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Fundamental Principles of Good System Design
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Identify things that are likely to change•	
Write extension points•	
Group data and behavior•	
Use data hiding•	
Write a glossary of relevant terms•	
Envelope requirements•	
Create design margins•	
Design for testability•	
Design for evolvability•	
Build in preparation for buying•	
Create a new design process•	
Change the behavior of people•	

These design principles come from the experience of hundreds 
of engineers and managers. The particular references cited in the 
following paragraphs are not meant to be the authority—they are 
merely examples that have references in the literature.

Use models to design systems: System design can be 
requirements based, function based, or model based. Model-
based system engineering and design has an advantage of 
executable models that improve efficiency and rigor. One of the 
earliest developments of this technique was Wymore’s (1993) 
book entitled Model-based System Engineering, although the 
phrase “model-based system design” was in the title and topics 
of Rosenblit’s (1985) PhD dissertation. Model-based systems 
engineering depends on having and using well-structured models 
that are appropriate for the given problem domain (Bahill and 
Szidarovszky, 2008). Bahill’s models start with the use cases.

Use hierarchical, top-down design: Early on, translate the 
customer’s needs into goals, capabilities, and functions; these 
provide guidance for all future development. Work on high-
level functions first because, although high-level functions 
are less likely to change, when they do change, they force 
changes in many other functions. Decompose systems into 
subsystems, subsystems into sub-subsystems, etc. (Chapman 
and Bahill, 1992). In software, this decomposition is called 
layered architecture (Evans, 2004). Implementation is simpler 
if the dependencies and action initiations between these layers  
are unidirectional.

Work on high-risk items first: Work on high-risk items 
first in order to reduce risk; in addition, high-risk items are more 
likely to change, thereby producing changes in other entities, 
so working the high-risk items first will reduce the rework due 
to changing requirements. Furthermore, if it was impossible to 
satisfy the high-risk capabilities and the project was cancelled, 
you will have saved the money that otherwise would have been 
squandered satisfying low-risk requirements (Jacobson, Booch, 
and Rumbaugh, 1999). The original spiral model of Boehm (1988) 
advocated risk-driven development.
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Design is a creative activity—consequently, there is no 
process that will guarantee good designs, but there are 
some principles that will increase the probability of 

getting a good design. This article presents dozens of fundamental 
principles of good system design that should help make a product 
better. Using these principles will also make a product more 
reusable for future systems and it will help reduce redesign costs 
when requirements change. Of course, the customer may mandate 
or exclude the use of some or all of these principles. Some of these 
principles are as follows:

Use models to design systems•	
Use hierarchical, top-down design•	
Work on high-risk items first•	
Prioritize•	
Control the level of interacting entities•	
Design the interfaces•	
Produce satisficing designs •	
Do not optimize early•	
Maintain an updated model of the system•	
Develop stable intermediates•	
Use evolutionary development•	
Understand your enterprise•	
State what, not how•	
List functional requirements in the use cases •	
Allocate each function to only one component•	
Do not allow undocumented functions•	
Provide observable states•	
Rapid prototyping•	
Develop iteratively and test immediately•	
Create modules•	
Create libraries of reusable objects•	
Use open standards•	
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Prioritize: Requirements, goals, customer needs, capabilities, 
risks, directives, initiatives, issues, activities, features, functions, 
use cases, technical performance measures, and weights of 
importance for the criteria in tradeoff studies should all be 
prioritized. Prioritization will help with budget, schedule, system 
architecture, customer satisfaction, and risk reduction (Botta and 
Bahill, 2007). 

Control the level of interacting entities: Objects should 
exchange inputs and outputs with other objects at the same level, 
or perhaps at one level above or below (Bahill, Szidarovszky, 
Botta, and Smith, 2008). It is a mistake to have objects interact 
with objects two or more levels above or below (Simon, 1962). 
Some interlevel interactions may be specified as unidirectional 
(Evans, 2004); this simplifies the implementation.

Design the interfaces: Be sure to design your interfaces 
(Quintanar, 1999; Rechtin, 2000). Interfaces between subsystems 
and interfaces between the main system and the external world 
must be designed. Subsystems should be defined along natural 
boundaries. When the same information travels back and forth 
among different subsystems, a natural activity may have been 
fragmented. In the automobile industry, they do not build a car 
frame, send it across town to install the motor and then send it 
back to put on the axels and wheels. Subsystems should be defined 
to minimize the amount of information exchanged between the 
subsystems (Rechtin, 2000). Well-designed subsystems send 
finished products to other subsystems. Another way of stating 
this is to minimize the coupling between subsystems. Interfaces 
should connect things of similar levels (Bahill, Szidarovszky, Botta, 
and Smith, 2008). Feedback loops around individual subsystems 
are easier to manage than feedback loops around interconnected 
subsystems. When possible, different entities should use the same 
interface, rather than having a specialized interface for each entity 
(Schultz, Fricke, and Igenbergs, 2000). Browning (2002) uses a 
design structure matrix to analyze and modify the interfaces in a 
process. Special care should be given to interface design so that 
the interface does not have to change when its associated systems 
change. The name and the brief description of the interface should 
proclaim its intention.

Produce satisficing designs: Engineers should create 
satisficing designs—they should not try to produce optimal 
designs because for complex systems it is impossible to do. Simon 
(1957) says that the key to successful design is “the replacement 
of the goal of maximization with the goal of satisficing, of finding 
a course of action that is ‘good enough.’ ... Since the [designer] ... 
has neither the senses nor the wits to discover an ‘optimal’ path— 
even assuming the concept of optimal to be clearly defined – we 
are concerned only with finding a choice mechanism that will lead 
it to pursue a ‘satisficing’ path, a path that will permit satisfaction 
at some specified level of all its needs.”

Do not optimize early: If optimization is absolutely 
required, do it late in the design process. If you optimize early 
in the design process, you will have to reoptimize every time the 
design changes. At the risk of being too specific, we suggest that 
optimization should not be done before Critical Design Review 
(CDR). This does not mean that you should not strive to find a 
good architecture early in the design process. It means do not 
use integer programming to minimize part counts or wire lengths 
before CDR. It means do not use optimization methods for routing 
problems on networks with stochastic failures before CDR.

Maintain an updated model of the system: Engineering 
must create a model that simulates the intended system at every 

level from both the business and technical viewpoints (Bahill, 
Botta, and Daniels, 2006). A single model should underlie 
analysis, design, implementation, and team communication 
(Evans, 2004). Update this model throughout the design 
process (Douglas, 2004). Update this model to “as built” in the 
implementation phase and “as modified” in the test, operational, 
and retirement and replacement phases. When the requirements 
inevitably change, engineering should review all decisions, revise 
the system model, rerun all simulations, and show the effects of 
these requirement changes on cost, schedule, performance, risk, 
and the designs of other systems (Wymore, 2004). 

Every operational system should have an accurate model. This 
model should be run to evaluate performance enhancements and 
possible disasters. If the system is a regional electric power grid 
and it has been suggested that its capacity could be increased by 
adding solar and wind generators, then the system performance 
should be evaluated on the model before it is installed on the real 
system. If the system is a large building, and evacuation is being 
considered because a hurricane is approaching, then run the 
model to estimate possible hurricane damage. Every Interstate 
highway bridge should have a model that degrades as the bridge 
degrades. When the model predicts a dangerous situation, the 
bridge should be shut down. When a nuclear reactor is to be 
decommissioned, its model will be run to help formulate the 
decommission plan.

Develop stable intermediates: “A large change is best made 
through a series of smaller, planned, stable intermediate states” 
(Rechtin, 2000). These intermediate states should be stable enough 
that the progression could be stopped at predetermined points. 
With stable intermediates, if a large complex system is cancelled, 
for example because of loss of political support, then something 
useful for mankind will still exist. The Central Arizona Project 
was designed this way, but the Superconductor Supercollider 
in Texas was not (Moody, Chapman, Van Voorhees, and  
Bahill, 1997). 

Use evolutionary development: The Department of Defense 
(DoD) created the evolutionary acquisition process. Using it, you 
create a usable system and later add requirements and money to get 
a more complex usable system (DoD 5000.1). The B-52 airplane 
is a quintessential example: every half-dozen years the Air Force 
added requirements and money and got new capability. 

Understand your enterprise: Understand how the system 
you are designing fits into your enterprise. Frameworks help 
people organize and assess completeness of integrated models 
of their enterprises. Several popular frameworks have been used 
to architect enterprises. The Zachman framework, like many 
others, considers multiple perspectives and multiple aspects of an 
enterprise (Bahill, Botta, and Daniels, 2006). 

State what, not how: State what function needs to be 
performed, not how to implement the solution. For example, 
you should say, “Play music.” Do not say, “Play a CD,” or “Hire 
a pianist,” or “Turn on the radio and tune in a music station.” In 
the object-oriented software world, this is called polymorphism 
(Rumbaugh, Jacobson, and Booch, 2005); however, one man’s 
floor is another man’s ceiling. First, state what the customer needs. 
Then figure out how to satisfy this need. This “how” then becomes 
a system feature. State what this feature must do. Then figure 
out how to implement it. This implementation then becomes a 
requirement that states what the system must do, etc.

List functional requirements in the use cases: Traditional 
requirements are typically written with textual statements of 
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imperative. They are the primary means by which systems 
engineers bound and communicate system functions, capabilities, 
and constraints. The rapid adoption of use case modeling for 
capturing functional requirements in the software community has 
caused systems engineers to adopt use case models for capturing 
system-level functional requirements. We advocate a hybrid 
requirements process in which use case modeling and traditional 
shall-statement requirements are applied together to effectively 
express both functional and non-functional requirements 
(Daniels and Bahill, 2004). The use cases should contain the main 
and alternate scenarios. These describe the system functions. 
The next section of the use case should formally describe the 
functional requirements.

Allocate each function to only one component: Each 
function should be allocated to only one physical component, 
and, therefore, each function would have only one owner. If there 
were two owners for a function, one might change his or her 
requirements, and this would change the system for the other. 
In the object-oriented world, this would be phrased as, “Do not 
allow multiple actors to have the same role” (Övergaard and 
Palmkvist, 2005). If two actors are trying to assume the same role, 
generalize them into one abstract actor. There are exceptions to 
this principle, but they are unusual. Violation of this principle is 
captured in the American proverb, “Too many cooks spoil the 
soup.” In the 20th century, the functions of gathering intelligence 
and tracking terrorists were allocated to the FBI, the CIA, the 
NSA, the Pentagon, etc. Until 9/11/01 the results were mixed. 
This principle is discussed in more detail in Appendix A.

Do not allow undocumented functions: Do not hide the 
existence of system functions. Make sure that all system functions 
are identified and described appropriately. Undocumented 
functions can exist due to developmental testing activities, 
accidents, playfulness, or malicious intent. The PDP 11-45 
computer had secret op codes. Microsoft Excel 97 had a built in 
flight simulator. Thousands of such Easter eggs are documented at 
http://www.eeggs.com/tree/1-1-111.html. Don’t try this at home, 
but starting a line with “=rand(200,99) (Enter)” (excluding the 
quotes) in a Word document or a PowerPoint presentation, will 
give you 235 pages of “The quick brown fox jumps over the lazy 
dog,” and perhaps a computer crash.

Provide observable states: System equivalence cannot 
be proven using input/output behavior. State behavior must be 
used to prove equivalence of dynamic systems (Wymore and 
Bahill, 2000). It would be best to provide the total system state, 
but it would still be useful to provide only a significant number 
of reset states or restore points (Botta, Bahill, and Bahill, 2006). 
Providing states will allow future designers to reuse existing 
systems, upgrade systems, use commercial off the shelf products, 
replicate field failures, verify that a physical system conforms to 
its design, and verify evolving systems (Wymore and Bahill, 2000; 
Botta, Wuersch, and Bahill, 2004). It will also allow them to find a 
system mode behavior function that can be placed in front of the 
input to the system being reused in order to produce the desired 
new system behavior (Wymore, 1993).

Accelerometers from automobile air bag systems can be 
reused as g-switches in missile safing systems if the states are 
observable. If the only indication the accelerometer gives is 
Fired or NotFired, then they are not reusable. But the state of the 
accelerometer can be defined as the g-force being measured. If 
this g-force can be observed, then they can be reused in missiles.

Rapid prototyping: Develop a prototype quickly. Get 
the stakeholders to use it. This will identify the true needed 

capabilities of the system. This is particularly useful when delving 
into unfamiliar design areas. The first prototype is often discarded, 
particularly in software systems.

Develop iteratively and test immediately: Build a large-
scale system by constructing it as a series of smaller products of 
increasing completeness. Because the early entities are small, it is 
easier to get them right and testing can be completed immediately 
(Douglas, 2004).

Create modules: Design the system with many small 
independent but interacting modules (Parnas, 1972). The principle 
of independence means that changing one module should not 
force changes in other modules (Suh, 1990). Good examples are 
the modules of the Unix (or Linux) computer operating system 
and the libraries of Java. Modules should have low external 
complexity (loose coupling) and high internal complexity (strong 
cohesion) (Schultz, Fricke, and Igenbergs, 2000).

Create libraries of reusable objects: Patterns are example 
solutions for doing common things. There are many books with 
software patterns (see, for example, Fowler, 2004) and some with 
use case patterns (Övergaard and Palmkvist, 2005); however, 
this library principle is not restricted to software and use cases. 
For example, a company could create 100 generalized evaluation 
criteria (measures of effectiveness) that could be tailored and 
used in company tradeoff studies. Each criterion would contain 
the name of the criterion, description, weight of importance 
(priority), basic measure, units, measurement method, input (with 
expected values or the domain), output, and scoring function 
(type and parameters) (Daniels, Werner, and Bahill, 2001). This 
criterion library would form the nucleus of a tradeoff study, but 
many customized criteria would be added. This particular library 
should be a part of the company CMMI DAR process (Chrissis, 
Konrad, and Shrum, 2003). Libraries could also be created for 
generic requirements.

Use open standards: Open standards are publicly available 
specifications for achieving a specific task. Open standards 
are available for all to read and implement. Examples of open 
standards include ANSI/EIA-632, ANSI/EIA 731, IEEE 1220, ISO 
15288, UML, SysML, OMG IDL, CORBA and USB. In contrast, 
proprietary standards are controlled by a single entity. Java Server 
Faces can be the interface between HTML code and logic code. 
The Java Server Faces is a mass-market product that is highly 
scalable, but it is still controlled by a single commercial entity, 
likewise with Microsoft’s Source Code Control Interface (SCCI) 
Specification.

Identify things that are likely to change: Differentiate 
between aspects of a system that are likely to change and those 
that are likely to remain relatively constant. Identify the aspects 
that are likely to change and put extra effort into designing their 
interfaces. For example, an air transportation system will always 
have functions such as load people, load luggage, take-off, land, 
and comply with FAA regulations. It also has entities that are sure 
to change such as the type of aircraft, speed, size, routes, and cargo 
capacity. The system should be designed to accommodate changes 
in the things that are likely to change (Evans, 2004). For example, 
the processing speed of computers is expected to increase; 
therefore, hardware and software should be designed so that 
changes are not necessary when processor speeds do increase.

Write extension points: In use cases use extension points 
where change is expected (Cockburn, 2001; Kulak and Guiney, 
2000; Övergaard and Palmkvist, 2005). That way the base use 
case does not need to be changed when the extending use case 
is changed. 
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Group data and behavior: Group together data and 
the behavior (logic) that operates on it, because data and the 
behavior that accesses that data often change together (Fowler, 
2004). Software accomplishes this with header files and with class 
diagrams that have attributes (data) and operations (behavior). 
Hardware accomplishes this with distributed control where each 
board has a processor and memory.

Use data hiding: Hide data from objects that do not have 
“a need to know” (Parnas, 1972). That way if the data structure 
is changed, the other objects do not have to be notified about 
the change. This principle is also called information hiding and 
function hiding (Gomaa, 2000). In the UML, model elements 
such as attributes and operations can be marked with one of 
these visibility indicators: public, protected, private, or package. 
In public documents, describe the interfaces and only the public 
functions and data. This principle has nothing to do with security 
—its purpose is simply to improve the efficiency of making 
changes. Architecture hierarchies and levels also influence  
data hiding.

Write a glossary of relevant terms: Collect terms used in the 
domain and design models and provide definitions. Capture the 
jargon of the domain experts. Include names of functions, classes, 
methods, modules, and high-level organizing principles. Evans 
(2004) calls this collection of terms a ubiquitous language.

Envelope requirements: Estimate requirements top-down 
and fill in details later, e.g., we need to test (measure) a DC voltage 
that surely will be less than 40 volts. Later we find that it will 
probably be between 5 and 20 volts. Finally, we get a specification 
of 12±2 volts. This principle ameliorates changing requirements 
than with reuse.

Create design margins: If your estimated need is two 
Gigahertz of bandwidth, specify four. But this is expensive: if 
everyone did this, the system would be gold-plated. It is better to 
give all of the flexibility in cost, schedule, and performance to the 
program manager and allow him or her to distribute it across the 
project. This principle is treated in detail in Appendix B.

Design for testability: Early in the design process, it should 
be determined how the system will be tested. The architecture 
should be selected to enable built-in self-test (BiST). BiST 
can be triggered externally or it can be performed whenever 
the system is not busy performing its normal functions  
(O’Conner, 2001).

Design for evolvability: The capacity of an existing system 
to successfully adapt to changing requirements throughout its 
life cycle is called evolvability (Christian and Olds, 2005). A 
system can adapt to change by reconfiguring existing system 
entities, by increasing the size of existing system entities, or by 
adding new entities. Often design, development, and testing 
take multiple years. Technologies can change during that period. 
Designs should have adequate flexibility and adaptability to take 
advantage of this fact rather than fighting it. The classic example 
is Motorola’s satellite phone system that was made obsolete by cell 
phone technology before it was completed.

In designing the Boeing 747 airliner, the engineers designed 
weight growth capability into the airplane by giving it bigger 
wings and tail surfaces than it initially needed. The landing gear 
was more robust than needed and it was designed so that gear 
that is more capable could be substituted without the expense of a 
major redesign. This allowed a dozen different versions of the 747 
to be built over 30 years (Sutter, 2006).

Build in preparation for buying: If a commercial off the 
shelf (COTS) product that suits your needs is available, then 

of course you should prefer to use it rather than develop a new 
product in-house. But if a COTS product is not available, then 
build a custom product, and monitor the market place: when a 
COTS product becomes available, switch to that COTS product. 
In hardware, sometimes the contractor will use commercial 
grade products while waiting for military standard parts to  
come along.

Create a new design process: When using a significant 
amount of COTS, products you must change your design process. 
These are some of the new activities that must be performed: 

Search the marketplace for candidate COTS products and •	
technologies. 
Work with the customer in early project phases to refine •	
the customer needs statement and get high-level, flexible 
objectives, instead of extensive requirements lists. 
Iteratively negotiate the requirements and the architecture •	
with the customer. 
Change contracting so that funding for upgrades and •	
marketplace research does not end with the project’s period 
of performance. 
Create a satisficing design that may not meet all of the •	
requirements, but one that provides the high priority 
capabilities and satisfies the customer’s operational needs. 
Create test procedures that will be reused in the Operation and •	
Maintenance phase of the system life cycle whenever upgrades 
or new COTS products are brought into the system. 
Plan for insertion of upgrades and technologies throughout •	
the system life cycle. 
Continually search the marketplace for upgrades and •	
new products that can replace existing COTS products, 
particularly in the Operation and Maintenance phase. 

Choosing to design with a significant amount of COTS 
products is a decision that should not be made lightly. Indeed 
the BAE Systems’ COTS-Based Engineering package already has 
a dozen documents containing three Megabytes of text.

Change the behavior of people: Finally, as a last resort, you 
can try to change bureaucracy and human nature so that you get 
stable requirements up-front. You can also try to change people 
to get rid of the Not Invented Here attitude. But good luck.

Systems of Complex Systems
More and more systems are now being composed of a multitude 
of complex systems. A system of systems is a large complex 
system that is composed of other large complex systems. 
(Systems composed of simple systems are not difficult to deal 
with and are not considered here.) First, the system of systems 
must be a system, meaning it must have states and inputs that 
are transformed by functions into outputs. Next, each of the 
constituent systems must be a system in its own right, meaning 
it must have states and inputs that are transformed by functions 
into outputs. The constituent systems must be able to function 
on their own as totally independent systems; therefore, all of the 
principles of good design that were presented in this article apply 
to the design of the constituent systems. Now, which of these 
principles applies to the high-level system of systems? Exhibit 1 
shows the principles that might not.

The Department of Defense Architecture Framework 
(DoDAF) was created to help with the design of systems of 
systems. The DoDAF has the following four views of a system  
of systems:
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Exhibit 1. Principles That Might Not Apply to the Design of Systems of Complex Systems

Principle The reason why the principle might not apply

Use hierarchical, top-down design
Maybe system of systems design should be top-down. But presently most system of systems design 
is bottom-up, because usually the constituent systems (or at least their designs) already exist.

Write extension points

System of systems design is not likely to get down to this level of detail. The design of the 
individual systems will get to this level, but the system of systems design will not.

Group data and behavior

Use data hiding

Envelope requirements

Create design margins

Build in preparation for buying
This will not work for systems of systems.

Change the behavior of people

Operational View (OV): A description of the tasks, activities, •	
operational elements, and information exchanges required 
to accomplish DoD missions 
Systems View (SV): A description of systems and •	
interconnections supporting DoD functions
Technical Standards View (TV): Standards and rules •	
governing arrangement, interaction, and interdependence of 
system parts or elements, whose purpose is to ensure that a 
conformant system satisfies a specified set of requirements
All View (AV): Information pertinent to the entire •	
architecture, AV products set the scope and context of  
the architecture

The DoDAF, however, is not a design process. It is missing 
the following design artifacts: customer requirements, derived 
requirements, system test, system validation, concept exploration, 
tradeoff matrix, sensitivity analysis, schedule, budget, technical 
analysis, and risk management. Entities like these would have 
to be included in the design of the constituent systems, but it is 
possible that they could be omitted (as suggested by DoDAF) for 
the design of a system of systems.

Design for Reuse
We can design new systems better, faster, and cheaper if we correctly 
reuse previously developed products. (Of course, this only applies 
if you do the job correctly; i.e., you should not reuse computer 
code, you should reuse software models.) These products might 
have been developed in-house or they might be commercial off 
the shelf. There are several facets to design for reuse: (1) refining 
customer needs and negotiating system requirements with the 
customer, (2) selecting and evaluating potential reuse products, 
(3) technology planning and insertion, (4) product lifecycle 
planning, and (5) designing products so they are more reusable. 
This article concerns the 5th topic—design for reuse. Designing 
systems with increased probability of reuse is not free – it requires 
extra effort and cost. This produces another facet of the design for 
reuse process—convincing your boss or customer that it is worth 
the extra cost to design a system for increased probability of reuse. 
This facet is beyond the scope of this article.

Summary
This article has presented dozens of principles of good design. 
Of course they would not all be applicable on all programs. 
Surprisingly, none contradict each other. If care is not taken, the 

principle of “Develop iteratively and test immediately” could 
confound the principles of “Use hierarchal, top-down design” 
and “Work on high-risk items first.” But in a careful design, the 
high-level or high-risk items would be decomposed into smaller 
modules that could be tested immediately. Similarly, “Design for 
testability” and “Design for evolvability” are not contradictory, 
they are orthogonal. There are no other obvious interactions 
between these principles.

Some of these principles are just good design principles— 
they will help with reuse, changing requirements, testability, 
and evolvability, whereas others primarily ameliorate changing 
requirements, increase reuse potential, or enhance evolvability. 
Exhibit 2 shows these principles and indicates for which facets 
they are most applicable; however, the Xs should not be crisp—
they should be fuzzy. The right column indicates principles that 
are likely to impact the short-term cost of the system, but, of 
course, the tradeoff between short-term cost and customer value 
is a complex issue (Browning, 2003).

The principles of good design that were presented in this 
article were specific, concrete, low-level suggestions for design. 
We did not cover basic system engineering principles such as 
stating the problem, discovering requirements, doing tradeoff 
studies (Pugh, 1991; Daniels, Werner, and Bahill, 2001; Smith, 
Son, Piattelli-Palmarini, and Bahill, 2007), configuration 
management, sensitivity analyses (Smith, Szidarovszky, Karnavas 
and Bahill, 2008), etc. Of course, these other activities must 
be done, but they are covered adequately in other publications 
(INCOSE, 2004). Examples of failures that result from violating 
these system design principles are also given elsewhere (Bahill 
and Henderson, 2005).

Most engineers and managers are probably familiar with the 
principles of good design that were presented in this article. We 
think that presenting them all in one place can serve as a checklist, 
to make sure they are all considered in designing systems.
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Design for testability X $

Design for evolvability X $

Build in preparation for buying X $

Create a new design process X $

Change the behavior of people X $
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Appendix A
Principles of Function Design
Functional decomposition is a popular system design technique. 
When using it, you identify the top-level function that the system 
must perform. Decompose that function into subfunctions. 
Then decompose those subfunctions into sub-subfunctions. 
Continue this decomposition until you get functions that can 
be implemented with commercial off-the shelf products. When 
performing this design task, creating the functions and allocating 
them to components should not be arbitrary or capricious. The 
functions should be designed and there are principles that can 
help you design good functions.

Allocate Each Function to Only One Component. Each 
function should be allocated to only one physical component, 
and, therefore, each function will have only one owner. If there 
were two owners for a function, one might change his or her 
requirements, and this would change the system for the other. In 
the object-oriented world, this would be phrased as, “Do not allow 
multiple actors to have the same role” (Övergaard and Palmkvist, 
2005). If two actors are trying to assume the same role, generalize 
them into one abstract actor. My wife notes that in a theater 
play it would also be mistake to allow two actors to assume the 
same role. For some systems and customers, this principle may 
be difficult to implement. Let us now look at some examples of 
following and violating this principle.

One function allocated to two components, bad design: 
Violation of this principle is captured in the American proverb, 
“Too many cooks spoil the soup.” In the 20th century, the function 
of tracking terrorists was allocated to the FBI, the CIA, the 
NSA, the Pentagon, etc. Until 9/11/01, the results were mixed. 
In a baseball game, if the runner on first base is likely to steal 
second base, then the function of covering second is allocated by 
agreement to the second baseman or the short stop, but never to 
both. This agreement prevents bad design. This principle may be 
the reason back-seat drivers are so distained.

One function allocated to two components—exceptions that 
proof the rule: One valid reason for assigning a function to more 
than one component would be that the function is performed by 
one component in a certain mode and by another component in 
another mode. For example, to decelerate an airplane, when the 
wheels first hit the runway, reverse the thrusters on the engines. 
Later, when preparing to move from the runway to the taxiway, apply 
the brakes on the wheels. Another reason for assigning a function 
to more than one component would be deliberate redundancy to 
enhance reliability—allowing one portion of the system to take on 
a function if another portion fails to do so, as on the Space Shuttles, 
which have five flight control computers. Another reason is truly 
distributed functionality: you can decelerate a car with either front 
wheels or back wheels. For decelerating an airplane, the reverse 
thrusters on the engines and the air brakes on the wings might be 
for redundancy or distributed functionality.

One system with two subsystems and two functions, OK design: 
A claw hammer pounds nails or pulls nails. A pencil makes lines 
or erases lines. A teapot heats water and whistles. A clock radio 
wakes up people or plays music. A heating, ventilation, and air 
conditioning system heats a house or air-conditions a house. 
Computers do many things at the same time.

One object with two functions, OK design: A drawbridge 
allows cars to move over the river or boats to move under the 
bridge. Female breasts attract males and feed offspring resulting 
from that. Mammal sex organs are used for reproduction and 
waste elimination. An air conditioner cools air and removes 
humidity from the air. A dog can guard the house or be a pet.

One object with two functions, marginal design: Sports 
stadiums have been built to present both football and baseball 
games. Such stadiums are not popular now—they must not have 
been very successful. A combination washer and dryer washes 
clothes and dries clothes (these are not currently popular). An 
item with functions of create and operate the same object is a bad 
design (Evans, 2004). If you buy a new car and it needs service, 
you do not take it back to the factory that manufactured it—you 
take it to a separate service center.

One function with two purposes, OK design: An oven cooks 
food and kills bacteria. It has one function (heat food) but two 
purposes. A dishwasher cleans dishes and kills bacteria.

Make Functions Independent. Functions should not depend 
upon each other. If they are independent and one is changed, then 
the other one will not have to be changed. Normally I let my clock 
radio wake me up with music. But if I am in a strange town, I use 
the buzzer, just in case the radio station is off the air or the radio 
is mistuned when I want to get up. Allowing the wakeup function 
to depend on the play music function is dangerous, and I avoid it 
when the wakeup function is critical. Fricke and Schultz (2005) 
present a technique to help keep functions independent,

A bad design: On most company telephones, dialing 9 gets 
an outside line, and then dialing 1 starts a long distance dial. At 
this point if the 1 button is inadvertently hit again, then the caller 
is connected to 911, the emergency line. If you hang up quickly, 
they send a policeman to save you.

Limit the side effects: Functions should do what their names 
imply and nothing else. For example, in an automobile, the 
ignition switch turns off the ignition system, but it also has a side 
effect of disconnecting electric power to the radio. Renaming 
this switch the electric power switch would solve this side  
effects problem.

These principles apply to object-oriented design as well. In use 
cases, the functions are described in the Functional Requirements 
part of the Specific Requirements section (Daniels and Bahill, 
2004). In use case diagrams, functions are associated with the 
roles. In activity diagrams, functions are the activities. In state 
machine diagrams, functions are the actions and activities. In 
class diagrams, functions are the operations listed in the third part 
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of the box. In sequence diagrams, functions are the commands, 
so functions appear in many places.

In an object-oriented design, it would be a mistake to give 
two functions the same name and it would be a mistake to assign 
one function to two classes; however, it is very natural to have one 
function appear in a use case, a class diagram, a state machine 
diagram, and a sequence diagram. It would be specified in one 
place and used in multiple diagrams.

These principles of good design do not apply to biological 
systems that evolved instead of being designed.

Appendix B
Design Margins
The term design margin is used for at least four different purposes: 
safety factors, budget reserves, tolerances, and performance 
capabilities. When designing a system, parameters with large 
uncertainties should have bigger safety factors than parameters 
that are well known. For instance, if it is believed that the safe 
upper limit for voltage is 200 ± 5V, then rate the system at 190V. 
Whereas, if you think a safe upper limit for voltage is 200 ±20V, 
then you could rate the system at 140V. 

The maximum safe pressure for a cylindrical steel boiler is 
given by

 Wall Thickness            Tensile Strength
Maximum Pressure = 

Shell Radius

×

Suppose that the values for a particular boiler design yield 
a maximum safe pressure of 1000 psi. According to the 1915 
ASME Boiler Code, you should rate it for 200 psi: that is, the 
code required a safety factor (design margin) of 5. Studies of the 
service history of pressure vessels and failure analyses led to a 
more thorough understanding of the behavior of steel materials 
and better manufacturing techniques led to better materials. As a 
result, in 1951 the ASME design margin was changed to 4, which 
would allow 250 psi for the boiler above. In 1999, this design 
margin was further reduced to 3.5. As the system becomes better 
understood, the design margin is reduced.

Reliability engineers increase the reliability of a system by 
limiting the ratio of the operating stress to the rated stress to, 
for example, 50%, which implements a 100% design margin. For 
example, a capacitor that is rated for 10V would be restricted to a 
maximum operating voltage of 5V.

Often nonfinancial budgets are created for critical  
design parameters. 

Exhibit B1. Weight Budgets

Module Target Weight
Maximum 

Allowable Weight
Reserve

A 15 20 5
B 20 30 10
C 40 50 10

But it is a better practice (particularly with schedule) to sweep 
up all of the reserve and give it to the Program Manager. 

Exhibit B2.  Allocation of Reserves

Module Target Weight

A 15
B 20
C 40

Program Manager’s Reserve 25

Things that are often budgeted include computer memory, 
weight, power, cost, and schedule. These items are usually traded 
off with each other and also between the subsystems.

When designing a system, it is important to give tolerances 
for manufacturing parameters. These design margins are usually 
given as the tolerance about a nominal value. For example, 

Output voltage  5 V ± 0.1
Weight   5 kg +0.1, -0.5
Hole diameter   5 cm +0.1, -0

In a similar vein, parameters will change due to operation, 
wear, aging, and replacement. Tolerances must be given for 
maintenance procedures. For example, when tuning a Datsun 
240Z, set the spark plug gap between 0.8 and 0.9 mm and set the 
distributor point gap between 0.45 and 0.55 mm.

At Sandia Laboratories a “high-margin” nuclear explosive 
package design generates its nominal (or higher) yield over the 
widest possible range of input and environmental parameters. New 
nuclear weapons are being designed with increased “design margins,” 
which some people think will decrease the “safety margin.”

Other considerations: assume a design has five layers of 
integration. How we allocate tolerances can have a huge impact 
on yield at each level. If we assume that statistically we need to 
constrain the lower level components with a 6-sigma margin to 
allow for a 4-sigma yield as we integrate all the pieces together, 
then we will have a high cost at those lower levels but a lower cost 
at the top level. When considering field service, the low-level field 
replacements must work with a system that has been in the field for 
a considerable period of time; therefore, the design margins and 
tolerances must be controlled precisely at the low levels to allow 
for these field replacements to have a high confidence of success.


