
CHAPTER ONE

Fundamentals of
Electromagnetics

1.1 RF AND MICROWAVE FREQUENCY RANGES

The rapid technological advances in electronics, electro-optics, and computer
science have profoundly affected our everyday lives. They have also set the
stage for an unprecedented drive toward the improvement of existing medical
devices and the development of new ones. In particular, the advances in radio-
frequency (RF)/microwave technology and computation techniques, among
others, have paved the way for exciting new therapeutic and diagnostic
methods. Frequencies, from RF as low as 400kHz through microwave fre-
quencies as high as 10GHz, are presently being investigated for therapeutic
applications in areas such as cardiology, urology, surgery, ophthalmology,
cancer therapy, and others and for diagnostic applications in cancer detection,
organ imaging, and more.

At the same time, safety concerns regarding the biological effects of 
electromagnetic (EM) radiation have been raised, in particular at a low level
of exposure. A variety of waves and signals have to be considered, from pure
or almost pure sine waves to digital signals, such as in digital radio, digital 
television, and digital mobile phone systems. The field has become rather
sophisticated, and establishing safety recommendations or rules and making
adequate measurements require quite an expertise.

In this book, we limit ourselves to the effects and applications of RF and
microwave fields.This covers a frequency range from about 100kHz to 10GHz
and above. This choice is appropriate, although effects at RF and microwaves,
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respectively, are of a different nature. It excludes low-frequency (LF) and
extremely low frequency (ELF) effects, which do not involve any radiation. It
also excludes ultraviolet (UV) and X-rays, called ionizing because they can
disrupt molecular or atom structures. The RF/microwave frequency range
covered here may be called nonionizing.

Radiation is a phenomenon characterizing the RF/microwave range. It is
well known that structures radiate poorly when they are small with respect to
the wavelength. For example, the wavelengths at the power distribution fre-
quencies of 50 and 60Hz are 6.000 and 5.000km, respectively, which are enor-
mous with respect to the objects we use in our day-to-day life. In fact, to radiate
efficiently, a structure has to be large enough with respect to the wavelength
l. The concepts of radiation, antennas, far field, and near field have to be 
investigated.

On the other hand, at RF and microwave frequencies, the electric (E) and
magnetic (H) fields are simultaneously present: if there is an electric field, then
there is a coupled magnetic field and vice versa. If one is known, the other can
be calculated: They are linked together by the well-known Maxwell’s equa-
tions. Later in this book, we shall be able to separate some biological effects
due to one field from some due to the other field.We need, however, to remem-
ber that we are considering the general case, which is that of the complete
field, called the EM field. Hence, we are not considering direct-current (DC)
and LF electric or magnetic fields into tissue.

Because we limit ourselves to the RF/microwave range, we may refer to our
subject of interaction of electric and magnetic fields with organic matter as
biological effects of nonionizing radiation. It should be well noticed that, by
specifically considering a frequency range, we decide to describe the phenom-
ena in what is called the frequency domain, that is, when the materials and
systems of interest are submitted to a source of sinusoidal fields.To investigate
properties over a frequency range, wide or narrow, we need to change the 
frequency of the source. The frequency domain is not “physical” because a
sinusoidal source is not physical: It started to exist an infinite amount of time
ago and it lasts forever. Furthermore, the general description in the frequency
domain implies complex quantities, with a real and an imaginary part, res-
pectively, which are not physical either. The frequency-domain description is,
however, extremely useful because many sources are (almost) monochromatic.

To investigate the actual effect of physical sources, however, one has to
operate in what is called the time domain, where the phenomena are described
as a function of time and hence they are real and physically measurable. Oper-
ating in the time domain may be rather difficult with respect to the frequency
domain.The interaction of RF/microwave fields with biological tissues is inves-
tigated mostly in the frequency domain, with sources considered as sinusoidal.
Today numerical signals, such as for telephony, television, and frequency-
modulated (FM) radio, may, however, necessitate time-domain analyses and
measurements.
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There is an interesting feature to note about microwaves: They cover,
indeed, the frequency range where the wavelength is of the order of the size
of objects of common use, that is, meter, decimeter, centimeter, and millime-
ter, depending of course on the material in which it is measured. One may,
hence, wonder whether such wavelengths can excite resonance in biological
tissues and systems. We shall come back later to this question.

1.2 FIELDS

Investigating the interaction of EM fields with biological tissues requires 
a good physical insight and mathematical understanding of what are 
fields. A field is associated with a physical phenomenon present in a given
region of space. As an example, the temperature in a room is a field 
of temperature, composed of the values of temperature in a number of 
points of the room. One may say the same about the temperature distribution
inside a human body, for instance. We do not see the field, but it exists,
and we can for instance visualize constant-temperature or isothermal 
surfaces.

There are fields of different nature. First, fields may be either static or time
dependent. Considering, for instance, the temperature field just described, the
room may indeed be heated or cooled, which makes the temperature field time
dependent. The human body may also be submitted to a variety of external
sources or internal reasons which affect the temperature distribution inside
the body. In this case, the isothermal surfaces will change their shapes as a
function of time.

Second, the nature of the field may be such that one parameter only, such
as magnitude, is associated with it. Then, the field is defined as scalar. The tem-
perature field, for instance, inside a room or a human body, is a scalar field.
One realizes that plotting a field may require skill, and also memory space, if
the structure is described in detail or if the observer requires a detailed
description of the field in space. This is true even in the simplest cases, when
the field is scalar and static.

On the other hand, in a vector field, a vector represents both the 
magnitude and the direction of the physical quantity of interest at points in
space, and this vector field may also be static or time dependent. When 
plotting a static scalar field, that is, one quantity, in points of space already
requires some visualization effort. On the other hand, plotting a time-
dependent vector field, that is, three time-varying quantities, in points of space
obviously requires much more attention. A vector field is described by a set
of direction lines, also known as stream lines or flux lines. The direction line is
a curve constructed so that the field is tangential to the curve in all points of
the curve.
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1.3 ELECTROMAGNETICS

1.3.1 Electric Field and Flux Density

The electric field E is derived from Coulomb’s law, which expresses the inter-
action between two electric point charges. Experimentally, it has been shown
that

1. Two charges of opposite polarity attract each other, while they repel
when they have the same polarity, and hence a charge creates a field of
force.

2. The force is proportional to the product of charges.
3. The force acts along the line joining the charges and hence the force field

is vectorial.
4. The force is higher when the charges are closer.
5. The force depends upon the electric properties of the medium in which

the charges are placed.

The first observations showed that the force is about proportional to the
square of the distance between them. In 1936, the difference between the mea-
sured value and the value 2 for the exponent was of the order of 2 ¥ 10-9

[1]. It is admitted as a postulate that the exponent of the distance in the law
expressing the force between the two charges is exactly equal to 2. It has been
demonstrated that this postulate is necessary for deriving Maxwell’s equations
from a relativistic transformation of Coulomb’s law under the assumption that
the speed of light is a constant with respect to the observer [2, 3]. Hence,
Coulomb’s law is

(1.1)

where f̄ is the force; q1 and q2 the value of the charges, expressed in coulombs
(C), including their polarity; the factor 4p is due to the use of the rationalized
meter-kilogram-second (MKS) system, exhibiting a factor 4p when the sym-
metry is spherical; and e0 measures the influence of the medium containing the
charges, equal to approximately 10-9/36p farads per meter (F m-1) in vacuum.

If a test charge Dq is placed in the field of force created by a charge q, it
undergoes a force

(1.2)

The test charge Dq is small enough to avoid any perturbation of the field 
of force created by q. The intensity of the electric field, in volts per meter
(V m-1), is then defined as the ratio of the force exerted onto q by the charge
Dq, which for the electric field created by a charge q in vacuum yields
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(1.3)

Ideally, the electric field is defined in the limit that Dq tends to zero. It is a
vector field, radial in the case of a point charge. It comes out of a positive
charge and points toward a negative charge. The lines of electric field are tan-
gential to the electric field in every point. Equation (1.3) is linear with respect
to the charge. Hence, when several charges are present, one may vectorially
add up the electric fields due to each charge, which yields what is often called
the generalized Coulomb’s law.

The electric charge may appear in four different forms:

1. It can be punctual, as in Eqn. (1.2). It is then usually denoted q and meas-
ured in coulombs.

2. It can be distributed in space along a line (material of not). It is then
usually denoted rl and measured in coulombs per meter (C m-1).

3. It can be distributed in space over a surface (material of not). It is then
usually denoted rs and measured in coulombs per square meter (C m-2).

4. It can also be distributed in a volume. It is then usually denoted r and
measured in coulombs per cubic meter (C m-3).

When a material is submitted to an applied electric field, it becomes polar-
ized, the amount of which is called the polarization vector . This is due to the
fact that, in many circumstances, electric dipoles are created or transformed
into the material, which corresponds to what is called the dielectric properties
of the material. Hence, the polarization is the electric dipole moment per unit
volume, in coulombs per square meter.

The total electric field in a dielectric material is the sum of the applied elec-
tric field and of an induced electric field, resulting from the polarization of 
the material. As a simple example, a perfect electric conductor is defined as an
equipotential material. If the points in the material are at the same electric
potential, then the electric field must be zero and there can be no electric
charges in the material. When a perfect electric conductor is submitted to an
applied field, this applied field exists in all points of the material.To have a van-
ishing total electric field, the material must develop an induced electric field
such that the sum of the applied field and the induced field vanishes in all points
of the material.The induced field is calculated by taking into account the geom-
etry of the problem and the boundary conditions, which can of course be com-
plicated. As another example, a human body placed in an applied electric field
develops an induced electric field such that the sum of the applied field and the
induced field satisfies the boundary conditions at the surface of the body. The
total field in the body is the sum of the applied field and of the induced field.

A new vector field is then defined, known as the displacement flux density
or the electric flux density, in coulombs per square meter similarly to the polar-
ization, defined as
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(1.4)

This definition is totally general, applying to all materials, in particular to all
biological materials. It indeed holds for materials in which [3]:

1. The polarization vector has not the same direction as the vector electric
field, in which case the material is anisotropic.

2. The polarization can be delayed with respect to the variation of elec-
tric field, as is the case in lossy materials. All physical materials are 
lossy, so this is a universal property. It is neglected, however, when the
losses are reasonably small, which is not always the case in biological
tissues.

3. The polarization is not proportional to the electric field, in which case
the material is nonlinear.

In all other cases, that is, when the material is isotropic, lossless, and linear,
the definition (1.4) can be written

(1.5)

which combines the applied and induced fields, hence the external source field
and the induced polarization, into the definition of e (F m-1), permittivity of
the material, product of the permittivity of vacuum e0 (F m-1) and the relative
permittivity er (dimensionless) of the material. The electric susceptibility ce is
related to the relative permittivity by the expression

(1.6)

It should be stressed that the use of permittivity, relative permittivity, and sus-
ceptibility is limited to isotropy, losslessness, and linearity, which is far from
being always the case, in particular in biological tissues.

Dielectric polarization is a rather complicated phenomenon [4]. It may be
due to a variety of mechanisms, which can be summarized here only briefly.
The simplest materials are gases, especially when they are rarefied. The sim-
plest variety is formed of nonpolar gases, in which the molecules have no elec-
tric dipole at rest. When an electric field is applied, an electric dipole is
induced. This is a simple case for which a simple model can be used for cor-
rectly calculating the polarization. The next category is that of polar gases, in
which an electric dipole does exist at rest. When an external electric field is
applied, the dipole orientation is modified; it essentially rotates. For such a
polar rarefied gas, which is still a very simple case, the relationship between
polarization and applied field is already found to be nonlinear. When the
density increases, modeling becomes much more difficult, and classical physics
yields wrong models for compact gases, liquids, and of course solids, in 

e cr e= +1

D E Er= =e e e0
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particular conductors, semiconductors, and superconductors. Classical physics
almost completely fails when trying to establish quantitative models. It can
however yield some very illuminating insight on the phenomena involved with
the dielectric character of materials, in particular about the influence of fre-
quency, as will be shown now.

The dipolar polarization, resulting from the alignment of the molecule
dipolar moment due to an applied field, is a rather slow phenomenon. It is cor-
rectly described by a first-order equation, called after Debye [5]: The dipolar
polarization reaches its saturation value only after some time, measured by a
time constant called relaxation time t. The ability to polarize, called the polar-
izability, is measured by the parameter

(1.7)

where constant C takes into account the nonzero value of the polarizability at
infinite frequency. The relative permittivity related to this phenomenon is

(1.8)

where N is the number of dipoles per unit volume. It should be observed that
the permittivity is a complex quantity with real and imaginary parts. If er0 and
er• are the values of the real part of the relative permittivity at frequencies
zero and infinity, respectively, one can easily verify that the equations can be
written as

(1.9)

The parameter er• is in most cases the value at optical frequencies. It is often
called the optical dielectric constant.

Dipolar polarization is dominant in the case of water, much present on
earth and an essential element of living systems. The relative permittivity of
water at 0°C is

(1.10)

with 1/t = 8.84GHz. The real part of the relative permittivity is usually called
the dielectric constant, while the imaginary part is a measure of the dielectric
losses. These are often expressed also as the tangent of the loss angle:

(1.11)

Table 1.1 shows values of relaxation times for several materials. A high value
of the relaxation time is indicative of a good insulator, while small values are
typical of good conductors.
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Figure 1.1 represents the typical evolution of the real and imaginary parts
of a relative permittivity satisfying Debye’s law, where er0 and er• are the values
at frequencies zero and infinity, respectively. It shows the general behavior of
the real and imaginary parts of permittivity: The imaginary part is nonzero
only when the real part varies as a function of frequency. Furthermore, each
part can be calculated from the variation of the other part over the whole fre-
quency range, as indicated by the Kramer and Kronig formulas [6]:

(1.12)

It can easily be seen that e≤ = 0 if e¢ is frequency independent. The variable of
integration x is real. The principal parts of the integrals are to be taken in the
event of singularities of the integrands.The second equation implies that e≤(•)
= 0. The evaluation of Eqn. (1.12) is laborious if the complex e(w) is not a con-
venient analytical function. It is interesting to observe that the formulas are
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TABLE 1.1 Relaxation Time of Some Materials

Material Relaxation Time

Copper 1.51-19 s
Silver 1.31-19 s
Sea water 2.01-10 s
Distilled water 10-6 days
Quartz 10 days
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FIGURE 1.1 Relaxation effect.
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similar to those relating the real and imaginary parts of impedance in general
circuit theory [7].

The structure of Maxwell’s equations shows that permittivity and conduc-
tivity are related parameters. To keep it simple, one may say that they express
the link between current density and electric field: When both parameters are
real, the permittivity is the imaginary part while the conductivity is the real
part of this relationship. This can be written as

(1.13)

When the permittivity is written as complex, there is an ambiguity. There are,
however, too many parameters, as can be seen in the expression

(1.14)

from which it appears that the real part of the relation between the current
and the electric field can be written either as an effective conductivity equal
to

(1.15)

or as an effective imaginary part of permittivity equal to

(1.16)

It should be observed that these two expressions are for the conductivity and
permittivity, respectively, and not just the relative ones. Both expressions are
correct and in use. Generally, however, the effective conductivity is used when
characterizing a lossy conductor, while the effective imaginary part of the per-
mittivity is used when characterizing a lossy dielectric. At some frequency, the
two terms are equal, in particular in biological media. As an example, the fre-
quency at which the two terms s¢ and we≤ are equal is in the optical range for
copper, about 1GHz for sea water, 100MHz for silicon, and 1MHz for a humid
soil. Although both expressions are correct, one needs to be careful in such a
case when interpreting the results of an investigation.

One more comment, however, is necessary. It has just been said, and it is
proven by Kramer and Kronig’s formulas (1.12), that, if the permittivity varies
as a function of frequency, it must be a complex function. In fact, this is true
of all three electromagnetic parameters: permittivity, conductivity, and per-
meability. Hence, by writing the conductivity as a real parameter in Eqns.
(1.13)–(1.16), we have assumed that it was independent of frequency, which is
about the case of the steady conductivity. If it varies with frequency, then it
has to be written as a complex parameter s¢ = s¢ + js≤ and Eqns. (1.13)–(1.16)
have to be modified consequently.
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Ionic polarization and electronic polarization are due to the displacement
of the electronic orbits with respect to the protons when an electric field is
applied. This phenomenon is much faster than dipolar polarization. It is a
movement and is described adequately by a second-order equation, charac-
terized by possible resonance [3, 5]. Dielectric losses induce damping, which
makes the permittivity complex in the frequency domain, as for the first-order
effect described by Eqn. (1.6).The real and imaginary parts of the relative per-
mittivity are classical expressions for a second-order equation:

(1.17)

with

(1.18)

where m is the moving mass, g the damping term, -q the moving charge, and
N the number of active elements per unit volume. When the damping term
vanishes, the permittivity is purely real:

(1.19)

In fact, the oscillation frequencies w¢2
0 are not identical for all the electrons

in a given volume, which requires a generalization by adequately summing all
the contributions. Figure 1.2 represents the typical evolution of the real and
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imaginary parts of a relative permittivity satisfying the second-order equation
of movement. When the damping term decreases, the variation of the real part
of the permittivity becomes steeper while the maximum of the imaginary part
increases and tends to infinity at the oscillation frequency.

When submitted to electric fields, an actual material exhibits a variety of
relaxation and resonance phenomena. Figure 1.3 represents a typical variation
of the real and imaginary parts of the relative permittivity as a function of 
frequency.

Some materials exhibit unusual properties when submitted to electric fields.
For instance, barium titanate and some other materials are ferroelectric: The
electric polarization does not vary linearly with the amplitude of the applied
field, exhibits hysteresis, and varies significantly with temperature. A critical
temperature, above which ferroelectricity disappears and termed the Curie
temperature, is associated with the phenomenon. Some other materials are
called antiferroelectric: Their electric dipoles are very much organized as well;
they are antiparallel, however.

1.3.2 Magnetic Field and Flux Density

The magnetic field is derived from Ampere’s law, which expresses the inter-
action between two loops of wires carrying currents. The total force experi-
enced by a loop is the vector sum of forces experienced by the infinitesimal
current elements comprising the second loop. Experimentally, it has been
shown that [3, 4–7]

1. Two currents of equal directions attract each other, while they repel
when they have opposite directions.

2. The magnitude of the force is proportional to the product of the two cur-
rents and to the product of the lengths of the two current elements.

3. The magnitude of the force is inversely proportional to the square of the
distance between the current elements.
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FIGURE 1.3 Permittivity as a function of frequency (from [3], courtesy of De Boeck,
Brussels).
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4. The force acts along the cross product of one current element by the
cross product of the other current element by the unit vector along the
line joining the two current elements.

5. The force depends upon the magnetic properties of the medium in which
these are placed.

It is usual to calculate directly the contribution to the magnetic field eval-
uated at an observation point P of a current element I¢, expressed in amperes
(A), directed along

(1.20)

where the factor 4p is due to the use of the rationalized MKS system.The mag-
netic field is a vector field, circumferential in the case of a linear current. The
lines of magnetic field are tangential to the magnetic field in every point. Equa-
tion (1.20) is linear with respect to the current.

This law shows similarities with Coulomb’s law,

since, for a current element located at the origin of the coordinates ( = 0),
the modulus of the magnetic field equals

(1.21)

The total value of the magnetic field at point P is obtained by integrating Eqn.
(1.14) over all the possible currents:

(1.22)

The electric current may appear in three forms:

1. It can be a current element as in Eqn. (1.20). It is then usually denoted
I
–

and expressed in amperes.
2. It can be a surface current density. It is then usually denoted and

expressed in amperes per meter (A m-1).
3. It can be a current density. It is then usually denoted J

–
and expressed in

amperes per square meter (A m-2).

When a material is placed in an applied magnetic field, it becomes mag-
netized, the amount of which is called the magnetization vector . This cor-
responds to what is called the magnetic properties of the material, which can
be due to a variety of effects. In particular, as for the electric polarization, it
may be due to the fact that magnetic dipoles are created or transformed into
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the material. In this case, the magnetization is the magnetic dipole moment per
unit volume, in amperes per square meter.

The total magnetic field in a material is the sum of the applied magnetic
field and an induced magnetic field, resulting from the magnetization of the
material. Earlier in this section, the perfect electric conductor has been defined
as an equipotential material in which all the points are at the same electric
potential. In such a material, the total electric field must be zero, which implies
that the material must develop an induced electric field such that the sum of
the applied field and the induced field vanishes in all points of the material.
On the other hand, one may define the perfect magnetic conductor as the dual
of the perfect electric conductor, in which all the points are at the same mag-
netic potential. In such material, the total magnetic field must be zero, which
implies that the material must develop an induced magnetic field such that the
sum of the applied field and the induced field vanishes in all points of the mate-
rial. The definition of the perfect electric conductor is very useful, largely
because there are in nature materials whose properties are very close to those
of the perfect electric conductor, for example, gold, silver, and copper. There
is, however, no physical material with properties very close to those of the
perfect magnetic conductor.

The induced magnetic field is calculated by taking into account the geom-
etry of the problem and the boundary conditions, which can of course be com-
plicated. The human body is essentially nonmagnetic, hence transparent to
magnetic fields, except however for some localized magnetic properties.

A new vector field is then defined, known as the magnetic flux density,
in webers per square meter, similarly to the magnetization, or tesla, defined as

(1.23)

This definition is totally general, applying to all materials. It indeed holds for
materials in which [3]:

1. The magnetization vector has not the same direction as the vector mag-
netic field, in which case the material is anisotropic.

2. The magnetization can be delayed with respect to the variation of mag-
netic field. This is the case in all lossy materials, and all materials are
lossy, so this is a universal property. It is neglected, however, when the
losses are reasonably small.

3. The magnetization is not proportional to the magnetic field, in which
case the material is nonlinear.

In all other cases, that is, when the material is isotropic, lossless, and linear,
the definition (1.23) can be written

(1.24)B H= m

B H M= +( ) -m0 Wb m  T2 ,

B
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which combines the applied and induced fields, hence the external source field
and the induced magnetization. The permeability of the material is defined by

(1.25)

It is the product of the permeability of vacuum m0 (in henrys per meter) by
the relative permeability mr (dimensionless) of the material. Equation (1.25)
defines at the same time the magnetic susceptibility cd. The use of permeabil-
ity, relative permeability, and magnetic susceptibility is limited to isotropy, loss-
lessness, and linearity, which is far from being always the case. It should be
stressed again, however, that biological tissues are essentially nonmagnetic.
Magnetization is a very complicated phenomenon [3, 4–7]. It may be due to a
variety of mechanisms, which can be summarized here only briefly.

All materials are diamagnetic:Diamagnetism is a general property of matter.
It is due to the fact that electrons placed in a magnetic field have their rotation
speed increased, which results in an induced magnetic moment opposed to the
applied magnetic field, hence in a decrease of magnetization. The diamagnetic
susceptibility is negative and very small, normally of the order of -10-8 to 
-10-5. It does not depend explicitly upon the temperature; it depends however
upon the density of the material. A number of metals used in engineering are
only diamagnetic, for instance, copper, zinc, gold, silver, cadmium, mercury, and
lead. As an example, the relative permeability of copper is 0.999991.

When the atoms of a material have a permanent magnetic moment, this
moment tends to align itself with the applied magnetic field to minimize the
magnetic energy. This phenomenon is similar to electric polarization. It is a
rather slow phenomenon, correctly described by a first-order law. It charac-
terizes paramagnetism, in which the magnetization is positive: It reinforces the
effect of the applied field. It should be noted that paramagnetic materials are
also diamagnetic. Diamagnetism, however, is much smaller than paramagnet-
ism and is not observable in this case. Paramagnetic magnetization is modeled
similarly to electric polarization. It depends upon temperature and density.
The paramagnetic susceptibility is positive and, in general, much smaller 
than 1. Some metals are paramagnetic, for example, aluminum, platinum,
manganese, magnesium, and chromium. As for electric polarization, when the
material density increases, modeling becomes much more difficult, and classi-
cal physics yields wrong models. Classical physics almost completely fails when
trying to establish quantitative models. It can, however, yield some very illu-
minating insight on the phenomena involved with the dielectric character of
materials, in particular about the influence of frequency.

The relative permeability related to this phenomenon is

(1.26)

It is a complex quantity, with real and imaginary parts. The imaginary part is
a measure of the magnetic losses.These are often expressed also as the tangent
of the loss angle:
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(1.27)

As for the electric polarization, the imaginary part of the permeability is
nonzero only when the real part varies as a function of frequency. Further-
more, each part can be calculated from the variation of the other part over the
whole frequency range.

In certain materials, the application of a magnetic field may induce an
extremely strong magnetization, of the order of 108 A m-1, which is 10 times
more than the highest fields which can be produced in laboratory. This char-
acterizes the phenomena that are called ferromagnetism, ferrimagnetim, anti-
ferromagnetism, and antiferrimagnetism. An even simple explanation of the
underlying physics is far beyond the scope of this book. Classical physics
indeed fails in trying to model these phenomena. In fact, quantitative model-
ing of ferromagnetism was the reason Dirac developed quantum mechanics.
The phenomenon is based on an exchange probability for some electrons
between neighboring atoms in the crystalline structure, which corresponds to
a spin coupling. The interaction from neighbor to neighbor is positive if the
spins are parallel, which characterizes ferromagnetism; it is negative if the
spins are antiparallel, which characterizes antiferromagnetism. The conditions
for the exchange to take place are the following:

1. The distance between the electron and nucleus may be neither too large
nor too small: it must be of the order of 0.27–0.30nm; the materials 
in which this distance is smaller than 0.26–0.27nm are practically 
antiferromagnetic.

2. The atoms must have nonsaturated layers to be able to accept electrons.
3. The temperature has to be lower than a critical temperature, called the

Curie temperature, to avoid too much thermal disorder; above this tem-
perature, the materials become paramagnetic.

Conditions 1 and 2 imply the material has a nonsaturated layer at the right
distance from the nucleus: It is the third layer, and it is nonsaturated in the
case of iron, nickel, and cobalt, which are the ferromagnetic materials.

Ferrites are ferrimagnetic materials.They are ceramics, generally composed
of oxides of iron and other metals. Their chemical formula is very often
ZO·Fe2O3, where Z represents one or more divalent metals (cobalt, copper,
manganese, nickel, and zinc). In most common ferrites, Z is for the combina-
tions Mn + Zn or Ni + Zn. The size of the grains in ferrites is of the order of
1–20mm. The oxygen anions play an important role in ferrimagnetics: Their
presence results in a magnetization much smaller than that of ferromagnetic
materials, because the magnetic cations are distributed in a nonmagnetic
oxygen network. Furthermore, because of the oxygen ions, the alignment of
the cation moments is antiparallel in some places of the network. When the
antiparallel subnetworks have magnetic moments equal per unit volume, the
material is antiferromagnetic.

tan  d
m
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Most ferrites are polycrystalline. They usually have a high permeability, rel-
atively small losses, and a high electrical resistivity. The saturation magnetic
flux density is lower than in ferromagnetic materials: It is of the order of 
0.5T in a MnZn ferrite instead of 2T in iron.

Several types of energy have to be taken into account in investigating ferro-
and ferrimagnetic materials:

1. Exchange energy, corresponding to the energy difference between the
elements with parallel spins and those with antiparallel spins.

2. Magnetostatic energy, associated with free magnetic poles in the 
material.

3. Magnetostriction energy, related to the fact that a magnetic material
undergoes an elastic deformation in the direction of magnetization,
which may be positive or negative, corresponding to an elongation or 
a contraction, respectively—this deformation is of the order of a few 
millionths.

4. Anisotropic energy of the crystal, associated with the difference between
the direction of magnetization and those of easy magnetization.

1.3.3 Electromagnetic Field

In DC situations, the electric field is calculated correctly from the laws of elec-
trostatics. The same is true at extremely low and low frequencies, although the
approximation is less applicable when the frequency increases. Similarly, the
magnetic field is calculated from the laws of magnetostatics in DC situations.
The same is true at extremely low and low frequencies, with however a quality
of approximation decreasing when the frequency increases. Values of the fre-
quency at which the approximation is not valid anymore depend on the geo-
metric, electrical, and magnetic properties of the problem.

When the frequency increases, the electric and magnetic fields cannot be
separated from each other: If one of the fields exists, so does the other. One
cannot consider one field as the source of the other. They are linked to each
other in every situation, and this is described by Maxwell’s equations. Maxwell,
a British physicist, formalized the laws of electromagnetics around 1880,
without writing the equations however as we know them today. He made at
this occasion two essential contributions:

1. One was to say that all the former laws, essentially based on experi-
mental measurements made by Gauss, Ampere, Lenz, and others, were
valid but that they had to be considered as a system of equations.

2. The other was to point out that, in the ensemble of these laws, one term
was missing: The displacement current did not appear in the former law
and it was to be added.
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A consequence of the first contribution is that the electric and magnetic
fields are linked together; hence there is a coupling between electricity and
magnetism. As a consequence of the second contribution, the electric current
can take one more form than previously known, so that one could have the
following (the electric current passing through a given area is obtained by
surface integrating the corresponding current density):

1. A convection current density, due for instance to a density of electric
charges moving in vacuum, is described by

(1.28)

2. A conduction current density, due to the conductivity of some materials,
is described by a relationship based on the electric current in the 
conductor:

(1.29)

3. A displacement current density, due to the time variation of the electric
field, is equal to the time derivative of the displacement field (the elec-
tric current density):

(1.30)

If we consider an alternate-current source feeding a capacitor formed of
two parallel plates in vacuum through an electric wire, the displacement
current ensures the continuity between the conduction current circulat-
ing in the wire and the electric phenomenon involved between the two
capacitor plates: The displacement current density, integrated over the
area of the plate and time derived, that is, multiplied by jw, is equal to
the conduction current in the wire [3, 7].

4. A source current density.

Maxwell’s equations form a system of first-order equations, vector and
scalar. They are usually considered as the generalization of the former laws
describing electricity and magnetism. This is a historical point of view, usually
accompanied by the comment that up to now no EM phenomenon has been
pointed out which does not satisfy Maxwell’s equations. It has been demon-
strated, however, that Maxwell’s equations can be derived from a relativistic
transformation of Coulomb law, under the constraint of the speed of light 
constant with respect to the observer. The demonstration is not too difficult 
in the case of linear motion, because then special relativity may be used 
[1–3]. It involves, however, a significant amount of vector calculus. In the 
case of rotation, however, general relativity must be used, which makes the 
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calculation much more complicated [8]. As a result, it can be concluded that
if an EM phenomenon is found which does not satisfy Maxwell’s equations,
Coulomb’s law, relativity, or the constancy of the speed of light has to be 
revisited.

Maxwell’s equations are not valid at boundaries, where boundary condi-
tions have to be used. They may be written in either the time or frequency
domain. They may also be written in either differential or integral form. As a
consequence, they can take four different forms [3]. The differential forms, in
the time or frequency domain, are used to describe the EM phenomena in
continuous media. They are punctual and valid in every point of a continuous
medium submitted to EM fields. The integral forms, on the other hand, link
average quantities; they are applicable to volumes, surfaces, and contour lines.
They are generally used to investigate circuits, mobile or not. Time-domain
descriptions evaluate real, physically measurable quantities. They must be 
used when the physical consequence is not in synchronism with the cause, for
instance, when investigating some optoelectronic phenomena. They must also
be used when investigating wide-band phenomena. They are valid at any fre-
quency. Frequency-domain descriptions are extremely useful when investigat-
ing monochromatic or narrow-band phenomena. The quantities they evaluate
are complex numbers or vectors: They are not real, physically measurable
quantities, although they may have a real physical content. They are valid at
any time.

Solving Maxwell’s equations in general cases may be quite a difficult task.
Decomposing the vector equations into scalar ones, the system to be solved
has a total of 16 equations. There are also 16 unknowns: the 5 vector quanti-
ties of electric field, electric flux density, magnetic field, magnetic flux density,
and current density, that is, 15 scalar quantities, and the scalar charge density.
Fortunately, in many cases, the system is much simpler, for instance because
of symmetry, simplicity of the materials involved, slowly varying phenomena,
and low frequency. A fair amount of symmetry, in particular, may greatly 
simplify calculations.

In living tissues, electromagnetic phenomena are usually slow, when com-
pared to the extremely broad variety of phenomena to be evaluated in physics
and engineering. The shortest biological response time indeed is of the order
of 10-4 s, while most biological reactions are much slower. Hence, Maxwell’s
equations are most generally not used for evaluating biological effects in living
tissues and systems. Furthermore, in this book we are interested in RF and
microwave stimulation.At RFs, the wavelength in vacuum is large with respect
to living tissues and systems, including human beings as a whole: At 1MHz,
the wavelength in vacuum is equal to 300m. On the other hand, at microwaves,
the period of oscillation is small, equal to 10-9 s at 1GHz, which is much smaller
than the fastest biological responses. This implies that the evaluation of bio-
logical effects in living tissues and systems due to EM stimulation, at RF as
well at microwaves, in most cases does not necessitate the use of Maxwell’s
equations. Hence, in practice, quasi-static approaches are quite satisfactory in
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biological material, and the electric and magnetic fields are very often con-
sidered separately, even at RF/microwaves.

1.3.4 Electromagnetic Wave

Investigating the structure of Maxwell’s equations, Hertz found, around 1888,
both theoretically and experimentally, that it included the notion of propaga-
tion of EM waves because of the specific coupling between the electric and
magnetic fields due to the particular form of the vector equations: The cou-
pling between space variations and time variations of the electric and mag-
netic fields results in wave motion. The waves were propagating at a finite
speed, the “speed of light.” A few years later, in 1895, Marconi starting exper-
imenting this at larger and larger distances, establishing what was called wire-
less communications.

Propagation has a precise mathematical definition: All the components of
fields and associated physical quantities, such as current and charge densities,
have a z dependence expressed as the factor e-jkz in a cylindrical coordinate
system or an r dependence expressed as the factor e-jkr in a spherical co-
ordinate system. Such an ensemble of fields is called an EM wave. Hence, the
words propagation and wave are closely related [9].

Maxwell’s equations are first-order equations. Eliminating one of the fields
in these equations yields a second-order equation for the other field, which 
is called the wave equation or Helmholtz equation. The general solution of 
the wave equation is a propagating EM wave. Even in a medium as simple as
vacuum, there are a variety of waves satisfying the wave equation, with trans-
verse and/or longitudinal components of the fields. The field structure of the
wave also depends on the fact that the propagation medium is either infinite
or bounded: A coaxial cable and a waveguide have lateral bounds. When 
the medium is unbounded, it is often called free space. When the medium is
bounded, reflection occurs on the interfaces. When edges or corners are
present, refraction may occur.

On the other hand, the orientation of the fields may vary in space when the
wave is propagating, depending on the type of wave and the medium. What
characterizes this variation is called the polarization. It is related most often
to the electric field, although it may also be related to the magnetic field. In
this case, however, it should be mentioned explicitly.

The simplest EM wave structure is well known from elementary physics. It
has a magnetic field perpendicular in space to the electric field, both being per-
pendicular in space to the direction of propagation. The fields are stationary
neither in space nor in time: The wave displaces itself in space as a function
of time at constant speed and the field amplitudes vary as a function of time,
sinusoidal in a monochromatic case. During this variation, when the fields
remain parallel to themselves, the polarization is called linear. When, on the
contrary, the fields rotate at constant amplitude in a plane perpendicular to
the direction of propagation, the polarization is called circular. Circular polar-
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ization may be right handed of left handed. If the amplitude and the direction
of the fields both vary when propagating, the polarization is termed elliptic. In
practice, many RF and microwave sources operate at linear polarization. It
should not be assumed, however, that this is always the case: Circular polar-
ization is also used in technical applications.

One way of classifying waves is based on geometric considerations, charac-
terizing the geometry of the surface of constant phase of the wave. Depending
on whether this surface is a plane, a cylinder, or a sphere, the wave is planar,
cylindrical, or spherical. Furthermore, when the amplitude of the field is the
same at every point of the surface of constant phase, which makes the surface
of constant phase also a surface of constant amplitude, the wave is uniform; oth-
erwise it is nonuniform.A uniform plane wave is a wave whose surfaces of con-
stant phase are planes on which the amplitude of the field is a constant. As an
example, the simplest wave structure described above is a uniform plane wave.

Another way of classifying waves is based on the number of field compo-
nents. When a wave has only transverse field components for both the electric
and magnetic field and no longitudinal components, the wave is transverse elec-
tromagnetic (TEM). A TEM wave has only four components. When, in addi-
tion, the wave has one longitudinal component only, it is called transverse
electric (TE) if the longitudinal component is magnetic and transverse mag-
netic (TM) if the longitudinal component is electric. Both TE and TM waves
have only five components. The most general wave has six components. It is a
linear combination of TE and TM waves, possibly together with a TEM wave,
depending upon the boundary conditions.

Transverse electromagnetic waves are very much appreciated in practice
because they have only four components, with no longitudinal components: Ez

= 0 and Hz = 0. On the other hand, uniform plane waves also characterize a
very simple structure. It should, however, be well noted that a TEM wave is
not necessarily a uniform plane wave. As an example, the very well known
coaxial cable has a TEM wave as the main propagating mode.This TEM wave,
however, is not a uniform planar wave. The surface of constant phase is 
indeed a plane, perpendicular to the direction of propagation, hence the wave
is planar. The field, however, is not constant over the plane because it varies
between the two conductors according to a 1/r law. Hence, the TEM wave in
a coaxial cable is a nonuniform plane wave.

Specific parameters describe EM waves. The product of the wavelength l
(in meters) and the frequency is a constant, called the speed of light in vacuum,
more correctly called the phase velocity in the medium where the propagation
takes place, for instance inside a human body:

(1.31)

The speed of light is about 300,000kms-1 in vacuum. The last equality is 
strictly valid for TEM waves only. Being interested essentially in RF and
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microwave excitation, we shall find useful to note that the equation can be
written as

(1.32)

Equation (1.31) shows that the wavelength is inversely proportional to the
frequency. In vacuum, the wavelength is 6000km at 50Hz, while it is 300m 
at 1MHz, 0.3m at 1GHz, and 1mm at 100GHz. It also shows that the 
phase velocity decreases when the relative permittivity and/or permeability
increases. It is important to observe that the phase velocity may vary signifi-
cantly from one material to the other, in particular because of the presence of
water. Water is a dielectric material with a very high dielectric constant, of the
order of 80 at low frequencies, as will be shown later. Most living tissue con-
tains a significant amount of water. As a consequence, the phase velocity at 
1GHz in a human body is almost 9 times smaller than in vacuum because the
wavelength is almost 9 times smaller than in vacuum. At higher frequency,
however, the permittivity decreases and the values of wavelength and phase
velocity are closer to their values in vacuum.

Some parameters are typical of propagation. The wave number measures
the number of wavelengths per unit length. In physicochemistry, for instance
in spectroscopy, it is still rather usual to characterize a frequency by the cor-
responding wave number.This always looks surprising to a physicist or an engi-
neer, especially when the unit length is a familiar unit rather than the meter.
As an example, a wave number of 1000cm-1 characterizes a frequency at which
there are 1000 wavelengths over a length of 1cm, hence with a wavelength of
1mm, that is, in the infrared (IR).

On the other hand, the ratio of electric to magnetic field amplitudes is the
intrinsic impedance of the propagation medium. In vacuum, it is about 377 (or
120p) ohms. It is also called the wave impedance. In the nineteenth century,
the impedance of the propagation medium, in particular a vacuum, has long
been considered as puzzling. It even led some to imagine the presence of a
specific media, the ether, with no other characteristics than the permittivity and
permeability of a vacuum, offering the wave an adequate medium to propa-
gate. The wave impedance does not correspond to power absorption because
the wave can propagate in a lossless medium. This is due to the fact that, even
in the simple TEM structure, the electric field is not in phase with the mag-
netic field: Both are in quadrature, as has been said before. The wave imped-
ance expresses the ability of a propagating wave to transport power density
from one point to another in space and have it possibly absorbed there, in total
or in part. This will be explained in Section 1.4.1.

Power absorption is a very important concept when investigating biologi-
cal effects, as will be illustrated in Chapters 1–3. It is also important when
designing materials for protecting biological systems in an EM environment,
including the medical environment. Recently, EM environments have become
very complex because of the wide and rapid spread of many kinds of electric
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or electronic devices, as exemplified by recent cellular telephone progress. As
a result, EM wave interference problems due to these devices have increased
in frequency. Also, biological effects based on these kinds of EM wave radia-
tion have been feared. As a method of countermeasure for protecting biolog-
ical and medical environment as well as the measurement involved, knowledge
of EM wave absorbers has become significant. This will be analyzed in detail
in Chapter 5.

Phase velocity is the velocity at which the phase of a wave propagates. It is
also the velocity at which energy propagates, when the medium properties do
not vary with frequency. It may not totally characterize the propagation of a
wave, however.When the EM properties of the propagating medium vary with
frequency, the energy does not propagate at the phase velocity; it propagates
at the group velocity, which is the frequency derivative of the phase velocity.
When the EM properties of the medium vary very significantly with frequency,
it may even happen that the energy velocity is not the group velocity any more.
This is not to be considered in biological tissues and systems, however.

1.3.5 Antennas and Near Field

The evaluation of biological effects, including hazards, and medical applica-
tions is related to situations where biological tissues and living systems are
placed in specific EM environments. In this book, we limit ourselves to RF and
microwave environments. Antennas transmit the fields. For instance, they may
be placed in free space and have other purposes than illuminating human
beings, such as transmitting television, FM radio, or mobile telephony signals.
They may also be placed in specific locations, within a part of a human body,
for instance, to exert a specific medical effect. In this case, the antennas are
often called applicators. On the other hand, fields may have to be measured,
for instance in radiometric applications. The antenna being most generally a
reciprocal device, transmitting and receiving properties are similar. The fields
radiated by antennas of finite dimensions are spherical waves. Some applica-
tors are cylindrical and transmit cylindrical waves over the cylindrical portion
of the antenna. Because of the importance of the antenna in the exposure sit-
uations, some elements about antenna theory have to be reviewed [10].

The space surrounding an antenna in a transmitting or a receiving mode is
divided into different regions, usually three: (a) reactive near-field, (b) radiat-
ing near-field (Fresnel), and (c) far-field (Fraunhofer) regions (Fig. 1.4). The
field structure is different in each region, without abrupt changes, however,
from one region to the neighboring one.

The reactive near-field region is the region immediately surrounding the
antenna, where the reactive field predominates. For most antennas, this region
is commonly taken as interior to a distance 0.62(D3/l)1/2 from the antenna
surface, where l is the wavelength and D the largest dimension of the antenna.
The region is called reactive because the reactive power density predominates
in this region.
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The radiating near-field (Fresnel) region extends from the reactive near-field
limit to a distance 2D2/l, where D is the largest dimension of the antenna. For
this expression to be valid, D must also be large compared to the wavelength.
If the antenna has a maximum overall dimension which is very small com-
pared to the wavelength, this field region may not exist. For an antenna
focused at infinity, the radiating near field is sometimes referred to as the
Fresnel region on the basis of analogy to optical terminology. In this region
the field pattern is, in general, a function of the radial distance and the radial
field component may be appreciable.

The far-field (Fraunhofer) region is commonly taken to exist at distances
greater than 2D2/l from the antenna. This criterion is based on a maximum
phase error of p/8. The reference to Fraunhofer is due to analogy to optical
terminology, when the antenna is focused at infinity. In this region the fields
are essentially transverse and the angular distribution is independent of the
radial distance where the measurements are made.

In RF and microwave communications, far-field situations are usually the
ones of most practical concern. This is very convenient because approxima-
tions can then be made to obtain closed-form solutions for the fields. This is
not always the case when evaluating biological effects, and it is very important
to clearly distinguish between near-field and far-field exposure.The evaluation
of hazards due to RF/microwave exposure on human beings or animals is
usually made in far-field conditions. Transmitting stations are normally far
enough from living and working situations on the one hand while the antenna
of a mobile telephone is so small with respect to the wavelength that the head
of an end user is in the far field of the antenna on the other hand. The evalu-
ation of specific biological effects, however, in particular in medical applica-
tions, is usually made in near-field conditions, as will be obvious later in this

Near field Far field

Fresnel Fraunhofer

Distance2 D2/lD2/l0

Antenna

FIGURE 1.4 Angular distribution of fields around an antenna in the zone of near
fields (Fresnel zone) and far fields (Fraunhofer zone).
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book. In such cases, near-field calculations have to be done, which may require
much more attention.

As has been said before, antennas are reciprocal, except for very special
devices. Hence, near-field situations have to be taken into account not only for
transmitting antennas such as TV and FM radio transmitters but also for
receiving antennas. Antennas can indeed be implanted in living tissues and
organisms for medical applications.

When the antenna is used to deliver microwave power to heat tissue, the
size and location of the microwave field have to be carefully located to control
the affected tissue. Hence, the type and shape of the antenna are very much
dependent upon the specific application, and there are a variety of applicators.
A main problem is of course that of matching the applicator to the tissue.
However, EM energy transfer depends, to a great extent, on the absorption
properties of the tissue. It also depends on the frequency. As an example,
sources at millimeter waves yield results similar to IR frequencies. These
aspects will be investigated in detail in Section 1.5.

1.4 RF AND MICROWAVE ENERGY

1.4.1 Power and Energy

Adequately combining Maxwell’s equations yields what is called Poynting’s
theorem. In the time domain, it expresses equality between the spatial variation
of EM power and the time variation of EM energy, the sum of the electric and
magnetic energies [3, 6, 7, 11]. The cross product of the electric field and the
magnetic field is called the Poynting vector, with units of volt-amperes per
square meter (watts per square meter). Being a cross product, it is perpendi-
cular to the plane of the two vectors. In Section 1.3.4, we have seen that the
TEM wave is the simplest wave structure, with the electric field perpendicu-
lar to the magnetic field, both fields being perpendicular to the direction of
propagation. Hence, the Poynting vector of a TEM wave is in the direction of
propagation.

Power and energy have not to be confused. Electromagnetic power is rep-
resented by the Poynting vector, just described. The integration of this vector
over an open surface yields the power flow through the surface, in watts. The
integration over a closed surface, with the normal to the surface considered 
as positive when extending outside the surface, also yields the power flow
through the surface, that is, the total power coming out of the volume bounded
by the closed surface. If this power is negative, it means that the net power is
entering the volume, which also means that the medium inside the volume has
absorbing losses—electric, magnetic, or conductive. The total power absorp-
tion is obtained by integrating the losses over the whole volume: Absorption
is associated with power.

On the other hand, in the domestic sense of the word, energy means power
absorption for some time in watt-seconds. In electromagnetics, however,
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energy is interpreted as a field concentration, stored in space, expressed in
joules (J). The total electromagnetic energy stored in a given volume is
obtained by integrating the energy over the volume. The time derivative of
energy yields watts, hence power.

We should now have a better understanding of the second sentence of this
section: In the time domain, Poynting’s theorem expresses an equality between
the spatial variation of EM power and the time variation of EM energy, the
sum of the electric and magnetic energies. It is often said that Poynting’s
theorem expresses the conservation of energy. What it precisely expresses is
that, for a given volume, if there is a net flow of EM power penetrating into
the volume, then the EM energy increases in the volume, a possible difference
between the two quantities being the power dissipation within the volume
because of the medium conductivity. In the time domain, Poynting’s theorem
can be expressed in either differential or integral form.

Expressed in the frequency domain, the real part of the complex Poynting
vector at a point is equal to the average value of the real power flux, physi-
cally measurable, at that point. When integrated over the surface limiting a
given volume, it is equal to the real power dissipated in the considered volume
due to whole of the electric, magnetic, and conductive losses. Contrary to the
time-domain theorem, the frequency-domain theorem shows that the imagi-
nary part of the Poynting vector is not related to the total frequency-domain
EM energy: It is related to the difference of the magnetic and electric 
energies. Hence, it vanishes when the two energies are equal. This situation is
called resonance, where the power flux is entirely real. In the frequency
domain also, Poynting’s theorem can be expressed in either differential or 
integral form.

Poynting’s theorem can be used in establishing a general expression for the
impedance of an EM structure, for instance an antenna [3]. The structure is
placed inside a virtual closed surface and the expression relates the energy
stored and the power dissipated in the bounded volume.

Poynting’s theorem expresses the equality between the space variation of
the EM power and the time variation of the EM energy. This form of the
theorem is sufficient in most cases, at least in media where the current is a con-
duction current. In some cases, however, a generalized form may be necessary,
for instance when the current is a convection current, due to moving charges,
in vacuum or other media. This may be the case in plasmas, magnetohydro-
dynamics, and microwave tubes.Tonks has established such a generalized form
of Poynting’s theorem [12], obtaining equality for the conservation of energy,
where the power is the sum of EM term and a kinetic term, while the energy
is the sum of EM energy and kinetic energy. On both sides of the equations,
the EM and kinetic terms cannot be separated. This expresses the possi-
bility of transforming one term into the other, for instance EM energy into
kinetic power, as in a particle accelerator, as well as kinetic energy into EM
power, as in solar eruptions. In most cases, however, and in biological 
applications in particular, the usual form of Poynting’s theorem is quite 
satisfactory.
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Some special care has to be exerted when the EM properties of a medium
vary with frequency [6]. The medium is then said to be dispersive. It has been
shown that such a material is necessarily absorptive.The fundamental problem
is that, in this case, EM energy has no precise thermodynamic definition.When
the medium has limited dispersion, it is said to be transparent. This is the case
when permittivity and permeability vary only slowly around the operating 
frequency. The mean value of the total EM energy can then be calculated and
used in Poynting’s theorem. Such a calculation might be necessary in biologi-
cal tissues and systems, but only when operating in a range of frequencies
where permittivity or permeability varies with frequency. It should be remem-
bered that, in this case, the wave energy does not propagate at the phase veloc-
ity; it propagates at the group velocity, or even at another velocity if the
dispersion is high, as has been mentioned in Section 1.3.4.

Finally, the pattern of energy absorption in biological tissues or systems, as
in the human body, contributes to the RF/microwave effect. This raises the
question of whether a whole-body average absorption rate can be used as the
only determining factor in evaluating biological effects of RF and microwaves.
Other features of the radiation also need to be considered. This will be 
considered in Chapter 2. A radiation diagram typical of a communications
antenna is shown in Figure 1.5: A paraboloid antenna is placed at the coordi-
nate origin. As illustrated, the gain Gi(q, f) of the antenna varies with the 
direction (q, f). The gain of an antenna is defined as the ratio of the power
transmitted by the antenna in a given direction to that which would be trans-
mitted by an isotropic antenna (transmitting the same power in all directions)
placed in the same location. It is usually expressed in decibels (dB).

q

(q,f)

f

Gi

0

FIGURE 1.5 Radiation diagram of an antenna.
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1.4.2 Influence of the Waveform

Parameters of microwave exposure are an important consideration in the pro-
duction of biological effects. One key word is dosimetry, which takes into
account the level of exposure as well as its duration. The simplest expression
is the product of the level and the duration. Different durations of acute expo-
sure lead to different biological effects and, consequently, different long-term
effects occur after repeated exposure. The waveform of the radiation is also
important. Differential effects have indeed been observed after exposure to
pulsed-wave with respect to continuous-wave (CW) microwaves. In practice,
biological effects have been observed under a variety of exposure types: CW,
sinusoidal amplitude-modulated wave (AMW), pulsed wave (PW), and pulsed
modulated wave (PMW) [13].

Hence, there is a difficulty in evaluating the exposure. Thermal effects are
of course related to power, so that comparison of biological effects under dif-
ferent types of exposure should be done at constant power. What is constant
power, however? Normally it should be either the CW power or the average
power when the excitation is pulse modulated. In this case, however, and espe-
cially when the duty cycle is short, as in radar-type waves, the peak power may
be much larger than the average power, and possible nonlinearity may induce
other effects. The difficulty should even be greater for microthermal or non-
thermal effects, immediately influenced by fields and not by power. This is a
controversial question which shall be considered in Section 3.8. We should not
consider power, however, as the only parameter able to induce effects. For
instance, differential effects have also been observed after exposure to plane-
versus circular-polarized waves.

1.4.3 Blackbody Radiation

The concept of a blackbody radiator is of fundamental importance for the
understanding of the emission of real materials, including biological tissues,
because its emission spectrum represents a reference relative to which the
radiant emittance of a material can be expressed. In general, a fraction of the
radiation incident upon a body is absorbed and the remainder is reflected. A
blackbody is defined as an idealized, perfectly opaque material that absorbs
all the incident radiation at all frequencies, with no reflection: It is a perfect
absorber. The quantum-mechanical model of a blackbody can be described as
consisting of such a large number of quantified energy levels with a corre-
spondingly large number of allowable transitions that any photon, whatever
its energy or frequency, is absorbed when incident upon the blackbody. In addi-
tion to being a perfect absorber, a blackbody is also a perfect emitter, since
energy absorbed by a material would increase its temperature if no energy
were emitted [14–16]. In other words, a blackbody is lossless. Its behavior is
not to be confused, however, with that of a perfect reflector (a mirror), which
is lossless too. A photon incident at a given frequency on a perfect reflector is
indeed reflected back at the same frequency: The reflected (“emitted”) signal
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is perfectly correlated with the incident signal. The perfect reflector may be
called a white body.

Physically, blackbody radiation is produced by a body that is considered as
a closed volume whose walls are in thermal equilibrium at a given tempera-
ture. An outside source maintains the whole wall at a constant temperature.
It the body is a blackbody, there are no losses and the energy balance is zero.
The incident radiation is transformed into thermal agitation, which in turn is
transformed into emitted radiation. The emitted signal is perfectly noncorre-
lated with the incident signal [17]. As a consequence, a blackbody radiates at
least as much energy as any other body at the same temperature.At microwave
frequencies, good approximations to blackbodies are the highly absorbing
materials used in the construction of anechoic chambers. Real materials,
such as the earth for instance, usually referred to as grey bodies, emit less than
blackbodies and do not necessarily absorb all the incident energy. As an
example, part of the solar energy incident upon the earth is directly reflected
back, so that only part of the incident energy is transformed by a blackbody
process and emitted back. As a consequence, the “blackbody temperature” of
the earth, that is, the temperature at which a blackbody would emit the same
energy as that emitted by the earth, is lower than the physical temperature of
the earth; at microwaves, this is about 254K.

It must be noted that blackbody radiation is usually at a very low level with
respect to other radiation sources, in particular power transmitted by com-
munications systems and, especially, by radars.A few examples are worth men-
tioning. The sun’s total power output is approximately 3.9 ¥ 1026 W, little of
which appears at wavelengths below 0.3nm or above 3 mm. The solar energy
per minute falling at right angles on an area of 1cm2 at a solar distance of 1
astronomical distance (equal to the mean earth’s solar distance) is called the
solar constant and at a point just outside the earth’s atmosphere has a value
of 0.14Wcm-2 = 1.4kWm-2. The planet earth reradiates a part of the received
solar energy, equal to the difference between the energy received and the
earth’s albedo (relative energy absorbed is 0.34 for the earth), equal to 
0.023Wcm-2 = 230Wm-2. Cosmic noise extends from about 20MHz to about
4GHz. Man-made noise is an unwelcome by-product of electrical machinery
and equipment operation and exists from frequencies of about 1MHz to about
1GHz. The peak field intensity in industrial areas exceeds the value of cosmic
noise by several orders of magnitude, which draws attention to the need for
judicious ground station site selection. Blackbody radiation is evaluated later
in this section.

Blackbodies will be reevaluated in Chapter 2, devoted to an introduction
to biological effects, more precisely hazards due to RF and microwave fields.
In that chapter, energy considerations will be compared with entropy consid-
erations while evaluating the possibility of isothermal biological effects.

Planck’s Radiation Law Planck established the mathematical expression of
the energy emitted by a blackbody in 1901, in his blackbody radiation law, gen-
erally termed Planck’s law. It yields the spectral energy density per unit
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volume, that is, the energy density per unit volume and unit bandwidth. It can
easily be calculated by multiplying the energy per photon by the number of
photons in a given mode and by the number of modes in a given volume, which
is obtained when using semiclassical statistical mechanics [17]. Planck’s law
may be expressed in terms of the spectral energy per unit volume. It is often
expressed, however, in terms of the blackbody spectral intensity per unit solid
angle I(f; q, f), also called blackbody spectral brightness Bf(f; q, f), where f is
frequency and (q, f) characterizes the direction in which the radiation is
emitted, in watts per steradian per square meter and per hertz:

(1.33)

where f is the frequency in hertz; T the absolute temperature in kelvin;
h Planck’s constant = 6.63 ¥ 10-34 J; k Boltzmann’s constant = 1.380 
¥ 10-23 J K-1; and c the velocity of light in a vacuum = 3 ¥ 108 m s-1.The only two
variables in (1.33) are f and T. It should be noted that hf has the dimensions 
of energy, as well as kT; hence the ratio hf/kT is dimensionless. Figure 1.6 shows
a family of curves of Bf plotted as a function of frequency with temperature 
as a parameter. It is observed that (1) as the temperature is increased, the
overall level of the spectral brightness curve increases, and (2) the frequency at
which the spectral brightness is maximum increases with temperature.

Rayleigh–Jeans Radiation Law At RFs and microwaves, the product hf may
be very small with respect to kT so that the denominator of the second factor
on the right side of (1.33) can be written as

(1.34)

which inserted in (1.33) reduces Planck’s law to

(1.35)

This is the Rayleigh–Jeans radiation law. It is a very useful low-frequency
approximation of Planck’s law in the radio spectrum. At millimeter waves or
at very low absolute temperature, however, one needs to be careful because
the condition hf << kT may not always be satisfied. It is worth noting that the
ratio hf/kT is approximately equal to

(1.36)

Using the Rayleigh–Jeans approximation yields a definition of the brightness
temperature of a transmitter. It is the temperature of a blackbody that emits
the same brightness (1.35):
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According to the Rayleigh–Jeans law, the brightness varies inversely as the
square of the wavelength. On a log-log graph this relation appears as a straight
line of negative slope. It coincides with Planck’s law for the same temperature
at long wavelengths. At short wavelengths, however, the brightness predicted
by the Rayleigh–Jeans law would increase without limit, whereas the actual
brightness reaches a peak and then decreases with decreasing wavelength, as
predicted by Planck’s law.

In fact, the Rayleigh–Jeans law was derived directly by Jeans from classical
physics, before Planck introduced his quantum theory [14]. It should be
observed that the Rayleigh–Jeans approximation does not contain Planck’s
constant h. It can be shown that this is because Planck’s law is based on the
postulate that the radiator possesses only a discrete set of possible energy
values or levels, whereas the Rayleigh–Jeans approximation is based on clas-
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sical physics, assuming that the radiator may possess all energy levels and that
transitions are by a continuous process [17].

The classical Johnson–Nyquist expression for the noise emitted by a 
resistor can easily be derived from the Rayleigh–Jeans approximation. A
circuit is formed by connecting a resistor at both ends of a lossless transmis-
sion line. Both resistors are equal to the characteristic resistance of the line;
hence the line is matched and there are no reflections. The matching resistors
and the line are all at the same temperature. Hence, the circuit is a one-
dimensional blackbody in which the energy emitted by the resistor at the left
propagates on the line and is absorbed by the resistor at the right end, while
the energy emitted by the resistor at the right and propagating on the line is
absorbed by the resistor at the left. As for establishing the three-dimensional
Planck’s law, one multiplies the energy per photon by the number of photons
in a given mode and by the number of modes in the given length. The 
expression is reduced assuming that the Rayleigh–Jeans approximation is valid
(hf << kT). Dividing by 2 to obtain the spectral power density for one 
resistor only yields the classical expression for the noise energy emitted by a 
resistor:

(1.38)

It is interesting to observe that this expression is independent of the value of
the resistor: Two resistors, with values 1 W and 1MW, respectively, produce the
same energy. It is important to note that expression (1.38) is valid only under
the Rayleigh–Jeans approximation. The power emitted in a given bandwidth
B is of course

(1.39)

From this expression one can define the noise temperature of a signal: It is the
temperature at which a pure resistor should be maintained to produce the
same power spectrum:

(1.40)

In particular, this is the adequate definition for the antenna temperature, which
is the absolute temperature at which a pure resistor must be maintained to
produce the same power density as that measured at the output of the antenna.
In other words, if a pure resistor maintained at the antenna temperature
replaces the antenna, the receiver does not observe a difference. One then uses
expression (1.39) for calculating the noise power emitted by a pure resistor,
considered as the source of a generator with the resistor as the series resist-
ance. A resistor of the same value to match the source terminates this source.
It is well known that the generator then delivers the maximum possible power.
Calculating this power yields
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(1.41)

where the brackets mean the average value. This is the well-known expression
for the Johnson–Nyquist noise emitted by a resistor. This expression depends
upon the value of the resistor and its range of application is limited because
of the limitations of the Rayleigh–Jeans approximation.

It is interesting to calculate the blackbody radiation and compare it with
other radiation sources evaluated earlier in this section. Equation (1.40) can
be used in most cases. It shows that the noise power of a blackbody source at
a physical absolute temperature of 300K and measured in a bandwidth of 
10MHz is 41.4 ¥ 10-15 W. If the source is at 3000K and the receiver band-
width is 100MHz, the power is 41.4 ¥ 10-13 W. It appears that the blackbody
radiation is at a power level much smaller than most of the physical and in-
dustrial sources.

Stefan–Boltzmann Law Planck’s law predicts the brightness curves presented
in Figure 1.6 as a function of frequency and temperature. Integrating the
Planck radiation law over all frequencies, which is summing the area of the
Planck radiation law curve for that temperature, yields the total brightness Bt

for a blackbody radiator:

(1.42)

The integration yields the Stefan–Boltzmann relation [15]

(1.43)

where Bt is the total brightness, s a constant equal to 5.67 ¥ 10-8 Wm-2 K-4, and
T the absolute blackbody temperature in kelvin. It must be observed that the
total brightness of a blackbody increases as the fourth power of its tempera-
ture. As an example, the total brightness of a blackbody at 1000K should be
16 times that of at 500K. This temperature dependence is valid only for the
total brightness and not for the brightness (1.33) or (1.35).

Wien Displacement Law Planck’s law represented in Figure 1.6 shows that the
peak brightness shifts to higher frequencies with an increase in temperature.
Maximizing Eqn. (1.33) by differentiating with respect to frequency f, that is,
in terms of unit frequency, and setting the result equal to zero yield a quanti-
tative expression for this displacement at a specific frequency fP. Noting that
the peak occurs at high values of the ratio hfP/kT and simplifying accordingly
yield the expression of the wavelength lP at which B is a maximum [15]:

(1.44)

This relation, in which the product of wavelength and temperature is a con-
stant, is called the Wien displacement law: The wavelength of the maximum of
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peak brightness varies inversely with the temperature. Avoiding the simplifi-
cation related to the high value of the ratio hfP/kT yields the exact value of
0.0051mK for the constant.

Instead of differentiating with respect to frequency, one can also differen-
tiate with respect to wavelength, that is, in terms of unit wavelength. The
brightness is then expressed in terms of unit wavelength and the wavelength
for the peak brightness is not the same as when brightness is expressed in
terms of unit bandwidth. The quantitative relation for the lpT product when
brightness is expressed in terms of unit wavelength is obtained by maximizing
(1.42) and simplifying, which yield the value 0.0029mK [15].

The frequency fP at which the maximum radiation occurs increases as the
temperature increases. Further calculations [14] yield the following expression
for this frequency:

(1.45)

and for the maximum spectral brightness Bf with respect for f :

(1.46)

where a = 1.37 ¥ 10-19 Wsr-1 m-2 Hz-1 K-3. Expressions (1.45) and (1.46) are valid
for the spectral brightness per unit frequency. They are not valid for the spec-
tral brightness per unit wavelength, for which similar expressions can be
obtained.

Wien Radiation Law The Rayleigh–Jeans radiation law (1.35) is a low-
frequency approximation of Planck’s radiation law (1.33), valid when one has
hf << kT. At high frequencies, when one has hf >> kT, the quantity unity in
the denominator of the second factor on the right side of (1.33) can be neg-
lected, in comparison with ehf /kT, so that Planck’s law reduces to

(1.47)

called the Wien radiation law. The Wien law coincides with Planck’s law for
the same temperature at frequencies considerably higher than the frequency
of maximum radiation.A comparison of Planck’s law with its high- (Wien) and
low-frequency (Rayleigh–Jeans) approximations is provided in Figure 1.7 [14].
The coincidence of both approximations with the corresponding part of
Planck’s law is obvious.

1.5 PENETRATION IN BIOLOGICAL TISSUES AND SKIN EFFECT

When a conductive material is exposed to an EM field, it is submitted to a
current density caused by moving charges. In solids, the current is limited by
the collision of electrons moving in a network of positive ions. Good conduc-
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tors such as gold, silver, and copper are those in which the density of free
charges is negligible, the conduction current is proportional to the electric field
through the conductivity, and the displacement current is negligible with res-
pect to the conduction current. The propagation of an EM wave inside such a
material is governed by the diffusion equation, to which Maxwell’s equations
reduce in this case. Biological materials are not good conductors. They do
conduct a current, however, because the losses can be significant: They cannot
be considered as lossless.

Solving the diffusion equation, which is valid mainly for good conductors,
where the conduction current is large with respect to the displacement current,
shows that the amplitude of the fields decays exponentially inside of the mate-
rial, with the decay parameter

(1.48a)

The parameter d is called the skin depth. It is equal to the distance within the
material at which the fields reduce to 1/2.7 (approximately 37%) of the value
they have at the interface. One main remark is that the skin depth decreases
when the frequency increases, being inversely proportional to the square root
of frequency. It also decreases when the conductivity increases:The skin depth
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FIGURE 1.7 Comparison of Planck’s law with its high- (Wien) and low-frequency
(Rayleigh–Jeans) approximations at 300K (from [15], courtesy of J. D. Krause, Jr.).
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is smaller in a good conductor that in another material. Furthermore, it can
be shown that the fields have a phase lag equal to z/d at depth z.

For most biological materials the displacement current is of the order of
the conduction current over a wide frequency range. When this is the case, a
more general expression should then be used instead of (1.48a) [16]:

(1.48b)

where p = s /we is the ratio of the amplitudes of the conduction current to the
displacement current. It is easily verified that Eqn. (1.48b) reduces to Eqn.
(1.48a) when p is large.

The following important observations can be deduced from Eqn. (1.48a):

1. The fields exist in every point of the material.
2. The field amplitude decays exponentially when the depth increases.
3. The skin depth decreases when the frequency, the permeability, and the

conductivity of the material increase. For instance, the skin depth of
copper is about 10mm at 50Hz, 3mm at 1kHz, and 3 mm at 1GHz. It is
equal to 1.5 cm at 900MHz and of the order of 1mm at 100GHz in living
tissues.

These results are strictly valid for solids limited by plane boundaries. They
are applicable to materials limited by curved boundaries when the curvature
radius is more than five times larger than the skin depth. In the other cases, a
correction has to be applied.

The phenomenon just described is the skin effect: Fields, currents, and
charges concentrate near the surface of a conducting material. This is a shield-
ing effect: At a depth of 3d, the field amplitude is only 5% of its amplitude at
the interface, and the corresponding power is only 0.25%; at a depth of 5d, the
field amplitude reduces to 1% and the corresponding power to 10-4, which is
an isolation of 40dB. This shows that, at extremely low frequency, for instance
at 50Hz, it is illusory to try to shield a transformer with a copper plate:A plate
5cm thick would be necessary to reduce the field to 1%! This is the reason
why materials which are simultaneously magnetic and conducting, such as
mumetal, are used for low-frequency shielding. In practice, the skin effect
becomes significant for humans and larger vertebrates at frequencies above
10MHz.

Shielding is much easier to achieve at higher frequencies. The skin effect
implies that, when using microwaves for a medical application, the higher the
frequency, the smaller the penetration, which may lower the efficiency of the
application. Hence, the choice of frequency is important. It also implies that if
a human being, for instance, is submitted to a microwave field, the internal
organs are more protected at higher than at lower frequencies.As an example,
the skin depth is three times smaller at 900MHz, a mobile telephony fre-
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quency, than at 100MHz, an FM radio frequency, which means that the fields
are three times more concentrated near the surface of the body at 900MHz
than at 100MHz. It also means that internal organs of the body are submitted
to higher fields at lower than at higher frequency.

The skin effect is well known in engineering. It is also characterized by the
intrinsic (or internal or metal) impedance, obtained by dividing the electric field
at the surface by the current per unit width flowing into the material:

(1.49)

As an example, the intrinsic impedance of copper at 10GHz is 0.026(1 + j) W.
It has equal real and imaginary terms. The real part Rm is sometimes called the
surface resistance, measured in ohms per square.

The impedance is useful for calculating the (complex) power dissipation in
the material. A property of the exponential curve is that its integration yields
a result equal to the initial value times the skin depth. In other words, the
intrinsic resistance of the material in which the fields decay exponentially
would be the same if the current was uniformly distributed over depth d.
Hence, the total power dissipated in the material under an exponentially
decaying field is equal to the power dissipated in depth d under a field con-
stant and equal to the value at the surface.

Table 1.2 summarizes some skin depth values for human tissues at some
frequencies. The EM properties of the tissues as well as their variation as a
function of frequency have been taken into account.

Figure 1.8 shows the variation of the power absorbed inside a human body
as a function of the penetration depth at several microwave frequencies: We
are less and less transparent to nonionizing EM radiation when the frequency
increases. In the optical range, skin depth is extremely small: We are not trans-
parent anymore. Variation of the dielectric constant as a function of frequency
was taken into account in this figure.

There is a tendency to believe that RFs and microwaves exert more signif-
icant biological effects at low and extremely low frequencies. This is not nec-
essarily true: The dielectric constant of living materials is about 10,000 times
larger at ELF than at microwaves.The dielectric constant is important because
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TABLE 1.2 Typical Skin Depths in Human Tissue

TV Telephony Telephony
Parameter Radio FM Transmitter Mobile Mobile

Frequency (MHz) 100 450 900 1800
Skin depth (cm) 3 1.5 1 0.7
Depth at which power reduces to 9 4.5 3 2

1% (cm)
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it is the link between the source field and the electric flux density (also called
the displacement field). A dielectric constant 10,000 larger implies the possi-
bility of an electric flux density of a given value with a source field 10,000 times
smaller. Figure 1.9 shows the dielectric constant of living material (muscle) as
a function of frequency [18]. There is a level of about 1,000,000 at ELF up to
100Hz, then a second level of about 100,000 from 100Hz to 10kHz, and, after
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some slow decrease, a third level of about 70–80 from 100MHz to some giga-
hertz. This last value is that of the dielectric constant of water at microwaves.
One of the main constituents of human tissues is water. Hence, we have about
the same microwave properties as water.

However, as has been said in Section 1.1, microwaves are in the frequency
range in which the wavelength is of the order of the size of objects of common
use—meter, decimeter, centimeter, and millimeter—depending of course on
the material in which it is measured. One may hence wonder whether such
wavelengths can excite resonance in biological tissues and systems. We shall
come back with this question in Chapters 2 and 3.

1.6 RELAXATION, RESONANCE, AND DISPLAY

A good knowledge of the complex permittivity of biological media is neces-
sary for evaluating biological effects as well as in medical applications. Hyper-
thermia is only one example of such an application (treated in great detail in
Chapter 4). A number of measured data are available for characterizing bio-
logical media. It should be mentioned, however, that there are not many meas-
ured data for biological and organic liquids at frequencies above 20GHz.

1.6.1 Relaxation in Dielectrics

The dielectric constant is the real part of the complex relative permittivity. It
is of primary importance when characterizing dielectrics. It should not be for-
gotten, however, that the permittivity is complex in the frequency domain and
that the dielectric constant gives only partial information.

Up to about 1GHz, materials respond to relaxation phenomena, already
illustrated in Section 1.3.1. When a rarefied nonpolar gas in which the mole-
cules have no electric dipoles at rest is submitted to an external electric field,
an electric dipole is induced. When a rarefied polar gas which has an electric
dipole at rest is submitted to an external electric field, the dipole orientation
is modified: It essentially rotates. As has been said earlier, when the density
increases, classical physics almost completely fails when trying to establish
quantitative models. It can, however, yield some insight on the phenomena
involved with the dielectric character of materials.

The alignment of the molecule dipolar moment because of an applied field,
called dipolar polarization, is a rather slow phenomenon. It is correctly
described by a first-order equation, called after Debye [4, 5]:The dipolar polar-
ization reaches its saturation value only after some time, called the relaxation
time t (Fig. 1.1).

This looks simple. The process is rather complicated, however. The task of
dielectric theory is difficult, not so much because permanent dipoles cannot
always be identified but mainly because they mutually influence one another:
A dipole not only is subject to the influence of a field but also has a field of
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its own. The mutuality of the influence of dipoles, permanent or otherwise, on
one another makes the response of the assembly a cooperative phenomenon,
depending on the size and shape of the assembly [5].

The relaxation process consists in the approach to equilibrium of a system
which is initially not in thermodynamic equilibrium. Such a process is irre-
versible and not covered by equilibrium thermodynamics. Most relaxation
processes fulfill the conditions for which irreversible thermodynamics is appli-
cable. Relaxation occurs when the free energy stored in the system is degraded
into heat, in other words, if entropy is created irreversibly. The irreversibility
is related to the fact that the free energy of the field is used to increase the
total amount of heat stored in the dielectric plus the heat reservoir surround-
ing it. The thermodynamic treatment illuminates the significance of some of
the concepts of relaxation and shows, in particular, that the Debye equation
is the most plausible description of a relaxation process in a first approxima-
tion. A more thorough understanding requires further reading [5].

What has just been described corresponds to dielectrics with a single 
relaxation time. In fact, three classes of dielectric characteristics may be 
distinguished:

1. Dielectrics with Single Relaxation Time.These are rare. For instance, they
are found in certain dilute solutions of large polar molecules in nonpo-
lar solvents. Some other liquids and solids obey the Debye equation for
complicated reasons.

2. Dielectrics with Approximate Debye Behavior. The peaks of e≤ are wider
and have a somewhat different shape. This is a large class which contains
many simple compounds and solutions of dipolar compounds in non-
polar solvents.

3. Dielectrics for Which Debye Peaks Are Unrecognizable. This class 
contains many practical insulating materials as well as some pure 
compounds.

For materials with many relaxation times, the polarizable elements are divided
into groups of given relaxation times; then a principle of superposition is used
to obtain an analytical expression for the complex permittivity.

Few substances have one single relaxation time. For some materials, such
as water, permittivity is closely fit by a first-order Debye equation, while for
others, such as biological media, where several relaxation times are involved,
higher order terms are necessary [19].

1.6.2 Resonance Absorption

Relaxation refers to that part of polarization that is due to the ordering of per-
manent dipoles. However, matter can take energy from a field even in the
absence of permanent dipoles if the field perturbs oscillations of one kind or
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another. The polarization caused by this mechanism is called electronic polar-
ization or optical polarization.

Resonance can be observed in gases at frequencies below 100GHz,
although, in condensed matter, such an effect can be observed optically in the
IR region of the spectrum. Besides, in gases, optical polarization may be
described as a property of individual molecules, while conditions in solids and
liquids are less easy to visualize.

An individual atom or molecule, whether it has a permanent dipole moment
or not, consists of negative and positive charges. In terms of classical physics,
it may be considered as a harmonic oscillator: Overcoming a restoring force
can alter the distance between the centers of gravity of the positive and neg-
ative charges. The oscillator takes energy from an electric field, at a resonant
frequency, determined by the restoring force; the energy uptake in the absence
of damping tends to infinity.

The interaction of molecules and fields is best described by quantum
mechanics [5]. Individual molecules have discrete energy states and they
absorb energy from an alternating field of frequency f, so that

(1.50)

where DW is the energy difference between two quantum levels and h is
Planck’s constant. The molecule can take up or radiate energy only at the
appropriate frequencies and in the appropriate amounts determined by Eqn.
(1.50). Each individual molecule is characterized by an optical spectrum with
a number of discrete frequencies. The energy differences are extremely small
and the smallness of DW may be appreciated when it is compared with kT:
For f = 10GHz, DW is only (6 ¥ 10-3)kT at room temperature while the energy
per degree of freedom is 1/2 kT at equilibrium. Detailed investigation of the
spectra for gases at low pressures is provided by microwave spectroscopy.

When molecules exist within a gas or other assembly, they collide or oth-
erwise interact with neighbors. These interactions result in thermal equil-
ibrium, which implies an equilibrium distribution of energies among the
constituent members of the assembly. It also implies that a given molecule
retains its energy only for a certain average time tl. In a gas, this lifetime is
shorter when the pressure is higher.

When measuring the value of an energy level in an assembly of molecules
by means of some external probe, for instance microwaves, the result is
unprecise according to the Heisenberg uncertainty principle. If this energy
level has a lifetime tl, then it can only be determined with an uncertainty dW
given by

(1.51)

When tl is short, the uncertainty of the energy determination may be large
compared with the magnitude of the energy difference to be determined. In
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this case, the magnitude of DW cannot be determined, and spectroscopy is
impossible.

Neighboring oscillators interchange energy by collisions. Lorentz deduced
a theory of line broadening which is a good approximation for the case that
neither the resonance frequency nor the field frequency is very small and that
line broadening is not too great, which covers most typical spectra [20]. His
results can be closely approximated by introducing a damping term in the
equation of the oscillator which yields the very simple solution of a second-
order differential equation with a damping term, the simplest formal descrip-
tion of resonance absorption. The behavior of the complex dielectric constant
as a function of frequency is quite different for resonance and relaxation, as
may be seen from Figures 1.1 and 1.2.

The absorption spectra of crystalline solids are at short wavelengths due to
electronic transitions within atoms or molecules and at longer wavelengths
due to vibrations of the crystal as a whole [5]. The lattice vibrations are either
optical or acoustic. Together they constitute the thermal vibrations whereby
the atoms and ions, for example, within the crystal achieve thermal equilib-
rium. The acoustic vibrations do not involve a change of the polarization and
do not interact with EM fields. The optical vibrations correspond to oscilla-
tory displacements of charges.

The most important optical vibration in a simple ionic crystal such as KCl
may be visualized as a movement of K and Cl ions in opposition to each other,
as in the case of a dipole whose length is oscillating. The frequency of this
vibration in the alkali halides is of the order of 10THz, in the IR spectrum.
Investigating the broadening of the IR spectra of crystalline solids is a diffi-
cult subject, although first-order approximations can be obtained rather easily.

The transition from resonant to nonresonant absorption, that is, relaxation,
has been studied in gases by increasing damping, hence line broadening.
It has also been approached for solids. When the resonant frequency 
decreases, however, optical measurements become increasingly difficult and
very complex techniques have to be used. For a wavelength of about 1mm,
which corresponds to 300GHz in a vacuum, the optical techniques of the 
far-IR overlap with microwave techniques.

1.6.3 Cole–Cole Display

The data provided by dielectric measurements can be presented in different
ways. One classical representation is in plotting the real and imaginary parts
of the permittivity as functions of frequency, most frequently as functions of
log10 w. The disadvantage, however, is that these two plots are then presented
independently of each other while their frequency behaviors are linked
through the general theoretical considerations. These were developed in
Section 1.3.1 where it was shown that each part can be calculated from the
variation of the other part over the whole frequency range, as indicated by the
Kramer and Kronig equation (1.12) [6].
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One very early representation is the plot of e≤(w) for a certain frequency
against e¢(w) at the same frequency, which is the representation of the dielec-
tric constant in its complex plane. This display is often called the Cole–Cole
plot (or complex-locus diagram or Argand diagram) [5]. Using expressions
(1.9), it can easily be shown that Debye’s equation between the real and imag-
inary parts of the dielectric constant is the equation of a circle in the complex
plane e(w):

(1.52)

where es and e• are the values of the real part of the relative permittivity at
frequencies zero and infinity, respectively. The Cole-Cole plot therefore pro-
vides an elegant method of finding out whether a system has a single relax-
ation time. Figure 1.10 shows the plot of a dielectric with a single relaxation
time. A given point on the semicircle corresponds to a given frequency. Fre-
quency is zero on the right end of the diameter and infinity on the left, increas-
ing anticlockwise. The summit corresponds to wt = 1, where t is the relaxation
time in Eqn. (1.7).The plot has the disadvantage that w does not appear explic-
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itly: Any material with a single relaxation time, characterized by es and e•,
gives the same plot. Hence, in reporting results, it is essential to supply the
magnitude of t in addition to the plot. The power at which wt appears in Eqn.
(1.7) is not always unity. When it is smaller than unity, the plot represents only
an upper portion of a semicircle.

When the steady conductivity contributes significantly to e≤(w), the repre-
sentation of dielectric data is affected in the Cole–Cole plot [5]. The presence
of several relaxation times also complicates the representation. In view of this,
Fröhlich has introduced a distribution function in which the relaxation time
depends on the (absolute) temperature, and he assumes that the polarizable
units are evenly distributed in terms of activation energy [21]. There is no
reason why activation energies should be evenly distributed over a small 
range of values while higher or lower values should be absent. Fröhlich’s dis-
tribution can be generalized by assuming that most activation energies have
a median value while deviant values are increasingly unlikely, yielding some
sort of a Gaussian distribution of activation energies [5].

However, Cole and Cole designed a function that is not very different in
practice from a Gaussian distribution. It is a useful representation for many
experimental results, and this seems reasonable in view of its similarity to 
a Gaussian distribution. Several other distribution functions were designed
later.

1.7 DIELECTRIC MEASUREMENTS

Accurate knowledge of the complex relative permittivity of biological tissues
is necessary to evaluate biological effects as well as the efficiency of medical
applications. There are a variety of measurement methods, based however on
a rather limited number of principles.

1.7.1 RF Measurements

The complex permittivity—dielectric constant and losses—of a material is
almost always measured by inserting a specimen into a capacitor, waveguide,
or cavity which forms part of an electrical circuit. The circuit is subject to an
alternating voltage or wave or to step functions.Above 1MHz, however, which
covers the RF/microwave range, the source delivers most generally a CW. In
all cases, errors may arise if effects due to some part of the external circuit are
ascribed to the specimen. It is extremely important to point out the limits of
experimental accuracy. Furthermore, some sources of error might escape the
experimenter when using ready-made equipment.

For frequencies higher than a few megahertz, representation of a circuit by
discrete circuit elements and by wires free of inductance and capacitance
becomes gradually unrealistic. For higher frequencies, circuits are considered
as distributed impedances, and the specimen is incorporated accordingly.
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For frequencies up to 1GHz resonant circuits may be used, the specimen
being combined with a known inductance in the form of a Q-meter using
essentially a series combination of C, L, and R [5]. The energy absorption
exhibits a resonant peak and the width of this peak 2 Dw is measured, where
Dw is the difference between the frequency where the energy loss is a
maximum and the frequency where it is reduced to half the maximum. For a
simple series circuit the Q value is given by

(1.53)

Insofar as the capacitor is the only lossy component, Q is inversely propor-
tional to tan d of the dielectric at w0. Q-meters which use leads from instru-
ment to specimen may be inexpensive and versatile, but they are generally not
suitable for precision measurements of loss angle. Leads can be avoided, for
instance, by using a capacitance whose value can be modified by micrometer
screws. This, however, makes the method difficult to use over more than a
narrow range of temperatures.

1.7.2 Microwave Measurements

At frequencies above 300MHz, the shape and size of the measuring assembly
may become important in relation to the wavelength. Because of this, differ-
ent specimens have to be used for not so very different frequencies. Mea-
surements in this microwave region are discussed in a number of textbooks,
essentially with nonautomated equipment however [22–24].

In the early days of microwave measurements, accurate measurements were
made with the use of a slotted line. In practice, this reduces to measuring the
amplitude and phase of an impedance at a given frequency as a function of
the position on the line.The slotted line is still the most accurate measurement
device. It is not in use anymore, however, because it is limited to one single
frequency at a time and making measurements over a range of frequencies
necessitates a number of tedious adjustments. Because of transmission line
properties, however, the important propagation term is the product of the
propagation constant and the position on the line. Hence, operating at con-
stant frequency as a function of the position on the line yields the same type
of results as operating at a given point on the line as a function of frequency.

This is what most measuring devices have been able to accomplish since
about 1990. They are called vector analyzers, and they yield the amplitude and
phase of an impedance in a specific point of a line as a function of frequency,
for instance from 40MHz to 40GHz and higher. The calibration of these
instruments is extremely important: It is a key element in doing good meas-
urements. It takes into account all the elements included in the measurement
process of the various components outside of the device under test: mis-
matches, losses, defects, imperfections, and so on. Calibration compensates all
these, so that the actual measurements are not degraded. Some devices with
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known properties are necessary for calibration purpose, such as a short circuit,
an open circuit, and transmission lines with different lengths.

A poor calibration may degrade the measurements without making the
experimenter aware of this. Because there are a variety of devices to be meas-
ured, there are also a number of calibration procedures. They become more
complicated when the number of imperfections to be corrected increases. For
instance, the number of terms needed for calibrating the measurement setup
depends upon the fact that the physical quantity to be measured is a reflec-
tion or a transmission, on a device with small or high losses, reciprocal or not,
and so on.

Scattering matrix parameters are most often used for calculating or esti-
mating the errors. They describe a two-port by its reflection and transmission
characteristics. When measuring the electric properties of a dielectric, the con-
tainer in which the specimen is placed is considered as the electrical two-port.

A number of precautions have to be taken, especially at the higher fre-
quencies, above 20GHz [17]. In particular, connectors can be a source of 
inaccuracy if not adequately chosen, especially the miniature connectors 
introduced around 1960. Better connectors are necessary when operating at
higher frequencies.

Measuring the complex permittivity of biological tissues fortunately does
not offer the same variety as can be found with electronic circuits, passive 
and active. However, one needs to be careful sometimes: Anisotropy may be
present because of the inhomogeneity of the structure. In such a case, cali-
bration has to take the possibility of anisotropy into account.

1.7.3 Liquids

Measuring the dielectric properties of liquids raises specific difficulties. In par-
ticular, possibly the container must be reusable while being tight. The usual
practice for liquids is to measure the reflection coefficient of an open-ended
coaxial probe [25]. Two difficulties, however, relate to this practice, especially
when applied in the high range of microwave frequencies: The structure radi-
ates and the size of the coaxial probe is very small; hence the mechanical accu-
racy may not be very good.

A new procedure for measuring the complex permittivity of liquids was pre-
sented in 1997 [26]. It is based on the measurement of the scattering para-
meters of waveguide two-ports and on an original calibration method
developed by the authors, called line–line (LL) [27]. The complex permittiv-
ity is obtained explicitly. Hence the method avoids the difficulties related to
the inversion of implicit expressions through tedious numerical iterations.

A waveguide transmission method was used on a vector analyzer, yielding
the four complex scattering parameters: reflection at both ends and transmis-
sion in both ways. A waveguide spacer is placed between the two waveguide
ends of the vector analyzer. The connection between the waveguides and both
ends of the analyzer is made by coax-to-waveguide transitions specific to each
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frequency band. To use the LL method for calibration purposes, two wave-
guide spacers that are identical except for their thickness are necessary. The
LL method requires a “short” and a “long” line, respectively. A synthetic film
is placed at both ends between waveguides and spacers, containing the liquid
in a known volume. Reference planes are placed at both ends in the plane 
of each film. The calibration method ensures that the transition
flange–film–flange has no effect on the result, provided this transition is repro-
ducible when using both spacers. Commercially available simple configura-
tions are adequate. In practice, the film is put on both sides of the waveguide
spacer and soldered together. Holes are made in the film, in the place of the
holes of the waveguide flanges, to ensure tightness. Then, using a syringe, the
liquid is inserted into the spacer. Air bubbles must be avoided. The two wave-
guides are then screwed together, through the holes of the spacer. This oper-
ation has to be done for each of the two spacers and for each waveguide band.

There are several advantages to these methods. First, the test cell is made
of commercially available devices. Second, only two operations are needed to
extract the required experimental data, and explicit expressions provide the
values of the complex permittivity. This is especially helpful for characterizing
highly dispersive and lossy substances. Finally, the influence of the air–liquid
interface is removed from the procedure, so that mismatch, radiation, and
higher order mode generation have no significant influence on the result.

The measured liquids were dioxane, methanol, blood, and axoplasm.
Dioxane is a perfect dielectric, with a dielectric constant of about 2.25 and no
losses up to 110GHz. It is extremely useful as a calibration liquid dielectric to
check the validity of the measurement setup and, in particular, the quality of
matching the various waveguides. Results showed for the first time the
complex permittivity of biological and organic liquids at frequencies from 8
to 110GHz in five waveguide bands. The comparison has been made between
the measurements and the first-order Debye equation. For some materials,
such as water, permittivity is closely fit by a first-order Debye equation,
while for others, such as biological media, where several relaxation times are
involved, higher order terms are necessary [19]. Two relaxation times were
exhibited by the measurements on blood.

The configuration just described is completely closed, which provides very
accurate results. One may need or wish to use open structures. For instance,
the complex permittivity of live and dead neurological cell cultures has been
measured on a setup made of open microstrip transmission lines, from 20 to
40GHz [28]. One advantage of this configuration is that it is open. Hence, the
biological medium can be submitted to a microwave exposure and measure-
ment of the complex permittivity can be an indicator of the activity of the
medium.

1.7.4 Applicators

The applicators usually operate in the near-field region of the antenna, where
the biological tissue, or part of the human body, is placed. One needs to be
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very careful about how to match an applicator to the part of interest of the
human body. Furthermore, the dielectric parameters of the tissue exposed to
the antenna are probably not too well known, because they have most cer-
tainly been measured in another configuration. It would be very difficult to
measure with some accuracy the parameters of a flat living surface, in partic-
ular because it would be extremely difficult, if not impossible, to design a cal-
ibration method to be used in this configuration. As a consequence, matching
an applicator to a biological surface is a very specific subject. The reader is
referred to specific further reading, for instance [29].

1.8 EXPOSURE

The importance of evaluating correctly the electric parameters of biological
tissues has been stressed in this chapter.This is because such knowledge is nec-
essary in evaluating biological effects, in particular in medical applications.
This will be considered in detail in the last chapters. One must, however, realize
already at this stage that biological effects are to be evaluated with respect to
fields that are inside the biological material, and this implies a good knowl-
edge of both the field at the interface with the material and the material prop-
erties. In Section 1.7 were exposed the main guidelines for measuring the
electric properties of biological materials, together with the precautions to be
taken to ensure a good knowledge at the interface.

A totally different situation occurs in real life, when human beings are
exposed to a surrounding RF or microwave field due to a variety of sources:
AM radio, FM radio, television, mobile telephony, radars, and so on. Similarly,
animals prepared for epidemiological studies are submitted to a specific field.
In both cases it is necessary to have an accurate knowledge of the field ampli-
tude, for instance, for comparing the human exposure to standards or evalu-
ating possible hazards, the risk of interference in a hospital, the field amplitude
at which the animals will be submitted in the epidemiological study, and so on.

Standards for human beings are based on two kinds of limitation:

1. Basic limitations that should always be respected.
2. Reference levels that could be exceeded if the basic limitations are not

exceeded.

The basic limitations are expressed in terms of absorption by the human
body, more precisely by the part of the body that is exposed since, because of
the skin effect, only the most external layer is absorbing the power. The bio-
logical aspects of this will be considered in Chapter 2. It is quite appropriate,
however, to note that this power absorption is expressed in watts per kilo
(W/kg) of absorbing matter. This quantity is called the specific absorption rate
(SAR). The SAR is of course not measured on a living person.

This is why there are reference levels, which are expressed in measurable
physical quantities, namely the fields, electric or magnetic. At RF/microwaves,
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the electric field is mostly used as a reference. Standards then specify the value
of the electric field, for instance, which should not be exceeded in some place
or for some time. This creates a situation that should be well understood: The
reference level is a level that the reference, for instance the electric field,
should not exceed. This value is measured in the absence of the person. The
corresponding basic limitation then indicates the power absorbed by a person
that should be present in this electric field, measured in the absence of the
person.

Hence, correctly measuring the electric field or the associated EM power is
of prime importance. The basic theory has been exposed in the first sections
of this chapter. It should be stressed, however, that in most circumstances the
electric field can vary quite significantly from one place to another, not far
away from the first: The variability in space may be quite important. This may
happen, for instance, because of standing waves caused by steady obstacles. If
the obstacles are moving, for instance cars in a street, variability in time is
added. The difficulty of correctly evaluating a living system should not be
underestimated.
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PROBLEMS

1.1. In a nonmagnetic and homogeneous lossy medium, the electric field
intensity of a plane wave is E = E0e-gz, where g = a + jb. The quantities
a, b, and g are the phase, attenuation, and propagation constants, respec-

tively. Knowing that the phase velocity where m0 (= 4p ¥
10-7 Hm-1) is the permeability of free space, w is the radian frequency,
and e¢ is the real part of the complex permittivity e of the medium:

g w m e= ¢j 0
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In this relation, e0 = 8.854 ¥ 10-12 Fm-1 and s and tand (= s/we0e≤) are the
conductivity and the loss tangent of the medium, respectively.
(a) Prove the following expressions:

Hint: Calculate g 2, which yields b2 - a 2 and ab.
(b) Show that the wavelength (= 2p /b) is

1.2. The complex permittivity of skin, fat, and muscle at 915MHz, 2.45GHz,
and 10GHz, respectively, is given in the following table:

(a) Calculate the loss tangent and the parameters a, b, and l for these
media at the specified frequencies.

(b) The penetration depth d is the inverse of the attenuation constant
a. Find d for these media at the specified frequencies.

1.3. A plane wave is incident from semi-infinite medium 1 to semi-infinite
medium 2 and propagates normal to the boundary between the two
media. The reflection coefficient of a plane wave with normal incidence
on a flat boundary is given as

where r and j are the magnitude and phase of the reflection coefficient,
respectively. Find the reflection coefficients of the air–skin, skin–fat, and
fat–muscle interfaces at the specified frequencies of problem 1.2.
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1.4. The electric field intensity of the plane wave inside medium 1 of problem
1.3 is given by E = E+

01e-gz + GE+
01egz. The first term characterizes the wave

propagating in the +z direction, and the second term characterizes the
wave propagating in the -z direction. The interface determining the
reflection coefficient G is located at z = 0. Show that the absorbed power
in the unit volume is

1.5. Assume that a wave with E0 (z = 0-) = 200Vm-1 is propagating in the z
direction inside a fat medium and is incident upon a semi-infinite muscle
medium that fills z > 0.
(a) Write explicit relations for the power absorbed per unit volume P

in both media at 915MHz, 2.45GHz, and 10GHz, respectively.
(b) Plot the values of power absorbed as a function of z (-0.1 m < z).

1.6. Repeat problem 1.5 for power absorbed in medium 2, assuming that
medium 1 is air and medium 2 is skin. Assume that the skin is thick
enough to ensure there is no reflecting wave present in it. Plot the results
for 0 < z < 0.003 m.

1.7. In multilayered cases, the reflection coefficient at the interface of
mediums i and i + 1 is

where Z0i = 120p /(e0ei)1/2

and

is the input impedance of medium i + 1 seen in this boundary, with di

being the thickness of medium i. Assume that a wave at 915MHz and
E0

+ = 1V/m is propagating in air (i = 1) and is incident upon three layers
of skin (d2 = 1mm), fat (d3 = 5mm), and muscle (d4 = •).

(a) Find the reflection coefficient at each interface.
(b) Find the electric field intensity and absorbed power at the two sides

of each interface and 10mm into the muscle. Note that the electric
field inside medium i can be written as Ei = E+

0ie-gi(z-zi) + GiE+
0ie+gi(z-zi),

where E+
0i is the electric field in the +z direction wave at z = zi.

(c) Plot the profile of the absorbed power as a function of the penetra-
tion into these media.

1.8. Repeat problem 1.7 for f = 2.45GHz and comment on the results.

1.9. Repeat problem 1.7 for f = 10GHz and comment on the results.
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1.10. The dimensions of some standard 50-W semiflexible coaxial cables are
given in the following table (dimensions in millimeters):

The dielectric is Teflon (ec = 2.1 and tan d = 0.0001). At 915 MHz and 
2.4GHz, find the dielectric, conductive, and total loss if the conductors
are copper.

1.11. The 2.2-mm coaxial cable of problem 1.10 is terminated to muscle (as
shown in Fig. P1.11).
An approximate model of the system is shown in Figure P1.11b, where
Cf is the fringing capacitance on the left side of the z = 0 boundary and
C0 is the open-end capacitance on the right side of the z = 0 boundary,
where the line is air terminated. The values C0 = 0.05 pF and Cf = 0.01
pF are given.
(a) Show that when the cable is terminated to the tissue, the ratio of the

real to the imaginary part of the admittance associated with the
external capacitance is the loss tangent of the medium.

(b) Calculate the input admittance and the reflection coefficient at z =
0 for f values of 915MHz and 2.45GHz.

(c) Calculate the input reflection coefficient seen at a source located at
the input of a 100-cm coaxial line terminated at the tissue

(d) If the source provides an available power of 10W (50 W source
impedance), how much is the power absorbed in the tissue?

2a

2b

e

C0 e
z 

z = 0 

ec

Zc = 50 W Cf

z = 0 

(a) (b)

FIGURE P1.11 Coaxial probe terminated to lossy medium with complex permittivity
e: (a) schematic of the probe; (b) equivalent circuit model.

Outer diameter 2.20 3.58 1.19 0.58
2b 1.68 2.98 0.94 0.42
2a 0.51 0.92 0.29 0.13
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1.12. Repeat problem 1.11 for fat.

1.13. A monopole antenna is fabricated by removing length l of the outer con-
ductor and the dielectric of a 2.2-mm Teflon-filled coaxial cable. For a
sufficiently small value of l, the impedance of the antenna in free space
is approximated as

where is the wavenumber in free space and a is
the inner conductor radius (Fig. P1.13).
(a) Use what is called Deschamps’ theorem

to find a general relation for Yin and Zin, the admittance and imped-
ance of the monopole in the lossy medium, if the antenna is
immersed in a tissue with complex permittivity e.

(b) For 915MHz and 2.45GHz, respectively, find the input impedance
and reflection coefficient of a monopole with l = 10mm made from
a 2.2mm coaxial cable immersed in muscle.

(c) Repeat part (b) if the antenna is in a fat medium.

1.14. Suppose that the available power in the input to the monopole of
Problem 1.13 is 2W. Find the power absorbed in the tissue.

1.15. An insulated dipole with half-length h and radius a is rounded by two
cylindrical concentric dielectric layers with radii b and c, and permittiv-
ity e2 and e3, respectively. The antenna is inside a tissue medium with
complex permittivity e4. The dipole is fed by a source V0

e placed at the
middle of it (Fig. P1.15a).

Y Yin in
0w ee e w e e, ,0 0( ) = ( )

k 2 0= =( )p l w m e0

Z kl
j l a

klin
0 = ( ) -

( ) -[ ]
10

60 2 12 ln

e  

z

ec

l  

r

FIGURE P1.13 Coaxial probe monopole applicator immersed in lossy medium with
complex permittivity e.
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Given the conditions and

are satisfied, it is known that the current distribution on the
center conductor can be written as1

where I(0) = V0
e/Z0 is the input current to the antenna and Z0 is the

antenna input impedance with

The parameters kL and Zc are complex quantities that follow the 
relations

and

with

the effective wavenumber and dielectric constant, respectively, of an
equivalent dielectric for regions 2 and 3, where n2

2e4 = k2
2e/k2

4, n2
23 = k2

2/k2
3,

n2
24 = k2

2/k2
4, and F = H0

(1)(k4c)/k4cH1
(1)(k4c). Note that k2, k3, and k4 are the

wavenumbers in regions 2, 3, and 4 respectively, and Hn
(1) is the nth order

Hankel function of the first kind.
A dipole is built with h = 20mm, a = 0.255mm and is covered with a
dielectric layer (region 2, b = 0.84mm, e2 = 2.1) followed by an outer
layer of plastic tube (region 3, c = 1.2mm, e2 = 4). The dipole is sur-
rounded by heart tissue (e4 = 60 - j24.5 at 915MHz).
(a) Find e2e, k2e, Zc, and kL.
(b) Find the input impedance of the antenna at 915MHz.
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1 R. W. King, B. S. Trembly, J. W. Strohbehn, “The electromagnetic field of an insulated antenna in
a conducting or dielectric medium,” IEEE Trans. Microwave Theory Tech., Vol. MTT-31, No. 7, pp.
574–583, July 1983.
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(a)

2b

V0
e

2a 2c
2h

x

r y

R = √r2 + z2

z

ε4

ε2

θ

ε3

FIGURE P1.15a Insulated dipole in lossy medium.

(b)

εc

ε4

r

z
h

Region 2,ε2 = εc

Region 3,ε3

FIGURE P1.15b Catheter in lossy medium that is similar to insulated monopole cor-
responding to dipole of Figure 1.15a.

(c) Plot the current distribution I(z) as a function of axial 
distance z.

(d) A monopole antenna is built that corresponds to half of the above
dipole (Fig. P1.15b). This monopole is fed by a 2.2-mm Teflon-filled
coaxial probe (a = 0.255mm, b = 0.84mm, ec = 2.1). Find the input
impedance of the monopole. Assume that the absence of the flange
(ground plane) has a negligible effect on the monopole input 
admittance.

1.16. Repeat problem 1.15 for h = 31mm, a = 0.47mm, b = 0.584mm, c =
0.8mm, e2 = 1, e3 = 1.78, e4 = 42.5 - j17.3, and f = 915MHz.2

1.17. According to the Wien displacement law, the wavelength–temperature
product is a constant [Eqn. (1.44)]. In Section 1.4.3 a value of 0.0048mK

2 R. W. King, B. S. Trembly, J. W. Strohbehn, “The electromagnetic field of an insulated antenna in
a conducting or dielectric medium,” IEEE Trans. Microwave Theory Tech., Vol. MTT-31, No. 7, pp.
574–583, July 1983.
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is obtained. The derivation involves an approximation. It has been men-
tioned that a more accurate value of 0.0051mK can be obtained without
this approximation. Prove this assertion.

1.18. Calculate the brightness of a blackbody radiator at a temperature of
6,000K and a wavelength of 0.5 mm.

1.19. When the brightness is expressed in terms of unit wavelength, the wave-
length for the peak brightness is not the same as when brightness is
expressed in terms of unit bandwidth. The quantitative relation for the
lpT product when brightness is expressed in terms of unit wavelength is
obtained by maximizing (1.42) and simplifying. Prove that it yields the
value 0.0029mK [15].

1.20. Show that the arc plot of a dielectric with a single relaxation time (Cole-
Cole diagram, Eqn. 1.52), obtained by representing e≤(w) as a function
of e¢(w), is a semicircle. Verify that a given point on the semicircle cor-
responds to a given frequency while the summit corresponds to wt = 1
and find the points for w = 0 and w = •. Observe the disadvantage: w
does not appear in it. Any material with a single relaxation time, char-
acterized by es and e• gives the same arc plot. Observe that it is there-
fore essential to supply the magnitude of t in addition to the arc plot.


