

Fundamentals of Electrochemistry, Thermodynamics and Solid State Chemistry for fuel cells

August 22, 2011 | L.G.J. (Bert) de Haart

An Introduction to SOFC Technology Aug 21 – 27, 2011 Viterbo, Italy

Contents

- electrochemistry
- electrochemical cells
- oxidation and reduction
- anode and cathode
- cell and electrode potential
- electrolytic and galvanic cells
- thermodynamics
- Nernst, standard and heating voltage
- charge transport
- fuel utilisation
- operation characteristics (IV curves)
- polarisation losses
- efficiencies

- basic characteristics and requirements
- requirements for materials / components
- electrolyte materials
- ionic conductivity in oxides
- cathode materials
- electronic conductivity in oxides
- anode materials

Electrochemistry

Electrochemistry is the branch of physical chemistry

- dealing with the interrelation of chemical and electrical effects or
- dealing with the study of chemical reactions as a results of the passage of current (conversion of chemical energy into electrical energy and *vice versa*)

Institute of Energy and Climate Research – Principles of Electrochemistry (IEK-9)

An Introduction to SOFC Technology Aug 21 – 27, 2011 Viterbo, Italy

Fundamentals of Electrochemistry, Thermodynamics and Solid State Chemistry BdH, FZJ/IEK-9, Aug 22, 2011, sheet 3

Electrochemical cells

Electrochemistry occurs in electrochemical cells

Electrochemical cells in their most simple form consist of

- two electronic conductors → electrodes
 both in contact with
- one ionic conductor (or solution) → electrolyte

Fundamentals of Electrochemistry, Thermodynamics and Solid State Chemistry BdH, FZJ/IEK-9, Aug 22, 2011, sheet 4

Electrochemical cells: half-cells

In electrochemical cells electrochemical reactions occur at the interfaces between the electrolyte and the electrodes

Each electrode/electrolyte couple is referred to as half-cell; the electrochemical reaction occurring at its interface as half-cell reaction

Electrochemical cells: half-cell reactions

The electrochemical reactions at the electrode/electrolyte interfaces involve electron transfer between the electrode and the electrolyte (or species in solution)

There are two distinct types of half-cell reaction:

- the electrolyte (or species in solution) donates electron(s) to the electrode
- the electrolyte (or species in solution) accepts electron(s) from the electrode

Electrochemical cells: oxidation and reduction

electron donation reaction

reactant \rightarrow product + e

OXIDATION

electron acceptance reaction

reactant + $e^- \rightarrow$ product

REDUCTION

 loss of electrons gain of electrons increase in oxidation state decrease in oxidation state half-cell half-cell (left) (right) e e⁻+ electrolyte electrode electrode interface interface (left) (right) Fundamentals of Electrochemistry, An Introduction to Thermodynamics and Solid State Chemistry SOFC Technology Institute of Energy and Climate Research Aug 21 – 27, 2011 BdH, FZJ/IEK-9, Aug 22, 2011, sheet 7 Viterbo, Italy Principles of Electrochemistry (IEK-9)

Intermezzo: oxidation state

The definition⁽¹⁾ as listed by IUPAC (International Union of Pure and Applied Chemistry)

A measure of the degree of oxidation of an atom in a substance.

It is defined as the charge an atom might be imagined to have when electrons are counted according to an agreed-upon set of rules:

- (1) the oxidation state of a free element (un-combined element) is zero;
- (2) for a simple (monatomic) ion, the oxidation state is equal to the net charge on the ion;
- (3) hydrogen has an oxidation state of 1 and oxygen has an oxidation state of -2 when they are present in most compounds. (Exceptions to this are that hydrogen has an oxidation state of -1 in hydrides of active metals, e.g. LiH, and oxygen has an oxidation state of -1 in peroxides, e.g. H₂O₂);
- (4) the algebraic sum of oxidation states of all atoms in a neutral molecule must be zero, while in ions the algebraic sum of the oxidation states of the constituent atoms must be equal to the charge on the ion. For example, the oxidation states of sulfur in H₂S, S₈ (elementary sulphur), SO₂, SO₃, and H₂SO₄ are, respectively: -2, 0, +4, +6 and +6.

The higher the oxidation state of a given atom, the greater is its degree of oxidation; the lower the oxidation state, the greater is its degree of reduction.

(1) source: http://en.wikipedia.org/wiki/Oxidation_state

Institute of Energy and Climate Research – Principles of Electrochemistry (IEK-9)

Fundamentals of Electrochemistry, Thermodynamics and Solid State Chemistry BdH, FZJ/IEK-9, Aug 22, 2011, sheet 8

Intermezzo: oxidation state

Principles of Electrochemistry (IEK-9)

Electrochemical cells: oxidation and reduction

Electrochemical cells: anode and cathode

Electrochemical cells: net cell reaction

Electrochemical cells: cell potential

BdH, FZJ/IEK-9, Aug 22, 2011, sheet 18

Electrochemical cells: cell potential

- Principles of Electrochemistry (IEK-9)

Electrochemical cells: electrode potential

electrochemical (thermodynamic) equilibrium at the anode/electrolyte interface: the electrochemical potential $\tilde{\mu}_i$ of all species *i* must be equal in both phases (*an*,*el*)

stoichiometric

Electrochemical cells: electrode potential

electrochemical (thermodynamic) equilibrium at the anode/electrolyte interface: the electrochemical potential $\tilde{\mu}_i$ of all species *i* must be equal in both phases (*an*,*el*)

$$(\widetilde{\mu}_{i})_{an} = (\widetilde{\mu}_{i})_{el} \qquad \sum_{i} v_{i} \widetilde{\mu}_{i} = 0 \qquad v_{i} \qquad \begin{array}{c} stoichiometric coefficients \\ coefficients \\ \end{array}$$

$$\widetilde{\mu}_{i} = \mu_{T}^{0} + RT \ln a_{i} + nF\varphi$$
for the anodic oxidation reaction given here:
$$\mu_{Tred}^{0} + RT \ln a_{red} + nF\varphi_{el}$$

$$= \mu_{Tox}^{0} + RT \ln a_{ox} + nF\varphi_{an}$$

$$\varphi_{an} - \varphi_{el} = \frac{\mu_{Tox}^{0} - \mu_{Tred}^{0}}{nF} + \frac{RT}{nF} \ln \frac{a_{ox}}{a_{red}}$$

$$\Delta\varphi_{T,eq} = \Delta\varphi_{T,eq}^{0} + \frac{RT}{nF} \ln \frac{a_{ox}}{a_{red}}$$

$$\Delta\varphi_{T,eq} = \Delta\varphi_{T,eq}^{0} + \frac{RT}{nF} \ln \frac{a_{ox}}{a_{red}}$$

 v_i

Electrochemical cells: electrode potential

in more general terms

$$\sum_{i} v_{i} O x_{i} + n e^{-} = \sum_{j} v_{j} Red_{j}$$

NOTE: now written as reduction reaction!

$$\Delta \phi_{\mathsf{T},eq} = \Delta \phi_{\mathsf{T},eq}^{0} - \frac{\mathsf{RT}}{\mathsf{nF}} \ln \left[\frac{\prod_{j} a_{red,j}^{\mathsf{v}_{j}}}{\prod_{i} a_{\mathsf{ox},i}^{\mathsf{v}_{i}}} \right]$$

however instead of absolute potentials electrode potentials relative to a defined standard reference electrode are preferred

SHE: standard hydrogen electrode

An Introduction to

SOFC Technology

Aug 21 – 27, 2011 Viterbo, Italy

$$H^+/H_2$$
: $a_{H^+} = 1; p_{H_2} = 1 \text{ atm}$
 $E^0_{25^\circ C, eq, H_2/H^+} = 0 \text{ Volt}$

$$\mathsf{E}_{\mathsf{T},\mathsf{eq},\mathsf{ox/red}} = \mathsf{E}_{\mathsf{T},\mathsf{eq},\mathsf{ox/red}}^{\mathsf{0}} - \frac{\mathsf{RT}}{\mathsf{nF}} \mathsf{In} \left[\frac{\prod_{j} a_{red,j}}{\prod_{i} a_{\mathsf{ox},i}^{\mathsf{v}_{i}}} \right]$$

Nernst potential

Institute of Energy and Climate Research - Principles of Electrochemistry (IEK-9)

Fundamentals of Electrochemistry,

Thermodynamics and Solid State Chemistry

BdH, FZJ/IEK-9, Aug 22, 2011, sheet 21

Electrochemical cells: reduction potentials

standard reduction potentials (relative to SHE) can be found in tables in most reference works

TABLE 1. Alphabetical	Listing
-----------------------	---------

Reaction	E^{*}/V
λc²+ 3 e ⇒ Ac	-2.20
λg²+e ⇒ Ag	0.7996
\g™ + e ≠ Ag*	1.980
\g(ac) + e ⇒ Ag + (ac) ⁻	0.643
AgBr+e ⇒ Ag + Br	0.07133
\gBrO, + e ⇔ Ag + BrO,⁻	0.546
Ag ₂ C ₂ O ₂ + 2 e ⇒ 2 Ag + C ₂ O ₂ ³⁻	0.4647
AgCl + e ⇒ Ag + Cl ⁻	0.22233
\gCN + e ≠ Ag + CN ⁻	-0.017
λg_CO_ + 2 e ⇒ 2 Ag + CO, ະ-	0.47
Ag_CrO_+2e ⇒ 2 Ag + CrO_3~	0.4470
λgF+e≓ Ag+F ⁻	0.779
$\lg_{e}[Fe(CN)_{e}] + 4 e \Rightarrow 4 Ag + [Fe(CN)_{e}]^{-1}$	0.1478
$AgI + e \Rightarrow Ag + I^-$	-0.15224
\gIO ₂ + e ⇒ Ag + IO ₂ -	0.354
Ag,MoO, + 2 e ⇒ 2 Ag + MoO, 2-	0.4573
\gNO ₂ + e ≠ Ag + 2 NO ₂ ⁻	0.564
$Ag_0 + H_0 + 2e \neq 2Ag + 2OH^-$	0.342
\g_O, + H_0 + 2 e ≠ 2 AgO + 2 OH-	0.739
Ag ^{o+} + 2 e ⇒ Ag*	1.9
\g™ + e ≠ Ag™	1.8
\g_O ₃ + 4 H* + e ⇒ 2 Ag + 2 H ₂ O	1.802
AgO + H ₂ O + 2 e ⇒ Ag ₂ O + 2 OH ⁻	0.607
AgOCN + e ≠ Ag + OCN-	0.41
Ag,S+2e ⇒ 2Ag + S ^{p-}	-0.691

As + 3 H* + 3 e ≠ AsH,	-0.608
As,O, + 6 H* + 6 e ≠ 2 As + 3 H,O	0.234
HAsO, + 3 H* + 3 e ⇒ As + 2 H,O	0.248
$AsO_{1} + 2H_{1}O + 3e \Rightarrow As + 4OH^{-1}$	-0.68
H, AsO, + 2 H [*] + 2 e ⁻ ⇒ HAsO, + 2 H, O	0.560
AsO ₂ → + 2 H ₂ O + 2 e ⇒ AsO ₂ + 4 OH	-0.71
$At_1 + 2e \neq 2At^-$	0.3
Au* + e ⇒ Au	1,692
Au ^{**} + 2 e ≓ Au [*]	1.401
Au×+3e ⇒ Au	1.498
Au ^{ss} + e [−] ⇔ Au*	1.8
AuOH ^{2*} + H [*] + 2 e ⇒ Au [*] + H ₂ O	1.32
$AuBr_{2} + e \Rightarrow Au + 2 Br$	0.959
AuBr_+3e ⇒ Au+4Br	0.854
AuCl ₂ ⁻ + 3 e ≠ Au + 4 Cl ⁻	1.002
Au(OH), + 3 H* + 3 e ⇒ Au + 3 H ₂ O	1.45
H,BO, + 5 H,O + 8 e ≠ BH, + 8 OH	-1.24
$H_BO_7 + H_O + 3 e \Rightarrow B + 4 OH^-$	-1.79
$H_BO_1 + 3H^* + 3e \Rightarrow B + 3H_O$	-0,8698
$B(OH)_{+} + 7 H^{+} + 8 e \Rightarrow BH_{-} + 3 H_{O}$	-0.481
Ba²+ + 2 e ⇒ Ba	-2.912
Ba²* + 2 e ⇒ Ba(Hg)	-1.570
$Ba(OH)_3 + 2e \Rightarrow Ba + 2OH^-$	-2.99
$Be^{2*} + 2e \Rightarrow Be$	-1.847
$Be_2O_3^{-} + 3H_2O + 4e \Rightarrow 2Be + 6OH^{-}$	-2.63

Reaction

$$\mathsf{E}_{\mathsf{T},\mathsf{eq},\mathsf{ox/red}} = \mathsf{E}_{\mathsf{T},\mathsf{eq},\mathsf{ox/red}}^{\mathsf{0}} - \frac{\mathsf{RT}}{\mathsf{nF}} \mathsf{In} \left[\frac{\prod_{j} a_{red,j}^{\mathsf{v}_{j}}}{\prod_{i} a_{ox,i}^{\mathsf{v}_{i}}} \right]$$

source:

Vanýsek, Petr (2007). "Electrochemical Series", in Handbook of Chemistry and Physics: 88th Edition (Chemical Rubber Company).

Institute of Energy and Climate Research	
 Principles of Electrochemistry (IEK-9) 	

An Introduction to SOFC Technology Aug 21 – 27, 2011 Viterbo, Italy Fundamentals of Electrochemistry, Thermodynamics and Solid State Chemistry BdH, FZJ/IEK-9, Aug 22, 2011, sheet 22

Electrochemical cells: reduction potentials

Electrochemical cells: electrolytic and galvanic cells

 $\Delta E_{eq.cell} < 0$ electrolytic cell

- needs to be electrically driven
- not spontaneous

- $\Delta E_{eq.cell} > 0$ galvanic cell
- produces electrical energy
- spontaneous

Aug 21 – 27, 2011 Viterbo, Italy

BdH, FZJ/IEK-9, Aug 22, 2011, sheet 24

Electrochemical cells: electrolytic and galvanic cells

Electrochemical cells: galvanic cells

an example: the lead acid battery consists of Pb and PbO₂ electrodes in sulphuric acid

Electrochemical cells: galvanic cells

an example: the lead acid battery consists of Pb and PbO₂ electrodes in sulphuric acid

Electrochemical cells: galvanic cells

another example: the (solid oxide) fuel cell

Electrochemical cells: galvanic cells

another example: the (solid oxide) fuel cell

Electrochemical cells and thermodynamics

G Gibbs free energy

is the *maximum* amount of non-expansion work that can be obtained from a closed system

H enthalpy

is the internal energy of the system, including the work that the system has done on its surroundings

First Law of Thermodynamics

$$\Delta U = U_{\text{final state}} - U_{\text{initial state}} = Q - W$$

Energy is conserved; it can be transformed (changed from one form to another), but it can neither be created nor destroyed. The change in internal energy of a system (ΔU) equals the sum of the work done (W) and the heat transferred (Q) during the process.

G=H-TS

H = U + pV

- S entropy
- U internal energy
- V volume
- T absolute temperature
- p pressure

Electrochemical cells and thermodynamics

$$\Delta U = U_2 - U_1 = Q - W \qquad G = H - TS$$

in fuel cells:

volume work W_V $W_V = p\Delta V$ H = U + pVelectrical work W_E $W_E = nF\Delta E$ $\Delta G_{T,p} = \Delta H_{T,p} - T\Delta S_{T,p}$ heat transferQ $Q = T\Delta S$ $\Delta G_{T,p} = \Delta U_{T,p} - T\Delta S_{T,p}$

$$\Delta U = T\Delta S - p\Delta V - nF\Delta E$$

$$\Delta G_{T,p} = -nF\Delta E_{T,p}$$

$$\Delta E_{T,p} = \frac{-\Delta G_{T,p}}{nF}$$

Institute of Energy and Climate Research – Principles of Electrochemistry (IEK-9)

Fuel cells: Nernst, standard and heating voltage

 $\Delta E^{0}_{\Delta G} = \frac{-\Delta G^{0}}{2F}$

 $\Delta \mathsf{E}^{\mathsf{0}}_{\Delta \mathsf{H}} = \frac{-\Delta \mathsf{H}^{\mathsf{0}}}{2\mathsf{F}}$

standard voltage (all activities =1)
measure for the available energy

heating voltage (based on enthalpy) measure for the maximum energy for $\Delta G^{\scriptscriptstyle 0}$ and $\Delta H^{\scriptscriptstyle 0}$

 $\Delta U_{\mathrm{T,p}} = \Delta G_{\mathrm{T,p}} - p \Delta V_{\mathrm{T,p}} + T \Delta S_{\mathrm{T,p}}$

values at 25 °C and 1 bar

Fundamentals of Electrochemistry,

Thermodynamics and Solid State Chemistry

BdH, FZJ/IEK-9, Aug 22, 2011, sheet 31

can be found in thermodynamic tables in most reference works

$$\Delta \mathsf{E}_{\mathsf{Nernst}} = \Delta \mathsf{E}_{\Delta \mathsf{G}}^{\mathsf{0}} - \frac{\mathsf{RT}}{\mathsf{2F}} \ln \frac{\mathsf{p}_{\mathsf{H}_2\mathsf{O}}}{\mathsf{p}_{\mathsf{O}_2}^{-1/2} \mathsf{p}_{\mathsf{H}_2}} \qquad \text{for}$$

 $H_2(g) + \frac{1}{2}O_2(g) \to H_2O(g)$

An Introduction to

SOFC Technology

Aug 21 – 27, 2011 Viterbo, Italy

Nernst voltage or Open Circuit Voltage (OCV) deviation from the standard voltage (concentration dependence)

Fuel cells: Nernst, standard and heating voltage

$$\Delta \mathsf{E}^{\mathsf{0}}_{\Delta \mathsf{G}} = \frac{-\Delta \mathsf{G}^{\mathsf{0}}}{2\mathsf{F}}$$

temperature dependence:

$$\Delta \mathsf{E}^{0}_{\Delta \mathsf{H}} = \frac{-\Delta \mathsf{H}^{0}}{2\mathsf{F}}$$

by useful approximation: ΔH and ΔS are temperature independent

$$\Delta G_{T} = \Delta G^{0} - (T - (273 + 25))\Delta S^{0}$$

$$H_2(g) + \frac{1}{2}O_2(g) \to H_2O(g)$$

 ΔG^{0} = - 228.4 kJ/mol

 ΔH^0 = - 241.8 kJ/mol

 ΛS^0 = - 44.4 J/(mol K)

Institute of Energy and Climate Research - Principles of Electrochemistry (IEK-9)

ΔE^{0}	
25 °C	800 °C
1.184 V	1.006 V
1.253 V	1.253 V

 $\Delta G_{\scriptscriptstyle T} = \Delta H_{\scriptscriptstyle T} - T \Delta S_{\scriptscriptstyle T}$

Fundamentals of Electrochemistry, Thermodynamics and Solid State Chemistry BdH, FZJ/IEK-9, Aug 22, 2011, sheet 33

Fuel cells: Nernst, standard and heating voltage

- Principles of Electrochemistry (IEK-9)

Fuel cells: Nernst, standard and heating voltage

$$\Delta \mathsf{E}_{\mathsf{Nernst}}(\mathsf{T}) = \Delta \mathsf{E}_{\Delta \mathsf{G}}^{\mathsf{0}}(\mathsf{T}) - \frac{\mathsf{RT}}{\mathsf{2F}} \ln \frac{\mathsf{p}_{\mathsf{H}_2\mathsf{O}}}{\mathsf{p}_{\mathsf{O}_2}^{-1/2} \mathsf{p}_{\mathsf{H}_2}}$$

	ΔE^{0}		
	25 °C	800 °C	
$\Delta E^0_{\Delta G}$	1.184 V	1.006 V	
$\Delta E^0_{\Delta H}$	1.253 V	1.253 V	
۸ ۲	1.202 V	1.071 V	
ΔE_N	1.174 V	0.970 V	

for
$$\begin{array}{l} p_{H_2}=0.9\,;\;p_{H_2O}=0.1;\;p_{O_2}=0.21 \text{bar}\\ p_{H_2}=0.5\,;\;p_{H_2O}=0.5\,;\;p_{O_2}=0.21 \text{bar} \end{array}$$

Institute of Energy and Climate Research - Principles of Electrochemistry (IEK-9)

An Introduction to
SOFC Technology
Aug 21 – 27, 2011
Viterbo, Italy

Fundamentals of Electrochemistry, Thermodynamics and Solid State Chemistry BdH, FZJ/IEK-9, Aug 22, 2011, sheet 35

Fuel cells: Nernst, standard and heating voltage

- Principles of Electrochemistry (IEK-9)

Fuel cells: Nernst, standard and heating voltage

Institute of Energy and Climate Research - Principles of Electrochemistry (IEK-9)

An Introduction to		
SOFC Technology		
Aug 21 – 27, 2011	l	
Viterbo, Italy		

Thermodynamics and Solid State Chemistry BdH, FZJ/IEK-9, Aug 22, 2011, sheet 37

Fuel cells: Nernst voltage

Fuel cells: Nernst voltage

Fuel cells

well...

let's start doing some actual work

Fundamentals of Electrochemistry, Thermodynamics and Solid State Chemistry BdH, FZJ/IEK-9, Aug 22, 2011, sheet 40

- Principles of Electrochemistry (IEK-9)

Fuel cells: charge transport or electric current

transport of electric charge via charge transfer across the electrode/electrolyte interfaces

Institute of Energy and Climate Research – Principles of Electrochemistry (IEK-9)

- implies the occurrence of electrochemical reactions at the interfaces
- the current corresponds to the rates of the reactions
- the current corresponds to the consumption of fuel
 - I = total current [A]
 - j = I/A = current density [A/cm²]
 - A = effective electrode area [cm²]

Intermezzo: Faraday constant

Fuel cells: fuel utilisation u_F

Fuel cells: operation characteristic (IV-curve)

$$\eta_{\mathsf{c}}$$
 , η_{a}

charge transfer polarisation

Butler-Volmer equation

$$H_2 + O^{2-} \leftrightarrow H_2O + 2e$$

$$j = j_{0,_{H_2}} p_{H_2}^r p_{H_2O}^s \left[\exp \left(\alpha_a \frac{nF}{RT} \eta_a \right) - \exp \left(-\alpha_c \frac{nF}{RT} \eta_a \right) \right]$$

$$j = j_{0,_{H_2}} p_{H_2}^r p_{H_2O}^s \exp\left(\alpha_a \frac{nF}{RT} \eta_a\right) - j_{0,_{H_2}} p_{H_2O}^r p_{H_2O}^s \exp\left(-\alpha_c \frac{nF}{RT} \eta_a\right)$$

$$j = j_+ + j_-$$

Institute of Energy and Climate Research – Principles of Electrochemistry (IEK-9)

Fuel cells: operation characteristic (IV-curve)

- Principles of Electrochemistry (IEK-9)

Fuel cells: operation characteristic (IV-curve) of cells

Fuel cells: efficiency

f

the 'ideal' thermodynamic efficiency is given by:

$$\eta_{\text{id}} = \frac{\Delta G^{\scriptscriptstyle 0}{}_{\scriptscriptstyle T}}{\Delta H^{\scriptscriptstyle 0}} = \frac{\Delta E_{_{\Delta G}}}{\Delta E_{_{\Delta H}}}$$

ratio between the available energy (Gibbs free energy change of the cell reaction; Δ G) and the maximum energy (enthalpy change of the cell reaction; Δ H)

or	$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$	ΔE^{0}
		25 °C 800 °C
	ΔG^0 = - 228.4 kJ/mol	1.184 V 1.006 V
	ΔH ⁰ = - 241.8 kJ/mol	1.253 V 1.253 V
	ΔS^0 = - 44.4 J/(mol K)	94 % 80 %

In here the so-called lower heating value (LHV) is used; the product water is in the gaseous phase. This is common practice in power plant technology. When the condensation, respectively evaporation of water is taken into account, the higher heating value (HHV) has to be used.

Fundamentals of Electrochemistry, Thermodynamics and Solid State Chemistry BdH, FZJ/IEK-9, Aug 22, 2011, sheet 58

Fuel cells: efficiency

 $\eta_{\Delta E} = \frac{\Delta E(\underline{A})}{\Delta E}$ the voltage efficiency is given by: ratio between the voltage under current load and the standard voltage; effect of the real gas compositions (Nernst voltage) and potential losses for $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$ ΔG^0 = - 228.4 kJ/mol 800 °C $\Delta E_{\Delta G}$ 1.006 V ΔE(j) 0.900 V 0.800 V 0.700 V η_{ΔE} 89 % 80 % 70 % An Introduction to Fundamentals of Electrochemistry, SOFC Technology Thermodynamics and Solid State Chemistry Institute of Energy and Climate Research Aug 21 – 27, 2011 Viterbo, Italy BdH, FZJ/IEK-9, Aug 22, 2011, sheet 59 - Principles of Electrochemistry (IEK-9)

Fuel cells: efficiency

the electrical stack efficiency is given by:

$$\begin{split} \eta_{eI} &= \eta_{id} \cdot \eta_{\Delta E} \\ &= \frac{\Delta E_{\Delta G}}{\Delta E_{\Delta H}} \cdot \frac{\Delta E(j)}{\Delta E_{\Delta G}} \\ &= \frac{\Delta E(j)}{\Delta E_{\Delta H}} \\ \eta_{eff,st} &= \eta_{eI} \cdot u_{E} \end{split}$$

$$= \frac{\Delta E(j)}{\Delta E_{\Delta H}} \cdot u_{F}$$

$$\mathsf{u}_{\mathsf{F}} = \frac{\mathsf{Z} \cdot \mathsf{I}}{\mathsf{I}_{\mathsf{max}}} = \frac{\mathsf{Z} \cdot \mathsf{I}}{2\mathsf{F} \, \dot{\mathsf{n}}_{\mathsf{H}_2}}$$

the effective stack efficiency is given by:

with the fuel utilisation as given before:

takes into account the fuel gas leaving the stack (not consumed) as well as leakages in the stack

Institute of Energy and Climate Research – Principles of Electrochemistry (IEK-9) Fundamentals of Electrochemistry, Thermodynamics and Solid State Chemistry BdH, FZJ/IEK-9, Aug 22, 2011, sheet 60

Institute of Energy and Climate Research – Principles of Electrochemistry (IEK-9)

An Introduction to SOFC Technology Aug 21 – 27, 2011 Viterbo, Italy

Fundamentals of Electrochemistry, Thermodynamics and Solid State Chemistry BdH, FZJ/IEK-9, Aug 22, 2011, sheet 61

SOFC: basic characteristics and requirements

the Solid Oxide Fuel Cell (SOFC) is characterised by / requires

- a ceramic oxygen-ion conductor as the electrolyte
- requires operating temperatures above 600 °C
- non-noble metal and metal oxides as catalysts for the electrochemical reactions
- allows the use of carbon (as carbon monoxide CO and methane CH₄) containing fuels
- requires catalysts for methane/steam reforming in/at the fuel electrode
- · produces useable heat in the off-gas, next to electricity

SOFC: materials in history

1937 Bauer and Preis: first fuel cell on the basis of a zirconia electrolyte beven today (yttria stabilised) zirconia (YSZ) most commonly used as electrolyte 1960s first period with intense activities (industry) in SOFC research (mainly electrolyte materials) (military, space, transport) Sr-doped LaMnO₃ cathode and Ni/YSZ anode used in combination with YSZ ceramic LaCrO₃ as interconnect material 1980s second period with intense activities (industry) in SOFC research (electrode materials, stacks and systems) electrolyte supported cells, still mainly YSZ metallic Cr-based interconnect materials 1990s increased activities (universities, research centres) in SOFC research (EU, NEDO and SECA programmes) Anode supported cells, still mainly YSZ ferritic steel based interconnect materials 2000s An Introduction to Fundamentals of Electrochemistry, SOFC Technology Thermodynamics and Solid State Chemistry Institute of Energy and Climate Research Aug 21 – 27, 2011 BdH, FZJ/IEK-9, Aug 22, 2011, sheet 63 Viterbo, Italy

Principles of Electrochemistry (IEK-9)

SOFC: requirements for the components / materials

	electrolyte	anode	cathode	interconnect	sealing
conductivity	ionic purely	electronic additional ionic advantageous	electronic additional ionic advantageous	electronic purely	insulator
thermal expansion		adapted to electrolyte and interconnect	adapted to electrolyte and interconnect	adapted to electrolyte	adapted to electrolyte and interconnect
thermo- chemical	stable in oxidising and reducing atmospheres	stable in reducing atmospheres	stable in oxidising atmospheres	stable in oxidising and reducing atmospheres	stable in oxidising and reducing atmospheres
	stable in contact with anode, cathode, sealing and interconnect	stable in contact with electrolyte and interconnect	stable in contact with electrolyte and interconnect	stable in contact with anode, cathode and sealing	stable in contact with electrolyte and interconnect
micro- structure	impermeable for hydrogen	porous open	porous open	impermeable for hydrogen	impermeable for hydrogen

ionic conductivity in solids

- by movement of ions in the lattice, e.g. Ag⁺ in AgI driven by
 - chemical potential gradient (diffusion)
 - electrical potential gradient (migration)

recall: electrochemical potential $\widetilde{\boldsymbol{\mu}}_{i} = \boldsymbol{\mu}_{\mathsf{T}}^{\mathsf{0}} + RT \ln \boldsymbol{a}_{i} + nF \boldsymbol{\phi}$

chemical potential

electrical potential

by movement of (oxygen) ions in the metal oxide lattice enhanced by (the creation of) point defects

Institute of Energy and Climate Research Principles of Electrochemistry (IEK-9)

An Introduction to SOFC Technology Aug 21 – 27, 2011 Viterbo, Italy Fundamentals of Electrochemistry, Thermodynamics and Solid State Chemistry BdH, FZJ/IEK-9, Aug 22, 2011, sheet 65

SOFC: electrolyte materials

point defects in metal oxides

Kröger-Vink notation for point defects

Lattice species	Symbol	Effective charge (electron units)
Metal and oxygen ions on normal sites	M_M^x or O_O^x	Uncharged
Metal interstitial ion	Mi	2 positive
Oxygen interstitial ion	O _i "	2 negative
Metal vacancy	V _M "	2 negative
Oxygen vacancy	Vo"	2 positive
Higher valency cation (donor)	DM	1 positive
Lower valency cation (acceptor)	A _M '	1 negative
Conduction electron	e'	1 negative
Electron hole	h	1 positive

Fundamentals of Electrochemistry, Thermodynamics and Solid State Chemistry BdH, FZJ/IEK-9, Aug 22, 2011, sheet 66

Institute of Energy and Climate Research – Principles of Electrochemistry (IEK-9) An Introduction to SOFC Technology Aug 21 – 27, 2011 Viterbo, Italy Fundamentals of Electrochemistry, Thermodynamics and Solid State Chemistry BdH, FZJ/IEK-9, Aug 22, 2011, sheet 68

SOFC: electrolyte materials

ionic conductivity in metal oxides

- conductivity = concentration x charge x mobility
 - 8...9 mol% Y₂O₃ in ZrO₂ creates high concentration of oxygen vacancies
 % higher amounts lead to clustering (immobility)
 - mobility is thermally activated
 - bigh temperature required for high conductivity
- metal ions which can have multiple valences (oxidation states) should be avoided in solid electrolytes:
 - reduction at low oxygen partial pressures creates electrons
 - oxidation at high partial pressures creates electron-holes
 electrons and electron-holes have higher mobility's

ionic conductivity in metal oxides

Principles of Electrochemistry (IEK-9)

ionic conductivity in solids

alternatives to zirconia

- doped ceria, e.g. Gd-doped CeO₂; high ionic conductivity
 ♦ n-type electronic conduction dominant in SOFC fuel environment above 570°C caused by Ce⁴⁺ → Ce³⁺
 also lattice expansion in reduced environment leads to mechanical problems
- doped gallates, e.g. La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O₃; high ionic conductivity
 difficult to process, unstable at higher temperatures
- doped bismuth oxides; e.g. Bi_{0.8}Er_{0.2}O_{1.5}; high ionic conductivity
 unstable at higher temperatures, high reactivity with other cell components

SOFC: cathode materials

- high temperature in combination with
- highly oxidising atmospheres require either
 - noble metals
 - \clubsuit are too expensive or too volatile (Ag)
 - or
 - electronic conducting metal oxides
 - (transition) metal ions which can have multiple valences (oxidation states) e.g. in perovskites ABO₃

$$A^{3+}B^{3+}O_3$$
 $A^{3+} = Y^{3+}$, rare earth RE³⁺

SOFC: cathode materials

electronic conductivity in metal oxides

SOFC: cathode materials

electronic conductivity in metal oxides

Fig. 2. Electrical conductivity of pure and strontium-doped lanthanum manganite, in air at atmospheric pressure, as a function of temperature.

E. O. Ahlgren, F. W. Poulsen, Solid State Ionics 86-88 (1996) 1173-1178

Fundamentals of Electrochemistry, Thermodynamics and Solid State Chemistry BdH, FZJ/IEK-9, Aug 22, 2011, sheet 76

source: Chania_cathodes_2008.ppt / 08.08 / © IEF-1 / Tietz

Institute of Energy and Climate Research – Principles of Electrochemistry (IEK-9)

SOFC: cathode materials

A. Petric, P. Huang, F. Tietz, Solid State lonics, 135 (2000) 719-728

source: Chania_cathodes_2008.ppt / 08.08 / © IEF-1 / Tietz

> An Introduction to SOFC Technology Aug 21 – 27, 2011 Viterbo, Italy

Fundamentals of Electrochemistry, Thermodynamics and Solid State Chemistry BdH, FZJ/IEK-9, Aug 22, 2011, sheet 77

SOFC: cathode materials

Institute of Energy and Climate Research

Principles of Electrochemistry (IEK-9)

A. Petric, P. Huang, F. Tietz, Solid

State Ionics, 135 (2000) 719-728

Sr content

selection (La,Sr)(Mn,Fe,Co)O₃ depends on:

- conductivity
 highest for (La,Sr)CoO₃, reasonable for (La,Sr)MnO₃, too low for (La,Sr)FeO₃
- chemical stability (oxygen deficiency)
 reasonable down to oxygen partial pressures of 10⁻⁵ bar

reactivity (with YSZ)
 reasonable for (La,Sr)MnO₃, further suppressed by slight A-site deficiency
 (La,Sr)(Co,Fe)O₃ reacts to form strontium zirconate (insulator)
 suppressed by a (Ce,Gd)O₂ (CGO) diffusion barrier layer

electrochemical activity
 highest for (La,Sr)CoO₃, (La,Sr)(Co_{0.2}Fe_{0.8})O₃
 reasonable for (La,Sr)MnO₃,
 improved by mixing with YSZ

SOFC: anode materials

- high temperature in combination with
- highly reducing atmospheres
 - require
 - noble metals
 - ♦ are too expensive or too volatile (Ag)

or

or

- electronic conducting metal oxides
 - (transition) metal ions which can have multiple valences (oxidation states)
 e.g. in perovskites ABO₃
 - doped SrTiO₃
- transition metals stable over a wide range of reducing oxygen partial pressures, e.g. Ni, Fe, Co, Cu
 - Ni is preferred: shows the largest stability range (lowest risk of oxidation) has the highest electrochemical activity
 - for the hydrogen oxidation reaction (even over the noble metals)

Institute of Energy and Climate Research – Principles of Electrochemistry (IEK-9)

SOFC Technology Aug 21 – 27, 2011 Viterbo, Italy

An Introduction to

Fundamentals of Electrochemistry, Thermodynamics and Solid State Chemistry BdH, FZJ/IEK-9, Aug 22, 2011, sheet 79

SOFC: anode materials

Ni has

- the tendency to sinter at operating temperature
 ♣ decrease of porosity, loss of activity
- a thermal expansion coefficient not comparable to YSZ

therefore

Ni particles are dispersed in a matrix of YSZ particles
 to match the thermal expansion coefficient
 to prevent the sintering of the nickel particles

SOFC: anode materials

Ni/YSZ cermet

- Ni amount has to be above 40 vol% (percolation threshold) to keep the high metallic conductivity upright
- Ni and YSZ particle size (distribution) has to be well balanced to keep the micro structure upright
- manufactured out of a mixture of NiO and YSZ; reduction of NiO to Ni on first operation of the fuel cell

source:

Alan Atkinson, SOFC Anodes, Chania 2008

Institute of Energy and Climate Research – Principles of Electrochemistry (IEK-9) An Introduction to SOFC Technology Aug 21 – 27, 2011 Viterbo, Italy

Fundamentals of Electrochemistry, Thermodynamics and Solid State Chemistry BdH, FZJ/IEK-9, Aug 22, 2011, sheet 81