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Publisher’s Note to the Second Printing

The diligent efforts of many dedicated individuals to help eliminate errata and

improve fine points of this text bear special commendation. In barely six months

from the first printing, the authors, SciTech advisors, adopting instructors, their stu-

dents, and very talented teaching assistants went through every page, figure,

example, equation and problem to bring subsequent students and users this remark-

ably clean printing. Among the improvements that will benefits students and readers

are the following:

• Chapter One – MATLAB, Vectors, and Phasors was rewritten to provide an

even better review of vector analysis and a more detailed introduction to

phasors and phasor notation. 

• Sixteen new problems were added to Chapter Two – Electrostatic Fields 

• All problems were checked for clarity and 100% accurate answers in

Appendix G

• Highly detailed Solutions were derived for instructors in editable Word files

• Short sections were added on topics of EMF, power flow and energy deposition,

and complex vectors

We continue to encourage submission of errata and suggestions for improvements. 

We welcome Dr. Jonathan Bagby of Florida Atlantic University to the author

team. Though Dr. Bagby is primarily concerned with the Optional Topics on the

Student CD that will evolve into the Intermediate Electromagnetics with MATLAB
text, his strong background in Mathematics was ideal in strengthening Chapter 1 and

overseeing numerous improvements in Chapter 7’s Transmission Lines notation. 

Prof. Sven Bilen and his colleague Prof. Svetla Jivkova of Pennsylvania State

University used their teaching experience from the text and invited student feedback

to submit numerous corrections and suggested improvements to factual and con-

ceptual aspects of the book. In addition, their student Mickey Rhoades had a keen

eye for errors that went undetected by others. Taken all together, a profound debt of

gratitude is owed to the PSU spring 2007 EM course team. Similarly, Prof. Doran
Baker and Prof. Donald Cripps at Utah State gathered student feedback and sub-

mitted a summary for our reprint consideration.

The accuracy checks of problems and their selected answers in Appendix G, plus

the  improvements to the detailed steps in the Solutions Manual for instructors, are

the work of three talented PhD honors students: David Padgett of North Carolina

State University, Zhihong Hu of the University of Iowa, and Avinash Uppuluri of
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Utah State University. The feedback of a remarkable undergraduate student who provided a

voice to the eyes and mind of the typical neophyte reader must also be acknowledged:

David Ristov of South Dakota State University. 

We like to call our textbook and its supplements “organic” because they are continually

growing and being nurtured by those who are passionate about the subject and teaching

undergraduates. Using book reprintings and the electronic opportunities of CDs and the

internet, our authors and contributors are dedicated to fixing flaws and adding helpful

resources whenever they present themselves. We gratefully thank all who share our dedi-

cation to the subject, the process, and the delight in learning.

Dudley R. Kay – President and Founder

SciTech Publishing, Inc.

Raleigh, NC

July, 2007
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Preface

Overview

Professors ask, “Why another textbook (edition)?” while students ask, “Why do I

need to study electromagnetics?” The concise answers are that today’s instructor

needs more flexible options in topic selection, and students will better understand

a difficult subject in their world of microelectronics and wireless if offered the

opportunity to apply their considerable computer skills to problems and appli-

cations. We see many good textbooks but none with the built-in flexibility for

instructors and computer-augmented orientation that we have found successful

with our own students.

Virtually every four-year electrical and computer engineering program

requires a course in electromagnetic fields and waves encompassing Maxwell’s

equations. Understanding and appreciating the laws of Nature that govern the

speed of even the smallest computer chip or largest power line is fundamental for

every electrical and computer engineer. Practicing engineers review these prin-

ciples constantly, many regretting either their inattention as undergrads or the

condensed, rushed nature of the single course. What used to be two or more terms

of required study has been whittled down to one very intense term, with variations

of emphasis and order. Recently, there has been a resurgence of the two-term

course, or at least an elective second term, that is gathering momentum as a desir-

able, career-enhancing option in a wireless world. Students today have grown up

with computers; they employ sophisticated simulation and calculation programs

quite literally as child’s play. When one considers the difficult challenges of this

field of study, the variation among schools and individual instructors in course

structure and emphasis, and the diverse backgrounds and abilities of students, you

have the reason for another textbook in electromagnetics: learning by doing on

the computer, using the premier software tool available in electrical engineering

education today: MATLAB. 
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Preface xi

Textbook and Supplements on CD

Actually, this is much more than a mere textbook. The book itself offers a structural frame-

work of principles, key equations, illustrations, and problems. With that crucial supporting

structure, each instructor, student, or reader can turn to the supplemental files provided with

this book or available online to customize and decorate each topic room. The entire learning

package is “organic” as we the authors, contributing EM instructors, and SciTech Publish-

ing strive to bring you an array of supporting material through the CD, the Internet, and files

stored on your computer. It is very important, therefore, that you register your book and

bookmark the URL that will always be available as a starting and reference point for ever-

changing supplementary materials: www.scitechpub.com/lonngren2e.htm.

Approach Using MATLAB®1

Our underlying philosophy is that you can learn and apply this subject’s difficult principles

much more easily, and possibly even enjoyably, using MATLAB. Numerical computations

are readily solved using MATLAB. Also, abstract theory of unobservable waves can be

strikingly visualized using MATLAB. Perhaps you are either familiar with MATLAB

through personal use or through a previous course and can immediately apply it to your

study of electromagnetics. However, if you are unfamiliar with MATLAB, you can learn to

use it on your own very quickly. A MATLAB Tutorial is supplied on the book’s enclosed

student CD. The extensive Lesson 0 is all you really need to establish a solid starting point

and build on it. If you do not have the CD or a computer handy, Chapter One provides a

brief overview of MATLAB operations and a review of vector analysis. For more infor-

mation and instruction on using MATLAB, SciTech Publishing provides a list of MATLAB

books and CDs in Appendix F, available at special discount prices to registered users of this

book. If your book came without the CD (a used book purchase, perhaps), or even if you

want to be sure of obtaining the latest files, you can purchase an electronic license for a

year’s access to all files at the URL shown above. 

Within the book, MATLAB is used numerous ways. You will always be able to see

where MATLAB is either applied or has the potential to be applied by the universal icon

furnished by MATLAB’s parent company MathWorks. Each time this icon appears, you

will know that either MATLAB’s M-files of program code are supplied on your student CD

or else your instructor or TA has them, most typically on Problem solutions. Use and distri-

bution of these solution M-files are at the discretion of individual instructors and are not,

therefore, furnished to students. Non-student readers can contact the publisher for selected

solutions and M-files if registered.

1 MATLAB is a registered trademark of The MathWorks, Inc. For MATLAB product information and cool user code con-

tributions, go to www.mathworks.com, write The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA 01760-2098 or call (508)

647-7101.
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xii Preface

• Examples – Worked-out examples run throughout the text to show how a proof can

be derived or a problem solved in steps. Each is clearly marked with a heading and

also appears in a tinted blue box. When the MATLAB icon appears, it means the

worked solution also has an equivalent M-file. Here is how Example sections

appear:

The voltage wave that propagates along a transmission line is detected at the 

indicated points. From this data, write an expression for the wave. Note that 

there is a propagation of the sinusoidal signal to increasing values of the 

coordinate z.

• Figures – Numerous figures within the text were generated using MATLAB.

Not only can you obtain and manipulate the program code with its correspond-

ing M-file, but you can also view this figure in full color from the CD. Here is

how a MATLAB-generated figure will appear:

EXAMPLE 7.3

FIGURE 7–9

A Smith chart created 

with MATLAB.

To generator

To load

+j1

+j2

+j5

–j5

–j2

–j1

–j0.5

+j0.5

0
0.2 0.5 1 2
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• Problems – Each chapter contains numerous problems of varying complexity.

Problem numbers correspond to the text sections so you can review any problems

that prove difficult to handle at first pass. When an icon appears, you will know this

problem can be solved using your MATLAB skills. Discuss with your instructor if

the M-files will be made available for checking your work. Answers to selected

problems are provided in Appendix G

• Animations – It is possible to portray electromagnetic principles in animation, also

sometimes called “movies.” Authors, instructors, and even students have contrib-

uted a number of such animations showing principles at work. However, the real

fun may be in manipulating the variables to produce different results. Thus the M-

files become a starting point for that and also an instructive demo for leading you to

your own creations. Animations at the time of this book’s printing are indicated by

a “flying disk” in the margin, close to the most pertinent text discussion of the

underlying principle. You can create and submit animations to the publisher for

posting and credit to you, using the submission form on the website. Also, check

back for new animations. 

Student CD

The Student CD enclosed with your textbook is a powerful resource. Not only does it con-

tain files that are immediately and directly related to your course study, but it also offers a

wealth of supplementary and advanced material for a 2nd term of study or your personal

explorations. By registering your book, any new material produced for future CDs will be

offered to you as web downloads. Here is what the Student CD contains:

MATLAB Tutorial

Readers will come to this book with widely varying exposures to MATLAB. A self-paced

tutorial has been included on the CD. Divided into lessons, MATLAB operations and tools

are introduced within the context of Electromagnetics extensive notation, subject areas,

examples, and problems. That is, the MATLAB tutorial gets you started with basics first and

7.6.1

7.6.2

7.6.3
Zc1 Zc2

RL

ANIMATIONS
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xiv Preface

then develops text topics incrementally. You will eventually learn to perform relatively com-

plex operations, problem-solving, and visualizations. Your instructor may later choose to

assign projects involving multi-step problem-solving in MATLAB. Independent readers

seeking these Projects should contact SciTech after registering the book. Also, an array of

helpful books and tutorials about MATLAB for engineers is kept up to date on the SciTech

website, always at discount prices.

Optional Topics

Some schools require a second term of Electromagnetics and most at least offer a second

term as an elective Advanced Electromagnetics course. Most of today’s textbooks contain

somewhat more material than can be covered in one term but not enough material for a full

and flexible second term. Therefore, a second textbook is often required for the follow-up

course, one that is costly, probably does not match the notation of the first textbook, and

may even contradict the first book in places because of the difference in notation. These

inconveniences are overcome with the CD’s extended topics. Optional Topics are provided

in PDF files that match the two-color design of the text, integrate MATLAB throughout,

and contain the same array of problems. The book and CD, therefore, satisfy the needs of

most two-term courses and many elective second-term courses. Additional optional topics

are being added continually, as they are suggested and contributed by instructors with

course-specific needs, such as biomedical engineering, wireless communications, materials

science, military applications, and so forth. Contact SciTech Publishing if you wish to sug-

gest or contribute a new topic.

Applications

While brief references are made throughout the text to real-world applications of electro-

magnetic principles, we have chosen not to interrupt text flow with lengthy application

discussions. Instead, applications are done proper justice in three–five page descriptions

with graphics, in most cases, on the CD in PDF format. These applications point the way

toward the utility of later courses in Microwave and RF, Wireless Communications,

Antennas, High-speed Electronics, and many other career and research interests. They

answer the age-old student question: “Why do I have to know this stuff?” Instructors,

their TAs, and students are encouraged to submit additional applications for inclusion in

the web-based Shareware Community. 

M-Files

The Student CD contains M-files for selected examples, figures, and animations. Any

additional MATLAB items will usually be accompanied by M-files, so check the website

and register your book for notifications of new items. New submissions and suggested

improvements to existing M code will always be gratefully received and acknowledged.
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Note to Students: Equation Importance and Notational 
Schemes May Vary

You will encounter scads of equations in your study of electromagnetics. They are not all of

equal importance. We have tried to make them clear by setting off most of them from the

text and numbering them for reference. Note that we have taken the additional step of draw-

ing a box around the most important equations, so look for those when you review.

“Mathematical notation” is how physical quantities, unit dimensions, and concepts are

put into mathematical expression. While some notation is simple and common to the physi-

cal sciences, others can be arbitrary and a matter of choice to the author. The only firm rule

is that the author, or other user of notation (such as an instructor writing on the board, in

PowerPoint, or on a test), be clear about what the symbols represent and be consistent in

their usage. Students may sometimes be unduly concerned about their textbook’s notation if

it is different from a previous text or what their instructor uses. Adapting to varying nota-

tional schemes is simply part of the learning process that “comes with the territory” in phys-

ics and engineering. In choosing the notation for this text we called upon our Editorial

Advisory Board to determine preferences and precedents in the most widely referenced

electromagnetics books. Our notational scheme is shown on page xix, and we define our

symbols when first used in the text. We are acutely aware of the confusion and worry that

poor notation causes students. However, be forewarned that your instructor or TA may

choose to use their own notational schemes. There is no ‘right” or “wrong” method. If you

find any apparent inconsistencies or absence of clear definition within the textbook, please

report them to us. 

Instructor Resources

Apart from the text and Student CD, numerous resources are available to instructors. Our

Shareware Community of invited contributions is intended to grow the nature and number

of teaching and evaluation tools. Instructors using this book as the required text are entitled

to the following materials:

• Solutions to all chapter exercises: step-by-step Word files and MATLAB M-files

for MATLAB-solvable problems designed by the MATLAB icon

• Exam Sets comprised of three exams in each set, including answers and solutions.

Additional exams are solicited to add to the Shareware database

• PowerPoint Slides of all figures in the text, organized by chapter, including the full

color version of MATLAB-generated figures. Additional supplementary figures

may be added over time as part of the Shareware Program.

• Projects – the “starter set” of complex, multi-step problems involving use of MAT-

LAB, including recommended student evaluation scoring sheets that break down the
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credit to be given for every step and aspect. Projects are an exciting component that

makes excellent use of MATLAB skills to test full understanding and application of

principles. They are a prime element of the SciTech Shareware Program.

Shareware in Electromagnetics (SWEM) Program

As the name implies, Shareware in electromagnetics has been set up by SciTech Publishing

as a means for instructors, teaching assistants, and even students to share their ideas and

methods for learning, appreciating, and applying electromagnetic principles. Some items are

accessible only by our textbook adopters and buyers (exam sets and their solutions, for

example), while others are set up to be shared publicly, the only stipulation being regis-

tration and a contribution, however modest, to SWEM. Think of it as a neighborhood block

party for the electromagnetics teaching and learning community. Bring your “covered dish,

salad, or dessert” and share in the overall goodies, fun, and collegiality. For major SWEM

items such as Projects, Applications, and Optional Topics, custom submission forms have

been created on the website for ease of a contribution. For general ideas and items, such as a

cool web link or figures, a generic form may be used. In any case, one can simply submit an

email to SWEM@scitechpub.com. Acknowledgements will always be given for sub-

missions unless anonymity is requested. See the available shareware and submission forms

under “Instructors” at www.scitechpub.com/lonngren2e.htm.

We recognize that there are several different approaches to teaching electromagnetics in

the usual engineering curriculum. We have tried to make our Second Edition adaptable to

every approach. Every course will quickly review mathematical techniques and background

material from previous math and physics courses. After that, curriculum sequences move

down different paths. 

Historical Approach – One traditional sequence is to follow a historical approach,

where topics are covered in a sequence similar to the historical development of the subject

matter, paralleling the experiments that revealed electromagnetic phenomena from ancient

times. Thus, the usual course starts with electrostatics, then covers magnetostatics, intro-

duces Maxwell’s equations, wave phenomena, and follows up with applications such as

transmission lines, waveguides, antennas, etc. This has probably been the most common

curriculum sequence used until recently, and our book maintains this traditional approach.

Maxwell’s Equations Approach – Another approach is to present Maxwell’s equations

early, develop wave phenomenon from them and then cover electrostatics, magnetostatics, and

applications. A common variation on this with physics departments is to show how Maxwell’s

equations follow from relativity. This approach tends to require more mathematical sophisti-

cation from students, but it is popular with some instructors because of its independence from

experimentally derived laws.

Transmission Lines Approach – Because of the perceived higher level of mathematics

associated with electromagnetics, an increasing number of instructors today prefer to build

upon the subject matter with which the student is already familiar. Thus, they prefer to

introduce transmission lines early as a logical extension of the circuit theory that students
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have studied prior to arriving in their electromagnetics courses. This approach has several

advantages, beyond the obvious one of using familiar circuit analogies to help the student

develop their physical insight. Using transmission lines, students are exposed to appli-

cations of the electromagnetics theory early in the class, providing them with a rationale for

the need of this subject matter. Secondly, transmission lines naturally incorporate many of

the concepts that students sometimes find difficult to visualize when talking about fields and

waves, such as time delay, dispersion, attenuation, etc. 

Students should appreciate that there is no one best way to learn (or teach) this mat-

erial. Each of these approaches is equally valid, and chances are that the student can learn

this material, whatever the approach, if a sustained effort is made. To support both the

student and the instructor in this educational effort, we have tried to make this text flex-

ible enough to be used with a variety of curriculum sequences with varying degrees of

emphasis. For instance, we made Chapter 7 on transmission lines, independent of other

chapters, so those instructors wishing to cover this material first can do so, with a mini-

mum of backtracking required. On the other hand, the instructor and student can start at

the beginning of the text and work forward through the chapter material in a more con-

ventional sequencing of chapters. Additionally, instructors can choose to skip more

advanced sections of the chapters, so they can cover more topics at the expense of depth

of topic coverage. Thus, this text can be used for a one or two quarter format, or in a one

or two semester format, especially when supplemented by the topics on the accompany-

ing CD. Following are some suggestions for course syllabi, depending on what the

instructor wishes to emphasize and how much time he or she has available.

• A traditional one-quarter course primarily emphasizing static fields could be

covered using the first five chapters.

• A traditional one-semester course with reduced emphasis on static fields, but includ-

ing transmission line applications would include Chapters 1, 2, 3, and portions of

Chapters 4 and 5 (Sections 4-1 through 4-6 and Sections 5-1 through 5-5), followed

by Chapter 6 and portions of Chapter 7 (Sections 7-1 through 7-8).

• A one-semester “transmission lines first” approach, consisting of Chapter 1, fol-

lowed by Chapter 7 (Sections 7-1 through 7-8), then Chapters 2 and 3, followed by

portions of Chapter 4 (Sections 4-1 through 4-6), Chapter 5 (Sections 5-1 through

5-5) and Chapter 6.

A second semester course can be developed from the remainder of the text, as well as

selected supplemental topics from the student CD. For instance, a second semester course

emphasizing EM waves and their applications would consist of a review of the material previ-

ously covered in Chapters 4–7, and additional selections from Chapter 4 (Sections 4-6

through 4-8), as well as Chapter 8, and CD selections on transmission lines, waveguides

and antennas. The Instructor’s Resource CD offers additional suggestions, and students and

instructors should check the appropriate sections of the website for updates.
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Of course, these are just suggestions; the actual course content will reflect the interests

of the instructors and the programs for which they are preparing their students . It is for this

reason that we have tried to enhance the flexibility of this text with supplemental material

covering a variety of electromagnetic topics. Your suggestions and contributions of

additional topics are invited and welcomed. Let us know your thoughts.

Acknowledgments

We are extremely proud of this new edition and the improvements made to virtually every

aspect of the book, its supplements, and the web support. In very large part these upgrades

are due to our adopting professors, their students, and the editorial advisory board members

who volunteered to assist. All share our passion for electromagnetics. Adopters who taught

from the first edition and passed along many helpful corrections and suggestions were:

Jonathon Wu – Windsor University

David Heckmann – University of North Dakota

Perry Wheless, Jr. – University of Alabama

Fran Harackiewicz – Southern Illinois University at Carbondale

Advisors who have given conceptual suggestions, read chapters closely, and critiqued the

supplements in detail are:

Sven Bilén – Pennsylvania State University

Don Dudley – University of Arizona

Chuck Bunting – Oklahoma State University 

Jim West – Oklahoma State University

Kent Chamberlin – University of New Hampshire

Christos Christodoulou – University of New Mexico

Larry Cohen – Naval Research Laboratory

Atef Elsherbeni – The University of Mississippi

Cindy Furse – University of Utah

Mike Havrilla – Air Force Institute of Technology

Anthony Martin – Clemson University

Wilson Pearson – Clemson University

The publication of an undergraduate textbook represents a close collaboration among

authors, technical advisors, and the publisher’s staff. We consider ourselves extremely for-

tunate to be working with a highly personal, committed, and passionate publisher like

SciTech Publishing. President and editor Dudley Kay has believed in our approach and the

book’s potential for wide acceptance through two editions. Susan Manning is our pro-

duction director, and we have learned to appreciate her with awe and astonishment for all

lonngren_frontmatter.fm  Page xviii  Wednesday, April 6, 2011  7:13 AM



Preface xix

the bits and pieces of a textbook that must be managed. Production Assistant Robert Law-

less, an engineering graduate student at North Carolina State University, provided incred-

ible support, understanding, and suggestions for reader clarity. Bob Doran’s unfailing good

humor and optimism is just what every author wants in a sales director. 

Special thanks to Michael Georgiev, Sava Savov’s graduate student, for his early work

on the illustrations program, its technical accuracy, and checks on its conversion to two-

color renderings. Graphic designer Kathy Gagne’s cover art, chapter openings, web pages,

and advertising pages are all a remarkably cohesive effort that helps support our vision bril-

liantly. Dr. Bob Roth and daughter Anne Roth have extended Kathy’s design to beautifully

matching student support and instructor feedback web pages.

The authors would like to acknowledge Professor Louis A. Frank, Dr. John B. Sigwarth,

and NASA for permission to use the picture on the cover of this book, Professor Er-Wei Bai

for discussions concerning MATLAB, and Professor Jon Kuhl for his support of this project.

Errors and Suggestions

Our publisher assures us that the perfect book has yet to be written. We can reasonably

expect some errors, but we need not tolerate them. We also strive for increased clarity on a

challenging subject. We invite instructors, students, and individual readers to contribute to

the errata list and recommendations via the feedback forms on the website. SciTech will

maintain a continually updated errata sheet and corrected page PDFs on the website, and

the corrections and approved suggestions will be incorporated into each new printing of the

book. We vow to make this project “organic” in the sense that it will be continually grow-

ing, shedding dead and damaged leaves, and becoming continuously richer and more palat-

able. If we are successful and realize our goal, every reader and user of the book and its

supplements will have a hand in its evolving refinements. We accept all responsibility for

any errors and shortcomings and invite direct comments at any time.

Karl E. Lonngren

University of Iowa

Iowa City, IA

lonngren@engineering.uiowa.edu

Sava V. Savov

Technical University of Varna

Varna, Bulgaria

svsavov@ms.ieee.bg

Randy Jost

Utah State University

Logan, UT

rjost@engineering.usu.edu

lonngren_frontmatter.fm  Page xix  Wednesday, April 6, 2011  7:13 AM



xx

Dr. Randy Jost–Chair
Space Dynamics Lab and 

ECE Department Utah State University

Dr. Jon Bagby
Department of Electrical Engineering

Florida Atlantic University 

Dr. Sven G. Bilen
Penn State University

University Park, PA

Dr. Chuck Bunting
ECE Department Oklahoma State University

Mr. Kernan Chaisson
Electronic Warfare Consultant

Rockville, MD

Dr. Kent Chamberlin
ECE Department University

of New Hampshire

Dr. Christos Christodoulou
ECE Department University 

of New Mexico

Mr. Larry Cohen
Naval Research Lab Washington, D.C. 

Dr. Atef Elsherbeni
ECE Department University of Mississippi

Dr. Thomas Xinzhang Wu
School of Electrical Engineering 

and Computer Science University 

of Central Florida 

Dr. Cynthia Furse
ECE Department University of Utah 

Dr. Hugh Griffiths
Principal, Defence College 

of Management & Technology 

Cranfield University Defence Academy 

of the United Kingdom 

Dr. William Jemison
ECE Department Lafayette College

Mr. Jay Kralovec
Harris Corporation Melbourne, FL

Mr. David Lynch, Jr. 
DL Sciences, Inc. 

Dr. Anthony Martin
ECE Department Clemson University

Dr. Wilson Pearson
ECE Department Clemson University

Mr. Robert C. Tauber
SAIC–Las Vegas EW University–Edwards

AFB

Editorial Advisory Board 
in Electromagnetics

lonngren_frontmatter.fm  Page xx  Wednesday, April 6, 2011  7:13 AM



xxi

Notation Table

Coordinate System Coordinates

Cartesian (x, y, z)

Cylindrical (�, �, z)

Spherical (r, �, �)

Quantity Symbol SI Unit Abbreviations Dimensions

Amount of substance mole mol

Angle �, � radian rad

Electric current I; i ampere A I

Length �, �, … meter m L

Luminous intensity candela cd

Mass M; m kilogram kg M

Thermodynamic temperature Kelvin K K

Time t, T second s T

Admittance Y Siemens S I2T3/M/L2

Capacitance C farad F I2T4/M/L2

Charge; point charge Q; q Coulomb C IT

Charge density, line �� coulomb/meter C/m IT/L

Charge density, surface �s coulomb/meter2 C/m2 IT/L2

Charge density, volume �v coulomb/meter3 C/m3 IT/L3

Conductance G Siemens S I2T3/M/L2

Conductivity � Siemens/meter S/m I2T3/M/L3

Current density J ampere/meter2 A/m2 I/L2

Current density, surface J� ampere/meter A/m I/L

Electric flux density D coulomb/meter2 C/m2 IT/L2

Electric dipole moment p coulomb • meter C • m ITL

Electrical field intensity E Volt/meter V/m ML/I/T3

Electric potential; Voltage V Volt V ML2/I/T3
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Quantity Symbol SI Unit Abbreviations Dimensions

Energy, Work W joule J ML2/T2

Energy density, volume w joule/meter3 J/m3 M/L/T2

Force F Newton N ML/T2

Force density, volume f Newton/meter3 N/m3 M/L2/T2

Frequency f Hertz Hz 1/T

Impedance Z Ohm Ω ML2/I2/T3

Inductance L; M Henry H ML2/I2/T2

Magnetic dipole moment m ampere • meter2 A • m2 IL2

Magnetic field intensity H ampere/meter A/m I/L

Magnetic flux � Weber Wb ML2/I/T2

Magnetic flux density B Tesla T  M/I/T2

Magnetic vector potential A Tesla • meter T • m ML/I/T2

Magnetic voltage Vm ampere A I

Magnetization M ampere/meter A/m I/L

Period T second s T

Permeability � Henry/meter H/m ML/I2/T2

Permittivity � farad/meter F/m I2T4/M/L3

Polarization P coulomb/meter2 C/m2 IT/L2

Power P watt W ML2/T3

Power density, volume p watt/meter3 W/m3 M/L/T3

Power density, surface S watt/meter2 W/m2 M/L/T2

Propagation constant 	 1/meter 1/m 1/L

Reluctance 
m 1/Henry 1/H I2T2/M/L2

Resistance R Ohm Ω ML2/I2/T3

Torque T Newton • meter N • m ML2/T2

Velocity v meter/second m/s L/T

Wavelength � meter m L
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The subject of time-varying electromagnetic fields will be the central theme

throughout the remainder of this text. Here and in the following chapters we

will generalize to the time-varying case the static electric and magnetic

fields that were reviewed in Chapter 2 and Chapter 3. In doing this, we must

first appreciate the insight of the great nineteenth century theoretical physi-

cist James Clerk Maxwell who was able to write down a set of equations that

described electromagnetic fields. These equations have survived unblem-

ished for almost two centuries of experimental and theoretical questioning.

The equations are now considered to be on an equal footing with the equa-

tions of Isaac Newton and many of Albert Einstein’s thoughts on relativity.1

We will concern ourselves here and now with what was uncovered and ex-

plained at the time of Maxwell’s life.

Faraday’s Law of Induction

The first time-varying electromagnetic phenomenon that usually is encoun-

tered in an introductory course dedicated to the study of time-varying elec-

trical circuits is the determination of the electric potential across an inductor

1 We can only speculate about what these three giants would say and write if they met today at a café and

had only one “back of an envelope” between them.

5.1
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258 Time-Varying Electromagnetic Fields

that is inserted in an electrical circuit. A simple circuit that exhibits this ef-

fect is shown in Figure 5–1. 

The voltage across the inductor is expressed with the equation

(5.1)

where L is the inductance, the units of which are henries, V(t) is the time-

varying voltage across the inductor, and I(t) is the time-varying current

that passes through the inductor. The actual dependence that these quan-

tities have on time will be determined by the voltage source. For exam-

ple, a sinusoidal voltage source in a circuit will cause the current in that

circuit to have a sinusoidal time variation or a temporal pulse of current

will be excited by a pulsed voltage source. In Chapter 3, we recognized

that a time-independent current could create a time-independent mag-

netic field and that a time-independent voltage was related to an electric

field. These quantities are also related for time-varying cases as will be

shown here. 

The actual relation between the electric and the magnetic field compo-

nents is computed from an experimentally verified effect that we now call

Faraday’s law. This is written as

(5.2)

where �m(t) is the total time-varying magnetic flux that passes through a

surface. This law states that a voltage V(t) will be induced in a closed loop

that completely surrounds the surface through which the magnetic field

passes. The voltage V(t) that is induced in the loop is actually a voltage or

potential difference V(t) that exists between two points in the loop that are

separated by an infinitesimal distance. The distance is so small that we can

actually think of the loop as being closed. The polarity of the induced vol-

tage will be such that it opposes the change of the magnetic flux, hence a mi-

nus sign appears in (5.2). The voltage can be computed from the line integral

FIGURE 5–1

A simple electrical circuit consisting 

of an AC voltage source V0(t), an 

inductor, and a resistor. The voltage 

across the inductor is V(t).

R

L
V(t)V0 (t)

~

V t( ) LdI t( )
dt

------------�

V t( )
d�m t( )

dt
------------------��
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5.1 Faraday’s Law of Induction 259

of the electric field between the two points. This effect is also known as

Lenz’s law. 

A schematic representation of this effect is shown in Figure 5–2. Small

loops as indicated in this figure, and which have a cross-sectional area �s,

are used to detect and plot the magnitude of time-varying magnetic fields in

practice. We will assume that the loop is sufficiently small or that we can let

it shrink in size so that it is possible to approximate �s with the differential

surface area |ds|. The vector direction associated with ds is normal to the

plane containing the differential surface area. If the stationary orientation of

the loop ds is perpendicular to the magnetic flux density B(t), zero magnetic

flux will be captured by the loop and V(t) will be zero. By rotating this loop

about a known axis, it is also possible to ascertain the vector direction of

B(t) by correlating the maximum detected voltage V(t) with respect to the

orientation of the loop. Recall from our discussion of magnetic circuits that

we used the total magnetic flux �m. This is formally written in terms of an

integral. In particular, the magnetic flux that passes through the loop is

given by

(5.3)

As we will see later, either the magnetic flux density or the surface area

or both could be changing in time. The scalar product reflects the effects

arising from an arbitrary orientation of the loop with respect to the orien-

tation of the magnetic flux density. It is important to realize that the loops

that we are considering may not be wire loops. The loops could just be

closed paths.

FIGURE 5–2

A loop through which a time-varying 

magnetic field passes.

V(t)

B(t)

ds

+

–

Iind

I

�m t( ) B ds•
�s
��
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260 Time-Varying Electromagnetic Fields

Let a stationary square loop of wire lie in the x–y plane that contains a spatially 

homogeneous time-varying magnetic field.

Find the voltage V(t) that could be detected between the two terminals that are separated 

by an infinitesimal distance.

Answer. The magnetic flux that is enclosed within the loop is given by

The induced voltage in the loop is found from Faraday’s law (5.2) 

Let a stationary loop of wire lie in the x–y plane that contains a spatially inhomogeneous 

time-varying magnetic field given by

where the amplitude of the magnetic flux density is B0 � 2 T, the radius of the loop is 

b � 0.05 m, and the angular frequency of oscillation of the time-varying magnetic 

field is � � 2�f � 314 s�1. The center of the loop is at the point � � 0. Find the 

voltage V(t) that could be detected between the two terminals that are separated by an 

infinitesimal distance.

EXAMPLE 5.1

B r t,( ) B0 �tuzsin�

B(t)

V(t)

b

b

y

z

x

�m B ds B0 �tuzsin( ) xd yd uz( ) B0b2
�tsin�•

x 0�

b

�
y 0�

b

��•
�s
��

V t( )
d�m t( )

dt
------------------� �� B0b2

�tcos��

EXAMPLE 5.2

B r  t( , ) B0
��
2b
-------⎝ ⎠

⎛ ⎞ �tuzcoscos�
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5.1 Faraday’s Law of Induction 261

Answer. The magnetic flux �m that is enclosed within the “closed” loop is given by 

The integral over 	 yields a factor of 2� while the integral over � is solved via integration 

by parts. The result is

The induced voltage in the loop is obtained from Faraday’s law (5.2)

Another application of Faraday’s law is the explanation of how an ideal transformer operates. 

Find the voltage that is induced in loop two if a time-varying voltage V1 is connected to loop one.

B(t)

V(t)

z

b
y

x

�m B ds•
�s
� B0

��
2b
-------⎝ ⎠

⎛ ⎞ �tuzcoscos � �d 	d uz[ ]•
� 0�

b

�
	 0�

2�

���

�m B0 �tcos( ) 2�( ) 4b2

�
2

--------
�
2
---- 1�⎝ ⎠

⎛ ⎞ 8b2

�
--------

�
2
---- 1�⎝ ⎠

⎛ ⎞ B0 �tcos��

V t( )
d�m t( )

dt
------------------

8b2

�
--------

�
2
---- 1�⎝ ⎠

⎛ ⎞ B0� �tsin��� 228.2 314t( ) Vsin�

EXAMPLE 5.3

N1 N2

I2I1

V1
V2

Ψ
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262 Time-Varying Electromagnetic Fields

Answer. To solve this problem we will first assume that we are dealing with an ideal 

transformer.  This implies that the core has infinite permeability, or . This will 

cause all of the magnetic flux to be confined to the core.

Application of voltage V1 to the primary (left hand) side of the transformer will cause a 

current I1 to flow, also causing the flux to circulate within the core, according to the right hand 

rule.  The voltage on the primary side and the resulting flux, �m, are related by the equation

This flux induces a voltage in the windings on the secondary (right hand) side equal to

Dividing the second equation by the first equation yields 

Because this is an ideal lossless transformer, all of the instantaneous power delivered to the 

primary will be available at the secondary, or P1 � P2, which means (I1)(V1) � (I2)(V2).

Given this relationship, as well as the relationship of the third equation, we can also 

show that

Finally, we can use the relationships for primary and secondary resistance, that is

and

to show that the ratio of the primary resistance to the secondary resistance equals the 

square of the turns ratio or

Note that even though a real transformer has some loss, it is a highly efficient device, 

typically having an efficiency of 95–98%, as a properly designed transformer has very low core 

losses. Also, the resistance of the primary winding is normally very small, as is the secondary 

winding, unless we are using the transformer to match impedances. Thus, compared to other 

electrical devices, transformers are some of the most efficient devices available.

Since the two terminals in Figure 5–2 are separated by a very small distance,

we will be permitted to assume that they actually are touching, at least in a

mathematical sense even though they must be separated physically. This will

allow us to consider the loop to be a closed in various integrals that follow

but still permit us to detect a potential difference between the two terminals.

The magnetic flux �m(t) can be written in terms of the magnetic flux density


r ��

V 1 N1

d�m

dt
-----------��

V 2 N2
d�m

dt
-----------��

V 2

V 1

------
N2

N1

------�

I1

I2

----
N2

N1

------�

Rpri
V 1

I1

------� Rsec
V 2

I2

------�

Rpri

Rsec

---------
N1

N2

------⎝ ⎠
⎛ ⎞ 2

�
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5.1 Faraday’s Law of Induction 263

B(r, t) � B and the voltage V(t) can be written in terms of the electric field

E(r, t) � E. This yields the result

(5.4)

It is worth emphasizing the point that this electric field is the component of

the electric field that is tangential to the loop since this is critical in our argu-

ment. In addition, (5.4) includes several possible mechanisms in which the

magnetic flux could change in time. Either the magnetic flux density

changes in time, the cross-sectional area changes in time, or there is a com-

bination of the two mechanisms. These will be described below.

Although both the electric and magnetic fields depend on space and time,

we will not explicitly state this fact in every equation that follows. This will

conserve time, space, and energy if we now define and later understand that

E(r, t) ≡ E and B(r, t) ≡ B in the equations. This short-hand notation will also

allow us to remember more easily the important results in the following mat-

erial. In this notation, the independent spatial variable r refers to a three-

dimensional position vector where 

(5.5)

in Cartesian coordinates. The independent variable t refers to time. We must

keep this notation in our minds in the material that follows.

The closed-line integral appearing in (5.4) can be converted into a surface

integral using Stokes’s theorem. We obtain for the left side of (5.4)

(5.6)

Let us assume initially that the surface area of the loop does not change in

time. This implies that �s is a constant. In this case, the time derivative can

then be brought inside the integral 

(5.7)

The two integrals will be equal over any arbitrary surface area if and only if

the two integrands are equal. This means that

(5.8)

The integral representation (5.4) and the differential representation (5.8) are

equally valid in describing the physical effects that are included in Faraday’s

law. These equations are also called Faraday’s law of induction in honor of

their discoverer. Faraday stated the induction’s law in 1831 after making the

assumption that a new phenomenon called an electromagnetic field would

surround every electric charge.

E dl•� d
dt
-----  B ds•

�s
���

r xux yuy zuz� ��

E dl•�  E ds•�
�s
��

 E�( ) ds•
�B
�t
------- ds•

�s
���

�s
�

 E� �B
�t
-------��
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264 Time-Varying Electromagnetic Fields

A small rectangular loop of wire is placed next to an infinitely long wire carrying a time-

varying current. Calculate the current i(t) that flows in the loop if the conductivity of the 

wire is �. To simplify the calculation, we will neglect the magnetic field created by the current 

i(t) that passes through the wire of the loop.

Answer. From the left-hand side of (5.4), we write the induced current i(t) as

where A is the cross-sectional area of the wire and R is the resistance of the wire. The 

current density is assumed to be constant over the cross-section of the wire. The magnetic 

flux density of the infinite wire is found from Ampere’s law

The right-hand side of (5.4) can be written as

Hence, the current i(t) that is induced in the loop is given by

EXAMPLE 5.4

I(t)

B(t)

b

D

a

E dl•� J dl•
�

-------------� i 2D 2b�( )
�A

---------------------------- i t( )R� � �

B t( )

0I t( )
2��

----------------�

d
dt
----- B ds d

dt
---- 
0I t( )

2��
---------------- �d zd

� a5

a b�

�
z 0�

D

���•
�s
��

 d
dt
-----� D


0I t( )
2�

----------------
b a�

a
--------------⎝ ⎠

⎛ ⎞ln�

 

0D

2�
-----------ln b a�

a
--------------⎝ ⎠

⎛ ⎞�
dI t( )

dt
------------�

i t( ) 1
R
---


0D

2�
-----------ln b a�

a
--------------⎝ ⎠

⎛ ⎞ dI t( )
dt

------------��
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5.1 Faraday’s Law of Induction 265

The term in the brackets corresponds to a term that is called the mutual inductance M 

between the wire and the loop. If we had included the effects of the magnetic field created 

by the current i(t) in the loop, an additional term proportional to di(t)/dt would appear in 

the equation. In this case, a term called the self-inductance L of the loop would be found. 

Hence a differential equation for i(t) would have to be solved in order to incorporate the 

effects of the self-inductance of the loop.

It is also important to calculate the mutual inductance between two coils.

This can be accomplished by assuming that a time-varying current in one of

the coils would produce a time-varying magnetic field in the region of the

second coil. This will be demonstrated in the following example.

Find the normalized mutual inductance M/
0 of the system consisting of two similar 

parallel wire loops with a radius R � 50 cm if their centers are separated by a distance 

h � 2R (Helmholtz’s coils).

Answer. The magnetic flux density can be replaced with the magnetic vector potential. 

Using B �  � A and Stokes’s theorem, we can reduce the surface integral for the 

magnetic flux to the following line integral:

The magnetic vector potential is a solution of the vector Poisson’s equation. With the 

assumption that the coil has a small cross-section, the volume integral can be converted to 

the following line integral:

where R12 is a distance between the source (1) and the observer (2). The definition of the 

mutual inductance

EXAMPLE 5.5

R

R

h

z

I2(t)

I1(t)

�2

�1

�m12  A�( ) ds 2•
�s2
� A dl2•

�2
�� �

A

0I1

4�
-----------

dl1

R12

--------
�1
��

M
�m12

I1

------------�
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266 Time-Varying Electromagnetic Fields

yields the following double integral for the normalized mutual inductance

For the case of two identical parallel loops, we obtain 

For the special case (h � 2R), this single integral can be further simplified.

This shows that the mutual inductance increases linearly with the increasing of the wire 

radius R. The integral for the constant C can be solved numerically by applying the 

MATLAB function quad. Assuming a radius R � 0.5 m and a constant C � 0.1129, the 

normalized mutual inductance is computed to be M/
0 � 0.0564.

In the derivation of (5.7), an assumption was made that the area �s of the loop

did not change in time and only a time-varying magnetic field existed in space.

This assumption need not always be made in order for electric fields to be gener-

ated by magnetic fields. We have to be thankful for the fact that the effect can be

generalized since much of the conversion of electric energy to mechanical

energy or mechanical energy to electrical energy is based on this phenomenon.

In particular, let us assume that a conducting bar moves with a velocity v
through a uniform time-independent magnetic field B as shown in Figure 5–3.

The wires that are connected to this bar are parallel to the magnetic field and are

connected to a voltmeter that lies far beneath the plane of the moving bar. From

the Lorentz force equation, we can calculate the force F on the freely mobile

charged particles in the conductor. Hence, one end of the bar will become

positively charged, and the other end will have an excess of negative charge. 

FIGURE 5–3

A conducting bar moving in a 

uniform time-independent 

magnetic field that is directed out 

of the paper. Charge distributions 

of the opposite sign appear at the 

two ends of the bar.

M

0
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1

4�
-------   
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�2
��
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2R2
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2 2
----------    	d	cos

3 	cos�
----------------------------

0

2�

�
⎝ ⎠
⎜ ⎟
⎛ ⎞

� R constant�� �

v
dlB

++

- -

lonngren05_ch05.fm  Page 266  Tuesday, April 5, 2011  12:47 PM



5.1 Faraday’s Law of Induction 267

Since there is a charge separation in the bar, there will be an electric field

that is created in the bar. Since the net force on the bar is equal to zero, the

electric and magnetic contributions to the force cancel each other. This

results in an electric field that is 

(5.9)

This electric field can be interpreted to be an induced field acting in the

direction along the conductor that produces a voltage V, and it is given by 

(5.10)

A Faraday disc generator consists of a circular metal disc rotating with a constant 

angular velocity � � 600 s�1 in a uniform time-independent magnetic field. 

A magnetic flux density B � B0uz where B0 � 4 T is parallel to the axis of rotation of 

the disc. Determine the induced open-circuit voltage that is generated between the 

brush contacts that are located at the axis and the edge of the disc whose radius is 

a � 0.5 m.

Answer. An electron at a radius � from the center has a velocity �� and therefore 

experiences an outward directed radial force �q��B0. The Lorentz force acting on the 

electron is

E F
q
--- v B���

V v B�( ) dl•
a

b

��

EXAMPLE 5.6

Felectron

V

z

B

a

2

1

ω

φ

q E v B�( )�[ ]� 0�
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268 Time-Varying Electromagnetic Fields

At equilibrium, we find that the electric field can be determined from the Lorentz force 

equation to be directed radially inward and it has a magnitude ��B0. Hence we write 

which is the potential generated by the Faraday disc generator.

If the bar depicted in Figure 5–3 were moving through a time-dependent

magnetic field instead of a constant magnetic field, then we would have to

add together the potential caused by the motion of the bar and the potential

caused by the time-varying magnetic field. This implies that the principle of

superposition applies for this case. This is a good assumption in a vacuum or

in any linear medium. 

A rectangular loop rotates through a time-varying magnetic flux density . 

The loop rotates with the same angular frequency �. Calculate the induced voltage at the 

terminals.

Answer. Due to the rotation of the loop, there will be two components to the induced 

voltage. The first is due to the motion of the loop, and the second is due to the time-

varying magnetic field. 

The voltage due to the rotation of the loop is calculated from

The contributions from either end will yield zero. We write

The angle � � �t, and the velocity v � �a. Hence the term of the induced voltage due to 

the rotation of the loop yields

We recognize that the area of the loop is equal to �s � 2ab. 

V v B�( ) dl ��u	( ) B� 0uz[ ] �d u�•
0

a

��=•
1

2

���

 �B0 � �d
�B0a2

2
---------------- 300 V����

a

0

��

EXAMPLE 5.7
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5.1 Faraday’s Law of Induction 269

From (5.4), we can compute the voltage due to the time-varying magnetic field. In this 

case, we note that

Therefore, the voltage due to time variation of the magnetic field is

The integration leads to

The total voltage is given by the sum of the voltage due to rotation and the voltage due to 

the time variation of the magnetic field.

This results in the generation of the second harmonic.

We can apply a repeated vector operation to Faraday’s law of induction

that is given in (5.8) to obtain an equation that describes another feature of

time-varying magnetic fields. We take the divergence of both sides of (5.8)

and interchange the order of differentiation to obtain

(5.11)

y

B B
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270 Time-Varying Electromagnetic Fields

The first term  •  � E is equal to zero since the divergence of the curl of a

vector is equal to zero by definition. This follows also from Figure 5–2

where the electric field is constrained to follow the loop since that is the only

component that survives the scalar product of E • dl. The electric field

can neither enter nor leave the loop, which would be indicative of a nonzero

divergence. Nature is kind to us in that it frequently lets us interchange the

orders of differentiation without inciting any mathematical complications.

This is a case where it can be done. Hence for any arbitrary time depen-

dence, we again find that

(5.12)

This statement that is valid for time-dependent cases is the same result that

was given in Chapter 3 as a postulate for static fields. It also continues to re-

flect the fact that we have not found magnetic monopoles in nature and time

varying magnetic field lines are continuous.

Let us integrate (5.12) over an arbitrary volume �v. This volume integral

can be converted to a closed-surface integral using the divergence theorem 

(5.13)

from which we write

(5.14)

Equation (5.14) is also valid for time-independent electromagnetic fields.

Equation of Continuity

Before obtaining the next equation of electromagnetics, it is useful to step

back and derive the equation of continuity. In addition, we must understand

the ramifications of this equation. The equation of continuity is fundamental

at this point in developing the basic ideas of electromagnetic theory. It can

also be applied in several other areas of engineering and science, so the pro-

cess of understanding this theory will be time well spent.

In order to derive the equation of continuity, let us consider a model that

assumes a stationary number of positive charges are located initially at the

center of a transparent box whose volume is �v � �x�y�z. These charges

are at the prescribed positions within the box for times t � 0. A one-dimen-

sional view of this box consists of two parallel planes, and it is shown in

Figure 5–4a. We will neglect the Coulomb forces between the individual

 B• 0�

 B•  vd
�v
� B ds•��

B ds•� 0�

5.2

lonngren05_ch05.fm  Page 270  Tuesday, April 5, 2011  12:47 PM



5.2  Equation of Continuity 271

charges. If we are uncomfortable with this assumption of noninteracting

charged particles, we could have assumed alternatively that the charges were

just noninteracting gas molecules or billiard balls and derived a similar

equation for these objects. The resulting equation could then be multiplied by

a charge q that would be impressed on an individual entity. For times t � 0,

the particles or the charges can start to move and actually leave through the

two screens as time increases. This is depicted in Figure 5–4b. The magni-

tude of the cross-sectional area of a screen is equal to �s � �y�z. The

charges that leave the “screened-in region” will be in motion. Hence, those

charges that leave the box from either side will constitute a current that ema-

nates from the box. Due to our choice of charges within the box having a

positive charge, the direction of this current I will be the same direction as

the motion of the charge. 

Rather than just examine the small number of charges depicted in Figure 5–4,

let us assume that there is now a large number of them. We will still neglect the

Coulomb force between charges. The number of charges will be large

enough so it is prudent to describe the charge within the box with a charge

density �v where �v � �Q/�v and �Q is the total charge within a volume �v.
Hence, the decrease of the charge density �v acts as a source for the total current

I that leaves the box as shown in Figure 5–5. 

A temporal decrease of charge density within the box implies that

charge leaves the box since the charge is neither destroyed nor does it

recombine with charge of the opposite sign. The total current that leaves the

box through any portion of the surface is due to a decrease of the charge within

the box. The magnitude of this current is expressed by

(5.15)

These are real charges, and the current that we are describing is not the dis-

placement current that we will encounter later.

FIGURE 5–4

(a) Charges centered at

x � 0 at time t � 0 are 

allowed to expand 

at t � 0.

(b) As time increases 

some of these charges 

may pass through the 

screens at .

t < 0 t > 0

0 0

(a) (b)

Δx Δx

x �x 2���

I
dQ
dt
-------��

lonngren05_ch05.fm  Page 271  Tuesday, April 5, 2011  12:47 PM



272 Time-Varying Electromagnetic Fields

Equation (5.15) can be rewritten as

(5.16)

where we have taken the liberty of summing up the six currents that leave

the six sides of the box that surrounds the charges; this summation is ex-

pressed as a closed-surface integral. The closed-surface integral given in

(5.16) can be converted to a volume integral using the divergence theorem.

Hence (5.16) can be written as

(5.17)

Since this equation must be valid for any arbitrary volume, we are left with

the conclusion that the two integrands must be equal, from which we write

(5.18)

Equation (5.18) is the equation of continuity that we are seeking. Note

that this equation has been derived using very simple common sense argu-

ments. However, we can show the same result by a more rigorous argument

proving that this expression holds under all known circumstances. Although

we have derived it using finite-sized volumes, the equation is valid at a point.

Its importance will be noted in the next section where we will follow in the

footsteps of James Clerk Maxwell.

We recall from our first course that dealt with circuits that the Kirchhoff’s

current law stated that the net current entering or leaving a node was equal to

zero. Charge is neither created nor destroyed in this case. This is shown in

Figure 5–6. The dashed lines represent a closed surface that surrounds the node.

The picture shown in Figure 5–5 generalizes this node to three dimensions. 

FIGURE 5–5

Charge within the box 

leaves through the walls.

Δ z

Δ x
Δy

J
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5.2  Equation of Continuity 273

Charges are introduced into the interior of a conductor during the time t � 0. Calculate 

how long it will take for these charges to move to the surface of the conductor so the 

interior charge density �v � 0 and interior electric field E � 0.

Answer. Introduce Ohm’s law J � �E into the equation of continuity

The electric field is related to the charge density through Poisson’s equation

Hence we obtain the differential equation

whose solution is

The initial charge density �v0 will decay to [1/e � 37%] of its initial value in a time 

� � �/�, which is called the relaxation time. For copper, this time is

Other effects that are not described here may cause this time to be different. Relaxation 

times for insulators may be hours or days.

FIGURE 5–6

A closed surface (represented by 

dashed lines) surrounding a node.

I1

I2

I4

I3

EXAMPLE 5.8
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274 Time-Varying Electromagnetic Fields

The current density is . Find the time rate of increase of the charge density at x � 1.

Answer. From the equation of continuity (5.18), we write

The current density in a certain region may be approximated with the function 

in spherical coordinates. Find the total current that leaves a spherical surface whose radius is a at 

the time t � �. Using the equation of continuity, find an expression for the charge density �v(r, t).

Answer. The total current that leaves the spherical surface is given by

In spherical coordinates, the equation of continuity that depends only upon the radius r is 

written as

Hence, after integration the charge density is given by

where the arbitrary constant of integration is set equal to zero.

Displacement Current

Our first encounter with time-varying electromagnetic fields yielded Fara-

day’s law of induction in equation (5.2). The next encounter will illustrate

the genius of James Clerk Maxwell. Through his efforts in the nineteenth

EXAMPLE 5.9
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5.3 Displacement Current 275

century, we are now able to answer a fundamental question that would arise

when analyzing a circuit in the following gedanken experiment. Let us con-

nect two wires to the two plates of an ideal capacitor consisting of two paral-

lel plates separated by a vacuum and an AC voltage source as shown in

Figure 5–7. An AC ammeter is also connected in series with the wires in this

circuit, and it measures a constant value of AC current I. Two questions

might enter our minds at this point.

1. How can the ammeter read any value of current since the capacitor

is an open circuit and the current that passes through the wire

would be impeded by the vacuum that exists between the plates? 

2. What happens to the time-varying magnetic field that is created by

the current and surrounds the wire as we pass through the region

between the capacitor plates? 

The answer to the first question will require that we first reexamine the

equations that we have obtained up to this point and then interpret them,

guided by the light that has been turned on by Maxwell. In particular, let us

write the second postulate of steady magnetic fields—Ampere’s law. This

postulate states that a magnetic field B is created by a current J. It is written

here

(5.19)

Let us take the divergence of both sides of this equation. The term on the

left-hand side 

(5.20)

by definition. Applying the divergence operation to the term on the right-

hand of (5.19), we find that

(5.21)

This, however, is not compatible with the equation of continuity (5.18) that

we have just shown to be true under all circumstances. 

To get out of this dilemma, Maxwell postulated the existence of another

type of current in nature. This current would be in addition to the conduction

FIGURE 5–7

An elementary circuit 

consisting of an ideal parallel 

plate capacitor connected to an 

AC voltage source and an AC 

ammeter.

vacuum

 B� 
0J�

 • B� 0�


0 J• 0�
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276 Time-Varying Electromagnetic Fields

current discussed in Chapter 3 and a convection current that would be cre-

ated by charge passing through space with a constant drift velocity. The new

current with a density Jd is called a displacement current, and it is found by

incorporating the equation for the displacement flux density D into the equa-

tion of continuity by use of Gauss’s law. Hence

(5.22)

where we have freely interchanged the order of differentiation. The dis-

placement current density is identified as

(5.23)

This is the current that passes between the two plates of the capacitor in our

gedanken experiment that was performed at the beginning of this section.

The time-varying conduction current that passes through the wire causes

a build-up of charges of opposite signs on the two plates of the capacitor.

The time variation of these charges creates a time-varying electric field

between the plates.2 The time-varying displacement current will pass from

one plate to the other, and an answer to the first question has been obtained.

The conduction current in the wire becomes a displacement current between

the plates. This displacement current does not exist in a time-independent

system.

The postulate for magnetostatics will have to be modified to incorporate

this new current and any possible time-varying magnetic fields. It becomes 

(5.24)

We can also answer the second question. With the inclusion of the dis-

placement current that passes between the capacitor plates, we can assert

that the time-varying magnetic field that surrounds the conduction current-

carrying wire will be equal in magnitude and direction to the time-varying

magnetic field that surrounds the capacitor. 

Let us integrate both sides of (5.24) over the cross-sectional area specified

by the radius � at two locations in Figure 5–8. The first integral will be at a

2 Recall that in a vacuum D � �0 E. If a dielectric is inserted between the plates, we must use D � � E.

 J•
��v

�t
--------� 0�

 J•
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---------------------�  J �D

�t
-------�⎝ ⎠

⎛ ⎞• 0� �

Jd
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�t
-------�
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0
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�t
-------�
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5.3 Displacement Current 277

location surrounding the wire and the second will be between the two capac-

itor plates

(5.25)

or using Stokes’s theorem, we write

(5.26)

The left-hand side of the integral in (5.26) yields

At location (1) in Figure 5–8, the displacement current equals zero, and we

are left with the integral

(5.27)

At location (2) in Figure 5–8, the conduction current equals zero, and we are

left with the integral

(5.28)

The next example will demonstrate that these currents are identical, hence

the magnetic flux densities will be the same at the same radius �. 

FIGURE 5–8

Two parallel plates in a capacitor 

separate two wires. The circle 

whose radius is � could be 

surrounding the wire (1) at either 

edge or between the plates (2). 

The radius of the wire is a and 

that of the plate is b.
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278 Time-Varying Electromagnetic Fields

Verify that the conduction current in the wire equals the displacement current between the 

plates of the parallel plate capacitor in the circuit. The voltage source has .

Answer. The conduction current in the wire is given by

The capacitance of the parallel plate capacitor is given by

where A is the area of the plates that are separated by a distance d. The electric field 

between the plates is given by E � Vc /d. The displacement flux density equals

The displacement current is computed from

The magnetic flux density in a vacuum is given by

Find the displacement current, the displacement flux density, and the volume charge 

density associated with this magnetic flux density.

EXAMPLE 5.11
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5.3 Displacement Current 279

Answer. We write 

The displacement flux density D is found from the displacement current as

Noting that the magnitude of the displacement flux density is not a function of z, we find 

the charge density given by

In a lossy dielectric medium with a conductivity σ and a relative permittivity �r, there is a 

time-harmonic electric field . Compare the magnitudes of the following 

terms: (a) the conduction current density Jc and (b) the displacement current density Jd.

Answer. The conduction current density can be found from Ohm’s law 

, while the displacement current density can be calculated from 

(5.23) . The ratio of their magnitudes is

For materials that have a relative dielectric constant that is close to one, this fraction will 

depend mainly on the conductivity of the material and the frequency of the 

electromagnetic signal. The conduction current is dominant at low frequencies in a 

conductor, and the displacement current will be dominant in a dielectric at high 

frequencies. This latter effect will be discussed further in the next chapter.
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Maxwell’s Equations

Everything that we have learned up to this point can be summarized in Max-

well’s3 four differential equations, which are rewritten below as

(5.29)

(5.30)

(5.31)

(5.32)

These four equations, along with a set of relations called the constitutive
relations

(5.33)

describe electromagnetic phenomena. The constitutive relations relate the

electromagnetic fields to the material properties in which the fields exist. We

will see that the propagation of electromagnetic waves such as light is de-

scribed with Maxwell’s equations. 

Nonlinear phenomena can also be described with this set of equations

through any nonlinearity that may exist in the constitutive relations. For

example, certain optical fibers used in communication have a dielectric con-

stant that depends nonlinearly on the amplitude of the wave that propagates in

the fiber. It is possible to approximate the relative dielectric constant in the

fiber with the expression , where α is a constant that has the

dimensions of [V/m]�2. In writing (5.33), we have also assumed that the mat-

erials are isotropic and hysteresis can be neglected. The study of the myriad

effects arising from these phenomena is of interest to a growing number of

engineers and scientists throughout the world. However, we will not concern

ourselves with these problems here other than to be aware of their existence.

3 It is common in engineering talks to place a standard six-foot stick man next to a drawing of a machine

in order to indicate its size. For example, a man standing adjacent to a truck in a modern coal mine would

still be beneath the center of the axle, which would mean that this truck is huge. To emphasize the impor-

tance and size of these four equations, the reader could think of the symbol ∇ as being an inverted pyra-

mid arising out of the grains of sand of the remaining words and equations in this text and several others.
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5.4 Maxwell’s Equations 281

Show that the two “divergence” equations are implied by the two “curl” equations and the 

equation of continuity.

Answer. To show this, we must remember the vector identity  where ζ is 

any vector. Hence

implies  • B � constant. This constant equals zero since there are no isolated sources nor 

sinks at which the magnetic flux density can originate nor terminate. This implies that 

magnetic monopoles do not exist in time varying systems either. 

We write similarly

This implies that .

In a conducting material, we may assume that the conduction current density is much 

larger than the displacement current density. Show that Maxwell’s equations can be cast in 

the form of a diffusion equation in this material.

Answer. In this case, (5.29) and (5.30) are written as

where the displacement current has been neglected. Take the curl of the second equation 

Expand the left-hand side with a vector identity and substitute the first equation into the 

right-hand side.

EXAMPLE 5.14
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282 Time-Varying Electromagnetic Fields

From (5.32), the first term is zero, leaving

This is a diffusion equation with a diffusion coefficient . Since B is a vector, 

this corresponds to three scalar equations for the three components. The term 2 is the 

Laplacian operator described previously.

It may appear that all of this mathematical manipulation is to show off our

math skills. However, showing that we can obtain the diffusion equation

from Maxwell’s equations is important, because the concept of diffusion

provides important physical insight into what happens to free charges in

various types of materials. During further study, we will see that the dif-

fusion process is involved in many physical phenomena involving electric

and magnetic fields.

Consider the case of heat flow. We know from experience that if there is

a location with a higher concentration or quantity of heat, and a second

location with a lower concentration or quantity of heat, then the heat will

tend to flow toward the area of lower concentration. Furthermore, the

greater the temperature difference between the two locations, the faster we

observe an equalization of the two quantities taking place, at least at first.

As the two temperatures equalize, the rate of heat flow slows, until the two

locations are at equal temperatures, and heat flow stops, except for random

thermal motion. Of course, we can also change the rate of flow by chang-

ing the conditions associated with the process. For instance, we could

place an insulator between the two locations, which would keep heat from

flowing as quickly, as we do to prevent heat from flowing out of our homes

in the winter.

In a similar fashion, we can model the flow of free charges in materials,

when there is a charge differential between two locations. Also, we will see

the same type of behaviors, such as rate of charge flow, and the effects of

electrical insulators, in the movement and control of charge in various situ-

ations. Thus, not only charge flow in conductors can be modeled, but also

flow in such diverse items as components (resistors, capacitors, cables, etc.)

and materials (conductors, insulators, and semiconductors). In fact, the entire

semiconductor industry and its products are based on an ability to model and

control the diffusion of charge carriers in semiconducting material. Thus, the

ability to relate Maxwell’s equations to diffusion equations is very important

and useful indeed.
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�t
-------�

D 
0�( ) 1�
�
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5.4 Maxwell’s Equations 283

Solve the diffusion equation for the case of a magnetic flux density Bx(z, t) near a planar 

vacuum–copper interface, assuming the following values for copper: 
 � 
0 � 4� � 10�7 H/m 

and � � 5.8 � 107 S/m. Plot the solution for the spatial profile of the magnetic field, assuming 

a 60-Hz time-harmonic electromagnetic signal is applied.

Answer. Assuming e j�t time-variation, the diffusion equation is transformed to the 

following ordinary differential equation for the spatial variation of the magnetic field.

where z is the coordinate normal to the vacuum–copper boundary. Assuming variation in 

the z direction to be Bx (z) � B0 e(��z), we write 

We will encounter this expression for again in the next chapter and study it in some 

detail, but for now, we will accept it as part of the solution for the preceding differential 

equation.

The magnitude of the magnetic flux density decays exponentially in the z direction 

from the surface into the conductor.

with

The quantity � � 1/� is called a “skin depth.” Here it is � � 8.5 mm.

The plot of the spatial variation of the magnitude of the magnetic field inside the 

conductor is presented in the figure below.

The subject of the skin depth will be encountered again in the next chapter.

EXAMPLE 5.16
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dz2
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284 Time-Varying Electromagnetic Fields

As written, Maxwell’s equations in (5.29) to (5.32) are partial differential

equations evaluated at a particular point in space and time. A totally equivalent
way of writing them is to write these equations as integrals. This is

accomplished by integrating both sides of the first two equations over the same

cross-sectional area, applying Stokes’s theorem to the terms involving the curl

operations, integrating both sides of the second two equations over the same

volume, and applying the divergence theorem. We summarize this as follows:

(5.34)

(5.35)

(5.36)

(5.37)

Equation (5.34) states that the closed-line integral of the electric field

around a closed loop is equal to the time rate of change of the magnetic flux

that passes through the surface area defined by the closed loop. This is the

meaning of Faraday’s law. Equation (5.35) states that the closed-line integral

of the magnetic field intensity is equal to the current that is enclosed within

the loop. The current consists of the contribution due to the conduction cur-

rent and the displacement current. This generalizes Ampere’s circuital law,

which we encountered earlier. 

Equation (5.36) states that the total displacement flux �e that leaves a

closed surface is equal to the charge that is enclosed within the surface

(Gauss’s law). If the enclosed charge is negative, then the displacement flux

�e enters the closed surface and terminates on this negative charge. Equation

(5.37) states that the magnetic flux density is continuous and cannot termin-

ate nor originate from a magnetic charge, i.e., the nonexistence of magnetic

monopoles or magnetic charges.

Equations (5.34) to (5.37) are the integral forms of Maxwell’s equations,

and they are of the same importance as the differential forms given in (5.29)

to (5.32). Using the integral form of Maxwell’s equations, we can derive eas-

ily the boundary conditions that relate the electromagnetic fields in one

medium to those in another. 

In examining either of the two forms of Maxwell’s equations, we can

make another useful observation. Looking at the first two equations of the

differential form, (5.29) and (5.30), or the first two equations of the integral

E dl �B
�t
------- sd•

�s
���•

�L
�

H dl �D
�t
------- J�⎝ ⎠

⎛ ⎞ sd•
�s
��•

�L
�

D sd �v vd
�v
��•

�s
�

B sd 0�•
�s
�
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5.5 Poynting’s Theorem 285

form, (5.34) and (5.35), we notice that all four of these equations have both

electric field and magnetic field terms. Therefore, these are coupled equa-

tions. What this means is that when we perturb either the electric or mag-

netic field, we automatically affect the other field.  

While this may seem like an obvious point, it has important implications

both in understanding certain physical phenomena involving electromag-

netic fields, as well as in the computational solutions for electromagnetic

fields problems. For instance, in developing the three-dimensional version of

the Finite Difference Time Domain method, we have to work with both the

electric and magnetic fields, and maintain this coupled relationship. We will

explore these issues in greater detail in other sections of this text.

Either of the two forms of Maxwell’s equations can be used, although we

will encounter the differential form more often in practice. An important

derivation that describes the magnitude and direction of the flow of electro-

magnetic power will employ vector identities and the differential form of

Maxwell’s equations.

Poynting’s Theorem

A frequently encountered problem in practice is to determine the direction

that power is flowing if the electric and magnetic fields are measured inde-

pendently in some experiment. This may not seem important in the labora-

tory where a signal generator can be separated from a resistive load

impedance, and the direction of the flow of power can be clearly ascertained.

This is not always so straight-forward in the case of electric and magnetic

fields. For instance, it is clear that the sun radiates energy that is received by

the Earth, and the amount of that energy can be measured. However, an in-

vestigator using a satellite floating in space may wish to determine the

source of some anomalous extragalactic electromagnetic radiation in order

to further map out the universe. Poynting’s theorem will provide us with the

method to accomplish this. 

To obtain Poynting’s theorem for an arbitrary volume depicted in Figure 5–9,

we will require two of Maxwell’s equations and a vector identity. The two

equations that are required for this derivation are

(5.38)

and

(5.39)

5.5

 E� �B
�t
-------��

 H� �D
�t
------- J��
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Let us take the scalar product of E with (5.39) and subtract it from the scalar

product of H with (5.38). Performing this operation leads to

The left-hand side of this equation can be replaced using vector identity (A.9)

Therefore, we obtain

 (5.40)

After the introduction of the constitutive relations (5.33), the terms

involving the time derivatives can be written as

(5.41)

Substitute (5.41) into (5.40) and integrate both sides of the resulting equa-

tion over the same volume �v. This volume is enclosed completely by the

surface �s. Performing this integration leads to

(5.42)

The volume integral on the left-hand side of (5.42) can be converted to a

closed-surface integral via the divergence theorem. With the substitution of

Ohm’s law J � �E, we finally obtain

(5.43)

FIGURE 5–9

An arbitrarily shaped volume that 

contains a source of electromagnetic 

energy.

ds

dv
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5.5 Poynting’s Theorem 287

where S � E � H is called the Poynting vector. It is the power density of the

radiated electromagnetic fields in W/m2. The direction of the radiated power

is included in this vector.

Let us now give a physical interpretation to each of the three terms that

appear in this equation. The units of the closed-surface integral are

or the closed-surface integral has the units of power. Using the definition of

the scalar product and the fact that the notation ds refers to the outward nor-

mal of the surface that encloses the volume Δv, this term represents the total
power that leaves or is radiated from the volume Δv. 

The terms within the integrand of the first volume integral can be recognized

as the stored magnetic energy density and the stored electric energy density that

were previously described in static fields. The time derivative introduces a unit

of s–1. The units of this term are 

This term corresponds to the time derivative of the stored electromagnetic
energy within the volume. 

The units of the second volume integral correspond to Joule heating within

the volume, and they are also in terms of watts.

The reference to Joule heating indicates that electromagnetic power is
converted to heat and this power cannot be recovered. A toaster uses

Joule heating.

Hence Poynting’s theorem states that the power that leaves a region is

equal to the temporal decay in the energy that is stored within the volume

minus the power that is dissipated as heat within it. A common-sense

example will illustrate this theorem. Additional applications of this important

theorem will be found in the chapter of this book that discusses radiation.

Equation (5.43), which can be considered to be a form of the conservation

of energy equation, can also be written in differential form. Recalling that

electromagnetic energy density is defined as

(5.44)

and the power loss density is given by

(5.45)
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288 Time-Varying Electromagnetic Fields

We can reinterpret (5.42) in the following differential form of the energy

conservation of the system.

(5.46)

This equation is somewhat similar to the equation of continuity (5.18) with a

“sink” term that corresponds to the Joule heating.

Using Poynting’s theorem, calculate the power that is dissipated in the resistor as heat. The 

electric energy is supplied by the battery. Neglect the magnetic field that is confined within 

the resistor and calculate its value only at the surface. In addition, assume that there are 

conducting surfaces at the top and bottom of the resistor so they are equipotential surfaces. 

Also, assume that the radius of the resistor is much less than its length.

Answer. The electric field has a magnitude of E � V0/� and the magnitude of the 

magnetic field intensity at the outer surface of the resistor is H � I/(2�a). The direction of 

the Poynting vector S � E � H is into the resistor. There is no energy stored in the 

resistor. The magnitude of the current density that is in the same direction as the 

electric field is J � I/(�a2). Therefore, the various terms in Poynting’s theorem (5.43) 

are found to be

yielding

The electromagnetic energy of the battery is fully absorbed by the resistor. 

 S•
�w
�t
-------� pL��

EXAMPLE 5.17
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5.5 Poynting’s Theorem 289

Using Poynting’s theorem, calculate the power that is flowing through the surface area at 

the radial edge of a capacitor. Neglect the ohmic losses in the wires connecting the 

capacitor with the signal generator. Also assume that the radius of the capacitor is much 

greater than the separation distance between the plates, or a �� b.

Answer. Assuming the electric field E is confined between the plates and is uniform, we 

can find the total electric energy that is stored in the capacitor to be

The total magnetic energy that is stored in the capacitor is equal to zero.

The differentiation of this electric energy with respect to time yields

This is the only term that survives on the right side of (5.43) since an ideal capacitor does 

not dissipate energy.

The left-hand side of (5.43) requires an expression for the time-varying magnetic field 

intensity in terms of the displacement current. Evaluating (5.26) at the radial edge of the 

capacitor, we write

There is no conduction current in this ideal capacitor, or I � 0. We obtain

Now we can write the Poynting vector power flow as

EXAMPLE 5.18
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290 Time-Varying Electromagnetic Fields

The minus sign arises since the direction of the Poynting vector is radially inward. 

Comparing both expressions, we find that they are equal, which implies that 

This states that energy is conserved in the circuit as should be expected.

In these two examples, we see that Poynting’s theorem can be interpreted

in terms of electrical circuit elements. In these examples, electromagnetic

power was directed into the element. The radiation of electromagnetic power

that is directed radially outward will be discussed later when antennas are

described. 

Time-Harmonic Electromagnetic Fields

In practice, we frequently will encounter electromagnetic fields whose tem-

poral variation is harmonic. Maxwell’s equations and the Poynting vector

will assume a particular form since the fields can be represented as phasors.
In particular, we write the fields as

(5.47)

and

(5.48)

where Re stands for the real part. There may be a phase angle 	 between the

electric and magnetic fields that will be absorbed into the terms E(x, y, z) and

H(x, y, z).

In terms of the phasors E and H, we write Maxwell’s equations as

(5.49)

(5.50)

(5.51)

(5.52)

where the term representing the temporal variation e j�t that is common to

both sides of these equations has been canceled. Hopefully, there will be lit-

tle confusion in notation since we have not introduced any new symbols.

Ps
dW
dt

--------��

5.6

E x y z t, , ,( ) Re E x y z, ,( )e
j�t[ ]�

H x y z t, , ,( ) Re H x y z, ,( )e
j�t[ ]�

 E r( )� j�
H r( )��

 H r( )� j��E r( ) J r( )��
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�v r( )
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5.6 Time-Harmonic Electromagnetic Fields 291

Compute the frequency at which the conduction current equals the displacement current.

Answer. Using (5.33) and (5.50), we write

The frequency is given by

For copper, the frequency f � �/2� is

At frequencies much above this value, copper, which is thought to be a good conductor, 

acts like a dielectric. 

The derivation of the Poynting vector requires some care when we are con-

sidering time-harmonic fields. This is because the Poynting vector involves the

product E(r) � H(r). Power is a real quantity, and we must be careful since

(5.53)

To effect the derivation of the Poynting vector, we make use of the follow-

ing relations:

(5.54)

where the star indicates the complex conjugate of the function. We write

The time variation e j�t cancels in two of the terms and it introduces a factor

of e�j2�t in the remaining two terms. After taking a time average of this

power, these latter terms will contribute nothing to the result. We finally ob-

tain the time average power to be

(5.55)
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The field vectors in free space are given by

The frequency f � 500 MHz. Determine the Poynting vector. The numerical value of 120� 

as a free-space impedance will become apparent in the next chapter. 

Answer. In phasor notation, the fields are expressed as

and the Poynting vector is

Having now manipulated the complex phasors to derive (5.55), let us

apply this to the derivation of Poynting’s theorem. In particular, we desire to

explicitly obtain the terms E(r) and H*(r). The procedure that we will follow

is to subtract the scalar product of E(r) with the complex conjugate of (5.50)

from the scalar product of H*(r) with (5.49), resulting in

(5.56)

Employing the same vector identity that we used previously to derive (5.40),

we recognize that (5.56) can be written as

(5.57)

where 

Following the procedure that has served us so well previously, we inte-

grate the terms that appear in (5.57) over the volume of interest.

(5.58)
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5.7 Conclusion 293

The volume integral is converted to a closed-surface integral that encloses

the volume �v.

(5.59)

The closed-surface integral represents the total power that is radiated

from within the volume enclosed by this surface. The last term represents

the power that is dissipated within this volume. This power could have been

turned into heat and would not be recovered. The remaining two terms are

the time-average energy stored within the volume. The factor j indicates that

this is similar to the reactive energy stored in the capacitor or inductor in an

RLC circuit.

Conclusion

We have now come to the end of a long journey in order to obtain the set of

four Maxwell’s equations that describe electromagnetic phenomena. We

have demonstrated that time-varying electric and magnetic fields can be de-

termined from each other through these equations and that they are inti-

mately intertwined. Faraday’s law of induction and Ampere’s circuital law

with the introduction of a displacement current relate time-varying magnetic

fields to time-varying electric fields. The term that represents the displace-

ment current arises from the requirement that the equation of continuity

must be satisfied. The boundary conditions that we encountered in static

fields apply equally well in time-varying fields.

There is a T-shirt that paraphrases the book of Genesis by stating that “In

the beginning, God said ‘. . .’ and there was light” where these equations are

included within the proclamation. The goal and accomplishment of thou-

sands of graduate students since Maxwell first inscribed these equations on

paper has been to pose a new electromagnetic problem, solve it starting from

these equations, and write a thesis. Even after obtaining a graduate degree,

this set of equations usually appears as “Equations 1 to 4” in many of their

later scholarly articles that are then stored in dusty archives. You, as a stu-

dent, are not expected to write these equations on a crib sheet and bring them

to an examination or even memorize them for that inquiry. You are expected
to know them! The intellectual and even the visceral understanding of these

equations is what this course and much of electrical and computer engineer-

ing is about.

E r( ) H* r( )�( ) ds• j� 
H2
�E2

�[ ]
�v�� dv  �E2 vd

�v���
�s
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Problems
5.1.1. In a source-free region, we find that B � zuy
� xuz. Does E vary with time?

5.1.2. A perfect conductor joins two ends of a 100 �
resistor, and the closed loop is in a region of uniform

magnetic flux density B � 10 e(�t/10) T.

Neglecting the self-inductance of the loop, find and

plot the voltage V(t) that appears across the 100 �
resistor. A device based on this principle is used to

monitor time-varying magnetic fields in experi-

ments and in biological studies.

5.1.3. A closed loop (�x � 30 cm � �y � 20 cm) of

wire passes through a nonuniform time-indepen-

dent magnetic field B � yuz T with a constant ve-

locity v0 � 5ux m/s. At t � 0, the loop’s lower left

corner is located at the origin. Find an expression for

the voltage V, generated by the loop as a function of

time. You may neglect the magnetic field created by

the current in the loop. 

5.1.4. Repeat Problem 5.1.3 with the magnetic flux

density being uniform in space B � 0.1uz T. Explain

your result.

5.1.5. Find the generated voltage if the axle moves at

a constant velocity v � vux � 3ux m/s in a uniform

magnetic field of B � B0uz � 5uz T. At t � 0, the axle

was at x � 0, L � 40 cm.

5.1.6. Repeat Problem 5.1.5 with the constraint that

the rails separate with � � �0 � �1x. The wheels are

free to slide on the “trombone-like” axle so they re-

main on the rails (�0 � 0.4 m, �1 � 0.04 m).

5.1.7. A tethered satellite is to be connected to the

Shuttle to generate electricity as it passes through the

ambient plasma. A plasma consists of a large number

of positive charges and negative charges. Assuming

that the Shuttle takes 1.5 hours to go around the Earth,

find the expected voltage difference �V between the

tether and the Shuttle. The Shuttle flies approximately

400 km above the earth where B � 10�5 T.

5.8

10 cm

uniform B(t)

100 Ω

x

v(t)

B

y

Δx

Δy

v �
v

B

y

x

20 km

B

v
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5.1.8. A conducting axle oscillates over two conduct-

ing parallel rails in a uniform magnetic field B � B0uz
(B0 � 4 T). The position of the axle is given by

x � (�x/2) [1 � cos�t] (�x � 0.2 m, � � 500 s�1).

Find and plot the current I(t) if the resistance is R � 10 �
and the distance between the rails is �y � 0.1 m.

5.1.9. Repeat Problem 5.1.8 with the magnetic field

also varying in time as B � B0cos �tuz with B0 and �
having the same values.

5.1.10. Calculate the voltage that is induced between

the two nodes as the coil with dimensions 0.5 m � 0.5 m

rotates in a uniform magnetic field with a flux density

B � 2 T with a constant angular frequency � � 1200 s�1.

5.1.11. A square loop is adjacent to an infinite wire

that carries a current I. The loop moves with a velocity

v � v0u�. The center of the loop is at �, and the initial

position is � � b. Determine the induced voltage V(t)
in the loop assuming dimensions a � 2b.

5.1.12. The 1 m long wire shown in the figure rotates

with an angular frequency � � 40� s�1 in the magnetic

field B � 0.5cos	u� T. Find the current in the closed

loop with a resistance 100 �.

5.2.1. The current density is . Find

the time rate of increase of the charge density ∂�v /∂t
at x � 1. 

5.2.2. The current density is  in cylin-

drical coordinates. Find the time rate of increase of the

charge density at � � 1.

5.3.1. Compare the magnitudes of the conduction and

displacement current densities in copper (� � 5.8 � 107

S/m, � � �0), sea water (� � 4 S/m, � � 81 �0), and

earth (� � 10�3 S/m, � � 10 �0) at 60 Hz, 1 MHz, and

at 1 GHz.

5.3.2. Given the conduction current density in a

lossy dielectric as ,

find the displacement current density if � = 10�3 S/m

and �r � 6.5.

5.4.1. Show that the fields  and

 do not satisfy Maxwell’s equations in

air �r � 1. Show that the fields 

and satisfy these equations.

What is the value of k in terms of the other stated

parameters?

5.4.2. Given

and

in a vacuum, find Z0 in terms of �0 and 
0 so Maxwell’s

equations are satisfied.

y

BR y

x

I

x

Δ

Δ

B

ω

I

a

2b

v

R  = 100 Ω 

φ

ω � = 1m

r = 0.2m

x

J �x( )sin ux�

J e
�

2
�( )

ur�

Jc 0.2 2�10
9
t( ) A m

2
�sin�

B B0 �tcos ux�
E E0� �tuzcos

B B0 �t ky�( )cos ux�
E E0 �t ky�( )cos uz�

E E0 �t ky�( )cos uz �

H
E0

Z0

------⎝ ⎠
⎛ ⎞ �t ky�( )cos ux�
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296 Time-Varying Electromagnetic Fields

5.4.3. Do the fields

satisfy Maxwell’s equations?

5.4.4. Find a charge density �v that could produce an

electric field in a vacuum 

5.4.5. Find the displacement current density flowing

through the dielectric of a coaxial cable of radii a and

b where b � a if a voltage V0cos �t is connected be-

tween the two conducting cylinders.

5.4.6. Find the displacement current density flowing

through the dielectric of two concentric spheres of ra-

dii a and b where b � a if a voltage V0cos �t is con-

nected between the two conducting spheres.

5.4.7. Starting from Maxwell’s equations, derive the

equation of continuity.

5.4.8. Write all of the terms that appear in Maxwell’s

equations in Cartesian coordinates.

5.5.1. If  is a solution to

Maxwell’s equations, find H. Find Sav.

5.5.2. If  is a solution to

Maxwell’s equations, find E; find Sav .

5.5.3. Compute the electric energy that is stored in a

cube whose volume is 1 m3 in which a uniform elec-

tric field of 104 V/m exists. Compute the stored ener-

gies if the cube is empty and if it is filled with water

that has � � 81�0.

5.6.1. Write  and

in phasor notation.

5.6.2. Write the phasors  and 

 in the time domain. The fre-

quency of oscillation is �. Find the average Poynting

vector Sav .

5.6.3. At a frequency of f � 1 MHz, verify that copper

(� � 5.8 � 107 S/m, �r � 1) is a good conductor, and

quartz (� � 10�17 S/m, �r � 4) is a good insulator.

5.6.4. Find the frequency where quartz becomes a

conductor.

5.6.5. Find the frequency where copper becomes an

insulator.

E E0 x �t( )coscos uy and H
E0


0

------⎝ ⎠
⎛ ⎞ xsin �t( )uzsin� �

E E0 x �t( )coscos ux.�

E E0 �t �z�( )cos uy�

H H0 �t �z�( )cos uy�

E 120� 3 10
9
t� 10z�( )cos ux�

H 1 3 10
9
t� 10z�( )cos uy�

E 3e
j�z� ux� H �

0.4e
j45!�

e
j�z� uy
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A

absolute potential, 86, 89

acceleration, 425

advection equation, 312–314

amber (élektron), 61, 62

Ampere’s circuital law, 160, 163–64, 181

magnetic flux density, 130–32, 137–38

Ampere’s Law, 131, 137–39, 275

ampere-turns, 164

Angstrom, 96

antenna

beam solid angle, 449

beam width, 450

directivity, 450

Friis transmission equation, 453

gain, 450

antenna array (s), definition of, 455–56

array factor, 456

array size, 207, 223

attenuation constant, 329

B

beam solid angle, 449

beam width, 450–51

Bessel function, 506

binomial array, 461–63

Biot-Savart law, 143, 154, 422

Blumlein transmission line, 417

Boltzmann’s constant, 488

bounce diagram, 392

boundary conditions, 178–185

C

capacitance, 114–18

of metallic objects, 242

of parallel plate capacitors, 116, 247

Cartesian coordinates, 18–21

central difference method, 202–04, 314

characteristic impedance, 323–24   

of the conductor, 329

for lossy transmission lines, 403

of matching transmission line, 376–79

propagation characteristics, 337

of the transmission line, 362, 365–67, 369

charge density distribution, 247–49

closed line integral, 30, 32, 45, 49, 51, 100 

closed path, 32, 99 

closed surface integral, 35–36, 41, 78, 80, 129, 

272, 287, 293

units of, 287

conduction current, 124

conservative fields, 32, 99

constitutive relations, 280, 298

coordinate systems, 17–29

Coulomb gauge, 139, 189

Coulomb, Charles-Augustin de, 64

Coulomb’s Law 61–67

coupled potentials, 230, 234–35 

curl operation, 46–51

current density, 125–26

cylinder command, 25

cylindrical coordinates, 22–25

potential at the surface, 245

D

dblquad command, 107

Debye length, 199–200

Debye’s sheath, 195

del operator, 41, 186, 187

depletion layer, 195

diamagnetic material, 158

dielectric interface potential, 225

dielectric materials, 96, 98–99, 113–14

Index
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differential electric field, 75

differential form of the energy, 288

differential surface area, 28

diffusion equation, 281–82, 361

dipole antenna

Hertzian, 430

radiation pattern, 432, 436–439, 

Dirac’s delta function, 361

direct integration method, 191–95

directivity, 449, 465

Dirichlet boundary condition; 226

Dirichlet’s matrix, 232

dispersion relation, 409–11

dispersion, 356, 408–411, 413

dispersive medium, 328–29, 413

displacement current, 276, 278–79

displacement flux density, 112, 178–84

distortionless line, 406

distributed charge densities, 72–73

divergence theorem, 45–46, 79, 472

divergence, 40–46

domain wall, 159

E

effective aperture, 451–53

eigen-function, 216

eigenvalues, 216

Einstein, Albert, 257, 319, 426

electric dipole moment, 98

electric field for a wave derivation, 318–21

electric field, 67–71, 75–77

electric flux density, 112

electric force, 62

electric potential difference, 89–92

electric potentials

absolute potential, 86, 90 

electric dipole, 100–101

total electrostatic energy, 85–89, 96 

voltage difference, 92

electric susceptibility, 113

electrical currents, 123–27

electrical engineering, 62

electromagnetic energy density, 287

electromagnetic fields, 40–41, 287, 

290–93

electromagnetic wave propagation

for perpendicular waves, 335–42

for time-harmonic signal, 343–47

in varying dielectric medium (s), 325–33

electromagnetics terminology, 5–6

electrostatic field, 67, 98–99, 119, 129

electrostatic force (Coulomb force), 63, 64, 66

electrostatic stored energy, 87–89

elliptical polarization, 299

enclosed charge, 79, 82

energy of triangular elements. See finite 

element method (FEM) using MATLAB 

E-plane, 439

equation of continuity, 271–74

equipotential contours, 483–84

equipotential surface, 38, 91

Euler’s identity, 319

F

Fabry-Perot Resonator, 346–47

Faraday disc generator, 267

Faraday’s Law of Induction, 257–70

Farads, 115

FDM using MATLAB, 220–26

FEMLAB, 237

ferromagnetic material, 159

finite difference in time domain (FDTD) method, 

314–15

finite difference method (FDM), 201–08

finite dipole (linear antenna), 434–40

finite element method (FEM) using 

MATLAB, 226–41

forward difference method, 314

Fourier coefficient, 218

Fourier series expansion method, 211–15

Fourier sine series, 218

fplot command, 13

Franklin, Benjamin, 62, 124

Fraunhofer zone, 454

Friis transmission equation, 453

fringing field, 116

G

gain, 450

Gauss’s Law (Gaussian surface), 77–85

Gauss’s theorem, 45

Gaussian pulse traveling wave, 311

Gaussian surface, 78

Gedanken experiment, 85–88, 275–77

Gibb’s phenomenon, 220

gradient of scalar quantities, 37–40

ground potential, 90–91, 192 

group velocity, 329, 407–12

gyroradius, 148
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H

H field, 160

half-power beamwidth (HPBW), 450, 466

half-wave dipole, 439

half wavelength, 414

Hall voltage, 174

heat equation. See diffusion equation

heat flow, 282

Heaviside equations, 358

Helmholtz equation, 318

Henries, 166, 258

Hertzian dipole, 438, 445–46, 449

hold command, 13

H-plane, 440

hyperbolic equations, 313

hysteresis curve, 162

I

image charge, 184

incident wave, 370, 373, 452 

index of refraction, 327

individual elements, 455–56

inductance, 166–71

infinite transmission line termination, 367–73

infinitesimal electric dipole, 427–34

inline command, 109

input impedance of transmission line, 374–75

integrals, 29–37

integrated circuit, 110

interpolation conditions, 478

intrinsic wave impedance, 323

ion matrix sheath, 488

irrotational fields, 99

J

Joule heating, 127, 287–88

K

Kirchhoff’s laws, 163, 165, 272, 358

L

Lagrangian mass variables, 84, 137

Laplace’s equation, 94, 178, 186–91, 

208, 212

laplacian operator, 52, 187, 187–89, 215 

Larmor radius, 148

Lax method, 316–17

Leibnitz rule, 83

Lenz’s law, 158, 259

line integral, 29–34

linear array, 455–56, 458, 461

linear charge density, 73–74, 76

linear polarization, 299–300

lobe(s), 432

lodestones, 128

longitudinal wave, 305

loop antenna, 440

Lorentz force, 147

Lorentz gauge, 429

lossless transmission line, 357–59, 367–69, 378, 

381–82

lossy dielectric medium, 327

lossy transmission lines, 403–406

M

magnetic circuits, 162–66

magnetic dipole moment, 157–59, 443

magnetic dipoles, 145, 157–58, 171

magnetic energy, 170–71

magnetic field component of 

plane wave, 322–24

magnetic field fundamentals, 128–38, 

142–43, 148

magnetic field intensity, 160–61, 322–25, 426

calculation through vector potential, 431

electric field components, 336

magnitude of, 420

relation to magnetic flux density, 164

tangential component of, 181–82

magnetic flux density, 128–29, 259, 485. 

See also magnetic vector potential

dependence on magnetic field 

intensity, 161–62

normal component (s) of, 180

self inductance of a solenoid, 166–68

within the wire (s), 132–33, 154

magnetic flux linkage, 166–67

magnetic flux, 128, 164, 258–59, 486

magnetic forces, 146–56

magnetic materials, 157–62

magnetic monopoles, 128, 171, 180, 

magnetic susceptibility, 158, 161

magnetic vector potential, 138–45, 188. 

See also magnetic flux density

magnetization, 159–160

magnetohydrodynamics, 174

magnetomotive force (mmf), 164

mass spectrometer, 148
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mathematical foundation of FEM, 477–82

MATLAB applications

numerical integration, 101–109 

plotting, 97–98, 185

MATLAB commands, 7, 10–13, 19, 21, 25

MATLAB, 3–5

3D graphical representations, 14–16

graphical plotting routines, 13

matrix equation, 481–82

Maxwell’s equations, 280–85

method of moments (MoM) using 

MATLAB, 241–51

capacitance of metallic objects, 242

one-dimensional charge distribution, 249–51

potential at the perimeter of the circle, 247

minimization of energy result, 477–78

molecules, 110

multiplication of patterns, 456

mutual capacitance, 115

mutual coupling, 246 

mutual inductance, 166, 265

N

negative dispersion, 411

nepers, 329

Neumann boundary condition, 226

Newton, Isaac, 257

node potentials, 227, 479–81

nonconservative fields, 32

nonlinear varactor diode, 409, 413–14

norm command, 7

normalized array factor, 459

num2str command, 109

O

Oersted, Hans Christian, 128, 130

Ohm’s law, 124–25

one-dimensional charge distribution, 249–51

one-dimensional wave equation, 302–17

ordinary differential equations, 213, 215, 298, 

403

orthogonal coordinate systems, 18, 28, 30, 188

orthogonal, 6, 17–19, 383, 427

oscillating current, 427

P

paddle wheel, 46

parabolic equation, 313

parallel current-carrying wires, 154–57

parallel plate capacitor, 115, 116, 118, 278

paramagnetic material, 158

periodic boundary conditions, 314, 316

permeability of free space, 64–65, 130

phase velocity, 319–20, 327–28, 412–13

phased-array antenna, 458

phasor notation (s), 54–56, 292, 344

phasor(s), 52–56

pillbox, 178–79

plasma adjacent to metallic electrode, 487–89

Poisson’s equation, 94, 186–91, 193 

polarization charge, 111–12

polarization field, 111–13

polarization, 75, 112–14, 299–301, 324, 452

potential distribution, 52, 211–12

in a bounded space, 215–16

power density, 127, 452, 453

power loss density, 287

power radiation pattern, 449

Poynting vector, 287, 291, 324, 426

Poynting’s theorem, 286–90, 420

Priestley, Joseph, 62

propagation constant, 328, 331, 404–05, 409, 411 

pulse propagation, 397

Q

Qenc, enclosed charge, 78–79, 82–84

quad command, 102

quadrupole, 185

quarter-wave transformer, 376

quiver command, 40, 44

R

radial electric field, 76, 78, 80

radiation intensity, 449

radiation of electromagnetic waves, 419–26

radiation patterns, 438–40,  

through antenna array(s), 455–62

radiation resistance, 443–48

rail gun, 154

reactive energy, 293

real pulse, 341–42

reflected wave, 307, 373, 394, 398

reflection coefficient, 337, 516–17

of lossless transmission lines, 381-82, 385–87

of transmission line (s), 368–70

with a battery impedance, 391–94

relative dielectric constant, 180, 348, 399, 475

relative permeability, 161–65 
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reluctance, 163–164

repeated vector operation application, 269–70

repeated vector operations, 51–52

S

scalar product, 8–12, 21, 285. 

See also vector product

scalars, 6, 16 

self capacitance, 115

self inductance, 166–68

separation of variables, 211–19

side-lobe level (SLL), 466

Simpson's rule, 101

single-stub matching, 380-81, 390

sinusoidal waves, 362–63, 365–67

skin depth, 332–334

skin effect, 333

small loop antenna, 440–43

S-matrix elements, 478–79

Smith Chart, 381–90

spherical coordinates, 25

standing wave, 343, 370–73

static electric field, 186, 422

Stokes theorem, 49–51

strip line, 353, 354

subplot command, 13

superposition principles, 69–76

surf command, 14

surface charge density, 72, 113, 114, 179–80, 

225

surface integral, 34, 131–32, 270

over two surfaces, 41–42

symmetrical components, 322

T

Taylor series expansion, 202, 203

telegraphers’ equations, 353, 357, 403

TEM mode of propagation, 355

Tesla, 128

Thales of Miletus, 61

three-dimensional vector wave equation, 299

time derivatives, 286

time domain reflectometry, 400

time-harmonic electromagnetic fields, 291–293

total electric field, 69, 70–71, 74, 343, 425

total field pattern, 456

total magnetic flux, 128, 164, 166–68, 486

total magnetization, 159–60

total radiated power, 421, 444–45

transformation of variables, 28–29

transient characteristics of step voltage, 391–97

transient sheath, 196, 488

transmission coefficient, 337, 398–99

transmission line equations, 357–62

velocity of propagation, 359

transmission line matching, 388–89

transmission line parameters, 483–86

transmission lines, 401–402

types of, 354–55

transverse electromagnetic propagation mode, 

355–57

transverse waves, 305

trapezoidal command, 102

traveling wave(s), 307–310

trombone line, 380

twin lead, 354

U

unit vectors, 17–22

unknown charge distribution, 245

V

Van Allen belt, 151

vector potential, 139–41, 146, 188, 428–30, 431

vector product, 10–12, 21, 143, 146, 152. 

See also scalar product

vector wave equation, 299

vectors, 6–12

velocity of light, 65, 131

velocity of propagation, 304–07, 349, 359, 366

virtual pulse, 341

voltage divider rule, 391

voltage pulse along transmission line, 397–400

voltage standing wave ratio, 372

voltage standing wave ratio, 372

volume charge density, 36, 72, 78–79

volume charge density, 72, 78

volume integral, 36

volume integral, 36–37

W

wave equation, 297–302, 353–54, 364

and numerical solution, 312–17

wave experiments, 302–305

wave number, 318–20, 326, 346, 363, 410, 430

wave propagation, 308–09

wave vector, 320

wavemaker, 302

webers, 128
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Vector Operations in the Three Coordinate Systems
Cartesian

Cylindrical

Spherical

�a �a
�x
------ux
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�y
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Additional physical constants can be found on the National Institute of Standards and Technology (NIST) 

website at: http://physics.nist.gov/cuu/Constants/ 

Fundamental Physical Constants 

Quantity Symbol Value Unit
Avogadro constant NA 6.0221415 � 1023 mol�1

Boltzmann constant k 1.3806505 � 10�23 J/K

Planck constant h 6.6260693 � 10�34 J sec

electron charge e 1.60217653 � 10�19 C

electron mass me 9.1093826 � 10�31 kg

proton mass mp 1.67262171 � 10�27 kg

proton-electron mass ratio mp /me 1836.15267261

Gravitation constant G 6.6742 � 10�11 m3/kg sec2

standard acceleration of gravity gn 9.80665 m/sec2

permittivity in vacuum �0 8.854187817 � 10�12 F/m

Approx. value �0 �0 (1/36�) � 10�9 F/m

permeability in vacuum �0 4� � 10�7
 H/m

Approx. value �0 �0 12.566370614 � 10�7 H/m

speed of light in vacuum c, c0 299, 792, 458 m/sec

characteristic impedance in 

vacuum

Z0 376.730313461 �

SI Prefixes

10n Prefix Symbol  10n Prefix Symbol

1024 yotta Y 10�1 deci d

1021 zetta Z 10�2 centi c

1018 exa E  10�3 milli m

1015 peta P  10�6 micro �

1012 tera T 10�9 nano n

109 giga G 10�12 pico p

106 mega M  10�15 femto f

103 kilo k  10�18 atto a

102 hecto h  10�21 zepto z

101 deca, deka da  10�24 yocto y 
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Useful Integrals

Trigonometric Relations

Approximations for Small Quantities

For 

Half-Angle Formulas

Hyperbolic Functions
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