
Functions that are everywhere continuous

and nowhere differentiable

1. Riemann’s Function

According to publications of Du Bois Raymond [7] and Weierstrass [9], the function

Ra(x) =
∞∑
n=1

sin(naπx)

naπ
, (1)

has been suggested by Riemann in 1861 (for a = 2) as an example for a function that
is everywhere continuous but (almost) nowhere differentiable. Note that the sum is the
Fourier series of an odd periodic function of period 2, thus it is sufficient to visualize
its graph on the interval [0, 1]. Clearly, if a > 1 the series is uniformly convergent by
the Weierstrass M-test, hence the series defines a function that is continuous everywhere.
However, differentiating formally each term in the series (1) gives

R′
a(x) ∼

∞∑
n=1

cos(naπx), (2)

and there exists no interval on which this series is uniformly convergent. Due to lack
of uniform convergence, differentiability is delicate to study. Hardy [4] proved in 1916
that Ra(x) is not differentiable at every irrational number using properties of certain
Diophantine equations. It took over 45 years until the question of differentiability of (1)
was fully solved including rational number as well: In the 1970’s Gerver [2, 3] and Smith
[8] proved that Ra is also not differentiable at rational numbers except for numbers of the
form p/q with odd (and relatively prime) integers p and q. Certain interesting features of
this function at rational points have been established as well.

2. Weiertrass’ Function

Weiertrass’ [9] celebrated function is defined by the series

Wab(x) =
∞∑
n=0

an cos(bnπx), (3)

where here 0 < a < 1 and b is an odd integer such that ab > 1+3π/2 (according to Weier-
strass’ original discussion). The minimum value of b which satisfies these constraints is
b = 7. This construction, along with the proof that the function is nowhere differentiable,
was first given by Weierstrass in a report in 1872 and published in 1875. The requirement
that b be an odd integer makes the function periodic of period 2. The condition a < 1
allows to apply the Weierstrass M-test again (using a geometric series) and guarantees
continuity. Term by term differentiation gives the series

W ′
ab(x) ∼ −π

∞∑
n=0

(ab)n sin(bnπx), (4)

and already ab > 1 prevents uniform convergence of the series (4). Indeed, Hardy has
shown that Wab(x) is nowhere differentiable if ab > 1.



Renewed interest in the the Weierstrass function arose in the 1970-1980’s with the
discovery of and interest in fractals. Fractals are geometrical objects that cannot be
characterized as objects with an integer dimension (isolated points, 1d lines, 2d areas
etc), Specifically the graph of the Weierstrass function does not appear like a smooth, 1d
curve. When zooming progressively into a smooth curve one eventually gets closer and
closer to a straight line, but not so with the graph of the Weierstrass function and other
fractal curves.

There are various definitions of noninteger dimensions of sets. The most general
definition is the Hausdorff dimension introduced by Feliz Hausdorff [5]. The Hausdorff di-
mension of the graph of the Weierstrass function is bounded above by 2 + ln(a)/ln(b), and
it is generally believed to be exactly that value, but this had not been proven rigorously.
Notice that 1 < D < 2 if ab > 1.

The Weierstrass function has been taken up and generalized by Benoit Mandelbrot
[6] in 1977. An extensive study of this function using asymptotic analysis, numerical
computations as well as ideas from quantum mechanics was given by Berry and Lewis [1].

3. Piecewise linear versions of Weiertrass’ Function

The term “Weierstrass function” is often used in real analysis to refer to any function
with similar properties and construction to Weierstrass’ original example. For example,
the cosine function can be replaced in the infinite series by a piecewise linear “zigzag”
function. An example of such a function is introduced in our text in Example 3 in Section
25 (p. 204) as follows: Let g0(x) be the “tent function” on [0, 2],

g0(x) =

{
x if 0 ≤ x < 1

2− x if 1 ≤ x < 2

}
(5)

and define the function g(x) on R by extending g(x) periodically,

g(x) = g0(x− 2k) if 2k ≤ x < 2(k + 1) ∀ k ∈ Z. (6)

(see Figure 25.1, p. 204, in the text). The Weierstrass-type function fa(x) associated
with g(x) (g(x) takes the role of the cosine in the original Weierstrass function) is then
defined as

fa(x) =
∞∑
n=0

ang(4nx), 0 < a < 1. (7)

where again 0 < a < 1. This function is continuous everywhere, however nowhere differ-
entiable if 4a > 1 (e.g. a = 3

4
). The proof of nondifferentiability is somewhat delicate as

for the other cases. A discussion of nondifferentiability for another example is given in
the text in Section 38 (last section).

4. Graphs of Ra(x) and fa(x)

Graphs of approximations of Ra(x) and fa(x) are depicted in Figures 1 and 2.

To approximate the Riemann function, 600 cosine terms were used. For larger values of
a the nondifferentiability is not so well apparent in finite sum approximations, but for
smaller values it becomes clearly visible.

For the piecewise linear version of the Weierstrass function, the infinite sum in (7) was
approximated by 10 terms; beyond that memory problems occurred.
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Figure 1: Ra(x), equation (1), for three decreasing values of a.
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Figure 2: fa(x), equation (7), for three increasing values of a.
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