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Objectives
This lecture will:

1. Review basic laws of heat transfer 
2. Describe fuel/cladding thermal and mechanical limitations 
3. Describe basic heat sources considered
4. Describe temperature dependent fuel/cladding material 

properties
5. Describe simplified steady state core heat transfer from 

fuel to coolant and fuel/clad temperature distributions
6. Describe lumped parameter transient heat transfer model 

for dynamic behavior of fuel temperature, heat flux
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Unit Systems:
• Historically all Nuclear Engineering texts used English units
• USNRC Technical Specifications are in English Units
• A few obvious “problem children”“problem children”: power density in kW/ft
• Reactor Physics historically used CGS units because:

macroscopic cross sections Σf naturally arise in cm-1

fuel pellet diameters are on order of cm.
• Expressing parameters consistently in SI units is 

cumbersome - particularly when describing length.
• For remainder of this course CGS units will be used for 

describing power and heat transfer within fuel pellets
• A unit conversion tool (free software) will be distributed 

with this course
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Unit Systems:

m.cm.ftLength
°K°C°FTemperature

Pascalspsi (lbf/in2)Pressure
Watt/m2Watt/cm2BTU/hr ft2Heat Flux

Watt/mWatt/cmkW/ftLinear Power 
Density

WattsWattsBTU/hr.Power
Kg/m3gr/cm3lbm/ft3Density

kilogramgram lbmMass
SICGSEnglish
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Basic Laws of Heat Transfer
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Basic Laws of Heat Transfer

• Energy balance equation describing heat input, temperature, 
heat transfer is similar to neutron transport equation:

•

• P(r,t) is volumetric heat input source in Watts/cm3

• k = k(T) is thermal conductivity in Watts/cm.°K
• ρ = ρ(T) is mass density in grams/cm3 

• Cp = Cp(T) is Heat Capacity in Joules/gram°K or alternately: 
Watt-sec/gram°K

• Units of this overall Heat Transfer equation work out to:
• (grams/cm3)(Watt-sec/gram°K)(°K/sec) = Watts/cm3
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Basic Laws of Heat Transfer

• Flow of heat is governed by Fourier’s lawFourier’s law of thermal 
conduction: 

Q = - k A dT/dx = - k A Grad T
- where: Q is heat expressed in Watts

• Frequently equation is rearranged to units of Q/A = q
q = - k dT/dx = - k Grad T

- where: q is expressed in Watts/cm2

k = k(T) is thermal conductivity in Watts/cm.°K
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Basic Laws of Heat Transfer

• Heat transfer between two adjacent surfaces is governed 
by Newton’s Law of coolingNewton’s Law of cooling:

Q/A = q = h ∆T
- where: h is conductance in units of Watts/cm2.°K

• Newton’s law of cooling is particularly useful when 
evaluating temperature drops across:

• Fuel pellet – clad Characterized via “hgap”
• Clad – Coolant film Characterized via “hfilm”

• Using these three basic relationships with appropriate 
property values all temperature, heat transfer effects can 
be evaluated.
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Fuel, Cladding Thermal and 
Mechanical Limitations



11

Ceramic UO2 is Preferred Fuel Material

• Pure Uranium metal has Tmelt ~ 2070°F  (~1405°K)

• Pure Uranium metal undergoes 3 separate crystalline phase 
changes before reaching 2070 °F

• Ceramic UO2 does not have such phase changes 

• Ceramic UO2 has significantly higher melting point implying 
higher operating temperature capability
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UO2 Temperature Limits

• Observed UO2 melting 
temperature depends on 
extent of burnup

• Epstein (1967) measured 
Tmelt = 5144 +/- 68 °F

• NRC has used Peak Fuel 
Centerline Temperature 
(PFCT) limit of 5080 °F 
(3077 °K) 

• Decreasing 58 °F (288 °K) 
every 10,000 MWD/MTU 
as appropriate
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UO2 Enthalpy Rise Limitations
• Rapid enthalpy rise in fuel causes fracturing of ceramic UO2

• Experimental studies (SPERT-IV, PBF) indicate:
• ∆H < 260 Cal/gram (1.088 Joule/kg): no apparent effects
• ∆H between 260-300 Cal/gram (1.088-1.25 Joule/kg) fuel element 

fractures into large chunks
• ∆H ~ 350 Cal/gram (~1.46 Joule/kg) in PBF reactivity insertion 

tests: local fuel melt, 0.3% conversion to mechanical energy 
destructive pressure pulse from:  870 → 5076 psia

• ∆H > 600 Cal/gram (2.51 Joule/kg): fracturing of fuel to less 
than 0.15mm particles, significantly larger mechanical energy 
conversion efficiencies

• 1986 Chornobyl-4 reactivity accident exceeded ∆H limitations
• Worst US BWR Rod Drop analyses: ∆H < 110 Cal/gram
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Zircaloy Replaced Stainless Steel Clad
• Stainless Steel Tmelt ~ 2550-2600°F  (< 1700°K)
• Zircaloy Tmelt ~ 3360 °F  (~2122°K)
• Zircaloy-2 in BWRs  
• Zircaloy-4 used in PWRs
• Key thermal limitation is related to metalmetal--water reactionwater reaction
•• ZrZr--Water exothermic reactionWater exothermic reaction accelerates rapidly at surface 

temperatures Tc > 2200 °F and generates Hgenerates H22 gasgas
• NRC currently uses Peak Clad Temperature limit of        

PCT < 2200 °F (1200°C) as safety limit for LWRs



15

Zircaloy Clad Strain Limitations

• Because of metallurgical differences between UO2 and 
Zircaloy – expansion/contraction vs. temperature is different

• UO2 thermal expansion rate is ~2x that of Zircaloy

• Rapid local power increase in fuel pellet can cause high 
local strain on Zircaloy cladding leading to local failure

•• Limit of < 1% Plastic StrainLimit of < 1% Plastic Strain is conservative limit below which 
fuel-clad failure due to excessive strain not expected

• Strain limit can be translated back to specific power density 
limits.
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Heat Sources Considered in 
Core Thermal Analysis
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Three Core Heat Sources are Considered

•• Steady state power operationSteady state power operation, characterized by: Φ(r,z)
P(r,z) (Watts/cm3) ≈

Ef(Watts/fission) Φ(r,z)(neutrons/cm2) ∑f(fission/cm)
•• Transient power operationTransient power operation, described by neutron kinetics 

models (with feedback), characterized by: Φ(r,z,t)
•• Long term fission product decay heatLong term fission product decay heat, best characterized by 

ANS 5.1-2005 Decay Heat Standard
• If Clad temperature > 2200°F (1200°C) Zircaloy-Water 

chemical reaction heat would need consideration.
• Distribution of heat throughout reactor is roughly:
• 88% within fuel pellets (fission product recoil, α,β)
• 2.5% in moderator (neutrons slowing down) 
• 9.5% in metals, structural materials (γ-ray absorption)
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Core Heat Sources

• Scenarios involving reactor trip from high power operation 
must consider when fission/activation product decay heatdecay heat
exceeds neutron flux powerneutron flux power.

• Decay heat sources include: α,β,γ-decay modes of fission 
products and activation products such as: Pu239, Np239

• Example problem
• CE System 80 NPP generating 3800 MWt trips from full 

power after running for more than one year
• Compare heat generated by post-trip neutron fission 

power vs. NRC Branch Technical Position ASB-9 (Rev2) 
Decay Heat Model

• Modern ANSI ANS 5.1-2005 Decay Heat Standard 
considers equivalent heat sources
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CE System 80 NPP Trips from 3800 MWt
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CE System 80 NPP Trips from 3800 MWt
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Comparison of Neutron Flux Power to
NRC BTP ASB-9 Rev2 Decay Heat
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Material Properties Which Impact 
Core Heat Transfer
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Heat Transfer from Fuel to Coolant
• General equation for heat transfer:

• Equation is written this way because material parameters 
are strongly dependent on temperaturestrongly dependent on temperature

• Simplified calculations can be performed in narrow 
temperature ranges assuming relatively constant, 
temperature averaged k(T), Cp(T) parameters

• Doing accident analysis generally requires more 
sophisticated analysis
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Data for UO2 Thermal Conductivity

Taken from L.S. Tong & J. Weisman, “Thermal

Analysis of Pressurized Water Reactors”, p. 60

Taken from “CE Fuel Evaluation Model Topical 

Report”, CENPD-139, July 1974, p.5-21
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Data for UO2 Specific Heat
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Data for Zircaloy Thermal Conductivity

• kZr(T) data in Watts/m.°K vs. T°K in fitted as:
• kZr(T)=12.767  – 5.4348x10-4T + 8.9818x10-6T2
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Data for Zircaloy Specific Heat

• Zircaloy-2 undergoes phase change >1200°K
• Cp(T) = 255.66 + 0.1024T         for: T<1100°K
• Cp(T) = 1058.4 exp[(T-1213.8)2/719.61]   1100°K< T< 1214°K
• Cp(T) = 597.1 – 0.4088T + 1.565x10-4T2   1214°K< T< 2000°K
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Steady State Core Heat Transfer
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Assumptions:
• Steady state: dTf /dt = 0, dTc /dt = 0
• Power derived from fission is uniformly deposited within 

fuel pin (no flux depression, no power within clad)
• Fuel pin radius is: Ro in cm.
• Clad outer radius is: Rc in cm.
• Gap is of negligible dimension
• Assume volumetric power density: P in units of Watts/cm3

• Linear power density is: q = πRo
2P in units of Watts/cm 

• Alternately: P = q / πRo
2

• Thermal conductivity values: k, in units of Watts/cm.°K
• Conductance values: h, in units of Watts/cm2.°K
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Heat Transfer Assuming Constant k-values
• Assume averaged heat transfer 

coefficients – heat conduction 
equation in fuel pellet becomes:

• A series of temperature drops are 
calculated proportional to “q”

• Temperature drop across gap is:
Tf(Ro)-Tc(Ro)= q/2πRohgap
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Thermal Resistances

Using thermal resistance analogy:
∆T = q · Resistance

Resistance across gap: 

1/2πRohgap

Resistance across cladding:  

ln(Rc/Ro)/4πkc

Resistance across cladding/coolant film: 

1/2πRchfilm
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Heat Transfer across fuel pellet 
assuming constant k-values
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Heat Transfer across fuel pellet 
assuming constant k-values
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Heat Transfer across fuel pellet 
assuming constant k-values

• Substituting in temperature drop across gap using thermal 
resistance model yields:
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Heat Transfer across cladding 
assuming constant k-values

• Additional heat transfer equation used for clad
•• No internal heat No internal heat assumed
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Heat Transfer across cladding 
assuming constant k-values

• To solve for coefficients substitute thermal resistance 
across cladding:
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Heat Transfer Assuming Constant k-values

• Substituting in yields following for Tf(r):

• A final substitution (similar to expression for gap) is 
temperature drop across film layer from clad to coolant:

Tf(Rc)-Tcoolant(Rc)= q/2πRchfilm

• Film conductance depends on coolant flow, geometry, 
temperature, pressure, voids, etc. (more to come later!)(more to come later!)
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Heat Transfer Assuming Constant k-values
• Overall solution for fuel pellet temperature becomes:

• Overall solution for clad temperature becomes:
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Example Applications

• Westinghouse 17 x 17 fuel bundle design at 14 kW/ft
• GE 8 x 8 fuel bundle design at 13.4 kW/ft
• Effective (constant) thermal conductivity assumed
• All thermal energy assumed to originate in fuel pin
• No thermal neutron flux depression considered
• Constant hfilm = 4.5 Watts/cm°K in both cases
• Objective is to calculate:
• Peak centerline temperature (compare to melting point)
• Fuel temperature distribution
• Clad temperature distribution
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Example: W 17x17 Fuel at 14kW/ft.
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Example: W 17x17 fuel at 14kW/ft.

• Predicted Peak Centerline 
Temperature ~1975°K

• This would be ~3095°F
• This is comparable to data 

described in WCAP-8720
• Actual reactor vendor fuel 

temperature evaluation 
models consider: burnup and 
temperature effects on 
density, heat transfer 
processes 
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Example: GE BWR-6 8x8 Fuel at 13.4kW/ft
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How Significant are Nonlinearities in kf(T) ?
• Recall that: kf(T) temperature is parabolic in range of interest
• Previous calculations used constant kf ~0.025 Watts / cm °K
• Actual equation is:

• Fitting kf to “detailed calculation” yields: kf ~0.056 Watts / cm °K
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Other Nonlinearities:

• Thermal/fast neutrons distributedistribute
differently within fuel pin

• Fast neutrons peak in center
• Thermal neutrons peak in water
• Actual power distribution is 

depresseddepressed in center of pin
• Steady state diffusion equation 

reflecting flux depression:
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Transient Core Heat Transfer
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Transient Heat Transfer via 
Lumped Parameter Method

• Heat transfer equation for fuel previously noted as:

• Licensing calculations require considerable detail
• Majority of dynamic core heat transfer can be understood 

based on Lumped Parameter Heat Transfer ModelLumped Parameter Heat Transfer Model
• Lumped Parameter approach recognizes that fuel and 

clad behave differently due to different “time constants”
• Method involves computing “effective” temperatures and 

rates of heat transfer between regions.
• Lumped Parameter approach can be directly used with 

fuel temperature (Doppler) reactivity feedback simulations
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Transient Heat Transfer via 
Lumped Parameter Method

• Steady state heat transfer 
network modeled as 
resistance network

• Transient heat transfer 
network modeled as 
having “heat storage”

• During steady state heat 
stored in fuel, clad

• During transients 
temperature response is 
delayed via thermal 
capacitance
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Transient Heat Transfer via 
Lumped Parameter Method

• Using RC electrical circuit analogy:
• Temperature in fuel pellet is like voltage sourcevoltage source
• Heat flux is like electrical currentelectrical current
• Temperature drops are equivalent to voltage dropsvoltage drops
• There is thermal resistancethermal resistance in fuel, gap, clad, film
• Thermal resistance if fuel pellet is: Rf = 1/(4πkf)
• Thermal resistance of gap is: Rgap = 1/(2πRohgap)
• Thermal capacitance in fuel is: Cf = πRo

2Cpfρf

• Cpf is Heat Capacity in Watt-sec/gram°K
(Cpf = 0.377 Watt-sec/gram°K)

• ρf is fuel pellet density in gram/cm3 (ρf = 10.97 gram/cm3)
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Lumped Parameter Fuel Heat Transfer
• Dynamics of (spatially averaged) Fuel temperature: 

• Rfc is effective thermal resistance between <Tf>, <Tc> 
• <Tf >, <Tc> are respectively spatial averaged fuel and clad 

temperatures in °K
• <P(t)> is volumetric heat source, πRo<P(t)> = <q(t)> is 

linear power density in Watts/cm.
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Lumped Parameter Clad Heat Transfer
• Dynamics of effective (spatially averaged) clad temperature 

are similarly given by:

• Rcc is effective thermal resistance between: <Tc(t)>,<TAVG(t)>
• Where: <TAVG(t)> is average coolant temperature in °K
• Cpc is Heat Capacity in Watt-sec/gram°K

(Cpc = 0.331 Watt-sec/gram°K)
• ρc is clad density in gram/cm3 (ρc= 6.57 gram/cm3)
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Lumped Parameter Heat Transfer Model

• Effective fuel and clad temperatures are related to 
previously calculated temperatures via following 
averages:

• Heat flux from clad to coolant, which lags power, can be 
expressed:

qc-c(t) = [ <Tc(t)> - Tavg(t) ] / Rcc

∫

∫

−
=

=

c

o

o

R

R
c

oc
c

R

f
o

f

rdrtrT
RR

tT

rdrtrT
R

tT

π
π

π
π

2),(
)(

1)(

2),(1)(

22

0
2



52

Effective Temperatures
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Lumped Parameter Time Constants
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MATHCAD Simulation of +10% Rise in q
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Example: PWR Surface Heat Flux vs Power Response
During Startup Transient
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Example: BWR Surface Heat Flux vs Power Response
During Loop Startup Transient 
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MATHCAD Simulation of +10°K Rise in Tavg
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Summary
• Laws governing heat transfer can be used to define 

temperature and heat flow rates in fuel rods
• Key material fuel/clad properties (thermal conductivity, 

conductance, heat capacity) are temperature dependenttemperature dependent
•• Simple heat transfer calculationSimple heat transfer calculation assuming “flat neutron 

power distribution” and constant material properties shows:
• Peak centerline temperature is linear function of coolant coolant 

temperaturetemperature and linear power densitylinear power density
• Fuel temperature distribution is roughly parabolicroughly parabolic

•• Detailed fuel modelsDetailed fuel models consider:
• Thermal neutron flux depression in fuel pin
• Temperature dependencies of material properties, densification..
• Gap distance, fill gas composition……


