
thermore, it has a small coreset (see Section ??). Furthermore, given a set P of n points, and consider its
minimum radius enclosing cylinder c. The cyilinder c has (at most) 2d−2 points of P on its boundary which
if we compute their minimum enclosing cylinder, it is c. Note, that c might contain even more points on
its boundary, we are only claiming that there is a defining subset of size 2d − 1. This is one of those “easy
to see” but very tedious to verify facts. Let us quicly outline an intuitive explanation (but not a proof!) of
this fact. Consider the set of lines Ld of lines in IRd. Every member of ` ∈ Ld can be parameterized by
the closest point p on ` to the origin, and consider the hyperplane that passes through p and is orthogonal
to op, where o is the origin. The line ` now can be parameterized by its orientation in h. This requires
specifying a point on the d − 2 dimensional unit hypersphere S(d−2). Thus, we can specify ` using 2d − 2
real numbers. Next, define for each point pi ∈ P, its distance gi(`) from ` ∈ Ld. This is a messy but a nice
algebraic function defined over 2d − 2 variables. In particualr, gi(`) induces a surface in 2d − 1 dimensions
(i.e., ∪`(`, gi(`)). Consider the arrangement A of those surfaces. Clearly, the minimum volume cylinder
lies on a feature of this arrangement, thus to specify the minimum radius cylinder, we just need to specify
the feature (i.e., vertex, edge, etc) of the arrangement that contains this point. However, every feature in an
arrangement of well behaved surfaces in 2d − 1 dimensions, can be specified by 2d − 1 surfaces. (This is
intuitvely clear but requires a proof - an intersection of k surfaces, is going to be d − k dimensional, where d
is the dimension of the surfaces. If we add a surface to the intersection and it does not reduce the dimension
of the intersection, we can reject it, and take the next surface passing through the feature we care about.).
Every such surface corresponds to a original point.

Thus, if we want to specify a minimum radius cylinder induced by a subset of P, all we need to specify
are 2d − 1 points. To specify k such cylinders, we need to specify M = (2d − 1)k points. This immediately
implies that we can find the optimal cover of P by k cylinders in O(n(2d−1)k+1) time, but just enumerating all
such subsets of M points, and computing for each subset its optimal cover (note, that the O notdation hids a
constant that depends on k and d).

Thus, we have a slow algorithm that can compute the optimal cover of P by k cylinders.

120

16.6.1 Existence of a Small Coreset

Since the coreset in this case is either multiplicative or additive, it is first important to define the expansion
operation carefully. In particualr, if C is a set of k cylinders, the (1 + ε)-expanded set of cylinders would be
C(ε radius(C)), where radius(C) is the radius of the largest cylinder in C.

Let P be the given set of n points in IRd. Let Copt be the optimal cover of P by k cylinders. For each
cylinder of Copt place O(1/εd−1) parallel lines inside it, so that for any point inside the union of the cylinders,
there is a line in this family in distance ≤ (ε/10)ropt from it. Let L denote this set of lines.

Let P′ be the point set resulting from snapping each point of P to its closest point on L. We claim that P′
is a (ε/10)-coreset for P, as can be easily verified. Indeed, if a set C of k cylinders cover P′, then the largest
cylinder must be of radius r ≥ (1 − ε/10)rd(P, k), where rd(P, k) is the radius of the optimal coverage of P
by k cylinders. Otherwise, rd(P, k) ≤ r + (ε/10)rd(P, k) < rd(P, k).

The set P′ lies on O(1/εd−1)-lines. Let ` ∈ L be such a line, and consider the point-set P′`. Assume
for a second that there was a multiplicative ε-coreset T` on this line. If T` is covered by k cylinders, each
cylinder intersect ` along an interval. Expanding each such cylinder by a factor of (1 + ε) is equivalent to
expanding each such intersecting interval by a factor of 1 + ε. However, by Lemma 16.5.3, we know that
such a multiplicative (ε/10)-coreset exists, of size O(1/εk). Thus, let T` be the multiplicative (ε/10)-coreset
for P′` for k intervals on the line. Let T = ∪`∈LT`. We claim that T is a (additive) (ε/10)-coreset for P′. This
is trivial, since being a multiplicative coreset for each line imoplies that the union is a multiplicative coreset,
and a δ-multiplicative coreset is also a δ-additive coreset. Thus, T is a ((1 + ε/10)2 − 1)-coreset for P. The
only problem is that the points of T are not points in P. However, they corresond to points in P which are in
distance at most (ε/10)rd(P, k) from them. Let S be the corresponding set of points of P. It is now easy to
verify that S is indeed a ε-coreset for P, since ((1 + ε/10)2 − 1) + ε/10 ≤ ε. We summerize:

Theorem 16.6.1 Let P be a set of n points in IRd. There exists a (additive) ε-coreset for P of size O(k/εd−1+k)
for covering the points by k-cylinders of minimum radius.

16.7 Bibliographical notes

Section 16.3.2 is due to Clarkson [Cla93]. This technique was used to approximate terrains [?], and covering
polytopes [Cla93].

The observation that this argument can be used to speedup approximation algorithms is due to Agarwal
et al. [APV02]. The discussion of shell sets is implict in the work of Bădoiu et al. [BHI02].

121

122

Chapter 17

Duality

I don’t know why it should be, I am sure; but the sight of another man asleep in bed when I am up, maddens me. It
seems to me so shocking to see the precious hours of a man’s life - the priceless moments that will never come back
to him again - being wasted in mere brutish sleep.

– – Jerome K. Jerome, Three men in a boat

Duality is a transformation that maps lines and points into points and lines, respectively, while preserving
some properties in the process. Despite its relative simplicity, it is a powerful tool that can dualize what
seems like “hard” problems into easy dual problems.

17.1 Duality of lines and points

Consider a line ` ≡ y = ax+ b in two dimensions. It is being parameterized by two constants a and b, which
we can interpret, paired together, as a point in the parametric space of the lines. Naturally, this also gives us
a way of interpreting a point as defining coefficients of a line. Thus, conceptually, points are lines and lines
are points.

Formally, the dual point to the line ` ≡ y = ax + b is the point `? = (a,−b). Similarly, for a point
p = (c, d) its dual line is p? = cx − d. Namely,

p = (a, b) ⇒ p? : y = ax − b

` : y = cx + d ⇒ `? = (c,−d).

We will consider a line ` ≡ y = cx + d to be a linear function in one dimension, and let `(x) = cx + d.
A point p = (a, b) lies above a line ` ≡ y = cx + d if p lies vertically above `. Formally, we have that

b > `(a) = ca + d. We will denote this fact by p � `. Similarly, the point p lies below ` if b < `(a) = ca + d,
denoted by p ≺ `.

A line ` supports a convex set S ⊆ IR2 if it intersects S but the interior of S lies completely on one side
of `.

Basic properties. For a point p = (a, b) and a line ` ≡ y = cx + d, we have:

(P1) p?? =
(
p?

)?
= p.

Indeed, p? ≡ y = ax − b and
(
p?

)?
= (a,−(−b)) = p.

(P2) The point p lies above (resp. below, on) the line `, if and only if the point `? lies above (resp. below,
on) the line p?. (Namely, a point and a line change their vertical ordering in the dual.)

123

Indeed, p � `(a) if and only if b > ca+ d. Similarly, (c,−d) = `? > p? ≡ y = ax − b if and only if −d > ac− b, which is
equivalent to the above condition.

(P3) The vertical distance between p and ` is the same as that between p? and `?.

Indeed, the vertical distance between p and ` is |b− `(a)| = |b− (ca+ d)|. The vertical distance between `? = (c,−d) and
p? ≡ y = ax − b is |(−d) − p?(c)| = | − d − (ac − b)| = |b − (ca + d)|.

(P4) The vertical distance δ(`, ~) between two parallel lines ` and ~ ≡ y = ax + e is the same as the length
of the vertical segment `?~?.

The vertical distance between ` and ~ is |b − e|. Similarly, since `? = (a,−b) and ~? = (a,−e) we have that the vertical
distance between them is |(−b) − (−e)| = |b − e|.

The missing lines. Consider the vertical line ` ≡ x = 0. Clearly, ` does not have a dual point (specifically,
its hypothetical dual point has an x coordinate with infinite value). In particular, our duality can not handle
vertical lines. To visualize the problem, consider a sequence of non-vertical lines `i that converges to a
vertical line `. The sequence of dual points `?i is a sequence of points that diverges to infinity.

17.1.1 Examples

17.1.1.1 Segments and Wedges

s

p

q
r

`

`?
p?

q?

r?

primal dual

W

Consider a segment s = pq that lies on a line `. Observe, that the dual
of a point r ∈ ` is a line r? that passes through the point `?. In fact, the two
lines p? and q? define two double wedges. Let W be the double wedge
that does not contain the vertical line that passes through `?.

Consider now the point r as it moves along s. When it is equal to p then
its dual line r? is the line p?. Now, as r moves along the segment s the dual
line r? rotates around `?, till it arrives to q? (and then r reaches q).

What about the other wedge? It represents the two rays forming ` \ s. The vertical line through `?

represents the singularity point in infinity where the two rays are “connected” together. Thus, as r travels
along one of the rays (say starting at q) of ` \ s, the dual line r? becomes steeper and steeper, till it becomes
vertical. Now, the point r “jumps” from the “infinite endpoint” of the ray, to the “infinite endpoint” of the
other ray. Simultaneously, the line r? is continuing to rotate from its current vertical position, sweeping over
the whole wedge, till r travels back to p. (The reader that feels uncomfortable with notions line “infinite
endpoint” can rest assured that the author feels the same way. As such, this should be taken as an intuitive
description of whats going on and not a formally correct one.)

17.1.1.2 Convex hull and upper/lower envelopes

x
lower envelope

upper envelope

EL(x)

Consider a set of lines L in the plane. The minimization diagram of L, known
as the lower envelope of L, is the function LL : IR → IR, where we have L(x) =
min`∈L `(x), for x ∈ IR. Similarly, the upper envelope of L is the function U(x) =
max`∈L `(x), for x ∈ IR. The extent of L at x ∈ IR is the vertical distance between the
upper and lower envelope at x; namely, EL(x) = U(x) − L(x).

Computing the lower and/or upper envelopes can be useful. A line might represent a linear constraint,
where the feasible solution must lie above this line. Thus, the feasible region is the region of points that lie
above all the given lines. Namely, the region of the feasible solution is defined by the upper envelope of the

124

lines. The upper envelope is just a polygonal chain made out of two infinite rays and a sequence of segments,
where each segment/ray lies on one of the given lines. As such, the upper envelop can be described as the
sequence of lines appearing on it, and the vertices where they change.

Developing an efficient algorithm for computing the upper envelope of a set of lines is a tedious but
doable task. However, it becomes trivial if one uses duality.

Lemma 17.1.1 Let L be a set of lines in the plane. Let α ∈ IR be an any number, β− = LL(α) and
β+ = UL(α). Let p = (α, β−) and q = (α, β+). Then:

(i) the dual lines p? and q? are parallel, and they are both perpendicular to the direction (α,−1).

(ii) The lines p? and q? support CH(L?).

(iii) The extent EL(α) is the vertical distance between the lines p? and q?.

Proof: (i) We have p? ≡ y = αx− β− and q? ≡ y = αx− β+. These two lines are parallel since they have
the same slope. In particular, they are parallel to the direction (1, α). But this direction is perpendicular to
the direction (α,−1).

(ii) By property (P2), we have that all the points of L? are below (or on) the line p?. Furthermore, since
p is on the lower envelope of L it follows that p? must pass through one of the points L?. Namely, p?

supports CH(L?) and it lies above it. Similar argument applies to q?.
(iii) We have that EL(α) = β+ − β−. The vertical distance between the two parallel lines p? and q? is

q?(0) − p?(0) = −β+ − (−β−) = β+ − β−, as required.

`

~

V
p

p? ~?`?

CH(L?)Thus, consider a vertex p of the upper envelope of the set of lines L.
The point p is the intersection point of two lines ` and ~ of L. Consider the
dual set of points L? and the dual line p?. Since p lies above (or on) all the
lines of L, by the above discussion, it must be that the line p? lies below (or on) all the points of L?. On
the other hand, the line p? passes through the two points `? and ~?. Namely, p? is a line that supports the
convex hull of L? and it passes through two of its vertices.

lower convex chain

upper convex chain

p
q

q? p?

The convex hull of L? is a convex polygon P̂, which can be broken into two convex
chains by breaking it at the two extreme points in the x direction. We will refer to the upper
polygonal chain of the convex hull as upper convex chain and to the other one as lower
convex chain. In particular, two consecutive segments of the upper envelope corresponds
to two consecutive vertices on the lower chain of the convex hull of L?. Thus, the convex-
hull of L? can be decomposed into two chains. The lower chain corresponds to the upper
envelope of L, and the upper chain corresponds to the lower envelope of L. Of special
interest are the two x extreme points p and q of the convex hull. They are the dual of the
two lines with the highest/smallest slope in L (we are assuming here that the slopes of lines
in L are distinct). These two lines appear on both the upper and lower envelope of the lines
and they contain the four infinite rays of these envelopes.

Lemma 17.1.2 Given a set L of n lines in the plane, one can compute its lower and upper envelopes in
O(n log n) time.

Proof: One can compute the convex hull of n points in the plane in O(n log n) time. Thus, computing the
convex hull of L? and dualizing the upper and lower chains of CH(L?) results in the required envelopes.

125

17.2 Higher Dimensions

The above discussion can be easily extended to higher dimensions. We provide the basic properties without
further proof, since they are easy extension of the two dimensional case. A hyperplane h : xd = b1x1 + · · ·+

bd−1xd−1 − bd in IRd can be interpreted as a function from IRd−1 to IR. Given a point p = (p1, . . . , pd) let
h(p) = b1 p1+ · · ·+bd−1 pd−1−bd. In particular, a point p lies above the hyperplane h if pd > h(p). Similarly,
p is below the hyperplane h if pd < h(p). Finally, a point is on the hyperplane if h(p) = pd.

The dual of a point p = (p1, . . . , pd) ∈ IRd is a hyperplane p? ≡ xd = p1x1 + · · · pd−1xd−1 − pd, and the
dual of a hyperplane h ≡ xd = a1x1 + a2x2 + · · ·+ ad−1xd−1 + ad is the point h? = (a1, . . . , ad−1,−ad). There
are several alternative definitions of duality, but they are essentially similar. Summarizing:

p = (p1, . . . , pd) ⇒ p? ≡ xd = p1x1 + · · · pd−1xd−1 − pd

h ≡ xd = a1x1 + a2x2 + · · · + ad−1xd−1 + ad ⇒ h? = (a1, . . . , ad−1,−ad).

In the following we would slightly abuse notations, and for a point p ∈ IRd we will refer to (p1, . . . , pd−1,LH (p))
as the point LH (p). Similarly, UH (p) would denote the corresponding point on the upper envelope ofH .

The proof of the following lemma is an easy extension of the 2d case.

Lemma 17.2.1 For a point p = (b1, . . . , bd), we have:

(i) p?? = p.

(ii) The point p lies above (resp. below, on) the hyperplane h, if and only if the point h? lies above (resp.
below, on) the hyperplane h?.

(iii) The vertical distance between p and h is the same as that between p? and h?.

(iv) The vertical distance δ(h, g) between two parallel hyperplanes h and g is the same as the length of the
vertical segment h?g?.

(v) Let H be the set of hyperplanes in IRd. For any x ∈ IRd−1, the hyperplanes h and g dual to the points
LH (p) and UH (p), respectively, are parallel, normal to the vector (p,−1) ∈ IRd, and supports the set
CH(H?). Furthermore, the points ofH? lies below (resp., above) the hyperplane h (resp., above g).
Also, EH (p) is the vertical distance between h and g.

(vi) Computing the lower and upper envelope of H is equivalent to computing the convex hull of the dual
set of pointsH?.

17.3 Exercises

Exercise 17.3.1 Prove Lemma 17.2.1

Exercise 17.3.2 Show a counter example proving that no duality can preserve (exactly) orthogonal distances
between points and lines.

17.4 Bibliographical notes

The duality discussed here should not be confused with linear programming duality [Van97]. Although the
two topics seems to be connected somehow, the author is unaware of a natural and easy connection.

Duality of lines and points rises naturally in projective geometry, where it is a fundamental tool.
The “missing lines phenomena” is inherent to all dualities, since the space of a lines in the plane has the

topology of an open Möbius strip which is not homeomorphic to the plane. There are a lot of other possible
dualities, and the one presented here is the one most useful for our purposes.

126

A natural question is whether one can find a duality that preserves the orthogonal distances between
lines and points. The surprising answer is no, as Exercise 17.3.2 testifies. In fact, it is not too hard to show
using topological arguments that any duality must distort such distances arbitrarily bad [FH06].

Open Problem 17.4.1 Given a set P of n points in the plane, and a set L of n lines in the plane, consider
the best possible duality (i.e., the one that minimizes the distortion of orthogonal distances) for P and L.
What is the best distortion possible, as a function of n?

Here, we define the distortion of the duality as

max
p∈P,`∈L

(
d(p, `)

d(p?, `?)
,

d(p?, `?)
d(p, `)

)
.

A striking (negative) example of the power of duality is the work of Overmars and van Leeuwen [OvL81]
on the dynamic maintenance of convex hull in 2d, and the maintenance of the lower/upper envelope of lines
in the plane. Clearly, by duality, the two problems are identical. However, the authors (smart people indeed)
did not observe it, and the paper is twice longer than it should be solving the two problems separately.

Duality is heavily used throughout computational geometry, and it is hard to imagine managing without
it. Results and techniques that use duality include bounds on k-sets/k-levels [Dey98], partition trees [Mat92],
and coresets for extent measure [AHV04] (this is a random short list of relevant results and it is by no means
exhaustive).

Duality, Voronoi Diagrams and Delaunay Triangulations. Given a set P of points in IRd its Voronoi
diagramVoronoi Diagram is a partition of space into cells, where each cell is the region closest to one of
the points of P. The Delaunay triangulation of a point-set is a planar graph (for d = 2) where two points
are connected by a straight segment if there is a ball that touches both points and its interior is empty. It
is easy to verify that these two structures are dual to each other in the sense of graph duality. Maybe more
interestingly, this duality has also an easy geometric interpretation.

Indeed, given P, its Voronoi diagram boils down to the computation of the lower envelope of cones. This
set of cones can be linearized and then, the computation of the Voronoi diagram boils down to computing
the lower envelope of hyperplanes, one hyperplane for each point of P. Similarly, the computation of the
Delaunay triangulation of P can be reduced, after lifting the points to the hyperboloid, to the computation of
the convex hull of the points. In fact, the projection down of the lower part of the convex hull is the required
triangulation. Thus, the two structures are dual to each other also lifting/linearization and direct duality. The
interested reader should check out [dBvKOS00].

127

128

Chapter 18

Finite Metric Spaces and Partitions

18.1 Finite Metric Spaces

Definition 18.1.1 A metric space is a pair (X,d) where X is a set and d : X × X → [0,∞) is a metric,
satisfying the following axioms: (i) d(x, y) = 0 iff x = y, (ii) d(x, y) = d(y, x), and (iii) d(x, y) + d(y, z) ≥
d(x, z) (triangle inequality).

For example, IR2 with the regular Euclidean distance is a metric space.
It is usually of interest to consider the finite case, where X is an n-point set. Then, the function d can be

specified by
(
n
2

)
real numbers. Alternatively, one can think about (X,d) is a weighted complete graph, where

we specify positive weights on the edges, and the resulting weights on the edges comply with the triangle
inequality.

In fact, finite metric spaces rise naturally from (sparser) graphs. Indeed, let G = (X, E) be an undirected
weighted graph defined over X, and let dG(x, y) be the length of the shortest path between x and y in G. It
is easy to verify that (X,dG) is a finite metric space. As such if the graph G is sparse, it provides a compact
representation to the finite space (X,dG).

Definition 18.1.2 Let (X, d) be an n-point metric space. We denote the open ball of radius r about x ∈ X,

by b(x, r) =
{
y ∈ X

∣∣∣∣ d(x, y) < r
}
.

Underling our discussion of metric spaces are algorithmic applications. The hardness of various com-
putational problems depends heavily on the structure of the finite metric space. Thus, given a finite metric
space, and a computational task, it is natural to try to map the given metric space into a new metric where
the task at hand becomes easy.

Example 18.1.3 For example, computing the diameter is not trivial in two dimensions, but is easy in one
dimension. Thus, if we could map points in two dimensions into points in one dimension, such that the
diameter is preserved, then computing the diameter becomes easy. In fact, this approach yields an efficient
approximation algorithm, see Exercise 18.7.3 below.

Of course, this mapping from one metric space to another, is going to introduce error. We would be
interested in minimizing the error introduced by such a mapping.

Definition 18.1.4 Let (X,dX) and (Y,dY) be metric spaces. A mapping f : X → Y is called an embedding,
and is C-Lipschitz if dY (f (x), f (y)) ≤ C · dX(x, y) for all x, y ∈ X. The mapping f is called K-bi-Lipschitz if
there exists a C > 0 such that

CK−1 · dX(x, y) ≤ dY (f (x), f (y)) ≤ C · dX(x, y),

129

for all x, y ∈ X.
The least K for which f is K-bi-Lipschitz is called the distortion of f , and is denoted dist(f). The least

distortion with which X may be embedded in Y is denoted cY (X).

There are several powerful results in this vain, that show the existence of embeddings with low distortion
that would be presented:

1. Probabilistic trees - every finite metric can be randomly embedded into a tree such that the “expected”
distortion for a specific pair of points is O(log n).

2. Bourgain embedding - shows that any n-point metric space can be embedded into (finite dimensional)
metric space with O(log n) distortion.

3. Johnson-Lindenstrauss lemma - shows that any n-point set in Euclidean space with the regular Eu-
clidean distance can be embedded into IRk with distortion (1 + ε), where k = O(ε−2 log n).

18.2 Examples

What is distortion? When considering a mapping f : X → IRd of a metric space (X,d) to IRd, it would
useful to observe that since IRd can be scaled, we can consider f to be an an expansion (i.e., no distances
shrink). Furthermore, we can in fact assume that there is at least one pair of points x, y ∈ X, such that
d(x, y) =‖x − y‖. As such, we have dist(f) = maxx,y

‖x−y‖
d(x,y) .

s
a

b

c

Why distortion is necessary? Consider the a graph G = (V, E) with one vertex s
connected to three other vertices a, b, c, where the weights on the edges are all one
(i.e., G is the star graph with three leafs). We claim that G can not be embedded into
Euclidean space with distortion ≤

√
2. Indeed, consider the associated metric space

(V,dG) and an (expansive) embedding f : V → IRd.
Consider the triangle formed by 4 = a′b′c′, where a′ = f (a), b′ = f (b) and c′ = f (c). Next, consider the

following quantity max(‖a′ − s′‖ ,‖b′ − s′‖ ,‖c′ − s′‖) which lower bounds the distortion of f . This quantity
is minimized when r = ‖a′ − s′‖ = ‖b′ − s′‖ = ‖c′ − s′‖. Namely, s′ is the center of the smallest enclosing
circle of 4. However, r is minimize when all the edges of 4 are of equal length, and are in fact of length
dG(a, b) = 2. It follows that dist(f) ≥ r ≥ 2/

√
3.

It is known that Ω(log n) distortion is necessary in the worst case. This is shown using expanders
[Mat02].

18.2.1 Hierarchical Tree Metrics

The following metric is quite useful in practice, and nicely demonstrate why algorithmically finite metric
spaces are useful.

Definition 18.2.1 Hierarchically well-separated tree (HST) is a metric space defined on the leaves of a
rooted tree T . To each vertex u ∈ T there is associated a label ∆u ≥ 0 such that ∆u = 0 if and only if u is a
leaf of T . The labels are such that if a vertex u is a child of a vertex v then ∆u ≤ ∆v. The distance between
two leaves x, y ∈ T is defined as ∆lca(x,y), where lca(x, y) is the least common ancestor of x and y in T .

A HST T is a k-HST if for a vertex v ∈ T , we have that ∆v ≤ ∆p(v)/k, where p(v) is the parent of v in T .

Note that a HST is a very limited metric. For example, consider the cycle G = Cn of n vertices, with
weight one on the edges, and consider an expansive embedding f of G into a HST H. It is easy to verify,

130

that there must be two consecutive nodes of the cycle, which are mapped to two different subtrees of the
root r of H. Since H is expansive, it follows that ∆r ≥ n/2. As such, dist(f) ≥ n/2. Namely, HSTs fail to
faithfully represent even very simple metrics.

18.2.2 Clustering

One natural problem we might want to solve on a graph (i.e., finite metric space) (X,d) is to partition it into
clusters. One such natural clustering is the k-median clustering, where we would like to choose a set C ⊆ X

of k centers, such that νC(X,d) =
∑

q∈X d(q,C) is minimized, where d(q,C) = minc∈C d(q, c) is the distance
of q to its closest center in C.

It is known that finding the optimal k-median clustering in a (general weighted) graph is NP-complete.
As such, the best we can hope for is an approximation algorithm. However, if the structure of the finite
metric space (X,d) is simple, then the problem can be solved efficiently. For example, if the points of X are
on the real line (and the distance between a and b is just |a − b|), then k-median can be solved using dynamic
programming.

Another interesting case is when the metric space (X,d) is a HST. Is not too hard to prove the following
lemma. See Exercise 18.7.1.

Lemma 18.2.2 Let (X,d) be a HST defined over n points, and let k > 0 be an integer. One can compute the
optimal k-median clustering of X in O(k2n) time.

Thus, if we can embed a general graph G into a HST H, with low distortion, then we could approximate
the k-median clustering on G by clustering the resulting HST, and “importing” the resulting partition to the
original space. The quality of approximation, would be bounded by the distortion of the embedding of G
into H.

18.3 Random Partitions

Let (X, d) be a finite metric space. Given a partition P = {C1, . . . ,Cm} of X, we refer to the sets Ci as
clusters. We write PX for the set of all partitions of X. For x ∈ X and a partition P ∈ PX we denote by P(x)
the unique cluster of P containing x. Finally, the set of all probability distributions on PX is denotedDX.

18.3.1 Constructing the partition

Let ∆ = 2u be a prescribed parameter, which is the required diameter of the resulting clusters. Choose,
uniformly at random, a permutation π of X and a random value α ∈ [1/4, 1/2]. Let R = α∆, and observe
that it is uniformly distributed in the interval [∆/4,∆/2].

The partition is now defined as follows: A point x ∈ X is assigned to the cluster Cy of y, where y is the
first point in the permutation in distance ≤ R from x. Formally,

Cy =

{
x ∈ X

∣∣∣∣ x ∈ b(y,R) and π(y) ≤ π(z) for all z ∈ X with x ∈ b(z,R)
}
.

Let P = {Cy}y∈X denote the resulting partition.
Here is a somewhat more intuitive explanation: Once we fix the radius of the clusters R, we start scoop-

ing out balls of radius R centered at the points of the random permutation π. At the ith stage, we scoop
out only the remaining mass at the ball centered at xi of radius r, where xi is the ith point in the random
permutation.

131

18.3.2 Properties

Lemma 18.3.1 Let (X, d) be a finite metric space, ∆ = 2u a prescribed parameter, and let P be the partition
of X generated by the above random partition. Then the following holds:

(i) For any C ∈ P, we have diam(C) ≤ ∆.

(ii) Let x be any point of X, and t a parameter ≤ ∆/8. Then,

Pr[b(x, t) * P(x)] ≤
8t
∆

ln
b
a
,

where a = |b(x,∆/8)|, b = |b(x,∆)|.

Proof: Since Cy ⊆ b(y,R), we have that diam(Cy) ≤ ∆, and thus the first claim holds.
Let U be the set of points of b(x,∆), such that w ∈ U iff b(w,R) ∩ b(x, t) , ∅. Arrange the points

of U in increasing distance from x, and let w1, . . . ,wb′ denote the resulting order, where b′ = |U |. Let
Ik = [d(x,wk)−t, d(x,wk)+t] and write Ek for the event that wk is the first point in π such that b(x, t)∩Cwk , ∅,
and yet b(x, t) * Cwk . Note that if wk ∈ b(x,∆/8), then Pr[Ek] = 0 since b(x, t) ⊆ b(x,∆/8) ⊆ b(wk,∆/4) ⊆
b(wk,R).

In particular, w1, . . . ,wa ∈ b(x,∆/8) and as such Pr[E1] = · · · = Pr[Ea] = 0. Also, note that if
d(x,wk) < R−t then b(wk,R) contains b(x, t) and as such Ek can not happen. Similarly, if d(x,wk) > R+t then
b(wk,R)∩b(x, t) = ∅ and Ek can not happen. As such, if Ek happen then R−t ≤ d(x,wk) ≤ R+t. Namely, if Ek

happen then R ∈ Ik. Namely, Pr[Ek] = Pr[Ek ∩ (R ∈ Ik)] = Pr[R ∈ Ik] · Pr[Ek |R ∈ Ik]. Now, R is uniformly
distributed in the interval [∆/4,∆/2], and Ik is an interval of length 2t. Thus, Pr[R ∈ Ik] ≤ 2t/(∆/4) = 8t/∆.

Next, to bound Pr[Ek |R ∈ Ik], we observe that w1, . . . ,wk−1 are closer to x than wk and their distance
to b(x, t) is smaller than R. Thus, if any of them appear before wk in π then Ek does not happen. Thus,
Pr[Ek |R ∈ Ik] is bounded by the probability that wk is the first to appear in π out of w1, . . . ,wk. But this
probability is 1/k, and thus Pr[Ek |R ∈ Ik] ≤ 1/k.

We are now ready for the kill. Indeed,

Pr[b(x, t) * P(x)] =
b′∑

k=1

Pr[Ek] =
b′∑

k=a+1

Pr[Ek] =
b′∑

k=a+1

Pr[R ∈ Ik] · Pr[Ek |R ∈ Ik]

≤

b′∑
k=a+1

8t
∆
·

1
k
≤

8t
∆

ln
b′

a
≤

8t
∆

ln
b
a
,

since
∑b

k=a+1
1
k ≤

∫ b
a

dx
x = ln b

a and b′ ≤ b.

18.4 Probabilistic embedding into trees

In this section, given n-point finite metric (X,d). we would like to embed it into a HST. As mentioned
above, one can verify that for any embedding into HST, the distortion in the worst case is Ω(n). Thus, we
define a randomized algorithm that embed (X, d) into a tree. Let T be the resulting tree, and consider two
points x, y ∈ X. Consider the random variable dT (x, y). We constructed the tree T such that distances never
shrink; i.e. d(x, y) ≤ dT (x, y). The probabilistic distortion of this embedding is maxx,y E

[dT (x,y)
d(x,y)

]
. Somewhat

surprisingly, one can find such an embedding with logarithmic probabilistic distortion.

Theorem 18.4.1 Given n-point metric (X, d) one can randomly embed it into a 2-HST with probabilistic
distortion ≤ 24 ln n.

132

Proof: The construction is recursive. Let diam(P), and compute a random partition of X with cluster
diameter diam(P)/2, using the construction of Section 18.3.1. We recursively construct a 2-HST for each
cluster, and hang the resulting clusters on the root node v, which is marked by ∆v = diam(P). Clearly, the
resulting tree is a 2-HST.

For a node v ∈ T , let X(v) be the set of points of X contained in the subtree of v.
For the analysis, assume diam(P) = 1, and consider two points x, y ∈ X. We consider a node v ∈ T to

be in level i if level(v) =
⌈
lg∆v

⌉
= i. The two points x and y correspond to two leaves in T , and let û be the

least common ancestor of x and y in t. We have dT (x, y) ≤ 2level(v). Furthermore, note that along a path the
levels are strictly monotonically increasing.

In fact, we are going to be conservative, and let w be the first ancestor of x, such that b = b(x,d(x, y))
is not completely contained in X(u1), . . . ,X(um), where u1, . . . , um are the children of w. Clearly, level(w) >
level

(̂
u
)
. Thus, dT (x, y) ≤ 2level(w).

Consider the path σ from the root of T to x, and let Ei be the event that b is not fully contained in X(vi),
where vi is the node of σ of level i (if such a node exists). Furthermore, let Yi be the indicator variable which
is 1 if Ei is the first to happened out of the sequence of events E0,E−1, Clearly, dT (x, y) ≤

∑
Yi2i.

Let t = d(x, y) and j =
⌊
lg d(x, y)

⌋
, and ni =

∣∣∣b(x, 2i)
∣∣∣ for i = 0, . . . ,−∞. We have

E
[
dT (x, y)

]
≤

0∑
i= j

E[Yi] 2i ≤

0∑
i= j

2i Pr
[
Ei ∩ Ei−1 ∩ Ei−1 · · · E0

]
≤

0∑
i= j

2i ·
8t
2i ln

ni

ni−3
,

by Lemma 18.3.1. Thus,

E
[
dT (x, y)

]
≤ 8t ln

 0∏
i= j

ni

ni−3

 ≤ 8t ln(n0 · n1 · n2) ≤ 24t ln n.

It thus follows, that the expected distortion for x and y is ≤ 24 ln n.

18.4.1 Application: approximation algorithm for k-median clustering

Let (X,d) be a n-point metric space, and let k be an integer number. We would like to compute the optimal
k-median clustering. Number, find a subset Copt ⊆ X, such that νCopt(X,d) is minimized, see Section 18.2.2.
To this end, we randomly embed (X,d) into a HST H using Theorem 18.4.1. Next, using Lemma 18.2.2, we
compute the optimal k-median clustering of H. Let C be the set of centers computed. We return C together
with the partition of X it induces as the required clustering.

Theorem 18.4.2 Let (X,d) be a n-point metric space. One can compute in polynomial time a k-median
clustering of X which has expected price O

(
α log n

)
, where α is the price of the optimal k-median clustering

of (X,d).

Proof: The algorithm is described above, and the fact that its running time is polynomial can be easily
be verified. To prove the bound on the quality of the clustering, for any point p ∈ X, let c(p) denote the
closest point in Copt to p according to d, where Copt is the set of k-medians in the optimal clustering. Let C
be the set of k-medians returned by the algorithm, and let H be the HST used by the algorithm. We have

β = νC(X,d) ≤ νC(X,dH) ≤ νCopt(X,dH) ≤
∑
p∈X

dH(p,Copt) ≤
∑
p∈X

dH(p, c(p)).

133

Thus, in expectation we have

E
[
β
]
= E

∑
p∈X

dH(p, c(p))

 =∑
p∈X

E
[
dH(p, c(p))

]
=

∑
p∈X

O
(
d(p, c(p)) log n

)
= O

(log n)
∑
p∈X

d(p, c(p))

 = O
(
νCopt(X,d) log n

)
,

by linearity of expectation and Theorem 18.4.1.

18.5 Embedding any metric space into Euclidean space

Lemma 18.5.1 Let (X,d) be a metric, and let Y ⊂ X. Consider the mapping f : X → IR, where f (x) =
d(x,Y) = miny∈Y d(x, y). Then for any x, y ∈ X, we have | f (x) − f (y)| ≤ d(x, y). Namely f is nonexpansive.

Proof: Indeed, let x′ and y′ be the closet points of Y , to x and y, respectively. Observe that f (x) =
d(x, x′) ≤ d(x, y′) ≤ d(x, y) + d(y, y′) = d(x, y) + f (y) by the triangle inequality. Thus, f (x) − f (y) ≤ d(x, y).
By symmetry, we have f (y) − f (x) ≤ d(x, y). Thus, | f (x) − f (y)| ≤ d(x, y).

18.5.1 The bounded spread case

Let (X,d) be a n-point metric. The spread of X, denoted by Φ(X) = diam(X)
minx,y∈X,x,y d(x,y) , is the ratio between the

diameter of X and the distance between the closest pair of points.

Theorem 18.5.2 Given a n-point metric Y = (X, d), with spread Φ, one can embed it into Euclidean space
IRk with distortion O(

√
lnΦ ln n), where k = O(lnΦ ln n).

Proof: Assume that diam(Y) = Φ (i.e., the smallest distance in Y is 1), and let ri = 2i−2, for i = 1, . . . , α,
where α =

⌈
lgΦ

⌉
. Let Pi, j be a random partition of P with diameter ri, using Theorem 18.4.1, for i = 1, . . . , α

and j = 1, . . . , β, where β =
⌈
c log n

⌉
and c is a large enough constant to be determined shortly.

For each cluster of Pi, j randomly toss a coin, and let Vi, j be the all the points of X that belong to clusters
in Pi, j that got ’T ’ in their coin toss. For a point u ∈ x, let fi, j(x) = d(x,X \ Vi, j) = minv∈X\Vi, j d(x, v), for i =
0, . . . ,m and j = 1, . . . , β. Let F : X→ IR(m+1)·β be the embedding, such that F(x) =

(
f0,1(x), f0,2(x), . . . , f0,β(x),

f1,1(x), f0,2(x), . . . , f1,β(x), . . . , fm,1(x), fm,2(x), . . . , fm,β(x)
)
.

Next, consider two points x, y ∈ X, with distance φ = d(x, y). Let k be an integer such that ru ≤ φ/2 ≤
ru+1. Clearly, in any partition of Pu,1, . . . , Pu,β the points x and y belong to different clusters. Furthermore,
with probability half x ∈ Vu, j and y < Vu, j or x < Vu, j and y ∈ Vu, j, for 1 ≤ j ≤ β.

Let E j denote the event that b(x, ρ) ⊆ Vu, j and y < Vu, j, for j = 1, . . . , β, where ρ = φ/(64 ln n). By
Lemma 18.3.1, we have

Pr
[
b(x, ρ) * Pu, j(x)

]
≤

8ρ
ru

ln n ≤
φ

8ru
≤ 1/2.

Thus,

Pr
[
E j

]
= Pr

[(
b(x, ρ) ⊆ Pu, j(x)

)
∩
(
x ∈ Vu, j

)
∩
(
y < Vu, j

)]
= Pr

[
b(x, ρ) ⊆ Pu, j(x)

]
· Pr

[
x ∈ Vu, j

]
· Pr

[
y < Vu, j

]
≥ 1/8,

since those three events are independent. Notice, that if E j happens, than fu, j(x) ≥ ρ and fu, j(y) = 0.
Let X j be an indicator variable which is 1 if Ei happens, for j = 1, . . . , β. Let Z =

∑
j X j, and

we have µ = E[Z] = E
[∑

j X j
]
≥ β/8. Thus, the probability that only β/16 of E1, . . . ,Eβ happens, is

134

Pr[Z < (1 − 1/2) E[Z]]. By the Chernoff inequality, we have Pr[Z < (1 − 1/2) E[Z]] ≤ exp
(
−µ1/(2 · 22)

)
=

exp(−β/64) ≤ 1/n10, if we set c = 640.
Thus, with high probability

‖F(x) − F(y)‖ ≥

√√√√ β∑
j=1

(
fu, j(x) − fu, j(y)

)2
≥

√
ρ2 β

16
=

√
β
ρ

4
= φ ·

√
β

256 ln n
.

On the other hand,
∣∣∣ fi, j(x) − fi, j(y)

∣∣∣ ≤ d(x, y) = φ ≤ 64ρ ln n. Thus,

‖F(x) − F(y)‖ ≤
√
αβ(64ρ ln n)2 ≤ 64

√
αβρ ln n =

√
αβ · φ.

Thus, setting G(x) = F(x) 256 ln n√
β

, we get a mapping that maps two points of distance φ from each other

to two points with distance in the range
[
φ, φ ·

√
αβ · 256 ln n√

β

]
. Namely, G(·) is an embedding with distortion

O(
√
α ln n) = O(

√
lnΦ ln n).

The probability that G fails on one of the pairs, is smaller than (1/n10) ·
(
n
2

)
< 1/n8. In particular, we can

check the distortion of G for all
(
n
2

)
pairs, and if any of them fail (i.e., the distortion is too big), we restart the

process.

18.5.2 The unbounded spread case

Our next task, is to extend Theorem 18.5.2 to the case of unbounded spread. Indeed, let (X, d) be a n-point
metric, such that diam(X) ≤ 1/2. Again, we look on the different resolutions r1, r2, . . ., where ri = 1/2i−1.
For each one of those resolutions ri, we can embed this resolution into β coordinates, as done for the bounded
case. Then we concatenate the coordinates together.

There are two problems with this approach: (i) the number of resulting coordinates is infinite, and (ii)
a pair x, y, might be distorted a “lot” because it contributes to all resolutions, not only to its “relevant”
resolutions.

Both problems can be overcome with careful tinkering. Indeed, for a resolution ri, we are going to
modify the metric, so that it ignores short distances (i.e., distances ≤ ri/n2). Formally, for each resolution ri,
let Gi = (X, Êi) be the graph where two points x and y are connected if d(x, y) ≤ ri/n2. Consider a connected
component C ∈ Gi. For any two points x, y ∈ C, we have d(x, y) ≤ n(ri/n2) ≤ ri/n. Let Xi be the set of
connected components of Gi, and define the distances between two connected components C,C′ ∈ Xi, to be
di(C,C′) = d(C,C′) = minc∈C,c′∈C′ d(c, c′).

It is easy to verify that (Xi,di) is a metric space (see Exercise 18.7.2). Furthermore, we can naturally
embed (X,d) into (Xi,di) by mapping a point x ∈ X to its connected components in Xi. Essentially (Xi,di)
is a snapped version of the metric (X, d), with the advantage that Φ((X,di)) = O(n2). We now embed Xi

into β = O(log n) coordinates. Next, for any point of X we embed it into those β coordinates, by using
the embedding of its connected component in Xi. Let Ei be the embedding for resolution ri. Namely,
Ei(x) = (fi,1(x), fi,2(x), . . . , fi,β(x)), where fi, j(x) = min(di(x,X \ Vi, j), 2ri). The resulting embedding is
F(x) = ⊕Ei(x) = (E1(x), E2(x), . . . ,).

Since we slightly modified the definition of fi, j(·), we have to show that fi, j(·) is nonexpansive. Indeed,
consider two points x, y ∈ Xi, and observe that∣∣∣ fi, j(x) − fi, j(y)

∣∣∣ ≤ ∣∣∣di(x,Vi, j) − di(y,Vi, j)
∣∣∣ ≤ di(x, y) ≤ d(x, y),

as a simple case analysis° shows.
°Indeed, if fi, j(x) < di(x,Vi, j) and fi, j(y) < di(x,Vi, j) then fi, j(x) = 2ri and fi, j(y) = 2ri, which implies the above inequality. If

fi, j(x) = di(x,Vi, j) and fi, j(y) = di(x,Vi, j) then the inequality trivially holds. The other option is handled in a similar fashion.

135

For a pair x, y ∈ X, and let φ = d(x, y). To see that F(·) is the required embedding (up to scaling),
observe that, by the same argumentation of Theorem 18.5.2, we have that with high probability

‖F(x) − F(y)‖ ≥ φ ·
√
β

256 ln n
.

To get an upper bound on this distance, observe that for i such that ri > φn2, we have Ei(x) = Ei(y). Thus,

‖F(x) − F(y)‖2 =
∑

i

‖Ei(x) − Ei(y)‖2 =
∑

i,ri<φn2

‖Ei(x) − Ei(y)‖2

=
∑

i,φ/n2<ri<φn2

‖Ei(x) − Ei(y)‖2 +
∑

i,ri<φ/n2

‖Ei(x) − Ei(y)‖2

= βφ2 lg
(
n4

)
+

∑
i,ri<φ/n2

(2ri)2β ≤ 4βφ2 lg n +
4φ2β

n4 ≤ 5βφ2 lg n.

Thus, ‖F(x) − F(y)‖ ≤ φ
√

5β lg n. We conclude, that with high probability, F(·) is an embedding of X into

Euclidean space with distortion
(
φ
√

5β lg n
)
/
(
φ ·

√
β

256 ln n

)
= O(log3/2 n).

We still have to handle the infinite number of coordinates problem. However, the above proof shows
that we care about a resolution ri (i.e., it contributes to the estimates in the above proof) only if there is a
pair x and y such that ri/n2 ≤ d(x, y) ≤ rin2. Thus, for every pair of distances there are O(log n) relevant
resolutions. Thus, there are at most η = O(n2β log n) = O(n2 log2 n) relevant coordinates, and we can
ignore all the other coordinates. Next, consider the affine subspace h that spans F(P). Clearly, it is n − 1
dimensional, and consider the projection G : IRη → IRn−1 that projects a point to its closest point in h.
Clearly, G(F(·)) is an embedding with the same distortion for P, and the target space is of dimension n − 1.

Note, that all this process succeeds with high probability. If it fails, we try again. We conclude:

Theorem 18.5.3 (Low quality Bourgain theorem.) Given a n-point metric M, one can embed it into Eu-
clidean space of dimension n − 1, such that the distortion of the embedding is at most O(log3/2 n).

Using the Johnson-Lindenstrauss lemma, the dimension can be further reduced to O(log n). In fact,
being more careful in the proof, it is possible to reduce the dimension to O(log n) directly.

18.6 Bibliographical notes

The partitions we use are due to Calinescu et al. [CKR01]. The idea of embedding into spanning trees is

due to Alon et al. [AKPW95], which showed that one can get a probabilistic distortion of 2
O
(√

log n log log n
)
.

Yair Bartal realized that by allowing trees with additional vertices, one can get a considerably better result.
In particular, he showed [Bar96] that probabilistic embedding into trees can be done with polylogarithmic
average distortion. He later improved the distortion to O(log n log log n) in [Bar98]. Improving this result
was an open question, culminating in the work of Fakcharoenphol et al. [FRT03] which achieve the optimal
O(log n) distortion.

Interestingly, if one does not care about the optimal distortion, one can get similar result (for embedding
into probabilistic trees), by first embedding the metric into Euclidean space, then reduce the dimension by
the Johnson-Lindenstrauss lemma, and finally, construct an HST by constructing a quadtree over the points.
The “trick” is to randomly translate the quadtree. It is easy to verify that this yields O(log4 n) distortion. See
the survey by Indyk [Ind01] for more details. This random shifting of quadtrees is a powerful technique that

136

was used in getting several result, and it is a crucial ingredient in Arora [Aro98] approximation algorithm
for Euclidean TSP.

Our proof of Lemma 18.3.1 (which is originally from [FRT03]) is taken from [KLMN04]. The proof of
Theorem 18.5.3 is by Gupta [Gup00].

A good exposition of metric spaces is available in Matoušek [Mat02].

18.7 Exercises

Exercise 18.7.1 (Clustering for HST.) Let (X,d) be a HST defined over n points, and let k > 0 be an
integer. Provide an algorithm that computes the optimal k-median clustering of X in O(k2n) time.

[Hint: Transform the HST into a tree where every node has only two children. Next, run a dynamic
programming algorithm on this tree.]

Exercise 18.7.2 (Partition induced metric.)

(a) Give a counter example to the following claim: Let (X,d) be a metric space, and let P be a partition of
X. Then, the pair (P,d′) is a metric, where d′(C,C′) = d(C,C′) = minx∈C,y∈C′ d(x, y) and C,C′ ∈ P.

(b) Let (X,d) be a n-point metric space, and consider the set U =
{
i
∣∣∣∣ 2i ≤ d(x, y) ≤ 2i+1, for x, y ∈ X

}
.

Prove that |U | = O(n). Namely, there are only n different resolutions that “matter” for a finite metric
space.

Exercise 18.7.3 (Computing the diameter via embeddings.)

(a) (h:1) Let ` be a line in the plane, and consider the embedding f : IR2 → `, which is the projection of the
plane into `. Prove that f is 1-Lipschitz, but it is not K-bi-Lipschitz for any constant K.

(b) (h:3) Prove that one can find a family of projections F of size O(1/
√
ε), such that for any two points

x, y ∈ IR2, for one of the projections f ∈ F we have d(f (x), f (y)) ≥ (1 − ε)d(x, y).

(c) (h:1) Given a set P of n in the plane, given a O(n/
√
ε) time algorithm that outputs two points x, y ∈ P,

such that d(x, y) ≥ (1 − ε)diam(P), where diam(P) = maxz,w∈P d(z,w) is the diameter of P.

(d) (h:2) Given P, show how to extract, in O(n) time, a set Q ⊆ P of size O(ε−2), such that diam(Q) ≥
(1 − ε/2)diam(P). (Hint: Construct a grid of appropriate resolution.)

In particular, give an (1 − ε)-approximation algorithm to the diameter of P that works in O(n + ε−2.5)
time. (There are slightly faster approximation algorithms known for approximating the diameter.)

Acknowledgments

The presentation in this write-up follows closely the insightful suggestions of Manor Mendel.

137

138

Chapter 19

Tail Inequalities

"Wir müssen wissen, wir werden wissen" (We must know, we shall know)
—– David Hilbert

19.1 Markov Inequality

Theorem 19.1.1 (Markov Inequality) For a non-negative variable X, and t > 0, we have:

Pr[X ≥ t] ≤ E[X]
t

.

Proof: Assume that this is false, and there exists t0 > 0 such that Pr[X ≥ t0] > E[X]
t0

. However,

E[X] =
∑

x

x · Pr[X = x] =
∑
x<t0

x · Pr[X = x] +
∑
x≥t0

x · Pr[X = x]

≥ 0 + t0 · Pr[X ≥ t0] > 0 + t0 ·
E[X]

t0
= E[X] ,

a contradiction.

Theorem 19.1.2 (Chebychev inequality) Let X be a random variable with µx = E[X] and σx be the stan-

dard deviation of X. That is σ2
X = E

[
(X − µx)2

]
. Then, Pr

[
|X − µX | ≥ tσX

]
≤

1
t2 .

Proof: Note that
Pr

[
|X − µX | ≥ tσX

]
= Pr

[
(X − µX)2 ≥ t2σ2

X

]
.

Set Y = (X − µX)2. Clearly, E
[
Y
]
= σ2

X . Now, apply Markov inequality to Y .

Definition 19.1.3 Variables X,Y are independent if for any x, y we have:

Pr
[
(X = x) ∩ (Y = y)

]
= Pr[X = x] · Pr

[
Y = y

]
.

The following is easy to verify:

Claim 19.1.4 If X and Y are independent, then E[XY] = E[X] E[Y].
If X and Y are independent then Z = eX ,W = eY are also independent variables.

139

19.2 Tail Inequalities

19.2.1 The Chernoff Bound — Special Case

Theorem 19.2.1 Let X1, . . . , Xn be n independent random variables, such that Pr[Xi = 1] = Pr[Xi = −1] =
1
2 , for i = 1, . . . , n. Let Y =

∑n
i=1 Xi. Then, for any ∆ > 0, we have

Pr[Y ≥ ∆] ≤ e−∆
2/2n.

Proof: Clearly, for an arbitrary t, to specified shortly, we have

Pr[Y ≥ ∆] = Pr
[
exp(tY) ≥ exp(t∆)

]
≤

E
[
exp(tY)

]
exp(t∆)

,

the first part follows by the fact that exp(·) preserve ordering, and the second part follows by the Markov
inequality.

Observe that

E
[
exp(tXi)

]
=

1
2

et +
1
2

e−t =
et + e−t

2

=
1
2

(
1 +

t
1!
+

t2

2!
+

t3

3!
+ · · ·

)
+

1
2

(
1 −

t
1!
+

t2

2!
−

t3

3!
+ · · ·

)
=

(
1 + +

t2

2!
+ + · · · +

t2k

(2k)!
+ · · ·

)
,

by the Taylor expansion of exp(·). Note, that (2k)! ≥ (k!)2k, and thus

E
[
exp(tXi)

]
=

∞∑
i=0

t2i

(2i)!
≤

∞∑
i=0

t2i

2i(i!)
=

∞∑
i=0

1
i!

(
t2

2

)i

= exp
(
t2/2

)
,

again, by the Taylor expansion of exp(·). Next, by the independence of the Xis, we have

E
[
exp(tY)

]
= E

exp

∑
i

tXi

 = E

∏
i

exp(tXi)

 = n∏
i=1

E
[
exp(tXi)

]
≤

n∏
i=1

et2/2 = ent2/2.

We have

Pr[Y ≥ ∆] ≤
exp

(
nt2/2

)
exp(t∆)

= exp
(
nt2/2 − t∆

)
.

Next, by minimizing the above quantity for t, we set t = ∆/n. We conclude,

Pr[Y ≥ ∆] ≤ exp

n
2

(
∆

n

)2

−
∆

n
∆

 = exp
(
−
∆2

2n

)
.

By the symmetry of Y , we get the following:

140

Corollary 19.2.2 Let X1, . . . , Xn be n independent random variables, such that Pr[Xi = 1] = Pr[Xi = −1] =
1
2 , for i = 1, . . . , n. Let Y =

∑n
i=1 Xi. Then, for any ∆ > 0, we have

Pr[|Y | ≥ ∆] ≤ 2e−∆
2/2n.

Corollary 19.2.3 Let X1, . . . , Xn be n independent coin flips, such that Pr[Xi = 0] = Pr[Xi = 1] = 1
2 , for

i = 1, . . . , n. Let Y =
∑n

i=1 Xi. Then, for any ∆ > 0, we have

Pr
[∣∣∣∣∣Y − n

2

∣∣∣∣∣ ≥ ∆] ≤ 2e−2∆2/n.

Remark 19.2.4 Before going any further, it is might be instrumental to understand what this inequalities
imply. Consider then case where Xi is either zero or one with probability half. In this case µ = E[Y] = n/2.
Set δ = t

√
n (
√
µ is approximately the standard deviation of X if pi = 1/2). We have by

Pr
[∣∣∣∣∣Y − n

2

∣∣∣∣∣ ≥ ∆] ≤ 2 exp
(
−2∆2/n

)
= 2 exp

(
−2(t

√
n)2/n

)
= 2 exp

(
−2t2

)
.

Thus, Chernoff inequality implies exponential decay (i.e., ≤ 2−t) with t standard deviations, instead of just
polynomial (like the Chebychev’s inequality).

19.2.2 The Chernoff Bound — General Case

Here we present the Chernoff bound in a more general settings.

Question 19.2.5 Let

1. X1, . . . , Xn - n independent Bernoulli trials, where

Pr[Xi = 1] = pi, and Pr[Xi = 0] = qi = 1 − pi.

Each Xi is known as a Poisson trials.

2. X =
∑b

i=1 Xi. µ = E[X] =
∑

i pi.

Question: Probability that X > (1 + δ)µ?

Theorem 19.2.6 For any δ > 0, we have Pr
[
X > (1 + δ)µ

]
<

(
eδ

(1 + δ)1+δ

)µ
.

Or in a more simplified form, for any δ ≤ 2e − 1,

Pr
[
X > (1 + δ)µ

]
< exp

(
−µδ2/4

)
, (19.1)

and
Pr

[
X > (1 + δ)µ

]
< 2−µ(1+δ), (19.2)

for δ ≥ 2e − 1.

141

Proof: We have Pr
[
X > (1 + δ)µ

]
= Pr

[
etX > et(1+δ)µ

]
. By the Markov inequality, we have:

Pr
[
X > (1 + δ)µ

]
<

E
[
etX

]
et(1+δ)µ

On the other hand,
E
[
etX

]
= E

[
et(X1+X2...+Xn)

]
= E

[
etX1

]
· · ·E

[
etXn

]
.

Namely,

Pr
[
X > (1 + δ)µ

]
<

∏n
i=1 E

[
etXi

]
et(1+δ)µ =

∏n
i=1

(
(1 − pi)e0 + piet

)
et(1+δ)µ =

∏n
i=1

(
1 + pi(et − 1)

)
et(1+δ)µ .

Let y = pi(et − 1). We know that 1 + y < ey (since y > 0). Thus,

Pr
[
X > (1 + δ)µ

]
<

∏n
i=1 exp(pi(et − 1))

et(1+δ)µ . =
exp

(∑n
i=1 pi(et − 1)

)
et(1+δ)µ

=
exp

(
(et − 1)

∑n
i=1 pi

)
et(1+δ)µ =

exp
(
(et − 1)µ

)
et(1+δ)µ =

(
exp

(
et − 1

)
et(1+δ)

)µ
=

(
exp(δ)

(1 + δ)(1+δ)

)µ
,

if we set t = log(1 + δ).
For the proof of the simplified form, see Section 19.2.3.

Definition 19.2.7 F+(µ, δ) =
[

eδ
(1+δ)(1+δ)

]µ
.

Example 19.2.8 Arkansas Aardvarks win a game with probability 1/3. What is their probability to have a
winning season with n games. By Chernoff inequality, this probability is smaller than

F+(n/3, 1/2) =
[

e1/2

1.51.5

]n/3

= (0.89745)n/3 = 0.964577n.

For n = 40, this probability is smaller than 0.236307. For n = 100 this is less than 0.027145. For n = 1000,
this is smaller than 2.17221 · 10−16 (which is pretty slim and shady). Namely, as the number of experiments
is increases, the distribution converges to its expectation, and this converge is exponential.

Theorem 19.2.9 Under the same assumptions as Theorem 19.2.6, we have:

Pr
[
X < (1 − δ)µ

]
< e−µδ

2/2.

Definition 19.2.10 F−(µ, δ) = e−µδ
2/2.

∆−(µ, ε) - what should be the value of δ, so that the probability is smaller than ε.

∆−(µ, ε) =

√
2 log 1/ε

µ

For large δ:

∆+(µ, ε) <
log2 (1/ε)

µ
− 1

142

Values Probabilities Inequality Ref
−1,+1 Pr[Xi = −1] = Pr[Y ≥ ∆] ≤ e−∆

2/2n Theorem 19.2.1
Pr[Xi = 1] = 1

2 Pr[Y ≤ −∆] ≤ e−∆
2/2n Theorem 19.2.1

Pr[|Y | ≥ ∆] ≤ 2e−∆
2/2n Corollary 19.2.2

0, 1
Pr[Xi = 0] =

Pr[Xi = 1] = 1
2

Pr
[∣∣∣Y − n

2

∣∣∣ ≥ ∆] ≤ 2e−2∆2/n Corollary 19.2.3

0,1
Pr[Xi = 0] = 1 − pi

Pr[Xi = 1] = pi
Pr

[
Y > (1 + δ)µ

]
<
(

eδ
(1+δ)1+δ

)µ
Theorem 19.2.6

For δ ≤ 2e − 1 Pr
[
Y > (1 + δ)µ

]
< exp

(
−µδ2/4

)
Theorem 19.2.6

δ ≥ 2e − 1 Pr
[
Y > (1 + δ)µ

]
< 2−µ(1+δ)

For δ ≥ 0 Pr
[
Y < (1 − δ)µ

]
< exp

(
−µδ2/2

)
Theorem 19.2.9

Table 19.1: Summary of Chernoff type inequalities covered. Here we have n variables X1, . . . , Xn, Y =
∑

i Xi

and µ = E[Y].

19.2.3 A More Convenient Form

Proof: (of simplified form of Theorem 19.2.6) Eq. (19.2) is just Exercise 19.4.1. As for Eq. (19.1), we
prove this only for δ ≤ 1/2. For details about the case 1/2 ≤ δ ≤ 2e − 1, see [MR95]. By Theorem 19.2.6,
we have

Pr
[
X > (1 + δ)µ

]
<

(
eδ

(1 + δ)1+δ

)µ
= exp(µδ − µ(1 + δ) ln(1 + δ)) .

The Taylor expansion of ln(1 + δ) is

δ −
δ2

2
+
δ3

3
−
δ4

4
+ · ≥ δ −

δ2

2
,

for δ ≤ 1. Thus,

Pr
[
X > (1 + δ)µ

]
< exp

(
µ
(
δ −(1 + δ)

(
δ − δ2/2

)))
= exp

(
µ
(
δ − δ + δ2/2 − δ2 + δ3/2

))
≤ exp

(
µ
(
−δ2/2 + δ3/2

))
≤ exp

(
−µδ2/4

)
,

for δ ≤ 1/2.

19.3 Bibliographical notes

The exposition here follows more or less the exposition in [MR95]. The special symmetric case (Theo-
rem 19.2.1) is taken from [Cha01], although the proof is only very slightly simpler than the generalized
form, it does yield a slightly better constant, and it would be useful when discussing discrepancy.

An orderly treatment of probability is outside the scope of our discussion. The standard text on the
topic is the book by Feller [Fel91]. A more accessible text might be any introductory undergrad text on
probability, in particular [MN98] has a nice chapter on the topic.

Exercise 19.4.2 (without the hint) is from [Mat99].

143

19.4 Exercises

Exercise 19.4.1 [2 Points] Prove that for δ > 2e − 1, we have

F+(µ, δ) <
[e
1 + δ

](1+δ)µ
≤ 2−(1+δ)µ.

Exercise 19.4.2 [10 Points] Let S =
∑n

i=1 S i be a sum of n independent random variables each attaining
values +1 and −1 with equal probability. Let P(n,∆) = Pr[S > ∆]. Prove that for ∆ ≤ n/C,

P(n,∆) ≥
1
C

exp
(
−
∆2

Cn

)
,

where C is a suitable constant. That is, the well-known Chernoff bound P(n,∆) ≤ exp(−∆2/2n)) is close to
the truth.

[Hint: Use Stirling’s formula. There is also an elementary solution, using estimates for the middle
binomial coffieicnets [MN98, pages 83–84], but this solution is considerably more involved and yields
unfriendly constants.]

Exercise 19.4.3 (Tail inequality for geometric variables.) Let X1, . . . , Xm be m independent random vari-
ables with geometric distribution with probability p (i.e., Pr

[
Xi = j

]
= (1 − p) j−1 p). Let Y =

∑
i Xi, and let

µ = E[Y] = m/p. Prove that

Pr
[
Y ≥ (1 + δ)µ

]
≤ exp

(
−

mδ2

8

)
.

144

Bibliography

[AB99] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations. Cam-
bridge, 1999.

[Ach01] D. Achlioptas. Database-friendly random projections. In Proc. 20th ACM Sympos. Principles
Database Syst., pages 274–281, 2001.

[AEIS99] A. Amir, A. Efrat, P. Indyk, and H. Samet. Efficient algorithms and regular data structures
for dilation, location and proximity problems. In Proc. 40th Annu. IEEE Sympos. Found.
Comput. Sci., pages 160–170, 1999.

[AHV04] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of
points. J. Assoc. Comput. Mach., 51(4):606–635, 2004.

[AKPW95] N. Alon, R. M. Karp, D. Peleg, and D. West. A graph-theoretic game and its application to
the k-server problem. SIAM J. Comput., 24(1):78–100, February 1995.

[AM94] P. K. Agarwal and J. Matoušek. On range searching with semialgebraic sets. Discrete Comput.
Geom., 11:393–418, 1994.

[AM98] S. Arya and D. Mount. ANN: library for approximate nearest neighbor searching. http:
//www.cs.umd.edu/~mount/ANN/, 1998.

[AM02] S. Arya and T. Malamatos. Linear-size approximate Voronoi diagrams. In Proc. 13th ACM-
SIAM Sympos. Discrete Algorithms, pages 147–155, 2002.

[AM04] S. Arya and D. M. Mount. Computational geometry: Proximity and location. In D. Mehta
and S. Sahni, editors, Handbook of Data Structures and Applications, chapter 63. CRC Press
LLC, Boca Raton, FL, 2004. to appear.

[AMM02] S. Arya, T. Malamatos, and D. M. Mount. Space-efficient approximate Voronoi diagrams. In
Proc. 34th Annu. ACM Sympos. Theory Comput., pages 721–730, 2002.

[AMN+98] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm
for approximate nearest neighbor searching in fixed dimensions. J. Assoc. Comput. Mach.,
45(6), 1998.

[APV02] P. K. Agarwal, C. M. Procopiuc, and K. R. Varadarajan. Approximation algorithms for k-line
center. In Proc. 10th Annu. European Sympos. Algorithms, pages 54–63, 2002.

[Aro98] S. Arora. Polynomial time approximation schemes for euclidean tsp and other geometric
problems. J. Assoc. Comput. Mach., 45(5):753–782, Sep 1998.

[AS00] N. Alon and J. H. Spencer. The probabilistic method. Wiley Inter-Science, 2nd edition, 2000.

145

http://www.cs.arizona.edu/~alon/
http://theory.lcs.mit.edu/~indyk/
http://www.cs.duke.edu/~pankaj
http://www.uiuc.edu/~sariel
http://www.cs.uiowa.edu/~kvaradar/
http://www.acm.org/jacm/
http://www.math.tau.ac.il/~nogaa/
http://www.cs.duke.edu/~pankaj
http://kam.mff.cuni.cz/~matousek
http://link.springer-ny.com/link/service/journals/00454/
http://link.springer-ny.com/link/service/journals/00454/
http://www.cs.ust.hk/faculty/arya/
http://www.cs.umd.edu/~mount/
http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/
http://www.cs.ust.hk/faculty/arya/
http://www.cs.ust.hk/faculty/arya/
http://www.cs.umd.edu/~mount/
http://www.cs.ust.hk/faculty/arya/
http://www.cs.umd.edu/~mount/
http://www.cs.ust.hk/faculty/arya/
http://www.cs.umd.edu/~mount/
http://www.acm.org/jacm/
http://www.cs.duke.edu/~pankaj
http://www.cs.uiowa.edu/~kvaradar/
http://www.cs.princeton.edu/~arora/
http://www.acm.org/jacm/
http://www.math.tau.ac.il/~nogaa/
http://www.cs.nyu.edu/cs/faculty/spencer/

[Aur91] F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric data structure.
ACM Comput. Surv., 23:345–405, 1991.

[Bal97] K. Ball. An elementary introduction to modern convex geometry. In Flavors of geom-
etry, volume MSRI Publ. 31. Cambridge Univ. Press, 1997. http://www.msri.org/
publications/books/Book31/files/ball.pdf.

[Bar96] Y. Bartal. Probabilistic approximations of metric space and its algorithmic application. In
Proc. 37th Annu. IEEE Sympos. Found. Comput. Sci., pages 183–193, October 1996.

[Bar98] Y. Bartal. On approximating arbitrary metrices by tree metrics. In Proc. 30th Annu. ACM
Sympos. Theory Comput., pages 161–168. ACM Press, 1998.

[Bar02] A. Barvinok. A course in convexity, volume 54 of Graduate Studies in Mathematics. Ameri-
can Mathematical Society, Providence, RI, 2002.

[BEG94] M. Bern, D. Eppstein, and J. Gilbert. Provably good mesh generation. J. Comput. Syst. Sci.,
48:384–409, 1994.

[BH01] G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume bounding box
of a point set in three dimensions. J. Algorithms, 38:91–109, 2001.

[BHI02] M. Bădoiu, S. Har-Peled, and P. Indyk. Approximate clustering via coresets. In Proc. 34th
Annu. ACM Sympos. Theory Comput., pages 250–257, 2002.

[BM58] G. E.P. Box and M. E. Muller. A note on the generation of random normal deviates. Annl.
Math. Stat., 28:610–611, 1958.

[Cha98] T. M. Chan. Approximate nearest neighbor queries revisited. Discrete Comput. Geom.,
20:359–373, 1998.

[Cha01] B. Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge University
Press, New York, 2001.

[Cha02] T. M. Chan. Closest-point problems simplified on the ram. In Proc. 13th ACM-SIAM Sympos.
Discrete Algorithms, pages 472–473. Society for Industrial and Applied Mathematics, 2002.

[Cha04] T. M. Chan. Faster coreset constructions and data stream algorithms in fixed dimensions. In
Proc. 20th Annu. ACM Sympos. Comput. Geom., pages 152–159, 2004.

[CK95] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. J. Assoc. Comput. Mach.,
42:67–90, 1995.

[CKR01] G. Calinescu, H. Karloff, and Y. Rabani. Approximation algorithms for the 0-extension prob-
lem. In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms,
pages 8–16. Society for Industrial and Applied Mathematics, 2001.

[Cla83] K. L. Clarkson. Fast algorithms for the all nearest neighbors problem. In Proc. 24th Annu.
IEEE Sympos. Found. Comput. Sci., pages 226–232, 1983.

[Cla93] K. L. Clarkson. Algorithms for polytope covering and approximation. In Proc. 3th Workshop
Algorithms Data Struct., volume 709 of Lect. Notes in Comp. Sci., pages 246–252. Springer-
Verlag, 1993.

146

http://www.msri.org/publications/books/Book31/files/ball.pdf
http://www.msri.org/publications/books/Book31/files/ball.pdf
http://www2.parc.com/csl/members/bern/
http://www.ics.uci.edu/~eppstein/
http://www.cs.technion.ac.il/~barequet/
http://www.uiuc.edu/~sariel
http://theory.lcs.mit.edu/~mihai/
http://www.uiuc.edu/~sariel
http://theory.lcs.mit.edu/~indyk/
http://www.math.uwaterloo.ca/~tmchan/
http://link.springer-ny.com/link/service/journals/00454/
http://www.cs.princeton.edu/~chazelle/
http://www.math.uwaterloo.ca/~tmchan/
http://www.math.uwaterloo.ca/~tmchan/
http://www.acm.org/jacm/
http://www.cs.technion.ac.il/~rabani/
http://cm.bell-labs.com/who/clarkson/
http://cm.bell-labs.com/who/clarkson/

[Cla94] K. L. Clarkson. An algorithm for approximate closest-point queries. In Proc. 10th Annu.
ACM Sympos. Comput. Geom., pages 160–164, 1994.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press /McGraw-Hill, Cambridge, Mass., 2001.

[CS00] N. Cristianini and J. Shaw-Taylor. Support Vector Machines. Cambridge Press, 2000.

[dBvKOS00] M. de Berg, M. van Kreveld, M. H. Overmars, and O. Schwarzkopf. Computational Geome-
try: Algorithms and Applications. Springer-Verlag, 2nd edition, 2000.

[Dey98] T. K. Dey. Improved bounds for planar k-sets and related problems. Discrete Comput. Geom.,
19(3):373–382, 1998.

[DG99] S. Dasgupta and A. Gupta. An elementary proof of the Johnson-Lindenstrauss lemma. Tech-
nical Report TR-99-006, International computer science institute, 1999.

[DNIM04] M. Datar, Immorlica N, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme
based on p-stable distributions. In Proc. 20th Annu. ACM Sympos. Comput. Geom., pages
253–262, 2004.

[Dud74] R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. J.
Approx. Theory, 10(3):227–236, 1974.

[Dun99] C. A. Duncan. Balanced Aspect Ratio Trees. Ph.D. thesis, Department of Computer Science,
Johns Hopkins University, Baltimore, Maryland, 1999.

[EGS05] D. Eppstein, M. T. Goodrich, and J. Z. Sun. The skip quadtree: a simple dynamic data
structure for multidimensional data. In Proc. 21st Annu. ACM Sympos. Comput. Geom.,
pages 296–305. ACM, June 2005.

[EK89] O. Egecioglu and B. Kalantari. Approximating the diameter of a set of points in the Euclidean
space. Inform. Process. Lett., 32:205–211, 1989.

[Fel71] W. Feller. An Introduction to Probability Theory and its Applications, volume II. John Wiley
& Sons, NY, 1971.

[Fel91] W. Feller. An Introduction to Probability Theory and its Applications. John Wiley & Sons,
NY, 1991.

[FG88] T. Feder and D. H. Greene. Optimal algorithms for approximate clustering. In Proc. 20th
Annu. ACM Sympos. Theory Comput., pages 434–444, 1988.

[FH06] J. Fischer and S. Har-Peled. On coresets for clustering and related problems. manuscript,
2006.

[FM88] P. Frankl and H. Maehara. The johnson-lindenstrauss lemma and the sphericity of some
graphs. Journal of Combinatorial Theory B, 44:355–362, 1988.

[For97] S. Fortune. Voronoi diagrams and Delaunay triangulations. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 20. CRC
Press LLC, Boca Raton, FL, 1997.

147

http://cm.bell-labs.com/who/clarkson/
http://www.win.tue.nl/~mdberg/
http://www.cs.uu.nl/people/markov/
http://www.win.tue.nl/~ocheong/
http://link.springer-ny.com/link/service/journals/00454/
http://www.cs.ucsd.edu/~dasgupta/
http://theory.lcs.mit.edu/~indyk/
http://www.ics.uci.edu/~eppstein/
http://www.uiuc.edu/~sariel
http://cs.smith.edu/~orourke/

[FRT03] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics
by tree metrics. In Proc. 35th Annu. ACM Sympos. Theory Comput., pages 448–455, 2003.

[Gar02] R. J. Gardner. The brunn-minkowski inequality. Bull. Amer. Math. Soc., 39:355–405, 2002.

[GK92] P. Gritzmann and V. Klee. Inner and outer j-radii of convex bodies in finite-dimensional
normed spaces. Discrete Comput. Geom., 7:255–280, 1992.

[GLS88] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-
mization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin Heidelberg,
2nd edition, 1988. 2nd edition 1994.

[Gon85] T. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoret. Comput.
Sci., 38:293–306, 1985.

[GRSS95] M. Golin, R. Raman, C. Schwarz, and M. Smid. Simple randomized algorithms for closest
pair problems. Nordic J. Comput., 2:3–27, 1995.

[Gup00] A. Gupta. Embeddings of Finite Metrics. PhD thesis, University of California, Berkeley,
2000.

[Har01] S. Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proc. 42nd Annu.
IEEE Sympos. Found. Comput. Sci., pages 94–103, 2001.

[HM03] S. Har-Peled and S. Mazumdar. Fast algorithms for computing the smallest k-enclosing disc.
In Proc. 11th Annu. European Sympos. Algorithms, volume 2832 of Lect. Notes in Comp.
Sci., pages 278–288. Springer-Verlag, 2003.

[HM04] S. Har-Peled and S. Mazumdar. Coresets for k-means and k-median clustering and their
applications. In Proc. 36th Annu. ACM Sympos. Theory Comput., pages 291–300, 2004.

[HÜ05] S. Har-Peled and A. Üngör. A time-optimal delaunay refinement algorithm in two dimen-
sions. In Proc. 21st Annu. ACM Sympos. Comput. Geom., pages 228–236, 2005.

[HW87] D. Haussler and E. Welzl. ε-nets and simplex range queries. Discrete Comput. Geom., 2:127–
151, 1987.

[IM98] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In Proc. 30th Annu. ACM Sympos. Theory Comput., pages 604–613, 1998.

[Ind01] P. Indyk. Algorithmic applications of low-distortion geometric embeddings. In Proc. 42nd
Annu. IEEE Sympos. Found. Comput. Sci., pages 10–31, 2001. Tutorial.

[Ind04] P. Indyk. Nearest neighbors in high-dimensional spaces. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, chapter 39, pages 877–892.
CRC Press LLC, Boca Raton, FL, 2nd edition, 2004.

[JL84] W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mapping into hilbert space.
Contemporary Mathematics, 26:189–206, 1984.

[Joh48] F. John. Extremum problems with inequalities as subsidary conditions. Courant Anniversary,
pages 187–204, 1948.

148

http://link.springer-ny.com/link/service/journals/00454/
http://www.uiuc.edu/~sariel
http://www.uiuc.edu/~sariel
http://www.uiuc.edu/~sariel
http://www.uiuc.edu/~sariel
http://www.cise.ufl.edu/~ungor/
http://link.springer-ny.com/link/service/journals/00454/
http://theory.lcs.mit.edu/~indyk/
http://theory.lcs.mit.edu/~indyk/
http://theory.lcs.mit.edu/~indyk/
http://cs.smith.edu/~orourke/

[KLMN04] R. Krauthgamer, J. R. Lee, M. Mendel, and A. Naor. Measured descent: A new embedding
method for finite metric spaces. In Proc. 45th Annu. IEEE Sympos. Found. Comput. Sci., page
to appear, 2004.

[KOR00] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest neighbor
in high dimensional spaces. SIAM J. Comput., 2(30):457–474, 2000.

[Leo98] S. J. Leon. Linear Algebra with Applications. Prentice Hall, 5th edition, 1998.

[Mac50] A.M. Macbeath. A compactness theorem for affine equivalence-classes of convex regions.
Canad. J. Math, 3:54–61, 1950.

[Mag01] A. Magen. Dimensionality reductions that preserve volumes and distance to affine spaces,
and its algorithmic applications. Submitted to STOC 2002, 2001.

[Mat90] J. Matoušek. Bi-lipschitz embeddings into low-dimensional euclidean spaces. Comment.
Math. Univ. Carolinae, 31:589–600, 1990.

[Mat92] J. Matoušek. Efficient partition trees. Discrete Comput. Geom., 8:315–334, 1992.

[Mat95] J. Matoušek. On enclosing k points by a circle. Inform. Process. Lett., 53:217–221, 1995.

[Mat99] J. Matoušek. Geometric Discrepancy. Springer, 1999.

[Mat02] J. Matoušek. Lectures on Discrete Geometry. Springer, 2002.

[Mil04] G. L. Miller. A time efficient Delaunay refinement algorithm. In Proc. 15th ACM-SIAM
Sympos. Discrete Algorithms, pages 400–409, 2004.

[MN98] J. Matoušek and J. Nešetřil. Invitation to Discrete Mathematics. Oxford Univ Pr, 1998.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, New
York, NY, 1995.

[O’R85] J. O’Rourke. Finding minimal enclosing boxes. Internat. J. Comput. Inform. Sci., 14:183–
199, 1985.

[OvL81] M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J. Comput.
Syst. Sci., 23:166–204, 1981.

[PS89] D. Peleg and A. Schäffer. Graph spanners. J. Graph Theory, 13:99–116, 1989.

[Rab76] M. O. Rabin. Probabilistic algorithms. In J. F. Traub, editor, Algorithms and Complexity:
New Directions and Recent Results, pages 21–39. Academic Press, New York, NY, 1976.

[Rup93] J. Ruppert. A new and simple algorithm for quality 2-dimensional mesh generation. In Proc.
4th ACM-SIAM Sympos. Discrete Algorithms, pages 83–92, 1993.

[Sam89] H. Samet. Spatial Data Structures: Quadtrees, Octrees, and Other Hierarchical Methods.
Addison-Wesley, Reading, MA, 1989.

[Smi00] M. Smid. Closest-point problems in computational geometry. In Jörg-Rüdiger Sack and Jorge
Urrutia, editors, Handbook of Computational Geometry, pages 877–935. Elsevier Science
Publishers B. V. North-Holland, Amsterdam, 2000.

149

http://www.cs.technion.ac.il/~rabani/
http://kam.mff.cuni.cz/~matousek
http://kam.mff.cuni.cz/~matousek
http://link.springer-ny.com/link/service/journals/00454/
http://kam.mff.cuni.cz/~matousek
http://kam.mff.cuni.cz/~matousek
http://kam.mff.cuni.cz/~matousek
http://kam.mff.cuni.cz/~matousek
http://cs.smith.edu/~orourke/
http://www.cs.uu.nl/people/markov/

[SSS02] Y. Sabharwal, N. Sharma, and S. Sen. Improved reductions of nearest neighbors search to
plebs with applications to linear-sized approximate voronoi decopositions. In Proc. 22nd
Conf. Found. Soft. Tech. Theoret. Comput. Sci., pages 311–323, 2002.

[Tou83] G. T. Toussaint. Solving geometric problems with the rotating calipers. In Proc. IEEE MELE-
CON ’83, pages A10.02/1–4, 1983.

[Üng04] A. Üngör. Off-centers: A new type of steiner points for computing size-optimal quality-
guaranteed delaunay triangulations. In Latin Amer. Theo. Inf. Symp., pages 152–161, 2004.

[Vai86] P. M. Vaidya. An optimal algorithm for the all-nearest-neighbors problem. In Proc. 27th
Annu. IEEE Sympos. Found. Comput. Sci., pages 117–122, 1986.

[Van97] R. J. Vanderbei. Linear programming: Foundations and extensions. Kluwer, 1997.

[VC71] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory Probab. Appl., 16:264–280, 1971.

[WVTP97] M. Waldvogel, G. Varghese, J. Turener, and B. Plattner. Scalable high speed ip routing
lookups. In Proc. ACM SIGCOMM 97, Octeber 1997.

[YAPV04] H. Yu, P. K. Agarwal, R. Poreddy, and K. R. Varadarajan. Practical methods for shape fitting
and kinetic data structures using core sets. In Proc. 20th Annu. ACM Sympos. Comput. Geom.,
pages 263–272, 2004.

150

http://www.cise.ufl.edu/~ungor/
http://www.cs.duke.edu/~pankaj
http://www.cs.uiowa.edu/~kvaradar/

Index

ε-shell set, 115

above, 123
ANN, approximate nearest neighbor, 43
aspect ratio, 25

below, 123

canonical square, 22
Chernoff inequality, 141

simplified form, 141
clustering, 31

k-center, 32
price, 32
problem, 32, 34

k-median, 33
price, 33

cluster, 32
coreset, 108

cylindrical shell width, 112
directional width

moving points, 111
extent of hyperplanes, 107
for directional width, 99
vertical extent of points, 107

corner, 25
Covering property, 33
crowded, 27

Delaunay triangulation, 27
directional width, 99
distance

point to set, 32, 34
dual, 106, 126

line, 123
point, 123

edge ratio, 25
excess, 14
extended cluster, 26

extent, 105, 106, 124

fair split tree, 41
finger tree, 22

gradation, 13, 23
greedy permutation, 33

level, 20
line

support, 123
linearization, 108
lower convex chain, 125
lower envelope, 105, 124

metric, 31
metric space, 31
monotone ε-shell set, 115

net, 33

point above hyperplane, 106, 126
point below hyperplane, 106, 126
Problem

Set Covering, 118

quadtree
balanced, 25
compressed, 21

Random sampling
Weighted Sets, 117

ring separator tree, 43

Separation property, 33
separator, tree, 22
skip-quadtree, 23
spread, 20

upper convex chain, 125
upper envelope, 105, 124

151

Voronoi
partitions, 32

Voronoi diagram, 127

well-balanced, 26
well-separated pairs decompoostion, 37
WSPD, 37

152

	Contents
	The Power of Grids - Computing the Minimum Disk Containing k Points
	Preliminaries
	Closest Pair
	A Slow -Approximation Algorithm for the k-Enclosing Minimum Disk
	A Linear Time -Approximation Algorithm for the k-Enclosing Minimum Disk
	The algorithm
	Description
	Analysis

	Bibliographical notes
	Exercises

	Quadtrees - Hierarchical Grids
	Quadtrees - a simple point-location data-structure
	Fast point-location in a quadtree

	Compressed Quadtrees: Range Searching Made Easy
	Efficient construction of compressed quadtrees
	Fingering a Compressed Quadtree - Fast Point Location

	Dynamic Quadtrees
	Inserting a point into the skip-quadtree.
	Deleting a point from the skip-quadtree.
	Constructing the skip-quadtree.
	Running time analysis

	Balanced quadtrees, and good triangulations
	Bibliographical notes
	Exercises

	Clustering - k-center clustering
	Preliminaries
	k-Center Clustering
	The Greedy Clustering Algorithm
	The greedy permutation

	k-median clustering
	Local Search
	Proof

	k-means clustering
	Local Search
	The k-means method

	Bibliographical Notes

	Well Separated Pairs Decomposition
	WSPD
	Applications of WSPD
	Spanners
	Approximating the Minimum Spanning Tree and the Diameter of a Point Set
	Closest Pair

	All Nearest Neighbors
	The bounded spread case
	The unbounded spread case

	Bibliographical Notes

	Approximate Nearest Neighbor Search in Low Dimension
	Introduction
	Low Quality ANN Search - The Ring Separator Tree
	The bounded spread case
	ANN - general case
	Extending a compressed quadtree to support cell queries
	ANN in Low Dimensions

	Bibliographical notes
	Exercises

	Approximate Nearest Neighbor via Point-Location among Balls
	Hierarchical Representation of Points
	Low Quality Approximation by HST

	ANN using Point-Location Among Balls
	Handling a Range of Distances
	The General Case
	Efficient Construction

	ANN using Point-Location Among Approximate Balls
	Bibliographical notes
	Exercises

	Approximate Voronoi Diagrams
	Introduction
	Fast ANN in R
	A Direct Construction of AVD
	Bibliographical notes

	The Johnson-Lindenstrauss Lemma
	The Brunn-Minkowski inequality
	Measure Concentration on the Sphere
	Concentration of Lipshitz Functions
	The Johnson-Lindenstrauss Lemma
	An alternative proof of the Johnson-Lindenstrauss lemma
	Some Probability
	Proof of the Johnson-Lindenstrauss Lemma

	Bibliographical notes
	Exercises

	ANN in High Dimensions
	ANN on the Hypercube
	Hypercube and Hamming distance
	Constructing NearNbr for the Hamming cube
	Construction the near-neighbor data-structure

	LSH and ANN on Euclidean Space
	Preliminaries
	Locality Sensitive Hashing
	ANN in High Dimensional Euclidean Space
	Low quality HST in high dimensional Euclidean space
	The overall result

	Bibliographical notes

	Approximating a Convex Body by An Ellipsoid
	Some Linear Algebra
	Ellipsoids
	Bibliographical notes

	Approximating the Minimum Volume Bounding Box of a Point Set
	Some Geometry
	Approximating the Diameter
	Approximating the minimum volume bounding box
	Constant Factor Approximation

	Exact Algorithms
	An exact algorithm 2d
	An exact algorithm 3d

	Approximating the Minimum Volume Bounding Box in Three Dimensions
	Bibliographical notes

	VC Dimension, -nets and -approximation
	VC Dimension
	Examples

	On eps-nets and eps-sampling
	Proof of the eps-net Theorem
	Exercises
	Bibliographical notes

	Approximating the Directional Width of a Shape
	Coreset for Directional Width
	Smaller coreset for directional width
	Transforming a set into a fat set
	Computing a smaller coreset

	Exercises
	Bibliographical notes

	Approximating the Extent of Lines, Hyperplanes and Moving Points
	Preliminaries
	Motivation - Maintaining the Bounding Box of Moving Points
	Duality and Extent
	Coresets
	Extent of Polynomials
	Roots of Polynomials
	Applications
	Minimum Width Annulus

	Exercises
	Bibliographical notes

	15 - Approximating the Extent of Lines, Hyperplanes and Moving Points II
	More Coresets
	Maintaining certain measures of moving points
	Computing an -coreset for directional width.

	Minimum-width cylindrical shell

	Exercises
	Bibliographical notes

	16 - Approximation Using Shell Sets
	Covering problems, expansion and shell sets
	The Setting
	The Algorithm for Computing the Shell Set
	Correctness
	Set Covering in Geometric Settings

	Application - Covering Points by Cylinders
	Clustering and Coresets
	Union of Cylinders
	Covering by Cylinders - A Slow Algorithm
	Existence of a Small Coreset

	Bibliographical notes

	Duality
	Duality of lines and points
	Examples
	Segments and Wedges
	Convex hull and upper/lower envelopes

	Higher Dimensions
	Exercises
	Bibliographical notes

	Finite Metric Spaces and Partitions
	Finite Metric Spaces
	Examples
	Hierarchical Tree Metrics
	Clustering

	Random Partitions
	Constructing the partition
	Properties

	Probabilistic embedding into trees
	Application: approximation algorithm for k-median clustering

	Embedding any metric space into Euclidean space
	The bounded spread case
	The unbounded spread case

	Bibliographical notes
	Exercises

	Tail Inequalities
	Markov Inequality
	Tail Inequalities
	The Chernoff Bound --- Special Case
	The Chernoff Bound --- General Case
	A More Convenient Form

	Bibliographical notes
	Exercises

	Bibliography
	Index

